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ABSTRACT: Electrochemical measurements of electron transfer from an electrode to proteins
immobilized at protective layers of varying thickness have shown the presence of two characteristic
regimes: (i) exponential (tunneling) decay of the rate constant with the distance to the electrode

kgr
2 2
Tinoc e (6R")

and (ii) a plateau region where the rate is independent of the distance to the electrode. The reaction

in the plateau region is viewed as friction-controlled electron transfer, with the rate constant

inversely proportional to the medium relaxation time. Fitting the rates to established theories R
requires medium relaxation times far exceeding common estimates and relaxation times obtained

from computer simulations of the Stokes-shift dynamics. There is a significant disconnect between experimental observations
and theoretical expectations. This difficulty is resolved here by allowing additional dissipative dynamics consisting of protein’s
low-frequency oscillations in a soft harmonic potential describing binding of the protein to the substrate. Protein translational
motions modulate the electrode—protein electronic coupling, leading to a new time-scale appearing, along with the Stokes-shift
relaxation time, in the pre-exponential factor of the rate constant. The new model provides a consistent account of the
experimental data. The anticipated range of friction-controlled kinetics is significantly extended, since the effective relaxation
time entering the rate pre-exponential factor gains an exponential dependence on the mean-square displacement of the protein.
Since the mean-square displacement is proportional to temperature, the enthalpy of activation acquires a significant and
nontrivial temperature dependence. The possibility of a negative reaction enthalpy is predicted.

B INTRODUCTION

Transport of electrons through chains of redox molecules
(cofactors), usually immersed in the protein core, is
fundamental for production of biological energy." The protein
matrix acts as a catalyst; i.e, it lowers the activation barrier for
each elementary electron hop compared to the same reaction
in bulk water.” The free energy of activation (activation
barrier) is the reversible work to reorganize the medium to the
tunneling conﬁguration.3 The free energy of activation is, in
turn, affected by two free-energy parameters: the reaction free
energy (the difference in free energies between the products
and reactants) and the reorganization energy (also a free
energy). It is this latter free energy of medium reorganization
that is dramatically reduced by the protein compared to
solution to allow catalytic action.* The reaction free energy is
of lesser significance for electron transfer in biology compared
to many photoinduced electron-transfer reactions displaying
the inverted-region behavior.® In contrast, biological electron
transfer often occurs in the normal region, with a near-zero
reaction free energy." However, altering the free energy of a
reaction is important for mechanistic studies of electron
transfer,’ and electrochemistry offers this opportunity through
sweeping the electrode potential.” This control parameter
makes this experimental tool very attractive to access
mechanistic properties of protein electron transfer.*” An
additional advantage is the ability to directly probe redox
properties of the protein active site. This advantage comes in
contrast to designs involving an electron donor attached to the
surface of the protein.'® The reorganization energy of electron
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transfer in these donor—acceptor systems is dominated by the
non-native donor exposed to the water solvent."'

The probability of electron tunneling between the active site
of the protein and the electrode decays exponentially with the
distance.'” This information can be accessed by varying the
thickness of the self-assembled monolayer (SAM) placed on
the surface of the electrode.''* Such a setup was applied to
cytochrome and azurin metalloproteins at gold electrodes
covered by alkenethiolates and indeed produced the
anticipated exponential decay of the reaction rate with
increasing thickness of the SAM.">™" However, the
exponential falloff was observed only for sufficiently large
distances, while the reaction rate plotted as a function of the
SAM thickness was found to saturate to a plateau at shorter
protein—electrode separations."> "> The possibility of gating,
ie, control of the reaction by conformational changes/
reorientations at the surface of the monolayer,”® > was
dismissed by recent measurements involving proteins bound to
SAMs.'®'%%3 The current view favors the dynamic, friction-
controlled origin of the reaction’s crossover from an
exponential decay to a plateau region.

The dynamic (friction control) explanation for the observed
crossover invokes a general phenomenology of electron-
transfer reactions affected by the solvent dynamics.”* *®
Theories of the solvent effect on electron transfer predict
that, even for a nonadiabatic reaction with the donor—acceptor
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coupling V below kyT,”” the dynamics of barrier crossing

becomes affected by Kramers-type diffusion at the top of the
activation barrier” if the medium is sufficiently slow. To reach
this regime, the medium relaxation time has to exceed the time
of electron tunneling in the activated state. More precisely, the
condition of reaching the regime of dynamical control is
determined by the dynamic crossover parameter g. It is given
for an electrochemical reaction by the following relation (eq 37
in ref 31)

g =~ 8tk TA/(hA) (1)

Here, A = 71V,’p, is the coupling strength between the reactant
and the electrode. It is defined in terms of the electronic
coupling V, between the electronic state localized on the
reactant and the conduction electronic states in the metal.
Further, p, is the density of electronic conduction states at the
Fermi level,** and V,, refers to the coupling to the same Fermi-
level states. Note that the crossover parameter in eq 37 in ref
31 involves the factor of 4 when diffusional mass transport to
the electrode is considered. In contrast, a factor of 8 appears in
eq 1 for the crossover parameter in the case of the surface-
bound reactant.

In eq 1, A" is the effective “reaction” reorganization energy
discussed below, which is distinct from the Marcus definition®
and reflects nonergodic sampling of the configuration space
available to the protein on the reaction time." Finally, 7, is the
average Stokes-shift relaxation time® representing the decay of
the time correlation function of the energy-gap collective
reaction coordinate X(t) defined below. The crossover to the
solvent dynamical control occurs when g > 1, which requires a
sufficiently slow decay of dynamical correlations for the nuclear
medium modes coupled to the reaction coordinate X (large 7,
in eq 1).

A number of detailed experimental studies performed in
recent years have resulted in a consistent 1phenomenology for
the interfacial protein electron transfer.'”~"”**3% These results
can be summarized by the following key observations: (1)
There is a crossover in the distance dependence of the reaction
rate from an exponential decay at large protein—electrode
distances to a plateau at shorter distances. (2) The apparent
enthalpy of activation obtained from the Arrhenius plot
substantially increases in the plateau region.'®'**® The
activation enthalpy ~ A7/4 predicted by the Marcus theory®
is consistent with the independently measured reorganization
energy A at longer distances. (3) The volume of activation
changes its sign from negative at long distances to positive at
shorter distances, in parallel with an increase in the activation
enthalpy.'® (4) The rate constant correlates with the solvent
viscosity # at short distances as kgr o 7%, with 6 ~ 0.3—0.6.
Some correlation with viscosity is observed for essentially all
distances where measurements are possible, up to a tunneling
distance of ~24 A’° The power exponent § decays with
increasing tunneling distance and is essentially zero at the
tunneling distances exceeding 24 A. (5) The activation
enthalpy for short distances of electron transfer is strongly
affected by the strength of nonspecific hydrophobic attachment
of the protein to the SAM." Overall, interactions of proteins
with SAMs are weak and nonperturbative, preserving both the
structure of the monolayer and the redox potential of the
protein.”® The change of pressure implemented in ref 18 does
not substantially affect the viscosity of bulk water. The effect of
pressure on electron transfer cannot, therefore, be reduced to
changes in bulk viscosity and, instead, points to changes in the

protein/SAM relaxation. The mean-square displacement of the
bound protein, which becomes a key parameter of the theory
proposed here, can depend on pressure and lead to the
observable pressure effects.

The consensus reached on the basis of experimental studies
is that the crossover occurs in the pre-exponential factor of the
rate constant kgr given by the following general equation

ker = kya/(1 + g) ()

Here, the golden—rule36 rate constant ky, o« A decays
exponentially with the distance R between the reactant and
the electrode

A(R) x e R (3)

where the distance decay parameter y has a typical value'>'%%7

of y & 1 A7, The subscript “NA”, referring to nonadiabatic,
points to a narrower usage of this term often found in the
literature.®® In contrast to a more general definition of
nonadiabatic transitions, requiring A > kBT,29 the realm of
the golden rule is often viewed as the limit of nonadiabatic
transitions.

Since kya o A and g o A per eq 1, electronic coupling A
cancels out in the pre-exponential factor of the rate in eq 2
when g > 1. The reaction then crosses over to the friction
(dynamics) control of Kramers’ reaction kinetics™®

-1
kET X T,

)
In this regime, the exponential distance decay of the reaction
rate is eliminated and one anticipates a plateau in the rate’s
dependence on the distance R. For this short-distance plateau,
one has to additionally assume 7, « #° to achieve agreement
with the reported scaling of the rate with the solvent
viscosity.”*>> However, no connection between the Stokes-
shift relaxation time 7, and solvent viscosity has been
established either theoretically or experimentally. Therefore,
eq 4 is incapable of explaining the viscosity dependence of the
reaction rate. The theory presented below resolves this
difficulty.

While the concept of frictional control of the reaction rate
agrees qualitatively with the majority of the data, the direct
application of eqs 1 and 2 encounters significant difficulties.
The reorganization energy of half redox reaction was recently
calculated from simulations of cytochrome ¢ (Cyt-c). The value
of A" ~ 0.57 eV from simulations is in perfect agreement with
the analysis of cyclic voltammetry data.*®*® In parallel, the
relaxation time for the Stokes-shift dynamics was calculated as
7, ~ 300—900 ps in the temperature range 280—360 K. Even
though this dynamics is obviously much slower than the
longitudinal polarization dynamics with the relaxation time 7;,
~ 0.2 ps used as 7, for homogeneous reactions in water,”>*" it
is still too fast to allow the dynamic solvent control according
to eq 1. The electronic coupling parameter extracted from
fitting the measured rate turns out to be A ~ 107° eV for the
SAM thickness in the crossover region. If this value is
combined with 7, from simulations, g ~ 2 X 107* in eq 2
cannot produce the turnover to the friction-dominated regime.
An effective relaxation time of 7, ~ 188 ns was estimated to
allow the turnover.'”** The discrepancy between the typical
time-scales of Stokes-shift relaxation in proteins on the one
hand and the requirements to fit the experimental data on the
other hand points to a major disconnect between the basic
phenomenology reported experimentally and the theoretical
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framework used to justify the observations (eqs 1 and 2). The
equations offered to resolve this contradiction'”*® are not
applicable to the experimental configuration of an immobilized
protein, as we discuss in more detail below.

A new theory for the dynamical control of electrochemical
reaction rates presented here seeks to resolve the theory/
experiment disagreement in terms of an additional dynamic
process affecting the reaction rate. Oscillations of the protein
attached to the SAM-covered electrode via a soft harmonically
restraining potential are considered in addition to the standard
polarization dynamics entering established theories of
dynamical control of electron transfer.** >**° Diffusional
dynamics with the diffusion coefficient Dy modulates the
electronic coupling between the reactant and the electrode on
the characteristic length ™' (eq 3). One therefore anticipates
that, in addition to the Stokes-shift relaxation time 7,, the time-
scale related to the dynamics of R should affect the reaction
rate

7, = (y’Dp) (s)

The theory presented below indeed finds that this relaxation
time appears, under a specific separation of magnitudes of 7,
and 7, in the pre-exponential factor of the rate constant for the
friction-controlled reactions. In that regime, eq 4 changes to

kgp o<, (6)

The range of the friction-controlled regime for the reaction
is extended when soft binding of the protein to the electrode is
introduced. The reason is that the parameter A in eq 1 is
replaced with

A, exp[(37°/2)(5R*)] ?)

where A, refers to the equilibrium electrode—protein
separation and (SR?) is the variance of the protein displace-
ment in the soft harmonic attachment (we use a short-hand
notation, (SR*) = ((6R)*) and (6X*) = ((6X)?), for the
variances along the coordinates R and X, respectively).
Increasing (6R?), that is, allowing softer binding of the protein,
broadens the range of parameters (such as the distance to the
electrode) for which the friction-controlled reaction should be
observed. In addition, the mean-square displacement is
expected to scale linearly with temperature, (SR*) o T,
according to the fluctuation—dissipation theorem.* This
explicit temperature dependence adds a temperature-depend-
ent component*” to the activation free energy AF'(T), which
modifies both the entropy and enthalpy of activation.

B PHYSICAL MODEL

Models of electron-transfer reactions in solution consider
dynamics along two reaction coordinates bringing the system
to the top of the activation barrier: the solvent dynamics and
the intramolecular dynamics. Along these lines, the Sumi—
Marcus model,”® as well as the two-dimensional diffusion
model by Bicout and Szabo,*’ consider the progress of the
reacting system along two independent classical coordinates, X
for the solvent and Q for intramolecular vibrational motions.
Rescaling of these coordinates, X — x and Q — ¢, leads to a
simple linear condition for the line of the transition state: x + q
= Const. The reaction rate is given in terms of the reactive flux
across this line.

The situation is somewhat different for electrode reactions.
In addition to the polarization coordinate x and intramolecular

coordinates, the population dynamics along the distance to the
electrode R describes mass transport. For slow diffusion, the
current is dominated by the diffusional mass transport, while,
for slow electron transfer, it is dominated by the electrode
reaction. Even though diffusional dynamics does not bring the
system to the transition state, it nevertheless affects the time
decay of the electrode current in response to a step of the
electrode potential.

The model adopted here describes an electrochemical
experiment in which the reactant (redox protein) is
immobilized at the surface of the electrode and mass transport
does not need to be considered. The reactant is initially in the
oxidized (Ox) state, and it accepts the electron from the metal
electrode following a step change of the metal overpotential at
t=0

Ox + e = Red (8)

Our goal is to determine the time evolution of the surface
density I'(t) of the Ox state such that I'(0) = T,

The protein is typically bound to the interface either through
a surface linker'” or through a nonspecific hydrophobic
attachment.'” In both cases, one can consider binding as a
soft harmonic potential with the force constant x restraining
the protein around the equilibrium distance R,. For protein
electron transfer, the active site is often rigid and does not
allow a significant internal reorganization energy (estimated in
the range ~0.05—0.09 €V for Fe-porphins'*** and ~0.1 €V for
azurins™). In the case of Cyt-c, the analysis of NMR order
parameters for Ox and Red states has indicated a significant
rigidity of the protein projecting to a low value of the internal
reorganization energy.46 The rigid structure of the active site
also drives the Franck—Condon vibrational modes to the
quantum domain. This fact makes even small internal
reorganization energy irrelevant for the kinetics. Since most
protein redox reactions occur in the electron-transfer normal
region,” intramolecular reorganization of quantum vibrational
modes mostly does not affect the activation barrier of protein
electron transfer.”*” This is illustrated in Figure 1, which
shows that the vibrationally excited vibronic surfaces need to
be populated to allow activated transitions with lower
activation barriers. Since populations n, « v exp[—fhw,(v +
1/2)] of vibronic surfaces with vibrational quantum numbers v
> 0 tend to zero for quantum vibrations with fAw, > 1 (f =
(kgT)™" is the inverse temperature and , is the vibrational

/,” np <1

Figure 1. Free energy surfaces F(X) (i = Ox, Red) of protein electron
transfer along the solvent reaction coordinate X (eq 10). The lower
Ox surface indicates the vibrationally ground state v = 0, and the
upper Ox state indicates the first vibrationally excited state v = 1.
Since ny ~ 1 and n; < 1, the vibrationally excited states are not
populated for quantum vibrations phw, > 1 (B = (kT)7).
Therefore, only the crossing of the lower surfaces with v = 0
contributes substantially to the overall rate in the normal region of
electron transfer. The rate is determined by the sum over all vibronic
channels (indicated by filled circles) weighted with the corresponding
vibrational populations.
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frequency), there is essentially no contribution of the
vibrationally excited states to the reaction rate. The vibration-
ally excited states of the final (Red) electronic state produce
higher activation barriers and also do not contribute. This is
what distinguishes the electron-transfer normal region from the
inverted region, for which vibrational excitations of the final
electronic state (Red in Figure 1) lower the barrier.

The only effect of the quantum modes on the rate in the
normal region is to alter the coupling strength A’ to

A=Ae S5 )

Here, S = A,/Aw, is the Huang—Rhys factor** determined in
terms of the effective vibrational frequency @, and the
vibrational reorganization energy A,. An additional quantum
correction® S, = p./hw, appears from the adiabatic exclusion
of the electronic degrees of freedom of the solvent with the
characteristic excitation energy w,; f, is the chemical solvation
potential of the reactant by these fast degrees of freedom
contributing to the electronic polarization of the medium.
These quantum Franck—Condon corrections are assumed to
be incorporated in the electronic coupling strength A.

On the basis of these considerations, we do not need to
consider vibrations of the active site and can simplify the
model for barrier passage dynamics by assuming that a single
reaction coordinate is sufficient to reach the transition state.
This reaction coordinate represents thermal fluctuations of the
polarizable medium (protein and water) interacting with the
charges of the active site. The difference of these Coulomb
interactions in the Red and Ox states leads to the reaction
coordinate”**°

X= fg drsP-AE, w0
Here, 0P is the fluctuation of the polarization density out of
equilibrium and the integral is taken over the volume
occupied by the polarizable medium (protein excluding the
active site’’ and water). Further, AE, is the difference of the
electric fields of the protein’s active site in the final (Red) and
initial (Ox) states (including the image effects in the metal
electrode).

The variance of X defines the medium reorganization
energy>” 1 through the relation

0 = (3X’) = 2k, T2 (11)

This variance reorganization energy should not be confused
with the reaction reorganization energy” A as explained
below. One can further introduce the dimensionless
coordinates™ x = X/o, and z = SR/ 0, where 5R = R — R, and

op’ = (6R?) = (px)™! (12)

The resulting two-dimensional harmonic well is described by
the harmonic potential of x and z

La, 1,

PV(x, z) ~ + ~ (13)
The free-energy barrier for protein electron transfer is
distinct from the rules of the Marcus theory established for
homogeneous electron-transfer reactions in polar solvents. The
distinction comes from the fact that sampling of the
configuration space by proteins is nonequilibrium (non-
ergodic)*** and thus requires two separate reorganization
energies, A% and 4, for the location of the transition state. This
requirement is a special case of a general phenomenology of

violation of the fluctuation—dissipation relation> in systems
out of equilibrium,56 which also include glassy systems
incapable of complete sampling of their phase space.

The relevant parabolic free-energy surfaces along the
reaction coordinate X are illustrated in Figure 2 for a reaction

Red Fi(X) Ox

)\St X

Figure 2. Free energy surfaces F,(X) (i = Ox, Red) of protein electron
transfer along the reaction coordinate X (eq 10) reflecting the
modulation of the protein electronic states by fluctuations of the
medium (protein and water) polarization. The position of the
transition state is characterized by the Stokes-shift reorganization
energy A%, and the curvatures of the parabolas are given by variance
reorganization energies A (eq 11). The activation barrier is A'/4,
where the reaction reorganization energy A" is given by eq 15. The
configuration shown in the plot corresponds to zero electrode
overpotential in electrode reactions.

with zero reaction free energy (zero overpotential in
electrochemistry’). The separation between the parabolas’
minima Xo; is 2% = [Xo0x — Xoredl- Correspondingly, the
horizontal distance from the free-energy minimum to the
transition state along X is given by the Stokes-shift
reorganization energy A%, which carries an analogy to the
Stokes shift between absorption and emission maxima for
electronic transitions.>> A separate reorganization energy A
describes the variance of X or, in other words, the curvature of
the parabolas (eq 11). This reorganization energy can be
measured from inhomogeneous broadening of optical
transition lines.

The change of the perspective from the one dictated by the
statistical Gibbs ensemble to the picture of insufficient
(nonergodic) sampling does not affect the Marcus energy-
gap law, which is based solely on the Gaussian statistics of the
energy-gap fluctuations. One therefore obtains for the
activation barrier of an electrochemical reaction*?

A+ ep)’

41" (14)
where ¢ is the electrode overpotential” and e is the elementary
charge. However, the definition of the reaction reorganization
energy A" in terms of the energy-gap reaction coordinate X
changes from A = A% = 1" in the Gibbs statistics to*>®

ﬂrZ(ZSt)Z//'[ (15)

specific to nonergodic sampling. Only this parameter, and not
2% and /1 separately, can be reported by the electrochemical
experiment.’’ It is easy to see from Figure 2 that the activation
barrier at ¢ = 0 becomes

X2 3 (/'lSt)Z 3 /I_r
44 4 (16)

AF'

AF = =
44 o
Even though the two reorganization energies 4% and 4 are

not directly accessible by electrochemistry, the new definition

of the observable reorganization energy A" is important, since it
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explains 4 > A" typically produced by numerical atomistic
simulations and allows one to reconcile simulations with
experiment. For instance, the experimental value A" ~ 0.57 eV
for cytochrome ¢ comes from®” A% = 1.26 eV and 1 = 2.85 eV
used in eq 15. Equation 15 recovers the standard theory when
full sampling is achieved and ASt=1Ina general case, A<
is required by thermodynamics.”*

In terms of the scaled reaction coordinate x, the crossing of
the free energy surfaces occurs at

xo = JBA/2 + 17)

where ¢ = e@/o, is the scaled value of the electrode
overpotential. The transition state x; is achieved by diffusional,
overdamped dynamics reflecting the many-particle thermal
fluctuations of the medium polarization. Each trajectory along
the x coordinate is modified by overdamped diffusion along
the coordinate z modulating the tunneling probability (Figure
3). Concerted fluctuations of the medium, both bringing the

Figure 3. Illustration of the diffusional dynamics in (x, z) space
bringing the system to the transition state x, (shown schematically by
a single trajectory). The rate of tunneling in the transition state is
k(xo z) (eq 18). It exponentially decays with the scaled distance to
the electrode z = R/6y, 63> = (GR*) and is modulated by fluctuations
of the reactant’s position relative to the electrode. A soft harmonic
penalty is imposed on fluctuations along the z-coordinate.

reactant closer to the electrode and shifting its energy level into
resonance with one of the filled electronic states of the metal,
are those which provide the highest values of the electrode
current and thus dominate in the reaction rate.

With the replacement of the Fermi distribution of the metal
electrons with a step function, any x > x, corresponds to the
barrierless tunneling of the electron from the conduction band
to the oxidized state of the reactant. The rate of such
transitions is described by the Fermi golden rule as

k(x, z) = s(2)0(x — x,) (18)

where s(z) = 2A(z)/h and O(x) is a Heaviside step function.
The functionality for the tunneling rate adopted here
assumes that translation, modulating the tunneling distance,
is the main nuclear mode responsible for protein mobility at
the surface of the SAM. For proteins immobilized through
electrostatic binding, protein rotations become an additional
source of thermal noise affecting tunneling.*® The formalism
presented below can potentially apply to these scenarios
provided the functional form for the dependence of electronic
coupling on the angle of rotation is available and these motions
can be projected on harmonic fluctuations of the distance R to
the electrode. In the absence of this functionality, we turn to
the mathematical formulation of the present physical model in
terms of a two-dimensional stochastic (Fokker—Planck)
equation with the population sink specified by eq 18.

B THEORY

The overall dynamics of the reactant density n(x, z, t) is
determined by diffusion along the coordinates x and z and the
sink of the reactant population given through k(x, z).”*° The
diffusional dynamics is described by the corresponding
Fokker—Planck equation, which for our purposes is more
convenient to write in the Hamiltonian form

on = —[H + k]a (19)

Here, 7i(x, z) is scaled from the original density by the square-
root of the equilibrium distribution function

i(x, z, t) = n(x, z, t) exp[fV(x, 2)/2] (20)

The Hamiltonian function in eq 19 is easily derived from the
Fokker—Planck equation for diffusion in a two-dimensional
quadratic potential®® and is given by the following relation

H=H, +H, ()
where
2
H __la_z_y_+l
y Yy 2
dy 4 2 (22)

and y = x, z. The relaxation time 7, represents Stokes-shift
dynamics along the reaction coordinate X (eq 10), and 7, = 7
= (O6R?)/Dy is the characteristic diffusion time. We now
proceed to solving eq 19 by applying the Sumi—Marcus
formalism,”® which involves an approximate decoupling of
certain dynamic correlations in the Green function for the time
evolution of 7(x, z, t).

Dynamic Equation. We adopt the notations by Sumi and
Marcus™ casting the solution of the dynamic evolution
equation in terms of bra and ket vectors. Specifically, we will
introduce the equilibrium state

(x, 2le) = [T,/ (27)]"/* exp[—pV (x, z)/2] (23)

where I'; is the equilibrium surface density of the Ox form at
the electrode (number of particles per unit area). The
normalization of the inner product is obviously

(ele) =T} (24)

Assuming that the surface density of the reactant is at
equilibrium at t = 0, the evolution of the system described by
the ket vector [i(t)) is given by the equation

ola(t)) = —(H + k)la(t)) (25)
The ket [7(t)) is defined as
(x, 2 (t)) = /Ty *a(x, z, t) (26)

This definition results in the initial condition [1(0)) = le) if
equilibrium is assumed at ¢ = O:

n(x, z, 0) = I/ (2m) exp[—pV (x, 2)] (27)

One also obtains the time-dependent surface density ['(¢) by
taking the bra-ket

(elii(t)) = T'(t) (28)

By performing the Laplace transform, one gets the equation
for Laplace-transformed state [7i(s))

17(s)) = G(s)le) (29)

where
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G(G)=[s+H+ k™" (30)

is the Green function (resolvent of the operator H + k). The
Laplace transform of the dynamic surface density I'(t) of the
Ox state is the matrix element of the Green function taken with
the equilibrium state

I'(s) = (elG(s)le) (31)

Correspondingly, the electrode current per unit area is
obtained by taking the time derivative of the surface density,
j(t) = —edI’(t)/dt (—e is the electron charge). The transient
current density can be Laplace-transformed to yield

j(s) = —efelsG(s) — 1le) (32)

One can further use the property of the equilibrium states to
produce zero eigenvalues, Hle) = 0 and (elH = 0, to rewrite the
above equation as

j(s) = e{elkG(s)le) (33)

Equation 33 is formally exact but cannot be calculated for
the sink function given by eq 18. In order to come up with a
closed-form solution, we emplogf’ the decoupling anzatz
introduced by Sumi and Marcus.™ It starts with the exact
Dyson equation

G(s) = Go(s) — Go(s)kG(s) (34)

in which Go(s) = (s + H)™" is the Green function unperturbed
by the sink k. It describes diffusional dynamics of the system
on the two-dimensional harmonic potential. The decoupling of
dynamic correlations in the Sumi—Marcus anzatz consists of
projecting out the coupled dynamics of G, and G on the
equilibrium manifold* (also see ref 61)

Go(s)kG(s) = (kY Gy(s)kle)(elkG(s) (35)
Here
(k) = (elkle) (36)

is the average rate of the population decay assuming an
equilibrium distribution of the reactant configurations
unperturbed by the reaction dynamics (transition-state
theory).

From the decoupling approximation, one immediately
obtains a closed-form solution for the Laplace-transformed
electrode current density®’

j(s) = e(k)[s + sa(s)]™" (37)
where
a(s) = (k) (elkGo(s)kle) (38)

The solution for the dynamics of the electrode current is
reduced to the calculation of a(s).

Electrode Reaction Rate. The main property required for
the calculation of the electrode current and the electrochemical
reaction rate is the function a(s) in eqs 37 and 38. It is the
Laplace transform of the corresponding time-dependent
function

A(t) = (kY Yelke ™Kle) (39)

The time evolution operator in this equation can be
represented by the following bra-ket

P(x; z, t; x/} z/} 0) = (x; Z|e_Ht|x/J Z/> (40)

which is the well-established propagator of the Ornstein—
Uhlenbeck process® describing two-dimensional diffusional
dynamics in the harmonic potential V(x, z) given by eq 13.
The integrals involved in eq 39 are calculated in the
Supporting Information. Here we focus on the results of
these calculations leading to closed-form solutions for the
electrode current and the rate constant of electron transfer.

We start with the equilibrium rate of the electrode reaction
(k), which is given by the relation

(k) = Tokna (41)

Here, the golden-rule rate of electrode electron transfer is

ks = —<A> erfc 7” +ep
NA = —

where erfc(x) is the complementary error function.”> The
value of the electronic coupling is averaged over the fluctuation
of the protein—electrode distance, which enhances the
coupling from the equilibrium value A, to the effective
coupling“’G3

INEVNCARE (43)

Since (SR*) o« T according to the fluctuation—dissipation
theorem,"' soft thermally induced oscillations of the reactant—
electrode distance produce temperature-dependent contribu-
tions to the enthalpy and entropy of activation.*

The time-dependent Ornstein—Uhlenbeck propagator enter-
ing eqs 39 and 40 depends on two relaxation times, 7, and 7,.
This dynamical complexity ensures the complexity of the
medium dynamical effect on the rate constant. At large
activation barriers, x,> >> 1, one can nevertheless arrive at the
exponential decay for the electrode current in response to a
step of overpotential at t = 0.°* As is shown in the Supporting
Information, the solution is given by the equation®'

j(t) = erokETe_kETt (44)

The rate of population decay kgr is given by eq 2 with ky,
from eq 42 and a new definition of the dynamic crossover
parameter g

(4)

&= eff? (45)
with
Teff = 21y672<5R2>h(Tx, Ty) (46)

Here, 7, is the characteristic time for translational diffusion
over the length of tunneling decay y~' introduced above (eq
S). This is a new time-scale, which does not appear in the
standard formulations of the dynamic effect on electron-
transfer kinetics. The appearance of this time-scale is a
principal result of this study incorporating protein oscillations
modulating the tunneling probability.

The function of two relaxation times h(z,, 7,) < 1 in eq 46
has the following analytical form

X0

R xoz + 4Tx/Ty (47)

Depending on relaxation times and the harmonic force
constants along the two reaction coordinates, it switches
between two dynamical regimes. In the limit x,* > 47,/ 7, one

Wz, 7,)=1-
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can take a series expansion of the square root in the
denominator in eq 47. The effective relaxation time becomes

T = 7T, 8ksT o (%)

A (48)

Combining this equation with eq 45, one arrives at eq 1 in
which A is replaced with (A)e”z<§Rz>, where (A) is given by eq
43

_ 87ksTA, e(3yz/2)(6R2)

E= (49)

Note that accounting for oscillations of the protein relative to
the electrode multiplies g in eq 1 with a large factor of
exp[(37%/2)(SR?)]. This alteration of the dynamic crossover
parameter significantly widens the range of friction-controlled
electrode kinetics. Obviously, the previous result’ in eq 1 is
restored when (SR?) — 0.

In the opposite limit x,* < 47,/ 7,, one can drop the second
term in eq 47 and put h(z, 7,) & 1. More precisely, for
electrode electron transfer from Cyt-c discussed in more detail
below, molecular dynamics simulations have found®” 7,(300
K) = 750 ps and A* =~ 0.57 eV. In addition, the diffusion
coefficient of Cyt-c in the bulk is*® Dy =~ 8 X 1077 cm?® s™\.
With these estimates and y ~ 1.1 A™.'S one obtains the
following values: 7, =~ 100 ps, 47,/7, ~ 28, and xy” =~ 11. Taken
together, these estimates applied to eqs 46 and 47 lead to

Ty Tyeyz<5RZ) (50)

As mentioned above, soft harmonic modulation of the
distance between the protein’s active site and the electrode can
be achieved by combined translations and rotations of the
protein projected on the z-coordinate (Figure 3). Reorienta-
tions of the protein electrostatically bound to the SAM were
found to occur on a millisecond time-scale.”” Therefore, 7,
might be affected by combined rotational—translational
dynamics. Keeping in mind that parameters entering eq 45
effectively reflect these dynamic complexities, we discuss below
electrochemical kinetic data'” for Cyt-c bound to the SAM by
coordination interactions, when protein translations likely
dominate. Many potential uncertainties in this analysis have
been resolved by our recent molecular dynamics simulations of
Cyt-c reporting the reorganization energy of the half reaction
and the Stokes-shift relaxation time 7, at a number of
temperatures.”’

Complex Dynamics. The variables x(t) and z(t) described
by Ornstein—Uhlenbeck diffusional dynamics are stationary,
Gaussian, Markovian stochastic processes characterized by
single-exponential time correlation functions with the
relaxation times 7, and 7, respectively. The dynamics of the
reaction coordinates can be multiexponential or stretched
exponential. Accounting for this complication requires an
extension to non-Markovian stochastic processes involvin
memory functions in the corresponding Langevin equations.*
The Langevin equation propagating the stationary, Gaussian,
non-Markovian stochastic process can be transformed into the
Fokker—Planck equation for the population dynamics, which
gains a time-dependent diffusion coefficient.”>~® For instance,
if one assumes non-Markovian dynamics along the coordinate
z, eq 22 is generalized to®®

2 2
=05 -S4 2
z 0z 4 2 (s1)
where
d
£) = ——Iny (t
n,(t) " ny, (t) (s2)

is given in terms of the time autocorrelation function y,(t) =
(2(£)z(0)). For a Gaussian stochastic variable, the propagator
along the coordinate z is fully defined®>%”**7" j

in terms of y,(t)
-0
2(1 -y, (t)?) (53)

No higher-order time correlation functions are needed to
characterize the dynamics.

The long-time Stokes-shift dynamics is typically exponential,
as was found in simulations of Cyt-c.*” Therefore, only the
dynamics along the z-coordinate potentially requires involve-
ment of memory effects in order to account for experimental
power-law scaling of the reaction rate with the solvent
viscosity.”>*> As we show in the Supporting Information, the
time-domain function A(t) = A(0)F(t) in eq 39 can be given
by the product of

2(A) o)
h

(zle™™2') exp[

A(0) = (s4)
and F(t) = F.(t)F,(t) such that F(0) = 1. The function F,(t) is
given by eq S20 in the Supporting Information and does not
require modification from the single-exponential, Markovian
case. For the function F,(t), the application of the non-
Markovian propagator in eq 53 results in

E(t) = exp[y*(SR*)(x,(t) — 1)] (55)

The problem of calculating the electrode current is, therefore,
reduced to computing the Laplace transform of A(t) and
inverting the Laplace transform of the current in eq 37 to
obtain the response to the potential step of the electrode (eq
44).

This procedure leads to a closed-form expression presented
in the previous section for the exponential form of y,(t) but
cannot be accomplished for an arbitrary time correlation
function. A separate closed-form solution is, however, possible
for the stretched dynamics

1, () = exp[—(t/.)°] (56)

with the stretching exponent 6 = 1/2. This type of stretched
dynamics in fact provides a fair account of the conformational
dynamics Erojected on the distance between sites in the
protein.”'~”* The main question addressed here is whether the
non-Markovian dynamics of the reaction coordinate is
projected onto the power-law dependence of the rate on the
solvent viscosity. We find that there is no fundamental reason
to anticipate this connection. Two limits, 7.5 & 7, and 7. & 7,,
found for the Markovian dynamics, apply to the non-
Markovian dynamics with § = 1/2 as well. However, there is
a range of parameters for which the power-law dependence on
the solvent viscosity can be a reasonable empirical
representation of the data.

We show in the Supporting Information that, when F,(t)
with the correlation function from eq 56 and § = 1/2 is used to
calculate the current j(t) (eq 44), one obtains the rate given by
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eqs 2 and 45 with the effective relaxation time modified from
eq 48 to the following relation

R
Toff = Ty /,{r € f(ﬂ) (57)
with
2| 2a 2\ /4
a)=—|— -2+ (2 —a’)e erfc(a/2
o = 2| @ aar)|
and
(R I3
%o Y (59)

When the dynamics along the z-coordinate can be neglected,
one has a = 0 and f(a) — 1, thus recovering eq 48. On the
other hand, when a >> 1, one gets the asymptote f(a) ~ 4/a*
and 7,4 « 7, recovering eq 50. However, in the range of
intermediate values of a, f(a) is well approximated by the

equation (Figure S1 in the Supporting Information)
fla) = (1+ a2y (60)
and one obtains at a > 1

2 2

7(oR >Tx1/4773/4 (61)
In this range of parameters, a measurement altering Ty such as
by changing the solvent viscosity, will report a power-law
dependence on the parameters affecting the relaxation time.
However, this calculation strongly suggests that there is no
fundamental significance in the power-law dependence of the
rate constant on viscosity. Such a mathematical analysis of the
data provides a fair representation, in a limited range of
parameters,74 of a more complex functionality, such as that
given by the function f(a) in eq S8. In other words, the fact
that f(a) decays with viscosity # slower than o 77! does not
grant fundamental importance to the power law o 7.

Toff X €

B RESULTS

The dependence on the protein—electrode electronic coupling
A disappears from the rate pre-exponential factor in the limit
of friction control (g > 1) when one gets

_ -1
kpp = 74 erfc

4 kg T (62)

This equation can be directly applied to experimental kinetic
data for the reduction of Cyt-c attached to the mixed pyridine-
terminated alkenthiol PyC,/C,_, coating the silver electrode.'”
These kinetic results belong to the plateau region in the
dependence of the rate on the SAM thickness. The charge-
transfer distance for these SAMs is given in terms of the
number 7 of methylene groups by the following relation:** R =~
1.9 + 1.12n A.

The experimental electron-transfer rates measured'’” by
time-resolved surface-enhanced Raman spectroelectrochemis-
try’” (TR-SERR) are presented by the points in Figure 4. The
fact that the rate shows a dependence on the electrode
overpotential ¢, as expected from standard models of electron
transfer,” is strong evidence® against the gating mechanism in
which a conformational transition of the protein is the rate-
limiting step.”’ Indeed, a good fit of the experimental data to

5FT T .
—~ 41 o Exp. ]
KPS a2 Fit .
~ 3r J
[3e]
IO 2F 4
x'LE i e l
x Obe------ P . d
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Figure 4. Experimental (Exp.) data for the reduction of Cyt-c'” on
PyC4/Cs SAM coating silver electrode (points), T = 298 K. Shown is
the dependence of the electron-transfer rate constant on the electrode
overpotential @. The dashed line is the fit to eq 62 with 7.4 ~ 0.45 ms
considered as the fitting parameter. The reaction reorganization
energy (eq 15), A°(T) = 0.698 — 4.59 X 107*T (K), is from molecular
dynamics simulations,”” and y = 1.12 A" is adopted to describe the
distance falloff of the electronic coupling (eq 3).

eq 62 is possible with 7. as the single fitting parameter and A*
taken from molecular dynamics simulations.”” While the
quality of the fit is encouraging, the resulting relaxation time
Ty = 4.5 X 107 s is much higher than 7. ~ 188 ns estimated
previously’® and ~370 ns obtained from our analysis of
electrochemical data below. The reasons for the discrepancy
between the TR-SERR data and electrochemical kinetics are
not entirely clear.'”*®

Figure 5 shows electrochemical rate constants at T = 298 K
reported for PyC,/C,_; (n = 6, 11, 12, 16) coating gold

ST LA .‘ L) Exp
10° Ll Fit =
X
~ 2 A
107 AN
< )
10" : o

8 12 _ 16 20

o

R(A)

Figure 5. Experimental (Exp.) data for reduction of Cyt-c'” on PyC,/
C,_1 SAM (n = 6, 11, 12, 16) coating the gold electrode (points), T =
298 K. The dashed line is the fit to eq 63 with 7.4~ 0.37 ps. The rest
of the parameters are as in Figure 4.

electrodes (points).'” The dashed line is the fit to the following

equation combining eqs 2, 42, and 45

_ (A)/h
1+ 74(A)/R

A+ en
c
4 kg T (63)

Fitting the experimental points requires 7.4 ~ 0.37 us and
(A(n=11)) = 8.5 x 107 eV. The fit is done with the fixed y =
1.12 A~* while varying 7,5 and Ag in (A(R)) = Ay exp[—yR] as
two fitting parameters. As above, the reorganization energy is
fixed at the value A" ~ 0.57 eV from molecular dynamics
simulations.®” If 7, = 107" s estimated above is used in eq 45,
the fitted value of 7. requires the root-mean-square displace-
ment (rmsd) of the protein relative to the SAM equal to R,
~ 2.6 A

Observations consistently show an increase of the
apparent activation enthalpy for the standard rate constant ky =
kgr(@ = 0) in the friction-controlled domain compared to the
standard prediction of the Marcus theory, AH' =~ A7/4. The
increase was attributed to the contribution of the activation
energy of the medium relaxation time to the Arrhenius slope.
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By applying eq S0, one obtains for the standard rate constant at
PA" > 1 in the friction-controlled region

ko Lt R4

7, AP (64)

If an Arrhenius temperature law is assumed for the relaxation
time 7, = 7, exp[fE,], one obtains the apparent activation

enthalpy
AH' = 17/4 + E, — k;Ty*(6R%) (65)

where the temperature dependences of E; and A" are neglected
and (SR*) = (k)™ (eq 12) was used. Note that 1" was found
to be weakly dependent on temperature in molecular dynamics
simulations of Cyt-c.”’

Along the same lines, one obtains an enhancement of the
apparent activation enthalpy in the regime of the exponential
decay of the rate

AH{, = /4 + kyTy*(6R?) /2 (66)

The activation enthalpy must always be positive in this regime
of the reaction. The second term in this equation is obviously
the activation entropy*

AS{/ky = Y(SR?) /2 (67)

The appearance of E in eq 65 accounts for an increase of the
activation enthalpy in the friction-controlled regime observed
experimentally.'®"”>**° The last term in eq 65 is reducing this
effect, and it is not negligible: according to the fit of the
experimental data in Figure $, it contributes ~9ksT to AH'.
Since this term grows with increasing temperature, eq 65
anticipates a possibility of a curved Arrhenius plot. A negative
apparent activation enthalpy, producing an anti-Arrhenius
slope,”> can potentially be reached at sufficiently high
temperatures.

B DISCUSSION

The present model combines stochastic Kramers’ dynamics
along the reaction coordinate X describing the medium
polarization®**° with the diffusive translational dynamics of
the protein in a soft harmonic potential binding it to the
electrode. Fluctuations of the protein position modulate the
protein—electrode electronic coupling and lead to the
appearance of a new characteristic time-scale 7, (eq S) not
present in the traditional models of the solvent dynamic effect
on electron transfer.”* >®

Two major outcomes follow from applying the Sumi—
Marcus anzatz> to calculate the electrode current in response
to a step in the electrode potential. First, the relaxation time
along the R-coordinate enters the rate pre-exponential factor:
7, replaces 7, appearing in the traditional theories of the
dynamic solvent effect.”* > Second, the effective relaxation
time in eqs 45 and 48 is multiplied by exp[y*(SR?)], thus
making 7. significantly higher than the relaxation times of the
nuclear fluctuations affecting the barrier passage. This factor
comes on the top of a purely statistical result (A) = A,
exp[(2/2)(SR?)] effectively enhancing the electronic coupling
from its equilibrium value A, through protein’s translational
motions. The overall result is a significant enhancement of the
crossover parameter g in eq 49 compared to eq 1, where the
distance to the electrode was fixed. A low effective relaxation
time required to fit the data was the main source of
disagreement between the traditional theory and observations,
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which is resolved in the present formalism. The range of
frictional control of the reaction rate is substantially extended
compared to traditional models of the solvent dynamical effect
on electron transfer.

The analysis of the experimental turnover of the reaction
rate with the distance from the electrode (Figure S) shows that
the long relaxation time 7. required to fit eq 63 can be well
accommodated if loose binding to the electrode, with rmsd
~2—3 A, is allowed. Separate studies are required to establish if
this estimate describes the experimental conditions. Compar-
ison with molecular dynamics simulations®” shows that 7. is
much longer than the effective time-scale of Stokes-shift
dynamics 7, ~ 300—900 ps.

Competition between 7, and 7, time-scales in the rate pre-
exponential factor (function h(z,, 7,) in eq 46) is a result of
their close magnitudes: 7, ~ 100 ps in our estimates. This
situation is very different from the relaxation time-scales
~0.01-0.1 s reported in ref 76. These relaxation times
represent the dynamics of single-molecule fluorescence
lifetimes of photoexcited flavin adenine dinucleotide quenched
through electron transfer from a nearby tyrosine electron
donor in flavin reductase. The mathematical model applied to
describe this problem assumed modulation of the exponen-
tially decayin% tunneling probability by slow donor—acceptor
vibrations.”*™"® Their formulation overlaps with the present
agenda considering fluctuations of the protein—electrode
distance (the electrode is the donor, and Cyt-c is the acceptor).

If the model of harmonic donor—acceptor fluctuations with
the memory friction, similar to the one considered here, is
adopted,”” the long time-scales reported in ref 76 require an
unreasonably high friction of the protein:”> the friction
coeflicient from ref 78 is { ~ 20 g/s, while more recent direct
measurements of the same property have produced’ ¢ =~ 4 x
1072 g/s. This effective friction is likely to represent population
dynamics of the enzyme switchin_%, by overcoming barriers,
between active and inactive states’"°°** and not necessarily
the single-well non-Markovian diffusional dynamics of the
variable R(t). In our calculations focused on the response
current, a much slower relaxation time disappears from the rate
and kgr « 7,7' when 7, > 7,. An additional substantial
distinction between the present model and intraprotein
distance dynamics studied in ref 76 should be mentioned:
the rmsd of the donor—acceptor distance was’® ~0.5 A in their
case, while a much softer binding of the protein to the SAM,
with the rmsd equal to ~2.6 A, is obtained here from fitting the
kinetic data in Figure S. This large rmsd can be a combined
effect of the heterogeneous morphology of the SAM, altering
the protein—electrode distance, and of the actual protein—
SAM binding (electron tunneling rmsd of ~1 A was measured
for an osmium complex covalently tethered to alkanethiol
SAMs of different length®*). The heterogeneous component of
rmsd does not show up in single-molecule measurements, in
contrast to the electrochemical setup.

To complete the discussion, we comment on alternative
equations used for the analysis of experiment.'”** The rate
constant kgp derived here describes the decay of the surface
population T'(t) and is therefore expressed in the units of
inverse time. Zusman® suggested to transform this fixed-
distance rate constant to the rate constant k,; commonly
reported for electrode reactions involving mass transport,
which has the units of length per time.” The transformation is
achieved by integrating kyr(R) with the assumed uniform bulk
distribution of the reactant: p(R) = p,0(R — R,), where p, is
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the bulk concentration. The electrochemical rate constant is

then defined as

oy = dRO(R)Kr(R) )

The result of integration in eq 68 with kg (R) from eq 63 is
kg = (rg,) ' kna(Ro) In[1 + g ] (69)

where g, = g(Ry) in eq 1 and kys(Ry) is the golden-rule
reaction rate in eq 42. This result, assuming a uniform
distribution of reactants in solution, does not apply to
experiments with reactants attached to the electrode and
thus distributed with the one-particle density p(R) o (S(R —
R.)), where the average is over the statistical distribution of R.
It turns out that eq 69 does not apply either when diffusive
mass transport of the reactants to the electrode is allowed.
When mass transport is combined®’ with the Kramers
diffusional dynamics in the Sumi—Marcus algorithm, simple
volume integration does not appear in the solution. The
dynamics of mass transport, and not the reaction dynamics,
dominates in the electrode current except for the distances
closest to the electrode. The solution given by eq 69 does not,
therefore, appear in any problem of practical significance.

B CONCLUDING REMARKS

Significant disagreement between experimental data for protein
electrochemistry and theoretical formalisms developed for
reactions in solution became apparent when computer
simulations allowed for better constraining of the theory
parameters and reducing the flexibility of fitting the data. A
theoretical formalism and the analysis of experimental data
presented here resolve the theory—experiment disconnect by
introducing a new dissipative mode affecting the rate:
overdamped oscillations of the protein in a soft harmonic
potential binding it to the electrode.

Translational dynamics of the protein modulating the
electron tunneling probability has been added to the well-
established Kramers-type diffusional dynamics of the medium
polarization. Protein’s mobility affects the reaction rate by
significantly extending the range of friction-controlled
electrode kinetics. The new model predicts a nontrivial
temperature dependence of the activation enthalpy (eq 65):
it can become negative at sufficiently high temperatures,
producing an anti-Arrhenius slope when the reaction rate is
plotted in the Arrhenius plot vs the inverted temperature.

The principle of weak (transient) binding, allowing protein’s
release after the reaction, is also realized in biological energy
chains, where small redox-active proteins shuttle electrons to
larger membrane-bound protein complexes. The physical
mechanisms considered here are, therefore, not limited to
conditions of electrode reactions. The present theory is
maintained for charge transfer between the donor and acceptor
connected by a flexible linker or by a binding interaction
energy. It predicts that charge transfer will be friction-
controlled in a range of donor—acceptor distances and solvent
relaxation times significantly extended for flexible complexes
compared to the rigid ones.

Similar arguments may apply to intraprotein electron
transfer between the donor and acceptor cofactors within a
large protein complex (such as reaction centers of photosyn-
thesis) and, potentially, to hopping charge conductivity in
proteins.*® In all of these cases, fluctuations of the distance

between the donor and acceptor sites (hopping sites for
conductivity), induced by protein viscoelastic motions, will
extend the range of friction-controlled electron transfer. This
mechanism will prevent, within a certain range of distances, the
exponential distance falloff of the charge hopping rate in
complete analogy with the picture shown in Figure S.
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