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ABSTRACT: The dipolar susceptibility of interfacial water and the corresponding interface A\
dielectric constant were calculated from numerical molecular dynamics simulations for neutral 4

and charged states of buckminsterfullerene Cg,. Dielectric constants in the range 10—22,
depending on temperature and solute charge, were found. These values are consistent with
recent reports for biological and nanometer-scale interfaces. The hydration water undergoes a ) = 3

- Eint
*»

oL~

structural crossover as a function of the surface charge of the charged fullerene. Its main q

signatures include the release of dangling O—H bonds pointing toward the solute and the change

in the preferential orientations of hydration water from those characterizing hydrophobic to charged substrates. The interface
dielectric constant marks the structural transition with a spike showing a Curie-type phenomenology. The computational
formalism adopted here provides direct access to interface susceptibility from configurations produced by computer simulations.
The required property is the cross-correlation between the radial projection of the dipole moment of the solvation shell with the

electrostatic potential of the solvent inside the solute.

Bl INTRODUCTION

The dipolar susceptibility of a bulk material y is measured by
the dielectric experiment in terms of the electrostatic free
energy stored in a plane capacitor. The susceptibility defines
the bulk dielectric constant' € = 1 + 47y. Whether this material
property can be applied to interfaces of molecular or
mesoscopic dimensions has long been a subject of con-
tention.”* It has long been suggested that an effective
dielectric constant of a microscopic interface has to be
introduced, and most researchers have agreed that this effective
dielectric constant has to be reduced from the bulk value.”~"’
The extent of reduction has mostly remained unknown.
Following earlier indications,”"® direct measurements have
been recently reported for the dielectric constant of water in
contact with a graphite substrate as a function of the water film
thickness.” The dielectric constant in the direction perpendic-
ular to the graphite plane was found to be as low as ~2 within
the layer of water 7 A in thickness. Specifying the projection
of the dielectric constant is important for interfacial polar-
ization since the scalar dielectric constant of the bulk
transforms into a two-component tensor characterizing the
dipolar response perpendicular, €, and parallel, ¢, to the
substrate plane.zo_24 Ref 8, therefore, reports €, ~ 2 for water
in contact with graphite. A somewhat higher value, €, ~ 3.8,
was suggested for water in contact with the negatively charged
mica surface,'® whereas €, ~ 2 was suggested for the water—air
interface.’

In this study, we have addressed the problem of the
interfacial dipolar response for the interface formed between
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buckminsterfullerenes C%, and SPC/E water.>* Here, z denotes
the total charge of the fullerene, which, in practical
applications, can be altered by electrochemistry.”® We apply
molecular dynamics (MD) simulations to study the effects of
solute’s charge (—4 < z < 1) and water’s temperature (240 <
T < 360 K) on the interface susceptibility. The linear dipolar
susceptibility of the interface is used to define the interface
dielectric constant €;,, which is a property characterizing the
interface and distinct from the bulk dielectric constant € (e ~
71 for SPC/E water at 300 K*7). We find that €, ~ 1022 is
not significantly affected by temperature but is much more
strongly affected by the solute charge. The interface
susceptibility as a function of charge z passes through a spike
marking a structural crossover of the hydration shell.

B INTERFACE SUSCEPTIBILITY

The dielectric constant of a bulk dielectric is a material
property, independent of sample’s shape, because of the
locality of the Maxwell field E. The Maxwell field is defined as
an ensemble average of the microscopic field E,, followed by a
coarse-graining protocol averaging out molecular-scale oscil-
lations of the microscopic field.”® The postulated locality of the
Maxwell field allows one to relate it to the local polarization
density P through the scalar susceptibility, P = yE.
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Despite this widely adopted reasoning, E itself is never
accessible experimentally and only the line integral A¢) = / E-dl
connects the Maxwell field to experimentally accessible voltage
difference A¢p between the end points.”” Dielectric experi-
ments take advantage of the fact that E, is uniform in a plane
capacitor and find the z-projection of the Maxwell field E, =
A¢/d in terms of the separation d between the plates (z-axis is
perpendicular to capacitor’s plates).

The Maxwell field must be nonuniform in the interface, and
by that fact, it becomes a property not accessible to
measurements. Also, locality of an inhomogeneous Maxwell
field has never been established. The fundamental difficulty of
measuring local fields in nonuniformly polarized dielectrics has
long been recognized.*® The only known resolution is to either
measure the field produced by a polarized dielectric in
vacuum® or to measure fields inside small cavities carved
within the dielectric.’®*' The second strategy is realized in
experiments recording solvent-induced shifts of optical lines
giving access to local cavity fields.”> Using absorption spectra
to gauge the interface polarity often leads to dielectric
constants lower than the bulk. For instance, € ~ 15 was
reported for the cytoplasm of eukaryotic cells, whereas € ~ 65
was found for the cell nucleus® (¢ ~ 78 in the bulk). The
lower effective dielectric constants are attributed to the
prevalence of interfacial water in the crowded cellular medium.
This independent measure of local polarity, pointing to a
reduced dielectric response of the interface, is in agreement
with more direct measurements mentioned above. Likewise,
the dielectric constant of SPC/E water is reduced in
confinement:**** ¢ is about half of its bulk value in a spherical
cavity with the diameter of ~12 A.** The latter value does not,
however, recognize anisotropy of the interfacial dipolar
response, which is an essential part of our formalism.

The locality of polar response disappears for interfaces,
which cannot be characterized by a well-defined scalar
susceptibility. In fact, the locality of the response is gone
even in the bulk at microscopic length-scales, when the bulk
dielectric susceptibility y is converted to a nonlocal 2-rank
tensor response function y (r — r’). It reduces to longitudinal
and transverse dielectric projections y*T(k) depending on the
scalar wave vector k in reciprocal space.**™>’ For inhomoge-
neous polarization encountered in solvation and interfaces, the
polar susceptibility, x(k;, k,), loses its isotropic symmetry and
becomes a function of two wave vectors.*>*'

A complete microscopic solution for the interface polar-
ization is clearly complex and is only remotely related to
dielectric properties of the bulk. One still wonders if a coarse-
grained description in terms of an effective susceptibility of the
interface can be formulated. It is clear that any such definition
will not be unique and is likely to apply to a set of problems for
which the response of the interface is well defined. Our focus is
on interface polarization in terms of the field it produces within
a cavity®”*" in response to a probe charge. Since the Coulomb
law applies also to microscopic fields, this goal can be achieved
by a proper reformulation of the boundary-value problem. The
interface susceptibility giving access to the field inside a void is
not necessarily transferrable to other electrostatic problems
and, specifically, to another well-established problem where
dielectric constant is prominent: the screening of ions in
solution.

It is easy to realize that a length-scale is involved in dielectric
screening: the potential of mean force between ions is an
oscillatory function of the distance at molecular scale,**~*

obviously not reducible to a single screening parameter.
Likewise, the average polarization density in the interface
induced by a spherical ion (P,) = (t-P) (t = r/r is the radial
unit vector) is an oscillatory function of the radial distance r as
found in simulations by Ballenegger and Hansen®' and in a
number of follow-up simulation studies of spherical and planar
interfaces.>****** There is obviously a length-scale specific to
the problem and dictated by the microscopic structure of the
interface. For instance, the scale of interfacial oscillations of the
dipolar susceptibility is ~10 A into the bulk, as follows from
our present simulations. The oscillations of interface polar-
ization imply that the definition of a scalar parameter of
interfacial polarity based solely on P(r) is not possible.

The polarization of the interface P(r) is not directly
accessible experimentally and is not even required if the
focus is on the measurable local field inside a solute or cavity in
the dielectric. From this perspective, the question at hand is
what is the integrated response of the interface to a probe
charge. Posed in this way, the problem of an effective
susceptibility of the interface can potentially be formulated
without a length-scale involved, if a proper coarse-graining
formalism is formulated.*”*° Cast in this way, the problem
becomes somewhat similar to the problem of surface tension,
which is clearly a microscopic interfacial property but without
a length-scale involved. One asks the question of what is the
integrated response of the interface to altering its surface area.
Similarly, we are asking what is the integrated polarization of
the interface creating a certain field inside a void. Presenting a
formalism to address this question and its application to a
realistic interface of charged buckminsterfullerenes in water is
the goal of this study.

The microscopic electric field E,, = —V¢,, is expressed in
terms of the microscopic electrostatic potential ¢, in the
presence of the external charge density p,(r) = q6(r) and the
instantaneous density of bound charge p, = —V-P. The
fluctuating electrostatic potential satisfies the Laplace equation
at each configuration of the liquid

Vi, = —4alp, + py) M

The density of bound charge, a scalar field, is in turn expressed
through the divergence of the fluctuating polarization field

P=P - %V-Q + -+, which includes the dipolar field P4 and

spatial derivatives of densities of higher multipoles,' starting
from the quadrupolar 2-rank tensor Q. When a solute is
immersed in a polar liquid, p, = 0 inside the solute and ¢,, is
determined from the standard Laplace equation, V¢, =
—47p,. A significant result here is that one can find a solution
for an ensemble-averaged potential (¢, ) provided the
boundary conditions are additionally supplied. Therefore,
finding the electric field inside a cavity in the dielectric is
reduced to the question of formulating proper boundary
conditions that preserve, in a coarse-grained manner, some
information about the molecular structure of the interface.”"°
Since only the boundary conditions are required, the length-
scale is eliminated from the problem and a coarse-grained
scalar parameter is sufficient to formulate the boundary-value
problem.

The boundary conditions account for the discontinuity of
the electric field at some dividing surface between the solute
and the liquid

Ey, — (E,) = 4xloy + (B)] )
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In this equation, E;, = —n-V), is the normal projection of the
electric (vacuum) field inside the solute and (E,) = —n-V{¢,,)
is the normal projection of the ensemble-averaged electric field
inside the solvent; both are taken at a nonspecified dividing
surface separating the solute from the solvent. The surface
normal 1 is directed outward from the solvent into the solute
(Figure 1). Equation 2 averages over the fluctuations of the

Figure 1. Schematics of the Cgy—water interface. The spherical
dividing surface with the radius a (solid black line) has the normal
unit vector n pointing outward from the liquid toward the solute. The
spherical region in water with the radius R is used to calculate the
total dipole moment of the water molecules within the R-sphere, eq
10 (R < 14 A in our calculations; see Figure 4). The scalar normal
projection of the dipole moment is calculated by projecting each
individual dipole moment m (blue arrow) of the water molecule with

7; < R on the radial unit vector f',- = —ﬁ), 'i'j =r1/1; (red arrow).

solute—solvent system by taking ensemble averages (...).
Furthermore, 0, in eq 2 is the density of free charges at the
dividing surface. This component of the electrostatic problem
is important for our simulations of charged fullerenes Cg, since
the solute charge is distributed over the surface atoms when z
# 0. This charge configuration is different from solvation of
small ions for which only P, enters the boundary condition.*®

The normal projection of the instantaneous polarization
density of water P, = n-P is the main focus of our formalism
and of the simulations presented below. Its ensemble average
o, = (P,) on the right-hand side of eq 2 is the density of the
bound (water) charge at the dividing surface.”® The surface
charge density is a parameter quantifying the preferential
alignment of dipoles in the interface. Its relation to the bulk
properties of the dielectric material is different for liquid and
solid dielectrics as can be highlighted by first looking at the
results following from the theories of continuum (macro-
scopic) dielectrics.

The result for the surface charge density is particularly
simple for the spherical symmetry of the dielectric interface
and the polarizing electric field. When a probe charge g is
placed at the center of a spherical cavity with the radius a
carved from a dielectric, the surface charge density becomes o,
= —(1 — e 1) (q/S) = (4n)"'(1 — €")E,,, where S = 47a* is
the surface area.' The electrostatic potential of the bound
charge inside the dielectric becomes

¢, (r) == - € (q/r) 3)

The surface charge is, therefore, opposite to the probe charge
and screens it. When combined with the vacuum potential
Po(r) = q/r, eq 3 yields the standard Coulomb potential
screened by the dielectric, (¢, (r)) = q/(er).

Equation 3 assumes that a bulk material property, the
dielectric constant here, can define a property of the interface,
the dipolar polarization of the interface in our case. This
assumption’" strictly applies only to solid dielectrics, which can
propagate bulk stress through the entire material by means of a
uniform strain when the uniform stress/field is applied. One
can view the polarization of the interface as the preferential
alignment of interfacial dipoles uniformly propagating from the
bulk. The polarization density in the interface P is then the
same as in the bulk when the dielectric is uniformly polarized
(plane capacitor), which is the meaning of the notion of a
continuum dielectric described by the boundary conditions of
Maxwell’s electrostatics. The polarization field P = (e = 1)/
(47¢)E, is not uniform for the spherical geometry but, in the
continuum description, is fully determined by the field of
external charges and is not affected by the interfacial structure.

Liquids do not maintain bulk stress, and the polarization in
response to an external field must form in a surface layer of
molecular dimension (~3 hydration shells in our calculations
presented below). As mentioned above, the issues involved are
similar to the distinction between the surface tension, a
macroscopic property characterizing interface only, and the
cohesive energy of the bulk. Drawing from this analogy, the
bulk dielectric constant does not necessarily describe surface
polarization. Two different susceptibilities are, therefore,
required: the interface susceptibility to describe polarizability
of the interface and bulk dielectric constant to describe the free
energy of polarizing a macroscopic sample. The former
incorporates orientational preferences of the interfacial dipoles,
which are strongly affected by the local interfacial structure.
The latter describes the buildup of dipolar correlations by
chains of mutually oriented dipoles52 producing long-ranged,
or™3, correlations ultimately responsible for the dielectric
screening.®® There is no direct link between these two
susceptibilities since the alignment of dipoles in the interface
is a function of both the liquid and the substrate and is not a
material property (similarly to the surface tension).

In contrast to the dielectric constant of the bulk, the dipolar
susceptibility of the interface has not been uniquely defined.
The vector field of the dipole moment density P(r) is highly
oscillatory in the interface and does not provide a scalar
susceptibility, even if a specific projection is taken.>*">* This is
illustrated in Figure 2 where the density of bound charge of
water

XOEDNDIRCIECEE M)

i=1 a=1,3 (4)

in the interface of buckminsterfullerenes C%, is shown (the sum
here runs over all i = 1,..,N water molecules with atomic
charges g;, at r;,, where a = 1-3 specifies the atoms in the
water molecule).

To avoid uncertainties of arbitrary definitions of the
interface susceptibility, we use the susceptibility required for
closing the boundary condition in eq 2 and consequently for
solving the electrostatic problem inside the void. A linear
relation between E,, and (P,) provides such a closure

B) = X, Eon ()

This route®® is applied here to calculate y,, from molecular
dynamics trajectories and to evaluate the interface dielectric
constant €;,, # € based on the input from numerical
simulations.
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Figure 2. Density of bound charge of water p,(r) (eq 4) for Cg, with
the solute charges indicated in the plot.

Solutes studied here are neutral and charged fullerenes C§,,
with the charge z varied between z = —4 and 1, including the
neutral solute with z = 0. The entire charge z of a charged
fullerene is spread over its surface with the charge density 470,
= ze/a* = —E,,(a*) (Figure 1), where Ey,(a*) is the electric
field of the solute charges at the outer surface of the fullerene.
In contrast, the electric field inside the charged fullerene is
zero, Ey,(a”) = 0, if the surface charge is assumed to be
uniformly spread. It is this field, Ey, = E,,(a”), that enters the
boundary condition on the left-hand side in eq 2.

In the case of the neutral fullerene with z = 0, we assume
that the solute field E,, is produced by the probe charge g
placed at the center of the solute. Both cases of charged and
neutral fullerenes can be combined in eq 2 to obtain a closed-
form equation® for the dipolar susceptibility y, connecting
(P, to the ensemble-averaged (Maxwell) field (E,):>° (P,) =
Xu(E,). The same expression for the interface dielectric
constant €, — 1 = 4y, follows in both cases

€ = [1 = dg,, T (6)

The perturbation theory®® gives (P,) as the statistical
correlation of the fluctuation 6P, = P, — (P,) with the
fluctuation of the solute—solvent Coulomb energy Ut

(R) = —p(ak, 5U°) (7)
where SU® = U — (U®). Furthermore, U® = Q, is given as

the product of the fluctuating electrostatic potential ¢, of the
solvent and the solute charge Q: Q is either q (for z = 0) or ze
(for z # 0). By combining eqs S and 7, the solute charge can be
eliminated from the linear susceptibility

Yo, = Ba’(SP, 5¢h) (8)

where a is the radius of the spherical dividing surface and 8¢, =
¢ — (¢h,). Because of the spherical symmetry of the problem,
¢, is taken at the center of C§, for both charged and neutral
solutes.

Equation 8 is the integrated form*® of the equation given by
Ballenegger and Hansen,”" in which the two-point correlation

0.30

0.20

c

=]
> 0.10

0.00

Figure 3. Interface susceptibility y,(a) for C%, with the solute charges
indicated in the plot. The dashed lines (nearly indistinguishable on
the scale of the plot) show coarse-grained yq, calculated from the
slopes of »" in eq 10.

function between radial projections of the polarization density
P, = TP needs to be integrated

Yo = 41 [ (B(@) B(Y) &
o ©)
The susceptibilities y,, in both equations rely on a specific
value of the radius a for the dividing surface. This definition is
not computationally robust since the dividing surface
separating dielectrics, and, even more so, the separation
between a liquid and a molecular-scale solute, is not well
defined in dielectric theories. This problem is shared not only
by solvation theories, where the “dielectric cavity” can only be
empirically established,”*” but also by the local polar response
discussed in the computational literature.” >*>% Specifically,
Yon(a) oscillates as a function of the radius a of the dividing
sphere onto which both the polarization density and the
external field are projected [Figures 3 and SS in the Supporting
Information (SI)]. Therefore, to arrive at a single robust
parameter, averaging oscillations of the polarization density
out, a coarse-graining protocol was suggested in ref 50.
Instead of using y,,(a) calculated at a specific a in eq 8, an
average y,, over a range of dividing surface radii a is calculated.
Coarse graining of molecular-scale interfacial oscillations is
performed by calculating the slope of the integrated
susceptibility y*(R) vs the radius R of the spherical region
chosen around the solute (Figure 1)

Xo = d'/dR (10)
In turn, the integrated susceptibility
4my' (R) = —p(SM,(R) 5¢) (11)

is calculated by correlating the fluctuations of the electrostatic
potential produced by the solvent at the position of the probe
charge with the radial projection of the total dipole moment of
the solvent within the R-sphere (Figure 1)

M(R) = ) m#

r<R (12)
Here m; are the dipole moments of the water molecules within
the R-sphere. They are projected on their corresponding radial
unit vectors 'fj = rj/ 1 By constructing the dipole moment
according to eq 12, we have neglected the contribution of the
quadrupolar polarization density to P. Molecular quadrupole
contributes to the surface potential®® but is expected to
disappear when the integral of V-Q is taken over the closed
volume between the dividing surface and the R-sphere (Figure
1).

The application of this formalism to the calculation of the
interface dielectric constant €, is illustrated in Figure 4, where
¢, is calculated at the geometrical center of the solute. It shows
the correlation function —(6M,(R) 6¢,) (eq 11) depending on
the radius R < 14 A of the spherical region chosen to provide a
sufficient number of points to calculate the slope in eq 10.
Oscillations at low R reflect the molecular structure of water in
the interface. The coarse-grained susceptibility y,, effectively
averages out the oscillations of yy,(a) in the interface. The
comparison shows that y,,(a) approaches y,, at sufficiently
large a still in the microscopic domain of about three hydration
layers around the solute. A similar conclusion was reached in
ref 49 from the analysis of simulations of polarizable, nonpolar
fluids. This is indicated by the horizontal dashed lines in Figure
3 comparing yo, with yg,(a). The interface susceptibilities
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Figure 4. Correlation of the radial projection of the shell dipole
moment M,(R) (eq 12) with the electrostatic potential of the solvent
¢, at the center of C§, as a function of the radius R of the spherical
shell used to calculate the water dipole moment (eq 11). Calculations
are performed at different values of charge z (plots at different
temperatures are collected in Figures S6—S8 in SI). The slope of
7 (R) o (6M,(R) 8¢p,) with the radius R determines the interface
susceptibility y,, (eq 10). The dashed lines are linear fits through the
simulation points.

follow from the slopes of the plots in Figure 4 according to eq
10. In what follows, we discuss the results of this analysis
applied to simulations of fullerenes C%, in SPC/E® water.

B RESULTS

The geometries and charge distributions of C§; were calculated
with the density functional theory (DFT) as described in SI.
These charges were combined with CHARMM?22/OPLS
parameters for carbon atoms and used as the force field for
classical MD simulations performed with NAMD 2.9 software
program.”’ The nonuniform distribution of atomic charge in
charged fullerenes is caused by Jahn—Teller distortions of
icosahedral symmetry characteristic of the neutral fullerene®’
(see SI for discussion). However, we found that DFT charges
and the uniform distribution of atomic charge z/60 produce
indistinguishable results for the interfacial structure of
hydration water (Figure S1 in SI). Therefore, in addition to
integer charges z = +1,..,—4 from DFT, uniformly distributed
charges z/60, z = —0.25, —0.5, —1.5, —1.0, —1.75, and —2.5,
were employed in simulations at T = 300 K. This set of
simulations allowed us to obtain the dependence of the
interfacial dipolar susceptibility on the solute charge and to
connect it to the structural crossover of hydration water
occurring with increasing Izl (see below).

The C%, solutes were hydrated with 2413 SPC/E water™
molecules. Initial equilibration with NPT was followed by
NVT simulations at different temperatures (240, 260, 280,
300, 320, 340, and 360 K). A typical simulation length was 110
ns. A detailed list of simulation times is provided in Table S1 in
SI, along with other details of the simulation protocol.

The main finding of our simulations and their analysis is a
significant reduction of €;,, compared to the bulk dielectric
constant (€ ~ 71 for SPC/E*’). This result is relevant for the
electrostatic boundary-value problem for which the bulk value
€ is often used. In contrast, our formulation suggests that the
interface dielectric constant €, carrying molecular properties
of the interface, should be used in place of € in the boundary
conditions (eq 2) for the Laplace equation. The resulting
values of €;,, depending on temperature and solute charge are
summarized in Figure 5 and in Table S2 in SI. There are some
noticeable changes with temperature, particularly for the
neutral fullerene (the dashed blue line in Figure 5). However,
a much stronger variation of the interface dielectric constant is
observed with the solute charge z, reflecting a structural
crossover in the first hydration shell for charged solutes.

Figure S. Interface dielectric constant vs T for different charges z of
Cp: z = +1 (black), z = 0 (blue), z = —1 (magenta), z = —2 (green), z
= —3 (orange), and z = —4 (red). The electrostatic potential of water
¢, entering eq 11 is calculated at the center of Cfj; the dashed lines
are polynomial fits through the points for z = 0 (blue) and z = 1
(black).

The structure of water interfacing charged fullerenes is
significantly altered compared to the bulk. Water’s density in
the first hydration layer increases with increasing charge. More
importantly, interfacial water undergoes a structural transition
from preferential orientations specific to hydrophobic inter-
faces to an orientational structure characteristic of charged
substrates.®> Signatures of the structural transition are seen
already at z = —1 and —2, and the new structure of the
hydration shell is fully formed at z = —3 and —4 (Figure 6).

Figure 6. Radial distribution function for the hydrogens of SPC/E
water at different charges z of C, indicated in the plot (T = 300 K).

The transition is accompanied by the destruction of the
hydrogen-bond network of the hydration shell and the release
of dangling O—H bonds pointing to fullerene’s center by
nearly every water molecule out of ~40 first-shell water at z =
—3 and —4.

The change in preferential orientations strongly affects the
distribution of the bound charge in the interface: the
appearance of the positive and negative peaks corresponding
to dangling O—H groups is clearly seen in the interfacial
density of bound charge shown in Figure 2. It is also seen in
the growing peak of the solute—hydrogen pair distribution
function, which is separated from the second peak by the O—H
bond length ~1 A (Figure 6). This type of crossover from an
in-plane orientation of interfacial waters, typical for hydro-
phobic solvation,*** to a large population of dangling O—H
bonds was recorded by X-ray absorption of water on gold
substrates under a negative bias.

The release of dangling O—H bonds"**° at the point of
crossover can be characterized by the order parameter given by
the fraction n°" of dangling O—H in the first hydration
shell.®* It is calculated from the relative area of the closest peak
in the solute—hydrogen pair distribution function (Figure 6).
This order parameter is plotted in the lower panel of Figure 7
vs the solute charge z (also see Table S3). The dashed line
fitting through the points is a hyperbolic tangent function often
appearing in mean-field theories of phase transitions.’®
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Figure 7. Upper panel: Interface dielectric constant at T = 300 K vs
the fullerene charge z. The dashed lines are fits to Curie-type
functions a + b/(z — z;). Lower panel: The average number of
dangling O—H bonds in the first hydration layer of C§,. The dashed
line is a fit to a hyperbolic tangent function often appearing in mean-
field theories of phase transitions.®®

The structural crossover, carrying some phenomenology of a
bulk phase transition, is accompanied by a spike in the
interface dielectric constant shown in the upper panel of Figure
7. The dashed lines fitting the points are of Curie type: a + b/
(z — zy). This functionality appears in the Landau theory of
phase transitions® when the quadratic term in the free energy
functional is taken in the form x(z — z,) [the standard Curie
law follows from o(T — T,)]. One, however, should not
anticipate a Curie-type singularity found for susceptibilities
characterizing order parameters in bulk phase transitions
because of a small number of water molecules involved.
Nevertheless, the phenomenology of Curie’s law is approx-
imately retained for the interface dielectric constant approach-
ing the crossover point.

Our simulations employ a nonpolarizable water model
accounting only for the response of the nuclear coordinates. As
a minimum, electronic susceptibility €,, — 1 should be added
to €, to account for electronic polarizability of water
molecules. Here, €, is the high-frequency dielectric constant.”’
Its precise value for water is not known: values between
squared refractive index €., ~ 1.8 and 4.2 have been proposed
in the literature.”® The situation is potentially more complex,
as is seen for the water—air interface. The average, mean-field
dipole of water changes in the water—air interface from a bulk
value, enhanced relative to the gas phase, to the gas-phase
dipole.”” Although the interface with a solute or with a planar
substrate is obviously distinct from the water—air interface, a
nonuniform interfacial electric field might lead to an effective
water dipole different from the bulk.

The interface dielectric constant considered here is a gauge
of the integral ability of the interface to polarize in response to
a probe charge placed inside a void in a polar liquid. In
contrast, thermally driven fluctuations of the overall shell
dipole M(R) can be gauged by either its variance
([6M(R)]*)7®"" or by the scalar product, (SM(R)-6M,), with
the total dipole moment of the sample M,*%7* The latter
expression is a consequence of perturbation theories. By this
measure, dipole fluctuations actually increase, and not
decrease, compared to the bulk in the interface of hydrophilic
solutes.””’” The variance of the shell dipoles scales with the
local densitym’72 and, consistent with this logic, a recent
paper”® reports a drop of water’s dielectric constant at model
hydrophobic interfaces with the reduced surface density

(dewetting). However, the Kirkwood formula was incorrectly
applied”® to the calculations of the dielectric tensor in the
interface. The Kirkwood formula is derived by tracing the
dipolar susceptibility over its longitudinal and transverse
components.”””> For the slab geometry, those corres7pond to
linear responses perpendicular and parallel to the slab.”®”” The
Kirkwood equation, therefore, cannot be applied to compo-
nents of the dielectric tensor, which, for an arbitrary interface,
can carry different contributions from the longitudinal and
transverse dipolar susceptibilities.”®

The variance of the shell dipole moment, which can be used
to characterize dipolar fluctuations in the interface, does not
directly enter the electrostatic boundary-value problem. It is
only the normal projection of the dipole moment that defines
the interface susceptibility"**° and is required for electro-
statics. Only this susceptibility is lower in the interface than in
the bulk. This result implies suppression of the interfacial
response in the normal direction. Dipoles in the interface,
frustrated by the local fields and geometric con-
straints, ”>***>%7% do not develop the complete dielectric
screening of the bulk material. The deviation between €;,; and
€ is less pronounced for the fluid of dipolar hard spheres
interfacing a repulsive void.’® The origin of a large difference
between €;,, and € for water is likely a signature of its specific
interfacial orientational structure, which is difficult to
characterize in more detail without expanding the interface
susceptibility in basis functions sensitive to orientational
dipolar order.”

B CONCLUSIONS

The computational formalism used here allows direct access to
interface susceptibility from configurations produced by
computer simulations. The required property is the cross-
correlation of the radial projection of the dipole moment of the
solvation shell with the electrostatic potential of the solvent
inside the solute.

This computational formalism has been applied to
simulations of a realistic interface chemically similar to the
water—graphite interface studied experimentally in ref 8, where
dielectric constant €, ~ 2 was reported for thin, ~7 A, films of
water. Values of the interface dielectric constant €;,, ~ 10—22
are reported here for charged fullerenes interfacing SPC/E
water. Interface dielectric constants in the same range, ~6-9,
were previously calculated from simulations of model
Lennard—Jones solutes of different sizes in TIP3P water,"®
whereas values in the range 2—4 were found for TIP3P water
in the hydration shell of a protein®® (bulk dielectric constant
~97°"). The interface dielectric constant ~11—15 (T = 240—
360 K) for the neutral fullerene is consistent with €, ~ 9
calculated for the smallest L] solute*® in TIP3P water with the
first peak of the solute—oxygen radial distribution function at
~55 A (compared to ~6.75 A for Cg). Since the
nonpolarizable force fields for water miss the response of the
electronic polarizability, our results likely constitute the lower
bound for the interface susceptibility. The interface dielectric
constant is the property of an interfacial layer of water of
molecular scale and is physically distinct from the bulk
dielectric constant reflecting dipolar correlations in the bulk (e
~ 71 for SPC/E water27).

Introducing a negative charge to hydrated fullerenes leads to
a structural crossover of hydration water. It is characterized by
breaking the interfacial network of hydrogen bonds and the
release of dangling O—H bonds pointing toward the solute.
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The interface dielectric constant marks this structural crossover
with a spike. Correspondingly, all solvation functions following
from the solution of the electrostatic boundary-value problem
are also expected to display such a singularity.
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