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Collaborative problem solving (CPS) is a crucial 21st century skill; however, current technologies fall short 
of effectively supporting CPS processes, especially for remote, computer-enabled interactions. In order to 
develop next-generation computer-supported collaborative systems that enhance CPS processes and 
outcomes by monitoring and responding to the unfolding collaboration, we investigate automated detection 
of three critical CPS process – construction of shared knowledge, negotiation/coordination, and maintaining 
team function – derived from a validated CPS framework. Our data consists of 32 triads who were tasked 
with collaboratively solving a challenging visual computer programming task for 20 minutes using 
commercial videoconferencing software. We used automatic speech recognition to generate transcripts of 
11,163 utterances, which trained humans coded for evidence of the above three CPS processes using a set of 
behavioral indicators. We aimed to automate the trained human-raters’ codes in a team-independent fashion 
(current study) in order to provide automatic real-time or offline feedback (future work). We used Random 
Forest classifiers trained on the words themselves (bag of n-grams) or with word categories (e.g., emotions, 
thinking styles, social constructs) from the Linguistic Inquiry Word Count (LIWC) tool. Despite imperfect 
automatic speech recognition, the n-gram models achieved AUROC (area under the receiver operating 
characteristic curve) scores of .85, .77, and .77 for construction of shared knowledge, negotiation/coordination, 
and maintaining team function, respectively; these reflect 70%, 54%, and 54% improvements over chance. The 
LIWC-category models achieved similar scores of .82, .74, and .73 (64%, 48%, and 46% improvement over 
chance). Further, the LIWC model-derived scores predicted CPS outcomes more similar to human codes, 
demonstrating predictive validity. We discuss embedding our models in collaborative interfaces for 
assessment and dynamic intervention aimed at improving CPS outcomes. 
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1 INTRODUCTION 
Collaborative problem solving (CPS) has been noted as a critical 21st century skill for the modern 

workforce [69].  CPS involves two or more people engaged in a coordinated attempt to share their skills and 
knowledge, in order to construct and maintain a joint solution to a problem [44,69]. Effective CPS is 
dependent on a team’s ability to establish common ground as it pertains to the problem space [44], jointly 
develop a solution that accommodates multiple perspectives [44,56], monitor progress toward the goal 
[15,46], and establish a positive and supportive climate [23,69]. 

As the workforce becomes more global and distributed, it is increasingly important for people to 
effectively engage in CPS in computer-supported, remote settings [69]. Unfortunately, current interfaces for 
remote collaboration do not capture the rich social signals available in face-to-face interaction [1,51]. As 
anyone who has experienced a Skype or Google Hangouts meeting can attest, video conferencing 
technologies still have a long way to go. Technical limitations, such as poor camera resolution, occlusions due 
to fixed camera placement, undersampling, and delayed sound transmissions, dampen communication of 
basic social signals, like nodding, breathing changes, or gesturing. This decreased information bandwidth can 
lead to reduced ability to coordinate action, resulting in lower engagement, cohesion, trust, and team 
performance [51]. 

To address this limitation, researchers in computer supported collaborative work have attempted to 
develop interfaces that support remote collaboration by leveraging low-level non-verbal signals. For example, 
real-time sharing of eye gaze makes each partner aware of the locus of attentional focus of the other 
[29,49,63]. Indeed, gaze sharing can improve action coordination and mutual understanding (and 
consequently the collaboration itself) by allowing partners to implicitly reference items without the need of 
verbal cues [10,50]. Conversely, other systems rely on making an individual aware of their own behavioral 
patterns, rather than those of teammates. For example, researchers have used eye gaze, head orientation, and 
interaction information to detect attentional lapses during dyadic online gameplay and text-based 
conversations, and uses these data to display screen content an individual missed during those lapses [20]. 
Similarly, speech production has been monitored to warn individuals of interruptions in collaborations [6,14]. 
Such systems rely on processing basic behavioral cues and providing feedback based on best practices related 
to these behaviors.  

However, it is likely that supporting remote collaboration is much more complex than leveraging low-
level signals, like eye gaze or speech production. This is because collaboration involves a dynamic interplay 
involving multiple complex processes that go beyond low-level signals [11]. Some of these processes include 
emotion co-regulation [5], establishing common ground [44], building rapport [54], and negotiation [15]. 
Thus, we think that next-generation computer interfaces must go beyond focusing on the low-level behaviors 
in which a person is engaging. Such systems should provide insight into higher-level constructs of how well a 
person or a team is collaborating. We take a step in this direction by using spoken language to 
computationally model the following three complex processes implicated in multiple CPS frameworks 
[15,23,44]: construction of shared knowledge, negotiation/coordination, and maintaining team function. In doing 
so, we contribute to our long-term goal of developing intelligent interfaces for collaboration with automated 
assessment of unfolding CPS processes to provide feedback and/or trigger dynamic interventions aimed at 
improving collaborative processes and outcomes. 

 Background and Related Work 1.1
We first discuss theoretical CPS frameworks to ground our three CPS facets in related social science 

theory. Then, we discuss the state-of-the-art in computer interfaces that support collaboration, as it is our 
eventual goal to improve these systems with our models. Finally, we discuss computational models of socio-
cognitive processes associated with effective CPS, and specifically focus on language-based models most 
similar to our work.  

1.1.1  Theoretical Frameworks of Collaborative Problem Solving 
CPS involves a complex set of interlinked behavioral patterns and social signals that dynamically unfold 

and index high-level collaborative processes, such as negotiation [15], active participation [23], and 
establishing common ground [23,44]. In the Assessment and Teaching of Twenty-first Century Skills 
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(ATC21S) framework [18,23], CPS is defined by social and cognitive skills. Social skills focus on managing the 
team and oneself. There are three facets of social skills necessary for effective collaboration. First, a teammate 
must participate in the collaboration by being willing and ready to interact with other teammates. Second, a 
teammate must engage in perspective-taking, where they see the problem from another teammate’s 
viewpoint. Finally, teammates must engage in effective social regulation processes, where they negotiate and 
compromise as well as harness individual team members’ strengths. Cognitive skills focus on managing the 
task itself (i.e. the problem-solving part of CPS). In order to effectively problem solve, teammates must engage 
in task regulation where they analyze the problem, make a plan, and move the collaboration forward to 
achieve a solution. Finally, there should be learning and knowledge building as a result of the collaboration 

Similarly, the PISA framework [69] defines three CPS competencies that interact with four problem-
solving processes, resulting in 12 levels to characterize CPS skills [17,60]. The first CPS competency involves 
establishing common ground among team members. Teammates should communicate their knowledge and 
ideas proactively while working to understand others’ ideas, and establishing shared meaning. The second is 
taking appropriate action where teammates should provide reasons to support their solution proposals and 
negotiate with others to achieve a consensual solution plan. The third CPS competency involves maintaining 
a functioning team, which involves each teammate understanding their role in their team, monitoring for 
communication breakdowns, and adapting when a breakdown occurs. As noted above, these CPS 
competencies interact with the following four problem-solving processes: (1) a team must explore and 
understand the problem; (2) then they must organize information and integrate it with personal knowledge, 
via appropriate representations of the knowledge, and by formulating hypotheses; (3) they must plan and 
execute their solution, (4) the team must monitor their plan and reflect on how to improve it, as warranted. 

Thus, these two frameworks define CPS through actions that move the team towards their problem-
solving goal, and create a positive team environment. In order to effectively engage in CPS, individuals in the 
team must not only complete the task at hand, but they must do so in a way that respects their teammates 
and maintains a positive team dynamic. 

1.1.2  Computer-Supported Collaboration Systems 
Researchers in computer-supported cooperative work have developed and evaluated a number of systems 

that provide collaboration support. These systems assess what behaviors a collaborator is engaging in and 
provide feedback based on theoretical best practices. Such systems use spoken contributions [6,14],  eye gaze 
[14,48], head orientation [20], and interaction patterns with the computer [13,20], to monitor interruptions 
[6,14], focus of attention [14,20,48], and ineffective problem-solving strategies [13], which can result in 
increasing participant awareness of the  unfolding collaboration process [14,20,48]. For example, Faucett et al. 
[14] visualized interruptions, as well as whether or not the face was in screen or the individual was looking at 
the screen, in remote conversations in order to encourage them to engage in effective behaviors. Rather than 
simply monitoring behaviors and providing feedback, systems have also been designed to augment human-
interaction [20,36]. For example, automated monitoring of language has been used to generate task lists of 
potential action items for meeting attendees [36]. 

One exemplary system in the computer-supported collaboration domain was designed and validated by 
Gutwin et al. [20]. They monitored collaborator attention in virtual interactions and dynamically intervened 
to mitigate negative effects of brief, but frequent attentional disconnections (e.g., where a user missed 
important screen content). Attention was monitored using webcam-based face detection to determine if a 
person was looking at the screen, the order of windows to determine whether the relevant window was in 
focus, and mouse clicks to monitor if the user was clicking outside the relevant window. They used three 
“catch-up” techniques to visualize changes in a shared virtual interface. First, they highlighted objects that 
changed during attentional disconnections to increase the visual saliency of these objects. Second, they used 
visual traces to show how objects moved across the screen or if objects were removed. Finally, they 
implemented a replay mechanism that displayed a video of missed screen content at an increased speed. They 
validated their system on dyads engaged in text chat or gaming applications. They found that users preferred 
the three catch-up visualization techniques to no visualization. Additionally, the optimal catch-up technique 
depended on the application (e.g., highlighting was sufficient for simple visual interfaces, replay was not 
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useful for games with fine-grained time constraints). Thus, a variety of work has created systems that 
leverage low-level behaviors, with the goal of encouraging effective collaborations. 

1.1.3  Computational Models of Socio-cognitive Processes 
Prior research has used behavioral patterns to model CPS and related phenomena. For example, research 

has identified patterns of facial expressions, eye gaze, head movements, physiology, speech, and interface 
interaction that are associated with teammates’ active participation [2], effective communication [26,37,64], 
collective intelligence [7], role in the team [16], agreeableness [33], and task performance [61]. Social-signal 
processing and multimodal modeling have also been instrumental in understanding conversational 
characteristics, such as turn-taking [30], speaker’s influence [40], or conversational ice-breaking [27]. Hung 
and Gatica-Perez [24], in particular, linked team cohesion – a sense of belonging to the team – to the audio-
visual channels of task-oriented (as opposed to socially-oriented) groups . Related to team cohesion, rapport 
pertains to interpersonal relationships between group members developed over time [54]. Müller et al. [38] 
detected rapport loss during open-ended conversation in small groups using an ensemble of support vector 
machines trained on facial expressions. Empathy, the ability to share the feelings of others [12,59], is another 
complex socio-cognitive construct important in collaborative interactions [31]. Ishii et al. [28] analyzed how 
verbal features and gaze transition patterns during turn-changing and turn-keeping events could predict 
high- and low- empathy levels during multiparty conversations. Thus, prior work has demonstrated the 
feasibility of detecting socio-cognitive processes from behavioral signals, though it has not directly focused on 
collaborative problem solving.  

1.1.4  Language Based Models of Collaborative Problem Solving 
Our work is grounded in the research on linguistic modeling of CPS processes and outcomes, such as idea 

sharing [15,22], argumentation [45], and task performance [39]. Researchers typically index the content of the 
collaboration by quantifying the frequency of words and word phrases (n-grams) [15,22,39,43,45], part-of-
speech tags [39,45], rare words [45], emoticons [22], and punctuation [15,22,45]. Research has further 
employed language categorization techniques, such as sentiment analysis to indicate positive or negative 
attitude [39], cohesion to measure similarity of sentences [39], and dialogue act tagging to indicate the 
function of an utterance [28]. 

Most similar to the current study is work by Hao et al. [22], where the researchers used linear chain 
conditional random fields on sequential text chats between dyads to detect four important CPS facets: sharing 
ideas, negotiating ideas, regulating problem-solving activities, and maintaining communication. They pre-
selected unigrams (words), bigrams (two-word phrases), and emotional text symbols based on hypothesized 
relationships to the CPS facets. They found that sequential modeling achieved an average accuracy of 73.2% 
and outperformed standard non-sequential classifiers and a baseline accuracy of 29%. Flor et al. [33] 
individually modeled 31 behavioral indicators (e.g., providing task-relevant information is an indicator of 
sharing ideas; asking a teammate to clarify is an indicator of negotiating ideas) of the same four CPS facets. In 
addition to n-gram and punctuation frequencies, they automatically tagged text chats with dialog acts. They 
trained a classifier on dialog acts from an unrelated dataset and applied this model to their dataset to produce 
probabilistic dialog act features. Using the n-grams and automatically tagged dialog act features achieved an 
accuracy of 60.3% with a Naïve Bayes classifier, which beats their majority class baseline of 24.9%. Thus, these 
studies point to the potential of using written text to monitor CPS. 

 Current Study and Novelty 1.2
We use spoken language to automatically model the CPS processes (or facets) of  construction of shared 

knowledge, negotiation/coordination, and maintaining team function while 32 triads used video conferencing 
software to complete a challenging 20-minute computer programming task. Our study is novel compared to 
previous approaches at this problem in several respects. First, we directly model three complex facets derived 
from a theoretical framework of CPS, rather than behaviors related to, but not exclusive to, CPS (e.g., turn 
taking; behavioral synchrony). There are a number of systems [6,13,14,20,36,47] that support collaboration by 
measuring such- behaviors (e.g., speech production, eye gaze) and providing users with appropriate feedback 
(e.g., speak more, look here). Whereas these systems encourage behaviors that set the stage for positive social 
interactions, these systems do not model CPS itself, which is a very complex problem as it involves multiple 
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individuals with different personal experiences and backgrounds collaborating to solve a challenging 
problem. 

Second, prior research that has modeled CPS phenomena in remote computer-supported interaction has 
restricted communication to text chats among dyads [15,22], a somewhat limited communicative medium. In 
our study, triads remotely collaborated on an open-ended task using video conferencing with screen sharing. 
Participants could freely communicate via speech, gesture, facial expression, and paralinguistics, yielding a 
rich set of authentic social behaviors. Further, in this initial work, we use linguistic features to model CPS 
facets, and it is unknown whether language itself is sufficient for this task given the rich communication 
environment. Our use of audio also presents novel challenges in language modeling because automated 
transcription and speech segmentation are imperfect, whereas text chats provide a precise representation of 
the communication between partners. Thus our work provides an initial exploration into fully automated 
spoken language-based modeling of CPS facets. 

Third, because collecting multimodal data during open-ended multiparty interactions is challenging, most 
research has used a small number of participants and teams (e.g., 16 participants in one case and only one 
team in another [28,65]). In contrast, our dataset, consisting of 111 participants across 32 teams, is 
comparatively larger than most previous work. This sample size affords the opportunity to build team-
generalizable models, which was not possible with some prior studies (e.g., [24,27]). Relatedly, whereas the 
most similar studies in this area [15,22] have focused on dyads, the analysis of triads is also novel and adds to 
the complexity since it affords seven units of analysis (three individuals, three dyads, and the triad itself) 
compared to the three units in a dyad (two individuals and the dyad) 

Finally, in addition to reporting accuracy of the models, we also demonstrate evidence of their predictive 
validity by showing that our model estimates of CPS facets predict important collaboration outcomes, with 
results being comparable to human coded CPS facets. To our knowledge, this has not been done in 
comparable studies (e.g., [15,22]). Taken together, our work provides critical first step in modeling CPS facets 
from spoken language during remote collaborations with video conferencing. 

2 DATA SOURCE 
The dataset we use was collected as part of a larger project [55], but the analyses reported here has not 

been previously published. 

2.1 Participants 
Participants were 111 (63.1% female, average age = 19.4 years) undergraduate students from a medium-

sized private university who self-reported not having any previous experience with computer programming. 
Participants were 74.8% Caucasian, 9.9% Hispanic/Latino, 8.1% Asian, 2.7% Other, 0.9% Black, 0.9% American 
Indian/Native Alaskan, and 2.7% did not report ethnicity. Participants were scheduled as teams of three (37 
triads in total) depending on scheduling constraints and 19 participants from ten teams (27% of all teams) 
indicated they knew at least one person from their team. 

2.2 Procedure 
Participants were randomly assigned to one of three separate laboratory rooms, equipped with a 

computer, webcam, and microphone. Using Zoom’s video-conferencing and screen sharing functionalities 
(https://zoom.us), participants could see and hear each other while collaborating. Each participant’s audio was 
recorded on separate streams and screen content was also recorded as a video. One participant (designated 
participant A) was randomly assigned to interact with the collaborative interface and shared his/her screen 
content with the others (designated B and C) during the entire study. 

The task was to collaboratively develop computer programs using the Minecraft-themed Hour of Code 
environment (Fig. 1) [66], where each chunk of code is represented as a syntactically-correct interlocking 
block. The main goal was to assemble blocks to satisfy specific design constraints (see below). Teams first 
collaboratively completed five introductory lessons and watched three accompanying videos on basic 
programming principles along with instructions on how to use the environment for about 20-minutes. The 

https://zoom.us/
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purpose of these introductory lessons was to familiarize participants with the coding environment and their 
teammates. After completing the introductory lessons, or the 20-minutes expired, participants then 
individually (i.e., screen sharing was disabled) rated their level of satisfaction with their team’s performance, 
communication, cooperation, and agreeableness using a 1- 6 scale. 

Next, teams were asked to solve a challenging CPS task where they had 20 minutes to satisfy five 
constraints: 1) build a 4×4 brick building; 2) use at least one if statement; 3) use at least one repeat loop; 4) 
build at least three bricks over water; and 5) use 15 blocks of code or less. After completing the challenging 
CPS task, participants individually completed the same subjective assessments to indicate their perception of 
the collaboration. Finally, participants individually completed a ten-item researcher-created multiple-choice 
test to assess their learning of the coding concepts. 

2.3 Data Treatment 

2.3.1  Data Exclusion 
Due to equipment failure, data from four teams were removed because at least one participant in the team 

did not have an audio file and one was removed because they were missing a screen recording. In total, 32 
teams and 96 participants were used in the present analyses. 

 

Fig. 1. Collaborative user interface of Minecraft-themed Hour of Code. Participants (D) assemble a 
chain of code blocks (B) from the code bank (C) and run the animation (A). 

2.3.2  Measures 
We computed the following measures pertaining to the challenging problem solving task . First, we used 

each individual’s perceptions of their team’s performance without any modification. However, we averaged 
self-reports of communication, cooperation, and agreeableness, also collected after the challenging CPS task, 
because they were highly correlated (Cronbach’s alpha = .89). We scored the 10-time posttest on a scale from 
0% to 100%, as an objective measure of learning. The second objective measure involved the task score (i.e., 
how did each team do on the challenge). For this, two independent raters scored each team’s final solution 
based on the five challenge criteria. The two raters reconciled any disagreements via discussion. Each 
criterion was worth a single point, so scores ranged from zero to five with a mean of 2.86 (SD = 1.06). 

Data was collected over two semesters, with a minor change between semesters, where we added a -five-
minute warning before the end of the CPS task. Thus, we z-scored group task score, individual posttest score, 
perception of performance, and perception of collaboration by semester. Additionally, we z-scored self-
reported ACT/SAT scores, which were collected as part of a demographics questionnaire. 
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2.4 Automated Speech Transcription 
Each participant’s audio files were automatically transcribed using the IBM Watson Speech to Text service 

[67]. The service generates a transcript with start and stop times for each utterance spoken by each 
participant. We interleaved transcripts from each participant to produce a one team-level transcript of the 
collaborative session. Some utterances were incorrectly split into multiple segments. To remedy this, 
sequential utterances were combined into a single utterance: if (1) they belonged to the same speaker, and (2) 
there was less than two seconds between the end of one utterance and the start of the next. We decided on 
this heuristic after assessing the accuracy of utterance segmentation thresholds of 1s, 1.5s, 2s, and 3s. In total, 
there were 11,163 utterances across the 32 teams for the 20-minute challenging task. 

To assess accuracy of the automatic transcription, we manually transcribed a random sample of 10% of the 
utterances sampled from all participants (total of 1,114 utterances). We computed word error rate (WER) [25], 
as: (substitutions + insertions + deletions) / (words in human transcript), and set it to zero if the automated 
transcription indicated speech when there was none (6% of the utterances). The average WER was 45%, 
indicating considerable imperfections in the transcription. We study the effect of these transcription errors in 
Section 4.5. 

2.5 CPS Framework and Coding of Utterances 
We annotated teammates’ utterances using a theoretically-grounded and empirically-validated CPS 

framework [57]. The framework defines three CPS facets: 1) construction of shared knowledge, 2) 
negotiation/coordination, and 3) maintaining team function. Each facet has three verbal indicators, which 
form the basis of the coding scheme. Construction of shared knowledge involves sharing ideas and expertise 
with other teammates and establishing shared understanding among the team. The three indicators for this 
facet included an individual proposing specific solutions, talking about the givens and constraints of the task, 
and confirming understanding by asking questions/paraphrasing. Negotiation/coordination is an iterative 
process to develop and execute a group solution and then revise such solutions as necessary. Its behavioral 
indicators include providing reasons to support a potential solution, responding to others’ questions/ideas, 
and talking about results. Maintaining team function reflects a positive group dynamic where members are 
conscious about being part of a team and proactively contribute to its success. Verbal indicators include 
asking if others have suggestions, complimenting or encourages others, and giving instructions. In total, there 
were nine verbal indicators (three per facet). Example indicators for a contiguous chunk of one team’s 
transcript are shown in Table 1. 

Two human coders, familiar with the coding scheme, were trained to code the utterances for the presence 
of each indicator. Coders watched video recordings alongside the transcripts and counted the number of 
times each indicator occurred in an utterance. Coders reached an agreement of .98 (Gwet’s AC1) on two five-
minute video samples consisting of 254 utterances.  The 32 videos were then randomly assigned to the coders, 
who individually coded their videos. 

The resultant indicator counts were binarized (per facet) at the utterance level (since a majority were 
either 0 or 1). We then applied a logical OR per facet such that if any of the indicators for an utterance was 1, 
this was taken as positive evidence of the facet for that utterance. In total, 33% of the utterances exhibited 
evidence of constructing shared knowledge, 15% for negotiation/coordination, and 10% for maintaining team 
function. 
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Table 1. Example continuous dialog (human and automatic transcriptions) from a group 
interaction with the coded indicators and CPS facets. Speaker A is controlling the interaction with 

the Hour of Code environment. 

Speaker Human Transcription Automated Transcription Coded Indicators 
A Do you want to see if this works at 

all? Then we can figure out 
something if it doesn't. 

do you want to see if this works at 
all then we can figure out 
something else it doesn't 

Asks for suggestions 
(Maintain) 

C Yeah. if Responds to 
questions/ideas 
(Neg./Coord.) 

B We could uh…yeah, just try it. What 
we do in the beginning is we can 
like, we can turn right and then 
place the water blocks and he can 
turn around again and then just do 
what we were doing earlier. 
 

we can %HESITATION  yeah I just 
try  what we do in the beginning 
as we can light  make him turn 
right place the fix that water block 
and turn around again and just do 
what we're doing earlier  
 

Proposes specific solutions 
(Constr.) 

A We can just add another one. 
 

we can add another one  
 

 

A Right. right  
C Like right there? like right there Asking questions/ 

Paraphrasing (Constr.) 
A Uh-huh. who  
B Yeah, cause he's standing on that 

thing, and he comes down and he 
can't do anything from there. 
 

yeah I can see standing and I think 
it sums down and he can't do 
anything from there  
 

Provides reasons 
(Neg./Coord.); talks about 
results (Neg./Coord.) 

C Yeah. yeah  
A Uh-huh. 

 
he  

B So maybe in the beginning we can 
have him fill in that water block, so 
we don't have, we don't need that 
water statement then? 
 

so maybe in the beginning we can 
have them fill in that water block 
so we don't and we don't need that 
that water statement and  
 

Proposes specific solutions 
(Constr.); provides reasons 
(Neg./Coord.) 

A So here? so here Asking questions/ 
paraphrasing (Constr.) 

B Yes. Instead of turning right, he can 
just turn…see where he's standing. 
 

yes it instead of turning right you 
can just turn  all CC standing  
 

Responds to questions 
(Neg./Coord.)/ideas; gives 
instructions (Maintain) 

Note: Constr. = Construction of Shared Knowledge; Neg./Coord. = Negotiation/Coordination; Maintain. = 
Maintaining Team Function 

3 SUPERVISED MACHINE LEARNING 
Our goal was to automatically model the trained human-raters’ codes of construction of shared 

knowledge, negotiation/coordination, and maintaining team function, in a way that generalizes to new teams. 
By automatic modeling, we mean that we train supervised classifiers to learn how to generate the human 
codes from the transcripts without overfitting (i.e., so it the models are applicable to new teams with the same 
setup). We used language-based features because speech was the primary communication modality, thus 
language was expected to best reflect the content of the collaboration. Although other multimodal features 
(e.g., facial expressions, eye gaze) capture aspects of collaboration, they do not index the content of what 
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actually was said. Further, our CPS framework is largely based on verbal indicators, making language the 
ideal choice for developing initial modes, which can be subsequently extended with multimodal data. 

3.1 Feature Engineering 
We derived features using a bag-of-n-grams approach following an open-vocabulary method [52] where 

counts of words and phrases serve as features. First, utterances were tokenized into individual words using 
the nltk [4] tokenizer. We experimented with whether to perform word stemming, where word variants are 
reduced to common roots, using the nltk implementation of the Snowball Stemmer [42]. Similarly, we 
experimented with removal of stop words (i.e., commonly used words like “a” and “the”), using the Glasgow 
Information Retrieval Group stop word list [35]. We found that neither word stemming nor stop word 
removal improved results, so we did not do either in our final models.  

One potential downside of using n-grams is that the models might be very specific to our particular 
domain, thereby reducing generalizability. Thus, we investigated an alternate word encoding method, which 
used features that would theoretically generalize to other domains. Accordingly, we used the Linguistic 
Inquiry Word Count (LIWC) [58], which provides occurrences counts of predefined word categories (e.g., 
affective terms, future terms) obtained from theoretically-grounded and psychometrically-validated 
dictionaries, to count the proportion of words in an utterance that belong to each of 73 pre-defined LIWC 
categories. These counts were converted to binary values of whether or not the category was present in the 
utterance. Any non-zero LIWC categories (i.e., at least one word in the utterance was in that category) were 
added as a feature. An example automated transcription and corresponding LIWC coding is shown in Table 2. 
Note that the domain-specific word “turns” is now replaced with the more general word categories "verb”, 
“present focus,” “relativity,” and “motion”. 

Table 2. Example coding of LIWC categories based on automatically generated transcriptions. 

Automated Transcription LIWC Transcription 
“however trying to build a house 
like right along right along that 
water there” 

function word - pronoun - impersonal pronoun - article - 
preposition - adverb - conjunction verb – comparative – cognitive 
process - tentativeness - differentiation – biological process - 
ingesting – drives and needs - achievement - relativity - space - 
home 

“I think it's here turns right” function word - pronoun - personal pronoun - first person singular 
- impersonal pronoun -auxiliary verbs - adverb -  verb - cognitive 
processes - insight words - present focus - relativity - motion - 
space 

“other repeat four times I think” function word - pronoun - personal pronoun – first person 
singular - impersonal pronoun - verb - number – cognitive 
processes - insight words – differentiation -  present focus - 
relativity - time 

 

3.2 Supervised Classification and Cross Validation 
We experimented with the sci-kit learn [68] implementations of the Random Forest and Naïve Bayes 

classifier, but the former consistently resulted in higher accuracy, so we focus on it.  
We used team-level 10-fold nested-cross validation. By team-level, we mean that all the utterances for a 

given team were in the training set or testing set, but never both, which is important for generalizability to 
new teams. Within each testing fold, the training set was again split into five validation folds for 
hyperparameter tuning. For each of the five validation folds, a model was fit and scored using every 
combination of hyperparameters (Section 3.3) via a grid search. Models were scored using area under the 
receiver operating characteristic curve (AUROC), which assesses the true positive and false positive tradeoff 
across classification thresholds [21]. Scores for each parameter combination across the five validation folds 
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were averaged. The hyperparameters which resulted in the highest average AUROC were preserved. A model 
was then fit on the full training set using these best hyperparameters and predictions were generated on the 
test fold. These predictions were then pooled over the ten test folds, upon which accuracy metrics were 
computed.  
 

3.3 Hyperparameter Tuning 
We tuned four hyperparameters using the nested cross-validation scheme described above. 
N-gram range: We varied the range of n-grams to include unigrams (words) or bigrams (two-word 

phrases). We chose not to test beyond bigrams because all unique trigrams (and beyond) occurred in less than 
1% of the utterances. We did not consider bigrams for models with LIWC features as they are not 
theoretically meaningful when considering LIWC categories (LIWC does not encode order of the word 
categories). 

Pointwise mutual information: Bigrams were filtered using pointwise mutual information (PMI) [8,34] 
to ensure that meaningful bigrams (such as “repeat loop”) were preserved rather than bigrams that were 
merely the result of frequent words occurring next to one another (such as “next the”). We tested a low PMI 
of 2 and a high PMI of 4.  

Minimum document frequency: We excluded n-grams that occurred in less than 0%, 1%, or 2% of the 
training utterances with the specific percentage included as a hyperparameter.  

Data balancing method: We tested methods for balancing the training set to address class imbalance. 
We tested random undersampling, random oversampling, and synthetic minority oversampling technique, 
using implementations from the imbalanced-learn library [32]. Class distributions for the validation and 
testing sets were left unchanged. A graphical representation of our modeling pipeline is shown in Fig. 2. 

 

Fig. 2. A graphical representation of our data processing and modeling pipeline. Automatically 
generated utterances are coded for LIWC features, unigrams, and bigrams. Trained humans also 
code each utterance for evidence of our three CPS facets. This data is then fed into our machine-

learning pipeline. 

4 RESULTS 
The Random Forest model outputs a likelihood from 0 to 1 that the instance exhibits evidence of the CPS 

facet (a binary one label). Rather than selecting a probability threshold for binary classification of each 
instance, we used the area under the receiver operating characteristic curve (AUROC) as our accuracy metric. 
AUROC assesses the true positive and false positive tradeoff across all prediction thresholds [21] with an 
AUROC of 0.5 reflecting chance performance. 
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Table 3. AUROC values for n-gram and LIWC-category models are shown. 

 N-gram LIWC-category 
Construction of Shared Knowledge .85 .82 
Negotiation/Coordination .77 .74 
Maintaining Team Function .77 .73 
Chance .50 .50 

 

4.1 Model Accuracies 
AUROC values are shown in Table 3 and the correspond ROC curves in Fig. 3. All models performed 

better than chance, with the n-gram models performing slightly better than the LIWC-category models. 
Specifically, the n-gram models performed 70%, 54%, and 54% greater than chance for construction of shared 
knowledge, negotiation/coordination, and maintaining team function, respectively. The LIWC-category 
models performed 64%, 48%, and 46% better than chance for the same facets. The best results were achieved 
for construction of shared knowledge, ostensibly because of a more balanced training set (i.e., 33% compared 
to 15% and 10% for the others) and more positive instances to learn from.  

As a follow-up analysis, we combined the models in two ways. First, we averaged the prediction 
probabilities for the two models, but there was no improvement over the n-gram model (average AUROC was 
.80 for both models). Second, we combined the automated transcript and LIWC unigrams at the utterance-
level and included them in the same model. This joint model also did not yield any improvement over the n-
gram model (average AUROC of .79 for combined model versus .80 for n-gram model), so we do not examine 
it further. 
 

 

Fig. 3. Receiver operating characteristic curves for the n-gram and LIWC models for all three 
CPS facets. Note, Constr. = Construction of Shared Knowledge; Neg./Coord. = 

Negotiation/Coordination; Main. = Maintaining Team Function 

4.2 Effect of Team Makeup 
We computed three measures of team makeup, in order to investigate whether these background 

measures might improve the models’ accuracy. First, we computed a binary gender makeup variable, setting 
its value to 1 if all teammates reported the same gender, 0 otherwise. Similarly, we computed a binary racial 
makeup variable that was 1 if everyone in the team self-reported being the same race. We also computed a 
binary familiarity variable that was set to 1 if anyone in the team reported knowing anyone else in the team. 
We modeled the three CPS facets using the same procedure described in Section 3, but we included the three 
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team makeup scores as additional features. These models did not improve prediction accuracy above the n-
gram model (mean AUROC values of .78 versus .80 with and without these additional features included, 
respectively), so we did not include team makeup in our final models. 

4.3 Predictive Features. 
We identified the top ten n-grams and LIWC categories most strongly correlated with each CPS facet to 

provide insight into the models. Because a separate model was trained in each of the ten folds, we averaged 
correlations across all folds after setting the correlation for an n-gram/LIWC category in a fold to zero if it 
was not included in that fold. Table 4 shows the most correlated n-grams and LIWC categories for each 
model. 

Table 4. Top 10 n-grams and LIWC categories most strongly correlated with each facet. 

Model Facet Top 10 N-grams 

N-gram 

Construction of Shared 
Knowledge 

to, the, we, like, forward, and, yeah, place, move, water 

Negotiation/Coordination because, the, I, he, water, think, we, that, it, yeah 

Maintaining Team Function move, forward, then, turn, and, that, place, repeat, 
good, times 

LIWC-
category 

Construction of Shared 
Knowledge 

prepositions, space words, relativity words, time words, 
numbers, motion words, articles, comparisons, 
discrepancies, auxiliary verbs 

Negotiation/Coordination causation, negations, insights, auxiliary verbs, articles, 
ingestion words, first person singular words, 
differentiation, personal pronouns, male references 

Maintaining Team Function motion words, relativity, time words, space words, 
present focus, verbs, future focus, reward words, 
prepositions, drives 

Note: negative correlations are italicized. 
 
Recall that the assigned task was to build a 4×4 brick building with multiple constraints, including at least 

three bricks over water (see Section 2.2). Accordingly, we found that constructing shared knowledge was 
most strongly predicted by domain-specific n-grams (i.e. “forward”, “place”, “move”, “water”), indicating 
discussion of possible solutions to the task. Some of the LIWC features predictive of construction of shared 
knowledge were also domain-specific, such as “numbers,” which are presumably for counting the lines of 
code in their solutions since they were constrained to 15 code lines. However, there were also some domain 
generalizable features. For example, sharing understanding of problems/solutions (a key indicator, Section 
2.5) could be reflected in “comparison” words when teams examine multiple solutions or describe a solution 
(e.g., “do this after that”). Teams could also use first person plural words (e.g. “we”, “us”) to establish common 
ground by discussing collective actions the team could take. 

Negotiation/coordination was most strongly predicted by n-grams indicative of providing reasons for or 
against implementing a solution (i.e. “because I'm not sure if you're allowed to do that”) or discussion related 
to solution execution and the unfolding on-screen action (“so there's water there”). The LIWC features reveal 
a similar pattern, as reasoning-related categories (e.g., “causation”) predicted this facet. Further, teams can 
discuss results and describe what did/did not occur through “differentiation” and “negation”. For example, the 
utterance “maybe we should have them lay the bricks afterwards because it looks like he's on a different level 
here and he doesn't recognize that there's water there,” describes a reason for implementing a solution based 
on a result the team just observed. The LIWC categories causation, differentiation, and negation are 
exemplified by the words “because,” “different,” and “doesn’t,” respectively. 

Similar to construction of shared knowledge, maintaining team function was correlated with domain 
specific words, largely due to the high occurrence of those words in general. However, unique words 
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indicating compliments (e.g., “good”) help discriminate it from construction of shared knowledge. LIWC-
categorized “reward words”, similarly index compliments and support of teammates.  

Table 5. Spearman correlation between the CPS facets and team task score. 

 Construction of Shared 
Knowledge 

 Negotiation/ 
Coordination 

Maintaining 
Team Function 

N-Gram .21  -.04 .12 
LIWC-category .26  .09 .21 
Human -.09  .21 .15 

 

4.4 Predictive Validity 
To what extent do the automated scores predict CPS outcomes? We first correlated (Spearman’s rho) task 

score with team-level scores of the three CPS facets (Table 5), computed by averaging the human-coded 
utterance scores and the model-predicted utterance-level probabilities for each team. None of the correlations 
were significant, ostensibly due to the sample size of 32 teams. Instead, we focus on the magnitude of the 
correlations, with a correlation of 0.2 reflecting a small to medium effect size (Cohen’s d of 0.4 [9]). We note 
that model predicted scores of construction of shared knowledge positively correlated with task scores, 
whereas human scores did not. In contrast, human scores correlated with negotiation/coordination, but model 
scores did not. Both human and model scores predicted maintaining team function in the expected positive 
direction. 

Next, we used linear mixed effects models [3] to investigate the relationship between the three CPS facets 
and the following CPS outcome variables assessed at the individual level: posttest score, subjective perception 
of the team’s performance, and of the collaboration process (see Section 2.3.2 for details). This is the 
recommended analytical approach due to the nested structure of the data where individual participants are 
nested within teams [41]. 

We averaged the human-coded utterance scores and the model-predicted utterance-level probabilities for 
each participant for inclusion as predictors. To examine whether the human-coded and model-predicted 
scores yielded similar effects, we constructed separate models for each, resulting in 27 models (3 facets × 3 
outcome variables × 3 sources [human vs. n-gram vs LIWC-category]). Specifically, each model regressed an 
outcome variable on one of the facets coded by one of the sources with team identity included as an 
intercept-only random effect (which adjusts the model intercept per team). We also included each individual’s 
total words spoken, ACT/SAT score, whether the individual knew his/her teammates, and whether the 
individual was assigned to interact with the environment as control variables as covariates. Results are shown 
in Table 6. Using the lme4  [3] package in R for the requisite computation, we found that compared to n-gram 
scores, LIWC scores yielded more similar coefficients to human-coded scores, Specifically, both LIWC model-
derived and human-coded scores of construction of shared knowledge positively predicted posttest score. We 
also found that the human scores of maintaining team function predicted subjective perceptions of the 
collaboration, but the models’ scores did not. Neither the human nor the models’ scores of maintaining team 
function were predictive of subjective perceptions of team performance, though this nonsignificant trend was 
consistently in the positive direction for both human-coded and LIWC scores. Taken together, both the 
human- and computer-estimates were more effective at predicting the objective outcomes compared to the 
subjective ones, ostensibly because the former were based on more objective criterion compared to the latter. 
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Table 6. Unstandardized regression coefficients for predicting outcome measures from n-gram, 
LIWC-category, and human-coded scores of CPS facets. 

  
Dependent Variable 

CPS Facet 
Scores 
[Independent 
Variable] 

Posttest 
Score 

Perception of 
Performance 

Perception of 
Collaboration 

Construction of 
Shared 
Knowledge 

N-Gram .03 -.01 .02 

LIWC-category .09* .09 -.05 

Human .11* -.03 -.11 

Negotiation/ 
Coordination 

N-Gram -.08 .12 .03 

LIWC-category .03 .17 .12 

Human -.20 .01 .11 

Maintaining Team 
Function 

N-Gram .01 .01 .08 

LIWC-category .02 .10 .05 

Human -.24 .16 .32** 

    Note. * p < .10; ** p < .05 

Table 7. AUROC for the human and automated transcriptions of 10% of the utterances. 

 Human Automated 
Construction of Shared Knowledge .84 .82 
Negotiation/Coordination .69 .68 
Maintaining Team Function .75 .69 

 

4.5 Effect of Transcription Errors 
We investigated the effect of transcription errors (see Section 2.4) on prediction accuracy. We trained 

separate random forest models for the 1,114 (10%) human-transcribed utterances and their corresponding 
automated transcriptions. Results are show in Table 7. The human and automated transcriptions yielded 
similar AUROC values for construction of shared knowledge and negotiation/coordination, with the human 
transcriptions providing only a 2.4% and 1.5% boost in accuracy, respectively (calculated as (human AUROC - 
automatic AUROC) / automatic AUROC). This demonstrates that the errors introduced by the speech 
recognizer play a minimal role for these facets. For maintaining team function, the human transcriptions 
provide an 8.7% boost in accuracy over the automated transcriptions, suggesting transcription errors have a 
larger effect when facet base rates are particularly low (10%). 

5 DISCUSSION 
We investigated the extent to which high-level socio-cognitive collaborative problem solving (CPS) 

processes (or facets) of construction of shared knowledge, negotiation/coordination, and maintaining team 
function, derived from a validated theoretical model of CPS [57] could be automatically modeled from spoken 
language during computer-supported collaborations. We used automated transcription and bag-of-n-grams 
approach with Random Forest models. Below we discuss our main findings along with implications, 
applications, limitations, and future work.  
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5.1 Main Findings 
Our main result is that we achieved AUROC values up to .85, .77, and .77 (70%, 54% and 54% improvement 

over chance), for construction of shared knowledge, negotiation/coordination, and maintaining team 
function, respectively. This demonstrates the viability of our fully automated approach to modeling key high-
level CPS processes. Indeed, we were able to achieve this performance, despite the prediction task being 
particularly difficult due to the open-ended nature of the collaboration. Specifically, teams were free to 
communicate via language, gesture, and other nonverbal channels, of which only the linguistic content was 
analyzed. Further, we used a fully automated pipeline, leveraging imperfect automated transcriptions. Indeed, 
prior to this work, it was unknown if prediction of high-level CPS facets in a videoconferencing environment 
was even viable. However, we demonstrated that fully-automated prediction is feasible, spoken language is a 
powerful modality for this task, and our modeling process is robust to imperfect data. 

Importantly, our models were trained on a subset of teams and tested on other teams, thus ensuring some 
level of generalizability to new teams. Indeed every team is different, and the interaction dynamics can be 
influenced by a variety of factors such as personality [55], teammate familiarity [19], or ability [62], to name a 
few. Accordingly, the fact that we were able to predict the CPS facets at all is notable given these substantial 
individual differences. This indicates that there are high-level linguistic patterns that emerge in the context of 
our CPS task and that these patterns are robust to team-level (but likely not task-level)differences. Further, we 
included team makeup variables in our models and found no improvement in accuracy above linguistic 
features, again demonstrating that language patterns are diagnostic of these CPS facets. 

We demonstrated that dictionary-based features (LIWC-category features) can be equally accurate as 
domain-specific language (n-grams). This result is particularly notable because the additional layer of 
abstraction (i.e., features describing language rather than the language itself) is presumably more 
generalizable to new domains. This is because the LIWC-category features describe categories of words 
related to the CPS processes and specific words are are unlikely to generalize across tasks. For example, 
reward words could be predictive of maintaining team function across multiple CPS tasks, whereas the use of 
the specific word “good” could be dependent on regional colloquial expressions of praise or framing of the 
task. However, this hypothesis needs empirical validation. 

In a further effort to validate our model, we examined how human-coded and model-predicted facet scores 
predicted subjective and objective CPS outcomes after accounting for several covariates. We found that 
human- and LIWC-model- scores overall yielded similar predictive patterns, thus validating the LIWC 
computational model. However, when compared to the LIWC model, the n-gram model scores were more 
dissimilar to the human codes. This suggests the more generalizable LIWC features might be a better overall 
approach. That said, the LIWC models were not perfect as there was one notable difference in the pattern of 
correlations between the human and LIWC-based scores (i.e., LIWC model of maintaining team function did 
not predict perceptions of the collaboration while human scores did). On the other hand, the model estimates 
correlated with task score (though not significantly), whereas the human-codes did not, suggesting yet 
another discrepancy. 

Overall, our results should be interpreted in light of some of our constraints. Specifically, we are modeling 
complex socio-cognitive processes at the utterance level, where utterances are quite short with a median of 
four words and 1.34 seconds duration. We also restricted our input to spoken language alone and with 
imperfect speech recognition. As such, the present results can be considered to be a useful lower-bound on 
performance, with improvement expected as additional channels are added, such as acoustic-prosodic 
information, facial expressions, body movements, eye gaze, and gestures. 

5.2 Applications  
Our work can be applied to intelligent computer interfaces that aim to monitor the ongoing collaboration, 

and dynamically intervene to improve CPS processes and outcomes. In particular, a collaborative interface 
could monitor the team’s language for evidence of our facets and provide feedback and suggestions for 
improvement. For example, individuals could be instructed to build on others’ ideas or discuss the constraints 
of the task [57] if the team hits a roadblock and shared knowledge construction is determined to be low. 
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Research is needed to identify what types of feedback and delivery mechanisms (e.g., to the individual or the 
team) will be most effective. Such systems could even be combined with existing feedback systems that 
provide feedback on low-level behaviors (Section 1.1.2), as a way of comprehensively intervening when a 
collaboration needs to be rerouted. 

Our models can also be used offline to automatically score audio of spoken utterances without going 
through the time-intensive human-coding process. A key application here is the assessment and training of 
CPS skills, a focus of modern education [69]. Given the current accuracy scores, the models are best suited for 
formative assessment [53] aimed at learning rather than assessments aimed at evaluation. Model-derived 
estimates can be communicated as formative feedback to individuals or teams as part of an after-action 
review. This data can then be used to identify particular strengths and weaknesses, and to target training 
goals. For example, an individual with a low score of construction of shared knowledge could be encouraged 
to communicate their ideas with the team. Conversely, an individual with a low score of maintaining team 
function could be instructed to provide positive feedback to teammates more often to the extent that it is 
warranted. 

5.3 Limitations and Future Work 
Like all studies, ours has limitations. Although our models performed better than chance, they are still far 

from perfect. Additionally, the lack of correspondence between trained-rater- and automated-codes in 
predicting some of the outcome variables warrants more detailed analysis. Model performance can be 
improved with larger datasets and by combining language with aspects of the ongoing interaction and other 
multimodal signals. We expect to improve accuracy when we consider what teams are saying (language) in 
the context of how they are saying it (acoustic-prosodic information), what they are doing (task context), and 
what they feel (facial expressions and physiology). Additionally, team-level differences, such as gender 
makeup or personality scores, could be used as inputs to the models to improve performance. 

Further, our dataset was collected at a single university, with little ethnic, age, or socioeconomic diversity. 
Additionally, the teams only completed a single task. Thus, our method must be verified on an extended 
dataset from multiple sites and tasks. We are currently collecting a multimodal dataset across multiple sites 
and with multiple CPS tasks in order to remedy these limitations. 

5.4 Concluding Remarks 
We developed fully-automated spoken language models to model three socio-cognitive processes of 

shared knowledge construction, negotiation/coordination, and maintaining team function during triadic, 
computer-supported collaborative problem solving in a manner that can generalize to new teams. Thus, we 
have taken a step towards the goal of intelligent collaborative interfaces that are sensitive to the unfolding 
collaboration process and can dynamically intervene to steer the collaboration in a more productive and 
satisfying direction. 
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