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Abstract—Virtual Reality (VR)-based Learning Environments
(VRLEs) are gaining popularity due to the wide availability
of cloud and its edge (a.k.a. fog) technologies and high-speed
networks. Thus, there is a need to investigate Internet-of-Things
(IoT)-based application design concepts within social VRLEs
to offer scalable, cost-efficient services that adapt to dynamic
cloud/fog system conditions. In this paper, we investigate the cost-
performance trade-offs for an IoT-based application that inte-
grates large-scale sensor data from Social VRLEs and coordinates
the real-time data processing and visualization across cloud/fog
platforms. To facilitate dynamic performance adaptation of the
IoT-based application with increased user scale, we present a set
of cost-aware adaptive control rules. The implementation of the
rules is based on an analytical queuing model that determines the
performance states of the IoT-based application, given the current
workload and the allocated cloud/fog resources. Using the IoT-
based application in an exemplar VRLE use case, we evaluate the
cost-performance trade-offs with three system architectures i.e.,
cloud-only, edge-only and edge-cloud architectures. Experiment
results illustrate the best/worst practices in the cost-performance
trade-offs for a range of simulated IoT scenarios involving moni-
toring user emotional data collected by using brain sensors. Qur
results also detail the impact of the system architecture selection,
and the benefits in enabling feedback about student emotions to
instructors during Social VR learning sessions. Lastly, we show
the benefits of integrating our model-based feedback control in
maximizing IoT-based application performance while keeping the
associated costs at a minimum level.

Index Terms—IoT-based Application, Cloud/Fog System Ar-
chitecture, Model-based Resource Management, IoT Data Pro-
cessing/Visualization, Social Virtual Reality

I. INTRODUCTION

Cognition refers to processes such as memory, attention,
language, problem solving, and planning [1]. A virtual learning
environment with a cognition-sensing application to detect
the emotions of a person can help the instructors understand
what tasks are causing a change in emotions such as engage-
ment, stress, frustration, relaxation and focus. Implementing
a cognition-sensing mechanism in a social Virtual Reality
Learning Environment (VRLE) paves the path to a more
immersive and dynamic learning environment in e.g., surgical
training, and first-responders training.

Online social VRLE based learning as shown in Figure 1
normally involves geographically distributed students and in-
structors who teleport into a common virtual classroom along
with Internet of Things (IoT) devices (such as head-mounted
sensors) to measure their emotions. In this paper, we describe
a novel IoT-based application in a social VRLE system that
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Fig. 1: Ilustration of our IoT-based application integrated in
a Virtual Reality Learning Environment (VRLE) with student
emotion data collection using EEG sensors.

can help instructors to monitor students’ learning progress. It
collects the relevant emotion data from the users (through e.g.,
electroencephalogram (EEG) sensors such as Muse headsets
[2]), and provides services based on cloud and edge (a.k.a. fog)
technologies to store, visualize, and analyze the data. Based on
the feedback through coordination of cloud, edge and sensor
data sources for real-time data processing/visualization, the
instructor can modify the training content delivery dynamically
to improve learning effectiveness of the students.

The success of such a distributed IoT-based learning ap-
plication depends on the architecture of the underlying cloud
system resources and its extension into fog and edge resources.
Our system could either run on either a cloud-only, edge-
only or an edge-cloud architecture configurations. These archi-
tectures exemplify the fog computing concept by collecting,
processing and visualizing IoT data using both edge and cloud
resources, and providing a bridge between these modules.
Understanding the pros and cons and evaluating these three
underlying system architectures can guide a VRLE adminis-
trator to choose a suitable system configuration to satisfy social
VRLE user Quality of Experience (QoE) requirements.

The novelty of our work is in the adoption of social VRLE
as an exemplar use case to understand the system architecture
requirements that motivate the design and evaluation of the
three cloud/fog architecture candidates for real-time IoT data
processing/visualization. Using an integrated set of modules,
we perform a series of realistic experiments in a VRLE



testbed. Experiment results on the cost-performance trade-offs
presented in this paper have the potential to pave the way
for deployment of scalable VRLEs with seamless delivery of
learning content. It also characterizes analytical model-based
adaptive control involving processing/visualization of large-
scale user emotion data within either cloud-only, edge-only or
edge-cloud system architectures.
The main contributions of this paper are:

o To suit the purpose of monitoring user emotion data and
providing real-time feedback, we have developed an IoT-
based application for VRLESs; the IoT-based application
automates data collection, real-time analysis and visual-
ization through coordination of cloud/fog resources.

o Performance validation of the IoT-based application with
three different system architectures: (i) edge only, (ii)
edge-cloud, and (iii) cloud only, for large-scale IoT data
processing, analytics, and visualization requirements.

o An adaptive closed-loop feedback control mechanism
that can modify system behavior by adjusting system
parameters and cloud resource allocations according to
the system performance level, and thus maximizes the
users’ QoE while keeping the associated costs in the
cloud at a minimum level.

The remainder of the paper is organized as follows: Section
IT discusses prior related works. Section III discusses the
VRLE system infrastructure, implementation of the functional
modules and their flow interactions. Section IV discusses the
modeling and implementation of our rule-based adaptive feed-
back control scheme. Section V highlights the evaluation of
the ToT-based application with testbed details and experiment
results to compare the cost-performance trade-off for the three
system architectures and benefits of the model-based adaptive
feedback control. Section VI concludes the paper.

II. RELATED WORK
A. Cloud and Sensing Integration

A large network of IoT sensor devices could generate
massive volume of data whose use requires scalable cloud/fog
storage systems and data analytics/visualization applications.
Cloud computing offers services that can scale to IoT storage
and processing requirements with elasticity and hardware di-
versity. Authors in [5] present an IoT system configuration and
a method of EEG sensor data collection from smart helmets
to a cloud-hosted server, which analyzes and visualizes data
to predict soldiers state. Similarly, authors in [6] propose a
suicide risk scouting prototype. In this system, patients’ vital
diseases symptoms are collected through wireless body sensors
and then analyzed in a cloud platform with patient’s historical
records of diseases, habits, rehabilitation and genetics. In the
work in [7], authors propose a cloud-supported Cyber-Physical
localization system using smart phones to acquire voice and
EEG signals for patient monitoring.

In the above exemplar works, cloud platforms are used to
provide large-scale computation and communication for geo-
graphically distant users. However, these works do not provide

real-time data analysis/visualization and feedback capabilities
to the users as done in our work by considering low-latency
data processing offered by fog platforms or a combination of
cloud/fog resources.

B. Computing Architectures

Cloud platforms provide highly available computing re-
sources, distributed storage, and offer more flexibility to users
with easily customizable and configurable features. However,
they are proprietary and require higher resource costs over time
for using their services. Depending upon the services used and
the usage level, the cost considerations for the “pay-as-you-go”
can vary drastically. In this sense, both performance and cost
need to be considered when evaluating system architectures
that involve public cloud services such as Amazon Web
Services (AWS) or local edge resources.

Similar to the focus of this study, the ability of cloud
platforms to host scientific applications and the related costs
for running such applications were investigated in [9]. Authors
in [4] presented an elastic adaptive controller framework that
can continuously detect and self-adapt to workload changes in
an AWS cloud testbed. However, the tests and the proposed
frameworks in these works assume operation with cloud-only
services, and do not take into consideration of alternative
cloud/fog system architectures.

The emergence of edge computing has particularly provided
a scope for competent solutions that enable context-aware,
real-time and low-latency response services for users. By
leveraging the potential of edge computing, the authors in [§]
propose an autonomic framework designed to process big data
as part of a decision support system. When compared to cloud
computing, edge computing could foster faster data analysis,
lower costs, lower network traffic and better application speed
which ultimately translates to better Quality of Service (QoS).
In comparison, our work involves processing of large-scale
IoT-based application workloads with low-latency demands by
considering the relevant cost-performance trade-offs.

C. Model-based Resource Adaptation

For service-centered cloud applications, QoE metric plays
an important role as it conveys a measure for the customer
convenience and satisfaction. Since it is difficult to quantify
human-subject experience in real-time due to the subjective
nature of QoE, many prior studies rely on QoS metrics as
an indirect measure for overall user satisfaction level[12],
[10], [11]. Although the above works provide exemplar QoE-
QoS correlation models, their main consideration for the QoS
metrics is at network layer with limited focus on the Quality of
Application (QoA) metrics at the application layer. Our work
addresses this issue for IoT-based application data processing
by proposing a model-based adaptation mechanism to vary
QoS and QoA in order to meet the satisfactory QoE levels.
In other words, our work leverages the interplay between the
QoE and QoS, and applies adaptation rules that improve the
VRLE user QoE by using best practices.
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Fig. 2: Infrastructure of the IoT-based application to support the VRLE sensing data collection, processing, storage and
visualization features with the three system architectures: cloud-only, edge-only, and edge-cloud.

In addition to QoS metrics at network layer, works such as
[13] studied video-audio delivery for mobile users to demon-
strate the correlation of streaming parameters at application
layer with the user. Our work builds upon the recent work
in [14] that addresses the issue of delivering satisfactory user
QoE in cloud infrastructure reservation by taking into account
all the three indices i.e., QoE, QoS, and QoA. Our analytical
queuing model uniquely captures the interplay relationships
for social VRLEs and considers factors such as data size,
number of users, and delay in data processing, in addition
to the network conditions.

III. TOT-BASED VRLE APPLICATION DESIGN
A. Social VRLE Use Case

To motivate the need for a cognition-sensing application,
we use system requirements from a social VRLE that was
designed to improve social interaction skills. As shown in
Figure 1, students log into the VRLE environment and perform
specific learning sessions that are coordinated by a remote
instructor on a Cloud server. The same cloud server also
controls the social portal, which allows the instructor to keep
schedule and monitor VR sessions as well as monitoring the
emotional states of the students in the VR session. Students
wear EEG headsets, which collect raw EEG data during
various user learning actions. The raw EEG data are then
processed and visualized on the social portal for instructor
to track their engagement and other user experience metrics
during the learning sessions. Based on the monitoring, the
instructor can make decisions to give rewards or strikes, or
acknowledge any issues to improve student learning outcomes.

B. System Architectures

As shown in Figure 2, our IoT-based application is suitable
to be used with three candidate system architectures, namely
the cloud-only, edge-cloud, and edge-only. The cloud-only ar-
chitecture is based on Amazon AWS Kinesis, EC2 computing,
and DynamoDB/S3 storage services (DynamoDB for real-time
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Fig. 3: Implemented modules of the IoT-based data streaming-
visualization application.

visualization and S3 for longer-term storage), while the edge-
cloud architecture uses the DynamoDB/S3, and the edge-only
architecture uses the DynamoDB Local (the local version of
AWS DynamoDB).

User EEG data are collected in real-time by the application.
Then, depending on the chosen system architecture, data will
be either: (i) processed, stored and visualized in the cloud
(i.e., cloud-only architecture); (ii) processed locally at the
edge and stored and visualized in the cloud (i.e., edge-cloud
architecture); or (iii) processed, stored and visualized locally at
the edge (i.e., edge-only architecture). Based on the decision,
the real-time data visualization will be rendered either in the
cloud or at the edge and available for instructors to frequently
monitor the students’ emotional states during the learning
activities.

C. IoT-based Application Implementation

AWS provides numerous services [15] that can be used
as middle-ware for engineering solutions based on user re-
quirements. One such sample application demonstrates how
to generate statistics from a stream of online click data



and visualize the results [16]. Our IoT-based application for
streaming, processing and visualizing users’ emotion data is
based on the framework of this application, however extended
into three system architecture designs defined above. Figure 3
shows the four modules we implemented to evaluate suitable
system architecture configurations:

Module 1: includes an EEG sensor application component that
detects a headset and collects EEG data from the user. Based
on the architecture configuration, this module either sends data
to Kinesis stream (in the cloud-only architecture), or processes
EEG emotion data and delivers the data to Module 3 (in the
other two configurations).

Module 2: is only in the cloud-only configuration. It includes
an AWS Kinesis module that consumes data from the Kinesis
stream, processes the data, and then delivers the processed
data to Module 3.

Module 3: accepts the data from either Module 1 or Module
2, transforms processed data into our desired data structure,
and persists the transformed data into a DynamoDB table.
Module 4: creates an HTTP web server, retrieves data from
the DynamoDB table, and renders data into a dynamically
updated diagram to visualize the student’s emotional states in
a real-time manner.

IV. MODEL-BASED ADAPTIVE FEEDBACK CONTROL

Cloud-hosted applications and services need to be highly
scalable so that they can satisfy QoE requirements with
large number of users with the least cost. In this section,
we present a QOE-QoS-QoA (3Q) based feedback control
mechanism that captures the dynamics of the data processing
and adaptively allocates required cloud resources to satisfy
users’ QoE requirement (i.e., perceived visualization delay)
while keeping costs at a minimum level.

A. QoE-QoA-QoS (3Q) Interplay Model

QoE-driven services have become the main focus of many
cloud providers due to the vast growing cloud-based platforms
and applications. In the social VRLE system, we model the
performance of our IoT-based application using the 3Q factors,
i.e., QoE, QoA, and QoS.

QoE is a measure of the perceived satisfaction or annoyance
of a customers experiences with a service. In this work, we
use objective QoE to evaluate users’ QoE level. The metrics
include: perceived delay in visualization of user emotion data,
which indirectly also relates to the perceived system adaptation
response time. QoS comprises of requirements on all the
aspects of a connection, such as network bandwidth, packet
loss, jitters, and delays. To simplify the complexity of our
feedback control mechanism implementation, we use network
bandwidth, the most deterministic metrics of network quality,
to evaluate the QoS level. QoA reflects the key characteristics
of an application or service in terms of processing capacity.
Our QoA metrics include: the number of users, data rate, data
size, exceeded write/read throughput in Kinesis stream, maxi-
mum age of data records (IteratorAgeMilliseconds) in Kinesis
stream, and throttled write/read requests in DynamoDB.

These 3Q factors and their measurements are inter-related
and have successions of impact to each other. The interplay
among these factors help us to implement an adaptation control
mechanism that is discussed in detail in the following section.

B. Cost-aware Adaptive Feedback Control Scheme

Based on the 3Q metrics, we present our rule-based adap-
tation control scheme for management of our IoT-based
application at high loads in a social VRLE. This scheme
promotes intelligent decision-making and on-demand service
provisioning to ensure satisfactory user QoE with relevant
cost-performance considerations.

As shown in Figure 4, when VRLE learning sessions start
to operate, our loT-based application first runs in a lower
cost/performance scheme for real-time visualization. This vi-
sualization of emotion data acts as the QoE feedback to the
application. Then our adaptive feedback control evaluates the
objective QoE metrics to see if the visualization is satisfactory.
If not, the feedback control then identifies QoA or QoS issues,
such as delays in data streaming, processing or visualization
rendering. Based on the identified issues, the feedback con-
trol takes appropriate adaptation action to solve the issues.
However, taking one adaptation action might not be able to
completely solve the issue, as there might be multiple issues
related to a system performance degradation. The iterative
property of the adaptive feedback control scheme will keep
looping these processes until the problem is completely solved
and desired QoE level is achieved. In this feedback control
scheme, we also keep in mind the related cost in using
cloud services. In the figure, we highlighted the adaptation
schemes that are free at the edge locations as well as those
that result in a higher cost in the cloud platform case. If
the cost resulted from the proposed adaptation exceeds user’s
budget, the feedback control scheme can alternatively use
different adaptation schemes when feasible, e.g., reducing the
data size (i.e., changing system architecture from cloud-only
to edge-cloud) or reducing data rate at the edge. However,
such an adaptation will require interrupting the current running
application so that changes can be made at the edge platform
setup.

C. Analytical Model for Estimating Response Time

In our feedback control mechanism, there is a need of
a model to capture the pattern of application performance,
especially with regards to response time, given the workload
in the amount of data records and currently allocated cloud
resources.

The entire time of data record flow and processing in
our JoT-based application can be divided into three parts,
each taken at one of the three system layers, i.e., data input
layer, data processing layer, and visualization rendering layer.
The behavior of data processing represents a queue, we thus
model this layer into an M/M/1/K finite queuing system. This
analytical model is based on the embedded Markov Chain,
featured by states, events, transitions, as described in [18].
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Fig. 4: Work flow of the 3Q model in the IoT-based Application. This work flow monitors the QoE, QoS and QoA metrics of
the system and facilitates the feedback control mechanism to identify issues and trigger system adaptation.

The requests that enter in the queue are users’ raw EEG
data records. Data records are put into the queue and are
processed on a First Come First Service (FCES) basis. As seen
in Figure 5, the processing of an incoming request includes
three stages: stage 1 (retrieval from queue), stage 2 (record
processing), and stage 3 (pushing into buffer). After Stage 3,
the processed data record leaves the queue. From Figure 5,
we can see that each of these stages has a different average
service rate, represented as uj, uo, and ps. Thus, the overall
response time of the system in processing one data record
can be computed by solving the Markov chain transition
model as described in [18]. In this process, the execution of
the three stages is mutually exclusive, which means that the
second record will not be processed until the previous one is
completed. We assume the processing times at each stage is
exponentially distributed, and the data records follow a Poisson
arrival with an expected rate of A.

ul u2 u3
A
Record Record Record pushed v
—| Data records [—] . - . —
retrieval processing into buffer
Stage 1 Stage 2 Stage 3

Fig. 5: Processing sequence of an incoming raw EEG data
record.

When the queue contains multiple data records, our data
processor processes the jobs following the Markov state model
in Figure 6 with a state space S = {(k,n),0 <k < K,0 <
n < 3}. The steady-state probability of each state in the
Markov chain model can be derived similar to those presented
in [18].

Record 2 Record 3 Record K-1  Record K

Record 1

Stage 1

Stage 2
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Fig. 6: State transition diagram with the three data processing
stages in the Markov chain.

Based on the derived state probability of each stage, the initial
state probability pg o can be expressed using the normalization
condition in the following form:

1
PK.n

1+Zk lzn 1 po,o

The py o can be used to compute the probabilities of all other
states. The metric for the mean system throughput vy, also
known as the departure rate, is

(1)

Po = Po,0 =

K
Y=pY PKs (2)
k=1
The mean system throughput can equivalently be expressed as
v=(1-po)/X 3)

X is the sum of the mean service time for all three stages,
and can be written as

3
X:Zl/un (4)



The departure rate v can also be expressed as

Y= (1 _pO)/X = A(l-Ploss) (5)
The loss probability Pj,ss can be expressed as
1-— -1
-Ploss:pk:]-_ Po :p0+/’ (6)
P P

where p = AX is referred to as traffic intensity. We can also
express Pj,ss as the probability of being in states (K,1), (K,2)
or (K,3), which is

3
-Ploss = ZpK,n (7)
n=1

The mean number of records in the system is

K 3
BIK] =) > kpin (8)
k=1n=1
The mean number of records in the queue is

K 3
BlK) =33 (k= Dpicn = E[K] = (1—po)  (9)
k=1n=1
Using Little’s formula, the mean time a record spent in the
system, which is also the system response time, is

K 3
L
v ’ykzlnzl

(10)

In our feedback control mechanism, the above equations
will be used to determine the system throughput, response
time, and thus the cloud resources needed to handle data pro-
cessing workload that come from all the distributed students
in the social VRLE sessions.

V. EXPERIMENTAL EVALUATION

In this section, we first describe the testbed setups used
for our evaluations. Next, we test the integration of the IoT-
based application. We then discuss the results from two sets
of experiments to evaluate the cost-performance trade-offs for
cloud-only, edge-cloud and edge-only system architectures.
Lastly, we present benefits of our analytical queuing model
through experimental results.

A. Testbed Setup

In the context of the social VRLE system, our testbeds for
the three architectures were set up to have an instructor site
and multiple student IoT devices, depending on specific test
scenario for the three architectures, as illustrated in Figure 7.
Both instructor and students are simulated on GENI (Global
Environment for Network Innovations) edge nodes. Synthetic
raw sensor data were generated from student nodes for system
testing purpose. Flow of modules and data are designed
according to the description in Sections III-B and III-C.

Our parameter settings for various tests are as follows:
For the number of users, we tested various settings, ranging
from 1 to 20 for the cost-performance trade-off analysis,
and between 1-200 users for the scalability tests. We only
tested 1 user setting for edge-only because this architecture
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Fig. 7: Testbed setup for the three system architectures.

is not scalable for the intended comparison tests. For data
size, we used two different settings, i.e., larger data object
(200 KB) representing the raw sensor data collected from
students and smaller data object (I KB) representing the
classified emotions. For different data rates, we tested the
application with users sending emotion data once per 1 second,
5 seconds, or 10 seconds. For network quality settings, we
used the following settings: (a) a higher speed network with
a bandwidth of 1 Gbits/sec represented by simulating users
on AWS EC2 T2.micro type instances, (b) a medium speed
network with a bandwidth of 200-300 Mbits/sec represented
by users on GENI edge nodes, and (c) a low speed network
with a bandwidth of about 15 Mbits/sec with users set up on a
wireless-edge access to a Wide Area Network (WAN) offered

by a public Internet Service Provider.
B. End-to-end Integration of loT-based application and social

VRLE

We first conducted a series of tests to ensure that the
IoT-based application is able to collect, process and visual-
ize users’ sensor data in all the three system architectures.
The integration of the four modules were changed based on
the system architecture configuration selections. Figures 8a
and 8b) show data stream from one student that was sent
at 1 record/sec and visualized in all the architectures. The
main visualization pages include the upper panel showing the



emotion data of the user in the most recent time stamp (1
second in this case) and the lower panel showing the history
of the emotion data for this user in the last 120 seconds.
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(a) Overview of the six emotions for the current student at the current
time stamp.
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(b) History of the emotion data for the current student in the past
120 seconds.

Fig. 8: Visualization of IoT-based application data trends.

C. Best and Worst Practices

Due to the use of AWS Kinesis, EC2, and DynamoDB
services for streaming, processing, storage and real-time vi-
sualization of users’ emotion data, the settings of these cloud
services in our IoT-based application need to be in compliance
with the limits defined by the service provider. Based on these
limits, as well as considering the costs of using these services,
we summarize some of the best and worst practices, as shown
in Table I. The main settings and metrics, both in the cloud
and at the edge, include number of shards (Kinesis stream),
write and read throughputs (Kinesis stream), provisioned write
and read capacities (DynamoDB), consumed write and read
capacities (DynamoDB), throttled write and read requests
(DynamoDB), number of users, data sizes, data rates, and
network bandwidth. These best and worst practices, based on
the selected parameters, provide fundamental test scenarios
when evaluating the costs and performance trade-offs of the
three candidate system architectures, as will be discussed in
the next section. The results from Table I show that:

o Performance of edge-only architecture depends on the
storage, network connections, and computing power on
the server side; due to storage restrictions, it normally
requires to have a backup storage in a cloud platform;

o Performance of edge-cloud architecture depends on the
provisioned write and read capacity, the rate and the
size of data traffic, which determines the write and read
throughput, into and from DynamoDB tables;

e Performance of cloud-only architecture depends on the
rate and size of the data, the write and read throughput,
into and from both Kinesis stream and DynamoDB tables.

D. Cost-Performance Trade-off Analysis

The results in the previous section discussed some of the
best and worst practices when implementing our IoT-based
application with the three system architectures. In order to
fully understand the effects of these practices on cost and
performance, along with identifying the trade-off between
these two important decisive factors, we set up experiment
scenarios with ‘stress-test’ type settings, shown in Table II.
The bottom 2 rows in the Table show the delay in visualization,
which represents the performance of the application for the
selected architecture and parameter settings in Table II.

As shown in Figure 9, we analyze the costs for running
both cloud-only architecture (DynamoDB and Kinesis) and
edge-cloud architecture (DynamoDB alone), the exceeded
write/read throughputs, which represent the delays in Kinesis
stream, and the throttled write/read requests, which represent
delays in writing/reading data in DynamoDB table. In the
best practices settings, the cloud-only and edge-cloud archi-
tectures have no throttled requests (BP1, BP2), indicating no
performance degradation, and the costs for both architectures
are at the lowest level. While in the four worst practice
scenarios, there were either high exceeded throughput or
throttled requests (WP1, WP3, WP4). Note that WP2 did not
have either exceeded throughput or throttled requests, but in
this practice the data size was small but its cost was much
higher than BP1, which was also sending small size data. It
can also be observed that the cost of Kinesis plus DynamoDB,
which is used by the cloud-only architecture, is much higher
than using just the DynamoDB service, as in the edge-cloud
architecture. The above results suggest that:

e The cloud-only architecture is more prone of delays in
rendering the emotion data visualization, due to the large
data that exceeds the write/read throughput of Kinesis
stream, as well as the provisioned write/read capacity of
DynamoDB tables;

o With the edge-cloud architecture, there is a less chance
of delays in visualization since the data streams are
processed at the edge nodes, and hence small size data
is sent to the cloud platform for visualization;

e For the edge-only architecture, we could not acquire
results owing to the limited scale property of this system
architecture.

Building upon the above results, we summarized the scal-
ability tests and the typical costs when 10, 100, or 200 users
are using various architectures, as shown in Table III. These
results, together with the data shown in Table I and Figure 9,
suggest that based on the social VRLE user requirements:

o Edge-only architecture is the cheapest option, but it is
horizontally non-scalable and comes with the need to
store backup data on cloud resources;

o Cloud-only architecture is the most expensive option but
provides the advantages of nearly unlimited scaling to



Test case
parameters

edge-only architecture
(DynamoDB Local)

edge-cloud architecture
(DynamoDB)

cloud-only architecture
(Kinesis + DynamoDB)

Best Practices

Key-Findings:

* Save data backup on cloud

due to storage restrictions

% Remote DynamoDB connections
need high network bandwidth

* Maximize computing resources

Key-Findings:

* Provisioned write capacity

= consumed write capacity

* Provisioned read capacity

= consumed read capacity

* Write throughput <= 1KB/write capacity
* Read throughput <= 4KB/read capacity

Key-Findings:

* Max. data blob size <= 1IMB

+ Write throughput < 1 MB/sec/shard

or 1,000 records/sec/shard

* Read throughput < 5 transactions

or 2 MB/sec/shard

* No. of shards (integer) =

ceil[(no. of users * data rate * data size)/1000]
* For DynamoDB: same as edge-cloud

Worst Practices

Key-Findings:

* Not storing backup on cloud
due to storage restrictions

* Not enough network bandwidth
% Not enough computing resources

Key-Findings:

* Provisioned write capacity

> consumed write capacity

* Provisioned read capacity

> consumed read capacity

* Write throughput > 1KB/write capacity
* Read throughput > 4KB/read capacity

Key-Findings:

* Increase Data blob size

> 1 MB/record

* Data size > 1 MB/sec/shard

+ Read throughput >5 transactions or 2MB/sec/shard
* no. of shards >> no. needed

* For DynamoDB: same as edge-cloud

Fig. 9: Comparison of the cost-performance trade-offs in various best and worst

TABLE I: Comparison of the best and worst practices for the three system architectures.
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Fig. 10: Comparison of visualization delay with respect to the edge-only, edge-cloud, and cloud-only system architectures.
The response time in sending/retrieving data from stream, data processing, visualization rendering and the overall time are
compared when 1, 10, 30 and 50 users are serviced in the system. Delays (e.g., when response time is over 1000ms) are
referenced to the data history diagram. Edge-only architecture has only 1 user data since it is not scalable.

deal with large data inputs and fluctuating workloads;

plus, the cloud-only architecture is most robust and adap-



Parameter Setting BP1 | BP2 | WP1 | WP2 | WP3 | WP4
Max No. of users tested 20 20 20 20 20 20
Data Size (KB/record) 1 200 1 1 200 200
Data Rate (seconds) 1 1 1 1 1 1
Number of Shards 1 4 | 4 1 4
Provisioned W/R Capacity 20 20 10 20 20 10
Visual Delay (cloud-only) / No / / Yes Yes
Visual Delay (edge-cloud) No / Yes No / /

TABLE II: Best and worst practices tests in cost-performance
trade-off analyses for cloud-only and edge-cloud architectures.
Legend: BP - best practice; WP - worst practice; W/R -

write/read.

Test case

parameters edge-only edge-cloud cloud-Only
Cost:$136, User:200 Cost:$634, User:200
200 records/sec 200 records/sec
User Cost:$2.31, 100 GB Cost:$65, User: 100 Cost:$314, User:100
storage/month 100 records/second 100 records/second
Scalability Cost:$5, User=10 Cost:$30, User=10
10 records/second 10 records/second
Comments: Comments: Comments:
Scales up, not out Scales up and out, Scales up and out,
Limited storage and limited to local no limitations
computing resources | computing resources

TABLE III: Performance vs. Cost (per month) for 1 KB data
input/user/sec and 1 Kinesis stream.

tive to data traffic demands imposed by the VRLE;

e Edge-cloud architecture is the less cheaper option (when
compared to the cloud-only option), and avoids the heavy
workload on the cloud resources by data processing at
the edge resources. However, reducing the data structure
could result in significant information loss as well as
burdening edge nodes with heavy computations.

E. Adaptive Feedback Control

Previously we identified performance issues, i.e., delays,
with our IoT-based application when the number of users
increased. The issues were mostly seen in the cloud-only
architecture. When testing the application with the number
of users at 30 to 50, even with well defined number of shards
and provisioned write/read capacities, we still experienced
serious visualization delays (Figure 10). This was caused by
computationally overloaded EC2 instance when processing
large-scale raw sensor data. To reduce the computational stress
on the EC2 processor, there was a need to scale up the number
of EC2 instance processors to offload the workload.

The distribution of the average time that a single data record
goes through the whole application includes: inputting into
Kinesis stream and visualization rendering each taking 125ms
and 120ms, respectively; retrieval from stream taking 3ms;
data processing taking 40ms; pushing into DynamoDB buffer
taking 2ms; and writing into DynamoDB table taking 8ms. As
specified previously, the queuing stage includes data retrieval
from the stream, processing on EC2 processor, and pushing
into buffer. Thus our queuing analytical model was used to
analyze the time that data records spent in these three steps.

Based on the equations specified in Section IV-C, we
predicted the overall system response time when there are

between 1 and 150 users, with various numbers of EC2
instance processors, as shown in Figure 11. To meet user’s
QOoE requirement, we needed the system to process and render
visualization within 1 sec from data collection. Since the
average time for outside the queue added up to about 250ms,
we defined 0.7s (700ms) as our tolerable latency threshold for
determining the minimum number of processors required. The
result from this analytics justified our earlier finding that when
the number of users was at 30 or 50, there was a high level
of delays in processing the data records using just one EC2
instance processor.
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Fig. 11: Impacts of the number of users and EC2 data
processors to system response time.
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Fig. 12: Adaptive feedback control mechanism scales-up by
increasing the number of EC2 data processors.

As part of our evaluation experiments, we tested the control
feedback loop with the IoT-based application running on the
cloud-only architecture. And we focused on the adaptation on
the number of data processors. In the experiment, we setup
the testbed as shown in Figure 7a.

Figure 12 shows our adaptation process test case. We started
the application with 20 user sending data, and one EC2
instance as the data processor. As shown in panel (D), there
was no delay at this stage. Then when users increased to 40,
the CPU utilization in Processor 1 reached to almost 100%



(panel A), which resulted in the delays in processing data
record (panel D). Upon detection of the increase in the delay
in processing data, our feedback control mechanism calculated
the required number of processors needed at this stage, which
was 2, by using the analytical queuing model shown in Figure
11. Then a second EC2 processor was initiated to offload
the workload in processing data records (panel B). The CPU
utilization on Processor 2 quickly increased to almost 100%.
With the two processors working together, the delays started
to reduce until there was no significant delay any more. It took
about 3 minutes for the two processors to clean up the delayed
data in the queue. During this time period, no additional data
processor was initiated because the delay was decreasing. At
the end of this period, our application recovered and was
able to visualize all users emotion data in real-time. After
we reduced the number of users back to 20, our algorithm
adaptively stopped one of the two processors according to the
current workload requirement and delay status. Our design and
initial experimental evaluation of the adaptive feedback control
scheme for scaling up cloud resource allocation shows that:

o Our analytical queuing model can be used to effectively
determine the number of data processors required for
scenarios with different number of users in a given IoT-
based system; the model also justified our earlier findings
of system delays with higher number of users;

e Our feedback control scheme is able to predict system
performance levels using selected performance metrics,
and use this knowledge to scale out the processor re-
sources according to the analytical model guided rules;

« To our knowledge, the feedback control scheme presented
in this paper is the first adaptation framework support-
ing social VRLE based IoT application. The merits of
this adaptation scheme include: minimal resource over-
provisioning and thus user costs; fine control by using the
maximum age of records metrics to identify both system
performance issues and progress in adaptation; and high
intelligence enabling the system to wait for adaptation
progress before further scaling-out resources.

VI. CONCLUSION

In this paper, we present an IoT-based application designed
to manage visualization of the sensor data from geographically
distributed users in a social VRLE. Our work addressed the
challenges in handling the cost-performance trade-off analysis
for a distributed system with multiple devices generating real-
time high volume data. The challenges related to configuring a
suitable system architecture amongst options in the fog/cloud
computing: edge-only, edge-cloud and cloud-only. Our cost-
performance analysis results provide insights on the best
practices that need to be followed for obtaining maximum
performance for supporting a large number of users, yet at
minimum cost.

We also described an analytical model-based dynamic per-
formance adaptation scheme that can trigger rules to deal
with high-scale loads to maximize the user experience (i.e.,
perceived visualization delay) by controlling the application

(VRLE) and the system (sensors, network) parameters. Our
analytical queuing model with derived formulas is shown to
be beneficial to monitor the overall system response time and
adapt the edge and cloud resources suitably.

Our future work is to investigate our IoT-based application
within VRLE education content that serves different learning
curriculum objectives, e.g., public safety best practices training
for first responders and incident commanders. In addition, ma-
chine learning based algorithms can be developed to correlate
sensor data and use context in social VRLE systems with
feedback to enhance student-instructor collaboration.
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