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ABSTRACT: Anisotropic polarizability of the heme in cytochrome c is found to be a
major factor in suppressing the activation barrier of protein electron transfer (catalytic
effect). Polarizability couples to the electric field of protein and water to enhance
fluctuations of the electron-transfer energy gap and the corresponding variance
reorganization energy λvar. The reorganization energy observable by kinetic
measurements λr = (λSt)2/λvar is composed of λvar and the Stokes-shift reorganization
energy λSt. It is lowered compared to the usually reported λSt due to polarizability of
the active site leading to λvar > λSt. The coupling of electrostatic protein-water
fluctuations to the polarizable active site is accounted for here by empirical valence-
bond diagonalization of the active-site Hamiltonian along the simulation trajectory. We show that recent simulations employing
this technique, which failed to find the effect of polarizability on electron-transfer kinetics, were erroneous in neglecting the
diagonal dipole moments in the Hamiltonian matrix and failing to rotate the electric field produced by the protein-water
medium into the molecular frame of the active site. We find that anisotropy of the tensor of polarizability difference in the two
oxidation states of the heme matches anisotropy of the second-rank tensor constructed from the electric field at the active site.
Exposure of the heme to water from only one side carries significant catalytic function, directly leading to the field anisotropy
and the corresponding depression of the activation barrier.

■ INTRODUCTION
The function of natural enzymes is to lower the activation
barrier to catalyze chemical reactions.1 Redox proteins in
energy chains of biology lower barriers for transferring
electrons. How this function is achieved is still the matter of
active study and debate. This report discusses the coupling of
the electronic polarizability of the active site to the protein-
water electrostatics as the mechanism for lowering the
activation barrier for protein electron transfer.
The Marcus theory of electron transfer is a general

framework for describing electronic transitions driven by
Gaussian fluctuations of the medium coupled to the donor and
acceptor electronic states.2 It greatly reduces the complexity of
the problem to only two parameters affecting the activation
barrier: the reorganization energy λ and the reaction free
energy ΔF0, both being free energies depending on the
thermodynamic state of the system. The free energy of
activation becomes

F F( ) /(4 )0
2λ λΔ = + Δ†

(1)

For a half reaction studied by electrochemistry,3 ΔF0 = eη is
replaced with the product of the elementary charge e with the
electrode overpotential η. Changing η in the electrochemical
experiment, such as cyclic voltammetry, provides access to the
reorganization energy λ and the standard reaction rate at η = 0.
The standard rate constant gives access to λ if the rate pre-
exponential factor is known. Since this is mostly not the case,
additional information is typically obtained from the Arrhenius

plot of the rate yielding the enthalpy of activation. We first
discuss what is known from this type of kinetic data and then
turn to numerical simulations of the half reaction of protein
electron transfer.
Electrochemistry of proteins immobilized on alkanethiol

self-assembled monolayers covering the metal electrode has
given evidence of low values of the reorganization energy for
electron transfer. These results have confirmed the anticipated
catalytic effect by the protein environment.4 For instance,
protein electrochemistry reports λ ≃ 0.57 eV for cytochrome
c,5,6 0.5 eV for myoglobin,7 and 0.3 eV for azurin.8,9 However,
even lower reorganization energies have been reported.10,11

Further, the analysis of Arrhenius plots mostly yields a good
agreement between the enthalpy of activation ΔH† and λ/4,8,9

thus suggesting a weak dependence of the reorganization
energy on temperature.7 This result comes in contrast to a
much steeper functions λ(T), which decreases with increasing
temperature, found for organic donor−acceptor systems in
aqueous and nonaqueous media.12 We will return to this point
below.
Overall, the reorganization energies of protein electron

transfer found by electrochemistry are significantly below the
common estimates offered by the Marcus theory and, more
importantly, by measurements performed with Ru-ligated
electron donors attached to the surface of a redox protein.
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Such measurements give λ ≃ 0.74 eV for cytochrome c,13 in
contrast to 0.57 eV from electrochemistry.5,6 Similarly, λ ≃ 0.8
eV was reported for Ru-modified azurins,4 in contrast to λ ≃
0.3 eV found by electrochemistry.8,9 Along the same lines, λ ≃
0.78 eV was reported for electron transfer from the disulfide at
the surface of azurin produced by pulse radiolysis.14 In all these
cases of intraprotein electron transfer, the reorganization
energy is strongly affected by solvation of the electron donor
exposed to the aqueous solution and does not directly report
on reorganization of the active site.15 Electrochemistry
provides a more direct test of medium reorganization produced
by the protein-water environment.
Another troubling disconnect with the reorganization

energies measured by electrochemistry comes from atomistic
simulations of proteins. Most recent simulations employing
nonpolarizable force fields have produced high reorganization
energies λ > 1 eV, for example, 2.1 eV for [FeFe]-
hydrogenase16 and 1.3−1.6 eV for electron transfer between
the bacteriopheophytin and primary quinone cofactors of the
photosynthetic bacterial reaction center (at the length of the
simulation trajectory).17 These large reorganization energies
come from the protein-water solvent. On the other hand, large
reorganization energies ∼1.2−1.5 eV recently reported for the
DNA repair enzyme photolyase18 were attributed to structural
distortions of the flavin cofactor.19 In contrast, the internal
reorganization energy is small for heme proteins.20 Before
attempting the theory−experiment comparison, we first
summarize how the reorganization energies are computed in
numerical simulations.
The tunneling configuration for electron transfer is reached

when the energy gap between the electronic states of the
acceptor and donor taken at the same nuclear configuration is
zero. The energy gap X = ΔE then becomes the reaction
coordinate for electron transfer, with the transition-state
configuration at X = 0. If the statistics of X is Gaussian, it is
characterized by two statistical moments, the average Xi =
⟨ΔE⟩i and the variance σi

2 = ⟨(δX)2⟩i, where i = Ox, Red
specifies two oxidation states of the half reaction. One in
principle needs four parameters to characterize the Gaussian
fluctuations in the two oxidation states, but a significant
simplification is achieved in the Marcus theory assuming σOx2 =
σRed

2 = 2kBTλ. When this requirement is combined with the
canonical Gibbs distribution of statistical configurations, one
additionally obtains |X1 − X2 | = 2λ and (X1 + X2)/2 = ΔF0.
Four statistical parameters are reduced to only two required in
eq 1.
The definition of the reaction coordinate in terms of the

energy gap provides a numerical algorithm to calculate the
experimentally observable λ and ΔF0 in eq 1.21,22 At the same
time, one gets the consistency test between two routes to the
reorganization energy: one can either take the Stokes-shift
reorganization energy X XSt 1

2 1 2λ = | − | or the variance
reorganization energy λi

var = (β/2)⟨(δX)2⟩i. The Marcus theory
stipulates λSt = λRed

var = λOx
var. Since λSt, being the combination of

two first-order statistical moments, converges much faster than
λi
var, most numerical studies report λSt and then construct the
activation barrier based on λ = λSt in eq 1.
The Gaussian statistics of X is realized for a specific model of

coupling between the donor and acceptor electronic states to
the typically Gaussian thermal bath. A linear coupling to the
medium converts the Gaussian fluctuations of the medium into
Gaussian fluctuations of the donor−acceptor energy gap. Any

nonlinear coupling to the bath leads to non-Gaussian
fluctuations of the energy gap. Such a nonlinear coupling to
the electrostatic field of the medium is, for instance, realized
for polarizable solutes.23 If one assumes that the active site of
the protein carries the charge Qi and the polarizability αi
(second-rank tensor), the solvent-induced shift of the
electronic energy level becomes

E Q E E1
2s b b bαϕΔ = Δ − ·Δ ·

(2)

where ΔQ = QRed − QOx = − e and Δα = αRed − αOx. Further,
ϕb is the fluctuating electrostatic potential at the active site and
Eb is the fluctuating vector of the electric field. If the
polarizability does not change in electron transfer, Δα = 0 and
one arrives at the linear coupling of the energy gap to the
Gaussian stochastic variable ϕb. This limit recovers the
standard Marcus theory. If, on the other hand, Δα ≠ 0, the
energy gap ΔEs depends quadratically on the Gaussian field Eb
and its statistics is non-Gaussian. The consequence is that
there are two different reorganization energies λivar in the two
oxidation states and λSt ≠ λi

var. The deviation from the
Gaussian statistics can be quantified by the parameter24

/ , 1
2

( )G
var St var

Ox
var

Red
varκ λ λ λ λ λ= = +

(3)

with κG = 1 for the Marcus theory.
Recent progress in parallel simulations of biomolecules has

allowed one to sample the complete distribution of the
electron-transfer energy gap and to test the requirement of κG
= 1 stipulated by the Marcus theory. Somewhat surprisingly, it
was found that κG extracted from simulations involving
nonpolarizable active sites can reach large values κG ≃ 2 − 5
well beyond simulation uncertainties.24 Since nonlinear
coupling between the active site and the protein-water medium
is not involved in these simulations, the only requirement that
can be broken to allow this to happen is the assumption of the
Gibbs canonical ensemble. It was, therefore, suggested that
insufficient sampling, that is, nonergodicity of the system,
contributes to κG > 1. This result was confirmed for a number
of proteins: plastocyanin,25 bacterial reaction center,17,26 green
fluorescent protein,27 bacterial bc1 complex,28,29 and bacterial
complex I.30 One has to stress that long simulations, in the
range of hundreds of nanoseconds, are required to achieve
sufficient statistics for λvar even for a small globular protein; 15
μs simulations were employed for the membrane-bound bc1
complex.29 Comparison to experiment was possible in most of
these studies, and the condition κG > 1 was very essential to
bring the simulation results in agreement with experimental
kinetic and electrochemical data. The reorganization energy λSt

was too large to achieve theory−experiment agreement, but it
was recognized that λ in eq 1 should be replaced with the
“reaction” reorganization energy λr composed of λSt and λvar

( ) /r St 2 varλ λ λ= (4)

This result comes from considering crossing of two parabolas
with different curvatures.31 Since λSt < λvar was consistently
found in simulations, λr < λSt produced good agreement
between simulations and kinetic rate measurements.17,26

A somewhat different situation was found for the
cytochrome c heme protein. Standard simulations involving
the Coulomb interaction of the charges in the active site with
the electrostatic potential of the bath, ΔQϕb → ∑jΔqjϕbj in eq
2, produced λSt ≃ 1.26 eV32 and κG ≃ 1.3, in accordance with
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other simulations.33 Here, Δqj = qj, Red − qj, Ox are the changes
in atomic charges of the active site coupled with the site
electrostatic potentials ϕbj. Since the experimental λr is about
half of the simulated λSt, the possibility of a polarizable active
site was considered.32 It was indeed found that applying
Warshel’s valence-bond33−35 approach to the heme of
cytochrome c brought the results of calculations in accordance
with experiment. We obtained, by interpolating through a
number of temperatures,36 λSt = 1.26 eV, λOxvar = 2.90 eV, and
λRed
var = 2.81 eV. From these values, the mean variance
reorganization energy λvar = 2.86 eV is given by eq 3 and λr

= 0.56 eV follows from eq 4 . This value agrees with the
experimental result of 0.58 ± 0.04 eV.5,6 Since the polar-
izability is a parameter slowly converging with the number of
quantum states, a large number of excited states M = 100
calculated in ZINDO/S approximation were required to
converge the polarizability of the heme to αOx = 23 Å3 and
αRed = 54 Å3, where αi = (1/3)Tr[αi] is the isotropic trace of
the anisotropic polarizability tensor.
In a recent paper,37 Blumberger and co-workers reported

long, ∼250 ns, simulations of the cytochrome c half reaction
applying a number of simulation protocols. Their results can be
briefly summarized by two statements: (i) they could not
reproduce an increase of the reorganization energy λvar and κG
> 1 when the polarizability of the active site was introduced in
terms of the empirical valence-bond method and (ii) they
found, consistently with the previous reports from the same
group,38 that introducing polarizable force fields lowers λSt to a
value comparable with the experimental reports. Their
conclusion was that polarizability of the active site does not
need to be involved to achieve an agreement with experiment
in the framework of the standard Marcus model. This report
reanalyzes their data and shows that the omission of a number
of key factors in the calculation algorithm resulted in erroneous
conclusions. We also show that anisotropic polarizability of the
active site strongly affects the kinetics of electron transfer in
cytochrome c becoming a key factor of the catalytic effect
achieved by this redox enzyme.
Previous simulations of proteins showing κG > 1 have

strongly suggested that proteins achieve depression of the
activation barrier, that is, the catalytic effect, by producing
conditions for incomplete (nonergodic) sampling of their
configuration space.31 The activation barrier at ΔF0 = 0
becomes

F 1
4G

St

κ
λΔ =†

(5)

The protein in regard to electron transfer behaves as a glassy
system39−42 in which the time τsam required to sample the
configuration space far exceeds the time of observation, which
is the reaction time τr ≃ kET−1; kET is the rate constant of electron
transfer. Single molecule measurements have reported
significant protein dynamics on the millisecond timescale43,44

and, from this perspective, an electron-transfer reaction
occurring on a microsecond timescale is a nonergodic event.
Nonergodic sampling responsible for the catalytic effect of

proteins31 is quite distinct from the commonly applied
Pauling’s concept of stabilizing the activated state by natural
enzymes.1 Quoting from Gray and Winkler:4 “The reorganiza-
tion energy for electron self-exchange in Cu(phen)22 + /+ is 2.4
eV; the value for Cu(II/I) in Pseudomonas aeruginosa azurin is
0.7 eV. The 1.7 eV reduction in λ reflects the transition-state

stabilization imposed by the azurin fold.” The transition-state
stabilization advocated in this quote is the application of
Pauling’s idea to redox proteins. This idea in fact clashes with
the conceptual framework of the Marcus theory, which
stipulates that only equilibrium properties (first and second
statistical moments) and not nonequlibrium stabilization of the
activated state are what needed to determine the activation
barrier. Further, the core of a typical redox protein, such as
cytochrome c, is quite rigid and densely packed, with little
structural change induced by altering its redox state.45−48

Stabilization of the active site by some specific prearrangement
of charges is hardly conceivable for electron-transfer catalysis:
any static field within the protein (which can be quite
strong49) cancels from both λSt and λvar and should not affect
reactions with ΔF0 = 0. On the contrary, breaking the rules of
sampling imposed by the Gibbs ensemble is a successful
alternative strategy for achieving the catalytic effect.
Cytochrome c is an important study case because non-

ergodic sampling is not achieved for this protein, at least with
the present simulation evidence. Since the reported reorgan-
ization energy of cytochrome c is on par with other proteins, an
alternative mechanism of lowering the barrier must have been
realized. It appears that polarizability of the active site is what
provides the required κG ≃ 2.3, although this is not the only
conceivable mechanism. For instance, wetting of the active
site33,50 caused by electron transfer51 was also found to lead to
κG > 1 for another small redox protein, ferredoxin.52 Returning
to the question of specificity of the protein fold, we find that it
allows specific anisotropy of near-equilibrium electrostatic
fluctuations but not a specific stabilization of the activated
state.
In this study, we reanalyze the results of simulations of

cytochrome c with a polarizable active site.32 We utilize both
the empirical valence-bond approach to calculate the
reorganization parameters and a simplified description in
terms of the linear anisotropic polarizability of the active site.
This latter approach is less computationally demanding and
produces results qualitatively consistent with the full
diagonalization of the active-site Hamiltonian matrix along
the simulation trajectory. We find that anisotropy of the
polarizability matrix couples with anisotropy of the medium
electric field to enhance the reorganization energy λvar.

■ RESULTS
The electron-transfer energy gap along the simulation
trajectory is defined by taking the difference of energies of
Red and Ox states at each nuclear configuration of the system.
These energies are specified differently in the empirical
valence-bond approach and in the simplified model involving
the gas-phase dipolar polarizability given by eq 2. In the former
case, one gets

X E Eg
Red

g
Ox= − (6)

where Eg
i are the ground-state energies obtained by diagonal-

izing the M × M Hamiltonian matrix at each configuration (ϕb,
Eb) along the trajectory. The Hamiltonian matrix is given in
the form

H E Q E( )jk
i

j
i i

jk jk
i

b bμϕ δ= + − · (7)

Here, Qi is the total charge of the quantum center for which
ZINDO/S calculations were performed.32 Further, μjki at j ≠ k
are the transition dipoles between states j = 1, ..., M and k = 1,
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..., M carrying the energies Ej
i and Ek

i , where i = Ox, Red. The
diagonal elements of the matrix μkki are the dipole moments in
the states k = 1, ..., M. The terms −μkki · Eb in the Hamiltonian
matrix account for the interaction of the dipole moment of the
heme with the electric field of the protein-water medium, while
the term Qiϕb accounts for the interaction of the total charge
of the heme with the electrostatic potential. The model used
here truncates all higher multipoles starting with the
quadrupole moment of the heme. The total charge of the
quantum center is QOx = −1 in the Ox state and QRed = −2 in
the Red state in our calculations. The vacuum polarizabilities
of the quantum center based on these calculations are listed in
Table 1.

The polarizability tensors αi are linear dipolar polarizabilities
calculated from transition dipoles and energy differences
between vacuum states j and k. On the other hand, the
ground-state energies Eg

i incorporate powers of the field Eb up
to the Mth order. This algorithm, based on diagonalizing the
Hamiltonian matrix in eq 7, is, therefore, more advanced than
the linear polarizability model and includes a set of higher-
order polarizabilities produced by expanding Eg

i in powers of
Eb. In other words, the polarizability αi(Eb) calculated from Eg

i

is affected by fluctuations of the electric field not included in
the vacuum polarizability αi. Based on these arguments, there
is no reason to expect an exact match between the empirical
valence-bond diagonalization and the linear model given by eq
2. However, it provides a useful benchmark for the calculations
since polarizability of the active site enters calculation in an
analytical form and does not rely on a specific set of transition
dipoles. In this model, the energy gap is linear in the medium
electrostatic potential and is quadratic in the medium field.
Correspondingly, the coordinate X is a sum of its average value
plus the fluctuation

X e : F F1
2 ib b bαδ δϕ= − − Δ [ − ⟨ ⟩ ]

(8)

where δϕb = ϕb − ⟨ϕb⟩i and Fb
αβ = Eb

αEb
β, α, β = x, y, z is the

second-rank electric field tensor, and the colon indicates the
tensor contraction.
Calculating the variance of δX along the simulation

trajectory provides us with a direct estimate of the variance
reorganization energies

X( ) /2i i
var 2λ β δ= ⟨ ⟩ (9)

The average here is taken over two fluctuating fields: the scalar
field δϕb and the second-rank field tensor Fb. Correspondingly,
the Stokes-shift reorganization energy becomes

e : F F2 ( ) 1
2

St
b Red b Ox b Red b Oxαλ ϕ ϕ= ⟨ ⟩ − ⟨ ⟩ + Δ [⟨ ⟩ − ⟨ ⟩ ]

(10)

These results are shown in Figure 1, where the polarizability
matrix Δα → ζΔα is scaled with the parameter −2 ≤ ζ ≤ 2 to

investigate the effect of altering the polarizability change on the
reorganization energy. In Figure 2, similar results are shown by

assuming the isotropic polarizability Δααβ = Δαδαβ, where Δα
= 31 Å3 (Table 1). The polarizability tensor is in fact highly
anisotropic, which is quantified by a significant difference in
the eigenvalues of the polarizability matrix and by the
anisotropy parameter γ also listed in Table 1 (γ = 0 for an
isotropic polarizability).
The calculations presented in Figures 1 and 2 are based on

two sets of stochastic fields, ϕb and Eb, produced in the
simulations in refs 32 and 37. The distributions of electrostatic
potentials (Figure 3) and field magnitudes (Figure 4) are
consistent between these two sets of simulations. The
reorganization energies produced are listed, among other
results reported in the past, in Table 2. The classical
simulations listed in the table are based on assuming that the
entire transferred charge is localized on the Fe atom of the
heme. This calculation is sufficiently close to the more often
implemented summation ∑jΔqjϕbj over changes in partial
atomic charges Δqj within the active site.32 This result, listed in
the second line of Table 2, refers to Δα = 0 in eq 8 . Enabling
Δα = 31 Å3 does not strongly affect λSt but noticeably affects
λi
var (line 9 in Table 2).
Even the grossly simplified model based on the isotropic

polarizability of the active site (Figure 2) qualitatively supports
more advanced calculations based on the empirical valence-

Table 1. Eigenvalues of the Polarizability Matrix αk (k = 1,
2, 3), Isotropic Polarizability α = (1/3)Tr[α] (Å3), and the
Polarizability Anisotropy γ (Å3), γ2 = (1/2)(3Tr[α2] −
Tr[α]2)

state α1 α2 α3 α γ

Ox 37.4 31.7 1.1 23.4 33.9
Red 81.2 77.6 3.7 54.2 75.8

Figure 1. Reorganization energies of Ox and Red states calculated
from eqs 7 and 8 with anisotropic polarizability Δα given in eq 11.
The stochastic fields ϕb, Eb are taken from molecular dynamics
simulation in refs 32 and 37 as indicated in the plot. The scaling
parameter ζ scales Δα to Δζα to illustrate the effect of changing the
overall polarizability magnitude without altering its anisotropy. The
dashed vertical line indicates ζ = 1 corresponding to the
reorganization energies listed in Table 2.

Figure 2. Reorganization energies of Ox and Red states calculated
from eqs 7 and 8 and isotropic polarizability change Δα according to
simulations in refs 32 and 37 (dashed lines).
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bond diagonalization. The split between two λi
var and κG > 1

grows with increasing Δα. Of course, the free energy surfaces
of electron transfer describing polarizable systems are non-
parabolic.23 However, a simplified description in terms of
crossing parabolas with different curvatures is in many cases
sufficient for the practical purpose of calculating the activation
barrier. In contrast to our calculations shown in Figure 1, ref 37
claims that the electric field needs to be increased by a factor of
5 to reach a significant effect of polarizability on the
reorganization energy. This claim is inconsistent with the
electrostatic data produced by both simulations (Figures 3 and
4). For instance, when the suggested 5-fold increase of the
electric field is applied to the Red state, λRedvar from eqs 8 and 9,
calculated with the ϕb, Eb from ref 37, becomes equal to 22 eV.
Introducing anisotropic polarizability tensor further in-

creases λvar and κG (line 11 in Table 2). This anisotropy-
driven enhancement might be underestimated in our
calculations since polarizability is a property slowly converging
with the number of states involved and including more excited
states might affect the result. Including anisotropic α further
enhances λvar because the asymmetry of the polarizability
matrix Δα matches the asymmetry of the electric field tensor
⟨Fb⟩. We find the following values for Δα (in Å3) and ⟨Fb⟩ (in
(V/Å)2)

F

16.7 19.6 2.85
19.6 30.3 0.77

2.85 0.77 45.2
,

0.004 0 0.002
0 0.016 0.040

0.002 0.040 0.117
b Red

i
k
jjjjjjjjj

y
{
zzzzzzzzzi

k
jjjjjjjjj

y
{
zzzzzzzzz

αΔ =
−

−

⟨ ⟩ =
−

− (11)

For both tensors, Δα and ⟨Fb⟩, the largest values are gained for
the zz projection in the molecular frame used in our
calculations. As shown in the cartoon of the active site in
Figure 5, this is the direction in the plane of the heme. The
highest polarizability of the active site along the z axis is
combined with the highest electric field produced by the
medium in this direction. This match, which might be driven
by the specific fold of the protein, makes larger the tensor
contraction in the second term in eq 8, thus leading to a higher
λvar.

Figure 3. Distribution of the bath electrostatic potential ϕb at the Fe
atom of the heme calculated for Ox (blue) and Red (red) states from
simulation trajectories produced in ref 32 (filled points) and in ref 37
(open points).

Figure 4. Distribution of the magnitude of the electrostatic field Eb at
the Fe atom of the heme calculated for Ox (blue) and Red (red)
states from simulation trajectories produced in ref 32 (filled points)
and in ref 37 (open points).

Table 2. Reorganization Energies (eV) and the Parameter
κG (Eq 3) from Different Simulations of Cytochrome c

method λSt λOx
var λRed

var κG ref

EVB MDa 0.89 0.92 1.32 1.3 33
classical
MDb

1.13 1.57 1.50 1.3 32

classical
MDc

0.98 1.14 1.11 1.2 37

EVB MDd 1.20 ± 0.04 3.10 ± 0.14 2.34 ± 0.09 2.26 32
EVB MD
(no rot,
zero
dipoles)e

1.08 ± 0.06 1.76 ± 0.12 1.63 ± 0.11 1.57 32

EVB MDf 1.00 ± 0.01 1.23 ± 0.08 1.24 ± 0.07 1.23 37
EVB MD
(no rot,
zero
dipoles)e

1.00 ± 0.01 1.29 ± 0.05 1.23 ± 0.06 1.26 37

EVB MD
(no rot)g

0.98 ± 0.02 1.46 ± 0.08 2.67 ± 0.36 2.11 37

Isotropic polarizability
eq 2h 1.15 1.66 2.07 1.63 32
eq 2i 1.06 1.22 1.25 1.16 37
Anisotropic polarizability
eq 2j 1.17 1.84 2.15 1.70 32
eq 2j 1.06 1.23 1.31 1.19 37
aThe empirical valence-bond calculations performed in ref 33
involved only 13 states and resulted in nearly zero polarizability.
The values listed here are produced from trajectories supplied by the
authors of ref 33. bCalculated assuming the entire charge is localized
on the Fe atom of the heme upon electron transfer. cSame calculation
as in table note b with ϕb, Eb from ref 37. dAll uncertainties reported
in this table, except for line 6, are from five blocks along the trajectory
calculated as deviations from block averages. eThe electric field was
not rotated to the coordinate frame of the quantum center and the
diagonal dipoles of the dipole moment matrix were set equal to zero,
μjj = 0. fResults reported in Table 1 (marked as QM2/SF1) in ref 37.
gThe electric field was not rotated to the coordinate frame of the
quantum center, but μjj from our own calculations of the quantum
center used in ref 37 were applied to the Hamiltonian matrix in eq 7
(the quantum centers used in refs 32 and 37 are slightly different).
hCalculated from eqs 9 and 10 with the isotropic polarizabilities αOx =
23 Å3 and αRed = 54 Å3 (Table 1) and ϕb, Eb from ref 32. iSame
calculation as in table note g with ϕb, Eb from ref 37. jSame
calculations as in table notes g and h, but with anisotropic
polarizability Δα from eq 11.
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The anisotropy of Fb, which is clearly seen in our
calculations, does not appear from the electric field trajectories
in ref 37. This is because the authors presumably failed to
rotate the vector of the electric field of the protein-water
medium Eb to the molecular frame of the active site in which
the set of diagonal and off-diagonal (transition) dipoles is
calculated to be used in the empirical valence-bond
diagonalization (eq 7). The electric field tensor Fb gets
averaged over the rotations of the protein on a sufficiently long
trajectory, thus becoming effectively isotropic. We attempted
to reproduce this outcome by skipping field rotation and thus
allowing the frame of reference to rotate along the simulation
trajectory. The field tensor ((V/Å)2) becomes much more
isotropic compared to the one shown in eq 11

F
0.031 0.007 0.001
0.007 0.064 0.002
0.001 0.002 0.044

b Red

i
k
jjjjjjjjj

y
{
zzzzzzzzz⟨ ⟩ = −

− (12)

This symmetry is similar to what we find from the results
presented in ref 37. This calculation error is responsible for a
weak effect of the polarizability anisotropy on the reorganiza-
tion energy λvar (Figures 1 and 2 and Table 2). To estimate the
effect of neglecting frame rotation on the empirical valence-
bond diagonalization, we compared our previous calculations30

with rotations involved (line 4 in Table 2) with the same
calculations when no rotations were performed (line 5 in Table
2). The result is a much lower κG, although not as low as
reported in ref 37 (line 6).
Another and more significant distinction of the calculations

performed in ref 37 from ours, leading to erroneous results, is
the neglect of diagonal dipole moments in the Hamiltonian
matrix (μjj in eq 7). Since the standard Gaussian output does
not list dipole moments of the excited states, a separate
calculation for each excited state was carried out in our study.32

We could reproduce the results from Table 1 in ref 37 (labeled
as QM2/SF1) by performing calculations with the matrix of
nonzero off-diagonal transition dipoles and zero diagonal
dipoles (μjj = 0) combined with the trajectories of the
electrostatic potential and field from their simulations (cf. lines
6 and 7 in Table 2).
The omission of the diagonal dipoles effectively eliminates

modulation of the active site polarizability by the field, that is,
all higher-order polarizabilities. To confirm these results, we
additionally used the definition of the quantum center from ref
37 to calculate the diagonal dipole moments in the
Hamiltonian matrix (listed in the Supporting Information)

and reran the calculations using their trajectories of fields and
potentials (line 8 in Table 2). Since no rotations of the fields to
the frame of the quantum center were performed in their
calculations, the results are still incorrect. However, the
reorganization energies λvar are significantly shifted upward
and the resulting κG = 2.11 becomes much closer to our result
κG = 2.26. From two calculation errors in ref 37, the omission
of field rotations and the neglect of the diagonal dipole
moments, the second one appears to be most severe. We note
that the interaction of the diagonal dipole with the protein-
water electric field is significant. For instance, one gets the
following values for the interaction energy μ11

i ⟨Eb⟩ of the
ground-state dipole with the average electrostatic field: 3.1 (i =
Ox) and 4.3 eV (i = Red). These numbers should be compared
with the vacuum energy gaps between the first excited and
ground states E2

i − E1
i amounting to 0.33 eV (Ox) and 0.84 eV

(Red).

■ DISCUSSION
A close match in asymmetries between the polarizability
difference tensor Δα and the electric field tensor ⟨Fb⟩ suggests
a potential reason for the specific design of the active sites of
cytochromes. The heme is inserted in the protein pocket and
remains open to water only from one side. In this way, the
direction of the highest polarizability, in the heme’s plane,
coincides with the direction of the highest potential gradient
from the heme toward water. The electric field ensured by this
potential gradient couples to the polarizability change in the
heme’s plane to increase both the reorganization energy λvar

and κG. The barrier of the reaction is lowered (eq 5) and the
catalytic effect is achieved.
Our calculations confirm this hypothesis. We find that ⟨Fb⟩

arising from the protein matrix is nearly symmetric. All
asymmetry of the field tensor in eq 11 arises from the water
component of the thermal bath. As a result, the reorganization
energies λi

var calculated in eqs 8 and 9 from water only are
equal to 3.5 eV (Ox) and 2.8 eV (Red). As shown in Table 2
(line 11), the total reorganization energies are 1.84 and 2.15
eV. This result implies that cross-correlations between the
protein and water electrostatic fluctuations, accounting for the
screening of the water fluctuations by the protein-water
interface, produce negative contributions exceeding in
magnitude the reorganization energies from the protein, 3.2
eV (Ox) and 2.5 eV (Red).
The variance of the electron-transfer energy gap σ2(T)

shows a behavior more complex than the linear scaling, σ2(T)
∝ T, predicted by the fluctuation−dissipation theorem.53

Instead, a crossover with lowering temperature has been
observed for all proteins for which this function was studied by
simulations.31 The crossover occurs in the range of temper-
atures ∼200 K consistent with the temperature of the
dynamical transition in proteins.54,55 Specifically, the variance
has a steeper slope at higher temperatures scaling as σ2 ∝ (T −
T0). It turns to a linear scaling consistent with the fluctuation−
dissipation theorem below the dynamical transition. Figure 6
shows that plastocyanin (half reaction) and a green fluorescent
protein (intraprotein electron transfer) obey this phenomen-
ology also found for many glassy media.31,32 The result of this
specific temperature scaling is that the rate constant of electron
transfer is expected to follow the Vogel−Fulcher law instead of
the Arrhenius law.27,31

The temperature variation of σ2(T) for cytochrome c56 is
distinctly different from other electron-transfer proteins

Figure 5. Active site in the molecular frame of the quantum
calculation.32
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studied by simulations. The variance and the reorganization
energy λvar drop at the temperature more consistent with the
temperature Tg of glass transition of proteins.57 The drop of σ2

at Tg is not in the form of breaking the linear slope but is more
consistent with the standard ergodicity breaking (dynamical
freezing) found in bulk glass formers at the glass transition.40

This change in the temperature law is yet another indication of
distinct statistics of fluctuations observed for proteins
displaying nonergodic sampling and cytochrome c. While κG
for the former is linked to insufficient exploration of
configuration space, κG > 1 for cytochrome c is caused by a
relatively high polarizability of its active site. This high
polarizability was not realized in our simulations of the chain of
iron−sulfur clusters in the bacterial complex I.30 The
mechanism behind κG > 1 in that system was a combination
of nonergodic sampling with partial wetting of the active sites
along the electron transport path. All these differences
disappear at low temperatures below the temperature of
dynamical/glass transition. The variance reorganization energy
at low temperatures is caused by fast localized motions of
charged and polar groups near equilibrium positions, and the
resulting reorganization energies are roughly consistent among
different proteins (Figure 6).
The temperature dependence of the reorganization energy

deserves a separate comment. Experiments show that λr

extracted from electrochemistry of surface-immobilized my-
oglobin is little sensitive to temperature.7 On the contrary, λ of
the standard Marcus formulation, carrying the meaning of the
free energy of solvating the electron-transfer dipole, noticeably
decays with increasing temperature. If one defines the entropy

S T( / )Pλ= − ∂ ∂λ (13)

then TSλ/λ ≃ 0.5 is typically found for electron-transfer
reactions involving organic donor−acceptor systems.12 On the
contrary, the composite reorganization energy λr in eq 4 varies
with temperature based on two separate entropies, SλSt and Sλvar,

S S S2r
G

2
G

St varκ κ= [ − ]λ λ λ
−

(14)

As the result of compensation between SλSt > 0 and Sλvar > 0 in
the brackets in this equation, Sλr is about an order of magnitude
smaller than Sλvar: one gets TSλ/λ ≃ 0.25 in this case.36 The
composite reaction reorganization energy λr not only lowers
the activation barrier but also results in a robust operation of
the enzyme weakly affected by temperature. The observation of
low temperature sensitivity of the reorganization energy in
experiment7−9 and its realization in simulations36 gives

additional support to the composite form of the observable
λr given by eq 4.
The new analysis of the reorganization energy of

cytochrome c by a number of simulation protocols presented
in ref 37 suggests that recently developed polarizable force
fields for protein and water58,59 produce better quantitive
agreement with published experimental reorganization energies
compared to nonpolarizable force fields. A direct comparison
between two sets of force fields for electron-transfer energetics
is still a challenging task since reduction of the system size and
lower statistics are still required to implement more demanding
polarizable force fields.37,60 It is also clear that success of
polarizable models in the homogeneous environment of the
bulk, where mean-field models are very successful,61 does not
necessarily project to heterogenous interfaces and solvation.62

The problem needs further studies from the fundamental
perspective since increasing solvent polarizability at constant
permanent dipole in model polarizable fluids produces a
weaker effect of polarizability on the reorganization energy
than predicted by the Pekar factor.63,64 The distinction
between medium reorganization for protein electron transfer
from other systems is a strong compensation,29 mentioned
above, between the protein and water reorganization
components in the total λvar. The details of the cross
protein-water correlations of electrostatic fluctuations in the
protein-water interface need to be adequately reproduced by
the polarizable force field. From the viewpoint of comparison
to experiment, collecting sufficient statistics from long
trajectories with the standard nonpolarizable force fields was
sufficient to achieve quantitative agreement with published
kinetic data for fast electron transfer in bacterial reaction
centers.17,26

■ CONCLUSIONS
We emphasize here that redox proteins offer a number of
potentially important mechanisms for achieving the catalytic
effect, alongside with the traditional mechanism of reaching the
activation barrier through collective polarization fluctuations of
the polarizable medium.2 Nonergodic sampling and pene-
tration of water to the protein’s core are the mechanisms
specific to proteins. The difference in polarizabilities of Ox and
Red states is a more general mechanism applicable to all
electron-transfer reactions, which gains importance depending
on the magnitude of the polarizability change between the
oxidation states.
Cytochrome c is an important case of a protein for which

nonergodic sampling found in simulations of many other
proteins was not reproduced. To explain reorganization
energies reported by electrochemistry, polarizability of the
active site was included. It results in a depression of the
activation barrier similar to the effect of nonergodicity, as
indeed confirmed by calculations based on the empirical
valence-bond method.32 These results were recently challenged
in ref 37, which could not confirm our previous reports. In an
attempt to test different simulation/calculation protocols, a
direct formalism for calculating the reorganization parameters
from anisotropic linear polarizability and electrostatics
produced by simulations is introduced here. Our present
calculations confirm that polarizability of the active site couples
to high-magnitude fluctuations of electrostatic fields and
potentials from the protein-water interface to produce a
significant depression of the electron-transfer activation barrier.
This simplified model qualitatively supports previous findings

Figure 6. Temperature dependence of σ2 = ⟨(δX)2⟩ for plastocyanin
(PC, half reaction), green fluorescent protein (GFP, intraprotein
electron transfer), and Ox cytochrome c (CytC, half reaction). The
dashed lines are linear fits of high-temperature portions of σ2(T).
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involving full diagonalization of the active-site Hamiltonian
and points to the deficiencies of the analysis attempted in ref
37. More importantly, it provides a transparent and physically
appealing approach to study protein electron transfer involving
polarizable active sites.
We find a curious match between the anisotropies of the

polarizability difference tensor and the tensor of the electric
field produced by the protein-water thermal bath. It appears
that the design of cytochrome’s active site allows large electric
fields, originating from the contact between the heme and
water, along the heme’s plane where the active site is most
polarizable. There are a number of instances found in previous
simulations where partial penetration of water into the active
site is significant for the electron-transfer kinetics30,51 and for
other protein function.33,65−67 The general design principle in
all such cases is the creation of strong interfacial heterogeneity
and related strong interfacial electric fields. Here, we find that
such fields, induced by the protein-water interface, combine
with anisotropic polarizability of the active site to allow the
depression of the activation barrier.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpcb.9b09236.

Diagonal elements of the dipolar matrix calculated for
the active site as defined in refs 32 and 37 (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: dmitrym@asu.edu. Tel: (480)965-0057.
ORCID
Dmitry V. Matyushov: 0000-0002-9352-764X
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This research was supported by the National Science
Foundation (CHE-1800243). The authors are grateful to
Jochen Blumberger for providing electrostatic data and results
of quantum calculations from ref 37.

■ REFERENCES
(1) Pauling, L. Molecular architecture and biological reactions.
Chem. Eng. News 1946, 24, 1375−1377.
(2) Marcus, R. A.; Sutin, N. Electron transfer in chemistry and
biology. Biochim. Biophys. Acta 1985, 811, 265−322.
(3) Bard, A. J.; Faulkner, L. R. Electrochemical Methods. Fundamentals
and Applications, 2nd ed.; Wiley: New York, 2001.
(4) Gray, H. B.; Winkler, J. R. Electron tunneling through proteins.
Q. Rev. Biophys. 2003, 36, 341−372.
(5) Cheng, J.; Terrettaz, S.; Blankman, J. I.; Miller, C. J.; Dangi, B.;
Guiles, R. D. Electrochemical comparison of heme proteins by
insulated electrode voltammetry. Isr. J. Chem. 1997, 37, 259−266.
(6) Wei, J. J.; Liu, H.; Niki, K.; Margoliash, E.; Waldeck, D. H.
Probing Electron Tunneling Pathways: Electrochemical Study of Rat
Heart Cytochrome c and Its Mutant on Pyridine-Terminated SAMs. J.
Phys. Chem. B 2004, 108, 16912−16917.
(7) Khoshtariya, D. E.; Dolidze, T. D.; Shushanyan, M.; van Eldik, R.
Long-range electron transfer with myoglobin immobilized at Au/
mixed-SAM junctions: Mechanistic impact of the strong protein
confinement. J. Phys. Chem. B 2014, 118, 692−706.

(8) Khoshtariya, D. E.; Dolidze, T. D.; Shushanyan, M.; Davis, K. L.;
Waldeck, D. H.; van Eldik, R. Fundamental signatures of short- and
long-range electron transfer for the blue copper protein azurin at Au/
SAM junctions. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 2757.
(9) Monari, S.; Battistuzzi, G.; Bortolotti, C. A.; Yanagisawa, S.; Sato,
K.; Li, C.; Salard, I.; Kostrz, D.; Borsari, M.; Ranieri, A.; et al.
Understanding the mechanism of short-range electron transfer using
an immobilized cupredoxin. J. Am. Chem. Soc. 2012, 134, 11848−
11851.
(10) Jeuken, L. J. C.; McEvoy, J. P.; Armstrong, F. A. Insights into
gated electron-transfer kinetics at the electrode-protein interface: A
square wave voltammetry study of the blue copper protein azurin. J.
Phys. Chem. B 2002, 106, 2304.
(11) Guo, Y.; Zhao, J.; Yin, X.; Gao, X.; Tian, Y. Electrochemistry
Investigation on Protein Protection by Alkanethiol Self-Assembled
Monolayers against Urea Impact. J. Phys. Chem. C 2008, 112, 6013−
6021.
(12) Ghorai, P. K.; Matyushov, D. V. Solvent reorganization entropy
of electron transfer in polar solvents. J. Phys. Chem. A 2006, 110,
8857−8863.
(13) Mines, G. A.; Bjerrum, M. J.; Hill, M. G.; Casimiro, D. R.;
Chang, I.-J.; Winkler, J. R.; Gray, H. B. Rates of Heme Oxidation and
Reduction in Ru(His33)cytochrome c at Very High Driving Forces. J.
Am. Chem. Soc. 1996, 118, 1961−1965.
(14) Farver, O.; Hosseinzadeh, P.; Marshall, N. M.; Wherland, S.;
Lu, Y.; Pecht, I. Long-range electron transfer in engineered azurins
exhibits Marcus inverted region behavior. J. Phys. Chem. Lett. 2014, 6,
100−105.
(15) Blumberger, J. Free energies for biological electron transfer
from QM/MM calculation: method, application and critical assess-
ment. Phys. Chem. Chem. Phys. 2008, 10, 5651−5667.
(16) McCullagh, M.; Voth, G. A. Unraveling the Role of the Protein
Environment for [FeFe]-Hydrogenase: A New Application of Coarse-
Graining. J. Phys. Chem. B 2013, 117, 4062−4071.
(17) LeBard, D. N.; Martin, D. R.; Lin, S.; Woodbury, N. W.;
Matyushov, D. V. Protein dynamics to optimize and control bacterial
photosynthesis. Chem. Sci. 2013, 4, 4127−4136.
(18) Tan, C.; Liu, Z.; Li, J.; Guo, X.; Wang, L.; Sancar, A.; Zhong, D.
The molecular origin of high DNA-repair efficiency by photolyase.
Nat. Commun. 2015, 6, 7302.
(19) Liu, Z.; Guo, X.; Tan, C.; Li, J.; Kao, Y.-T.; Wang, L.; Sancar,
A.; Zhong, D. Electron tunneling pathways and role of adenine in
repair of cyclobutane pyrimidine dimer by DNA photolyase. J. Am.
Chem. Soc. 2012, 134, 8104−8114.
(20) Sigfriddson, E.; Olsson, M. H. M.; Ryde, U. A comparison of
the inner-sphere reorganization energies of cytochromes, iron−sulfur
clusters, and blue copper proteins. J. Phys. Chem. B 2001, 105, 5546−
5552.
(21) Warshel, A. Dynamics of reactions in polar solvents.
Semiclassical trajectory studies of electron-transfer and proton-
transfer reactions. J. Phys. Chem. 1982, 86, 2218−2224.
(22) Kuharski, R. A.; Bader, J. S.; Chandler, D.; Sprik, M.; Klein, M.
L.; Impey, R. W. Molecular model for aqueous ferrous-ferric electron
transfer. J. Chem. Phys. 1988, 89, 3248−3257.
(23) Matyushov, D. V.; Voth, G. A. Modeling the free energy
surfaces of electron transfer in condensed phases. J. Chem. Phys. 2000,
113, 5413.
(24) Matyushov, D. V. Protein electron transfer: Dynamics and
statistics. J. Chem. Phys. 2013, 139, No. 025102.
(25) LeBard, D. N.; Matyushov, D. V. Glassy protein dynamics and
gigantic solvent reorganization energy of plastocyanin. J. Phys. Chem.
B 2008, 112, 5218−5227.
(26) LeBard, D. N.; Kapko, V.; Matyushov, D. V. Energetics and
kinetics of primary charge separation in bacterial photosynthesis. J.
Phys. Chem. B 2008, 112, 10322−10342.
(27) Martin, D. R.; Matyushov, D. V. Non-Gaussian statistics and
nanosecond dynamics of electrostatic fluctuations affecting optical
transitions in a green fluorescent protein. J. Phys. Chem. B 2012, 116,
10294−10300.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.9b09236
J. Phys. Chem. B 2019, 123, 10691−10699

10698



(28) Martin, D. R.; LeBard, D. N.; Matyushov, D. V. Coulomb soup
of bioenergetics: Electron transfer in a bacterial bc1 complex. J. Phys.
Chem. Lett. 2013, 4, 3602−3606.
(29) Martin, D. R.; Matyushov, D. V. Communication: Microsecond
dynamics of the protein and water affect electron transfer in a
bacterial bc1 complex. J. Chem. Phys. 2015, 142, 161101.
(30) Martin, D. R.; Matyushov, D. V. Electron-transfer chain in
respiratory complex I. Sci. Rep. 2017, 7, 5495.
(31) Matyushov, D. V. Protein electron transfer: is biology
(thermo)dynamic? J. Phys.: Condens. Matter 2015, 27, 473001.
(32) Dinpajooh, M.; Martin, D. R.; Matyushov, D. V. Polarizability
of the active site of cytochrome c reduces the activation barrier for
electron transfer. Sci. Rep. 2016, 6, 28152.
(33) Bortolotti, C. A.; Amadei, A.; Aschi, M.; Borsari, M.; Corni, S.;
Sola, M.; Daidone, I. The reversible opening of water channels in
cytochrome c modulates the heme iron reduction potential. J. Am.
Chem. Soc. 2012, 134, 13670−13678.
(34) Warshel, A.; Bora, R. P. Perspective: Defining and quantifying
the role of dynamics in enzyme catalysis. J. Chem. Phys. 2016, 144,
180901.
(35) Daidone, I.; Amadei, A.; Zaccanti, F.; Borsari, M.; Bortolotti, C.
A. How the reorganization free energy affects the reduction potential
of structurally homologous cytochromes. J. Phys. Chem. Lett. 2014, 5,
1534−1540.
(36) Seyedi, S. S.; Waskasi, M. M.; Matyushov, D. V. Theory and
electrochemistry of cytochrome c. J. Phys. Chem. B 2017, 121, 4958−
4967.
(37) Jiang, X.; Futera, Z.; Blumberger, J. Ergodicity-breaking in
thermal biological electron transfer? Cytochrome c revisited. J. Phys.
Chem. B 2019, 123, 7588−7598.
(38) Blumberger, J. Recent advances in the theory and molecular
simulation of biological electron transfer reactions. Chem. Rev. 2015,
115, 11191−11238.
(39) Stillinger, F. H. Energy Landscapes, Inherent Structures, and
Condensed-Matter Phenomena; Princeton University Press: Princeton,
NJ, 2016.
(40) Angell, C. A. Formation of glasses from liquids and
biopolymers. Science 1995, 267, 1924−1935.
(41) Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G. The energy
landscapes and motions of proteins. Science 1991, 254, 1598−1603.
(42) Frauenfelder, H.; Chen, G.; Berendzen, J.; Fenimore, P. W.;
Jansson, H.; McMahon, B. H.; Stroe, I. R.; Swenson, J.; Young, R. D.
A unified model of protein dynamics. Proc. Natl. Acad. Sci. U. S. A.
2009, 106, 5129−5134.
(43) Min, W.; English, B. P.; Luo, G.; Cherayil, B. J.; Kou, S. C.; Xie,
X. S. Fluctuating enzymes: Lessons from single-molecule studies. Acc.
Chem. Res. 2005, 38, 923−931.
(44) Iversen, L.; Tu, H.-L.; Lin, W.-C.; Christensen, S. M.; Abel, S.
M.; Iwig, J.; Wu, H.-J.; Gureasko, J.; Rhodes, C.; Petit, R. S.; et al. Ras
activation by SOS: Allosteric regulation by altered fluctuation
dynamics. Science 2014, 345, 50−54.
(45) Shepard, W. E. B.; Anderson, B. F.; Lewandoski, D. A.; Norris,
G. E.; Baker, E. N. Copper coordination geometry in azurin
undergoes minimal change on reduction of copper(II) to copper(I).
J. Am. Chem. Soc. 1990, 112, 7817−7819.
(46) Li, Z.; Raychaudhuri, S.; Wand, A. J. Insights into the local
residual entropy of proteins provided by NMR relaxation. Protein Sci.
1996, 5, 2647−2650.
(47) Cascella, M.; Magistrato, A.; Tavernelli, I.; Carloni, P.;
Rothlisberger, U. Role of protein frame and solvent for the redox
properties of azurin from Pseudomonas aeruginosa. Proc. Natl. Acad.
Sci. U. S. A. 2006, 103, 19641−19646.
(48) Winkler, J. R.; Gray, H. B. Electron flow through metal-
loproteins. Chem. Rev. 2014, 114, 3369−3380.
(49) Jha, S. K.; Ji, M.; Gaffney, K. J.; Boxer, S. G. Direct
measurement of the protein response to an electrostatic perturbation
that mimics the catalytic cycle in ketosteroid isomerase. Proc. Natl.
Acad. Sci. U. S. A. 2011, 108, 16612−16617.

(50) Rahaman, O.; Kalimeri, M.; Melchionna, S.; Heńin, J.;
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