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dimensional (3D) topological semimetals represent a new class of topological matters. The study
of this family of materials has been at the frontiers of condensed matter physics, and many
breakthroughs have been made. Several topological semimetal phases, including Dirac
semimetals (DSMs), Weyl semimetals (WSMs), nodal-line semimetals (NLSMs), and triple-
point semimetals, have been theoretically predicted and experimentally demonstrated. The low-
energy excitation around the Dirac/Weyl nodal points, nodal line, or triply degenerated nodal
point can be viewed as emergent relativistic fermions. [€**AU: Could the highlighted be
hyphenated to “low-energy excitation”? JH: OK**] Experimental studies have shown
relativistic fermions can result in a rich variety of exotic transport properties, e.g., extremely
large magnetoresistance, the chiral anomaly, intrinsic anomalous Hall effect (AHE), etc.
[€**AU: Below, sometimes “the chiral anomaly” appears and sometimes simply “chiral
anomaly” (with no definite object “the”). For consistency, please indicate whether this term
should have “the” before it; changes will be made to text according to your response**] In
this review, we first briefly introduce band structural characteristics of each topological
semimetal phase and then review the current studies on quantum oscillations and exotic transport

properties of various topological semimetals, and finally provide a perspective of this area.

1. INTRODUCTION

The rich cross-pollination between high-energy physics and condensed matter physics has led to
deeper knowledge of important topics in physics such as spontaneous symmetry breaking, phase
transitions, and renormalization (1, 2). Such knowledge has, in turn, greatly helped physicists
and materials scientists to better understand magnets, superconductors, and other novel materials,
leading to practical device applications (1). In the past decade, there has been significant interest
in realizing high-energy particles in solid-state systems. The theoretical attempts to explain
graphene’s properties (3) by using solid-state physics led to an equation similar to one otherwise
seen in cosmology and colliders: the Dirac equation. Following graphene’s discovery, many
materials with nodal band crossings, known as topological insulators and semimetals (4—11),
were discovered, generating significant research excitement. The topological Dirac semimetals
(DSMs) (12—-14) and Weyl semimetals (WSMs) (2, 15-23) are crystalline solids whose low-
energy electronic excitations resemble the Dirac (24) and Weyl (15) fermions in high-energy

particle physics, respectively. In particular, although the Weyl fermion played a crucial rule in



the Standard Model (15), it has never been observed as a fundamental particle. The realization of
the topological WSM state (22, 23, 25-27) enables the observation of this elusive particle in
physics. Topological semimetals further allow for band crossings beyond high-energy
classifications. Primary examples include the type II WSMs (28) and DSMs (29), the nodal-line
semimetals (NLSMs) (30), and the unconventional fermion semimetals (31-36). Due to the rich
variety of crystalline and magnetic symmetry properties of condensed matter systems (37), it is
likely that such breakthroughs are only the tip of an iceberg and that there are ample new
topological semimetals awaiting discovery. [€**AU: OK? — JH: OK**] These topological
semimetals provide platforms for studying a number of important concepts in high-energy
physics (e.g., the chiral anomaly) in tabletop experiments. Moreover, such materials extend the
classification of topological phases from gapped matter (e.g., insulators) to gapless systems (e.g.,
metals).

Topological semimetals enable a kaleidoscope of novel electronic properties. They support
exotic, topologically protected boundary modes such as the topological Fermi arcs and drumhead
surface states. These surface states have been directly observed in spectroscopic measurements
orbits) as observed in quantum oscillation measurements (43, 44). Because of linear dispersion
and spin (pseudospin) momentum locking, low-energy electrons in topological semimetals are
highly robust against crystalline disorder and imperfections, leading to very high electron
mobilities (45, 46). The compensating electron and hole carriers further cause nonsaturating
magnetoresistance (MR) (46—48) and magnetothermopower (49-51). The application of parallel
electric and magnetic fields can break the apparent conservation of the chiral charge (10, 11, 52,
53). Such chiral anomaly leads to enhanced conductivity with an increasing magnetic field. The
diverging Berry curvatures near the nodal points support distinct anomalous transport
phenomena, including intrinsic AHEs (54—56) and anomalous Nernst effects (57, 58). Such
curvatures also support significantly enhanced optical and optoelectronic phenomena, including
large (even quantized) photocurrents (59—64), second-harmonic generation (65, 66), optical
activity and gyrotopy (67—69), and Kerr rotation (70, 71). Furthermore, thinning down a 3D
topological semimetal into 2D may give rise to new 2D topology, including the quantum spin

These unconventional transport and optical properties of topological semimetals can pave the



way for the realization of dissipationless electronic and spintronic devices as well as efficient
photodetectors and energy harvesters.

The area of 3D topological semimetals is fast growing; many papers have been published on
theoretical predictions and experimental studies. There have been many reviews that introduce
progress in theoretical and experimental studies on topological semimetals (8—11, 76—85). In this
review, we focus on electronic transport and quantum oscillation studies on topological
semimetals; these two topics have not been reviewed comprehensively in previous reviews.
Before we discuss these topics in detail, we first briefly introduce each prototype topological
semimetal phase and discuss their band structure characteristics, topological invariants,

[€**AU: invariants? JH: yes**] and symmetry protections.

2. CATEGORIES OF TOPOLOGICAL SEMIMETALS

In this section, we discuss various 3D topological semimetal phases of matter, including WSMs,
DSMs, NLSMs, and unconventional fermion semimetals beyond the Dirac and Weyl paradigm.
For each kind of topological semimetal, we focus on three aspects: the characteristic band
structure (the number of bands that cross, the dimensionality of the band crossing in & space, and
the typical energy-momentum dispersion), the topological invariant and the symmetry

protections, and representative materials.

2.1. Weyl Semimetals

WSMs are a class of topological semimetals that host Weyl fermions as low-energy quasiparticle
i.e., Weyl nodes, and disperse linearly in all three momentum space directions away from each
Weyl node (Figure 1a). Weyl fermions have distinct chiralities that are [€**AU: OK? JH:
OK**] either left handed or right handed. The chiralities of the Weyl nodes give rise to chiral
charges, which can be understood as monopoles and antimonopoles of Berry flux in momentum
space. The separation of the opposite chiral charges in momentum space leads to surface Fermi
arcs, whose constant energy contours are open arcs that connect the Weyl nodes of opposite
chiralities on the surface.

<COMP: PLEASE INSERT FIGURE 1 HERE>



Figure 1 Schematic band structure of different types of topological semimetals. (a) Type I
Weyl/Dirac semimetal. The degeneracy of a Weyl point is half of that of a Dirac point. On a 2D
closed surface (the green surface) that encloses the Weyl node in & space, the band structure is
fully gapped and therefore allows a topological invariant to be defined (19). [€**AU: Meaning
that panel a is reproduced from Ref 19? (Are any of the other panels from Ref 19, or are
they from other references?) Please clarify JH: none of the panels from Ref 19. This
reference can be deleted**] Specifically, the topological invariant for a Weyl node is a chiral
charge, which corresponds to the Chern number associated with the 2D closed surface. (b) Type
I Weyl/Dirac semimetal. At the energy of the type II Weyl/Dirac node, the constant energy
contour consists of an electron pocket and a hole pocket touching at the node. (¢) Nodal-line
semimetal. The conduction and valence bands are degenerate on a 1D closed loop, shown as the
green circle in the Brillouin zone. The topological invariant of the nodal line is a winding
number w, which is defined as the line integral of the Berry connection along a closed loop,
shown as the green circle that interlinks the nodal line. (d) Triple-point semimetal. Three singly
degenerate bands cross at discrete points, the triple points. The triple point can also be viewed as
the meeting point between two nodal lines along the £, axis.

[**AU: It is the author's responsibility to obtain permissions for figures being adapted
or reprinted from previous publications. Please obtain permissions as necessary and add
permissions verbiage to figure captions where applicable. JH: obtained already**]

Because of the existence of Weyl nodes, WSMs lack a global band gap. The absence of a
global band gap prevents the definition of a topological invariant for the entire 3D bulk Brillouin
zone (BZ). In contrast, on a 2D closed surface that encloses the Weyl node in & space (Figure
la), the band structure is fully gapped and therefore allows a topological invariant to be defined
(19). Specifically, the Chern number associated with the 2D closed surface directly corresponds
to the topological invariant of a Weyl node (i.e., the chiral charge). Mathematically, the chiral
charge C can be calculated by the integral of the Berry curvature (the Berry flux) as shown

below:

c:jssz-ds, 1.

where S is the 2D closed surface in k& space that encloses the Weyl node and € is the Berry
curvature. Due to the chiral charge, Weyl nodes can appear at generic k points of the BZ. In the
presence of translational symmetry, these Weyl nodes are topologically stable and cannot be
removed without pair annihilation. The existence of Weyl nodes does not rely on any additional
crystalline point group symmetries.

Real materials that host the WSM state are usually further classified into either inversion-
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symmetry—breaking WSMs or time-reversal symmetry—breaking WSMs. Representative
inversion-symmetry—breaking WSMs include the TaAs family of noncentrosymmetric crystals
realized in naturally occurring ferromagnetic (FM) semimetals such as pyrochlore iridate (19),
HgCrSes (21), Co3SnaS» (93, 94), Heuslers (95-99), and the noncollinear antiferromagnets
Mn;3Sn and Mn3Ge (57, 100-103) or by applying an external magnetic field to a nonmagnetic or
antiferromagnetic (AFM) semimetal, as demonstrated in the magnetotransport experiments (104)
on Nas3Bi (105), Cd3As> (45, 106), ZrTes (107), and half-Heuslers (108—110). From a different
angle, WSMs can also be classified by the energy-momentum dispersions near the Weyl nodes.
Type I WSMs have untilted or weakly tilted Weyl cones with a point-like Fermi surface when
the chemical potential is placed at the Weyl node. By contrast, type I WSMs have strongly tilted
Weyl cones (Figure 15b) (28). Their Fermi surface consists of electron and hole pockets that
touch at the type Il Weyl nodes. Representative type Il WSMs include WTe; (28, 111-113),
MoTe; (114-122), TalrTes (123, 124), and (W/Mo)P> (125). These different classifications are
not mutually exclusive. For instance, MoTe: is not only an inversion-breaking WSM but also a

type II WSM.

2.2. Dirac Semimetals

DSM, two doubly degenerate bands cross to form a Dirac node and disperse linearly in all three
momentum directions away from the node. Each Dirac node can be viewed as a pair of
degenerate Weyl nodes of opposite chiralities. Since a pair of degenerate Weyl nodes of opposite
chiralities is in general unstable and may annihilate, additional crystalline point group
symmetries are needed to realize a stable DSM phase (131). One route is to rely on uniaxial
rotational symmetries (131). Specifically, a band inversion can create a pair of 3D Dirac nodes
on the opposite sites of the time-reversal invariant momenta. Representative DSMs of this kind
include Na3Bi (13, 38, 126) and Cd3As> (14, 127-130) (type I) as well as VAI3 (29) (type 1I).
Another route is to rely on nonsymmorphic symmetries, i.e., glide reflections and screw
rotations. It has been theoretically shown that nonsymmorphic symmetries can lead to nontrivial
band connectivity at the BZ boundaries, giving rise to filling-enforced DSMs or NLSMs,
depending on the specific space groups (12, 132—135). Representative filling-enforced DSM
candidates include B-BiO: (12) and distorted spinels (132). Furthermore, a DSM can be realized

6



as the critical point of the topological phase transition between a trivial insulator and a
topological insulator. This is achieved in the BiTI(S1-.Sex)2 (12, 136), Bi>—«In,Se3 (137), and
Pbi1-» Sn,Te (138) systems by fine-tuning the chemical doping concentration. Alternatively,
compounds like ZrTes (107, 139, 140) and those in the StMnSb; family (141-143) naturally sit
near the critical point of such a topological phase transition and therefore approximate a DSM
state. [€**AU: By ZrTes do you mean “ZrTes family”? If so, the highlighted will be edited
to “those in the ZrTes (107, 139, 140) and StMnSb, (141-143) families” — if not, please clarify

JH: ZrTeS5 is one material, not family. For StMnSb2, there are some others materials with same
SrMnSb2-type structure, so it is a “SrMnSb2 family”. **] According to current theoretical
understanding, Dirac nodes are not associated with any nontrivial topological invariant (i.e., they

have zero chiral charge) (144).

2.3. Nodal-Line Semimetals
In NLSMs, conduction and valence bands cross at 1D lines in & space (Figure 1a) (30, 40, 78,
85, 133, 134, 145-161). Compared to DSMs/WSMs, the electronic structure of NLSMs is

distinct in three aspects: (a) The bulk Fermi surface consists of 1D lines in NLSMs but of 0D
points in WSMs; (b) the density of states (DOS) is proportional to (£ — Er)? in NLSMs but to
[€**AU: should “is” or “to” be inserted here? JH: “to” is better **] |E — Er| in WSMs; and
(c) on the surface, nodal lines are accompanied by drumhead-like surface states, whereas Weyl
nodes are connected by 1D Fermi arc surface states.

We now discuss the topological invariant of NLSMs. We consider a 1D closed loop that
interlinks the nodal line in & space (Figure 1c¢). The band structure is fully gapped and therefore
allows for the definition of a topological invariant, i.e., the winding number (150).
Mathematically, the winding number w is defined as the integral of the Berry connection along

the 1D closed loop that links the nodal line as shown below:

w=J.lA-dl, 2.

where [ is the 1D closed loop that links the nodal line and A is the Berry connection.
NLSMs also come in a variety of forms, depending on the characteristic band structure and
the symmetry protection. First, nodal lines can be closed loops (also termed nodal circles) inside

the 3D BZ. [€**AU: OK? Please clarify as necessary JH: OK**] Such nodal circles are



naturally formed by a band inversion. The nodal circles are further classified on the basis of the
symmetry protection. There are nodal circles that are strictly gapless only in the absence of spin-
orbit coupling (SOC) (78, 146, 149, 150). They are usually protected by the combination of time-
reversal and time-inversion symmetries (78, 146, 150). Representative materials include CusN
(149), CaszP, (147), CuzPdN (148), and those in the ZrSiS family (154—158). Alternatively, nodal
circles can be formed in noncentrosymmetric crystals protected by a mirror plane. These nodal
circles are stable even upon the inclusion of SOC. Representative materials include PbTaSex,
TlTaSe», and CaAgAs (40, 145, 159, 160). Second, nodal lines can also be a straight line that
span across the BZ. Representative materials include those in the BaNbS3 family (161). Third,
nodal circles can interlink with each other in & space, forming Hopf links and nodal chains (162—
167). These Hopf links and nodal chains [€**AU: please clarify. JH: Hopf links and nodal
chains **] may be protected by the presence of multiple perpendicular mirror planes (167) or by

nonsymmorphic symmetries (162, 163).

2.4. Unconventional Fermion Semimetals

In contrast to [€**AU: insert “the case for”? JH: not necessary**] high-energy physics,
solid-state crystals can support band crossings beyond the Dirac/Weyl paradigm (31-36). These
band crossings, broadly referred as unconventional fermions, include three-, four-, six-, and
eightfold degeneracies (31). [**AU: Quotation marks used for purposes other than direct
quotation have been removed throughout, per house style. JH: OK**]

Here we take a particular type of three-band crossing as an example (33—-36, 168—170). In
such a triple-point semimetal, three singly degenerate bands cross at discrete points, the triple
points (Figure 1d). Moving away from one triple point along &, or £z, all three bands become
nondegenerate. By contrast, moving away along k,, bands 1 and 2 remain degenerate for —£,,
whereas bands 2 and 3 remain degenerate for +4,. Therefore, the triple point can also be viewed
as the meeting point between two nodal lines along the &, axis. These triple points are protected
by the combination of a uniaxial rotational axis, mirror planes, and time-reversal symmetry.
These triple points are not associated with any topological invariant due to the lack of a global
band gap on any 2D closed surface that encloses the triple point. Representative materials

include MoC, WC, MoP, and ZrTe (33-36, 169, 170).



3. TRANSPORT SIGNATURES OF TOPOLOGICAL SEMIMETALS

The relativistic nature of the Dirac and Weyl fermions in topological semimetals manifests in
many distinct transport properties, including extremely large MR, high mobility, light effective
mass, nontrivial Berry phase, chiral anomaly, and the AHE. These relativistic fermion properties
have great potential for future electronic and spintronic applications. Characterization of
relativistic fermions through transport measurements provides a convenient approach to verify a
nontrivial topological state, complementary to the direct observation of nontrivial band topology
by ARPES experiments. In this section, we summarize these transport signatures of topological

DSMs and WSMs.

3.1. Magnetoresistance
Electron transport in topological semimetals is usually strongly affected by external magnetic
field. Large MR is a common signature often seen in most DSMs and WSMs. MR is usually
expressed as the change in resistance (resistivity) under field normalized by the zero-field
resistance (resistivity), i.e., [R(B) — R(B = 0)]/R(B = 0) or [p(B) — p(B = 0)]/p(B = 0). The
transverse MR, measured with the field perpendicular to the current direction, can reach up to
0.1-1 million percent at low temperatures (0.5-5 K) and a field of 9 T (see Table 1), without any
sign of saturation up to 30—100 T in WSMs/DSMs such as CdzAsz, PtBi>, WTe», and NbP (46,
48, 171, 172). A power law field dependence (MR o B") is usually seen in various topological

<COMP: PLEASE INSERT TABLE 1 HERE>

In a simple metal, a positive transverse MR with quadratic field dependence is generally
expected due to the Lorentz effect (47). Such Lorentz effect—induced orbital MR is usually weak
and saturates for systems with a closed Fermi surface, contrasted with the giant, nonsaturating
MR seen in topological semimetals. The origin of the unusually large MR of topological
semimetals has been intensively studied. Electron-hole compensation has been proposed to be a
possible mechanism (46, 48, 171). However, reports also indicate that carrier compensation is
not achieved in some topological semimetals (188, 189). An alternative explanation is that the
backscattering at zero field is strongly suppressed by some protection mechanisms associated
with nontrivial band topology but is [€**AU: OK? JH: also change “and” to “but”**]
significantly enhanced by magnetic fields (45).



The strong coupling between MR, high mobility, and linearly dispersed Dirac/Weyl cones
may provide some clues for further understanding of the large MR. High mobility is another
signature accompanied with large MR in topological semimetals. Mobility () is related to
conductivity ¢ via o = nqu, where n and ¢ are the carrier density and charge, respectively. For a
single-band system, the Hall coefficient Ry = 1/ng, and thus = ¢ * Ru. However, in multiple-
band systems, the field dependence of Hall resistivity px, deviates from linearity. Figure 2a
shows one example. In this case, the Hall coefficient, defined as dp,,/dB, becomes field
dependent, and both mobility and carrier density cannot be directly derived as for a single-band
system. A commonly used approach for analyzing the transport properties of multiband systems
is the multiple-band model, i.e., assuming that the contributions of various bands to the
conductivity are additive. In practice, for a system with more than two bands, a further simplified
model, which considers only one electron band and one hole band, is widely used to describe the
longitudinal resistivity (px) and transverse resistivity (pxy, 1.€., the Hall resistivity), as shown by

Equations 3 and 4 below (190):

_ (nopt +m )+ (noph ity + 1y g 40)B* 1
(o, + o))’ + pil iy (n,-n )’ B® e

P

2

P (myty —n ) + g 4t (n,-n,)B* B
Y (o, ) + il (nn)' B e’

where ne (nn) and pe (un) are the density and mobility of the electron (hole) band, respectively.
From the simultaneous fitting for px.(B) and p.(B) by using such a two-band model, both the
densities and mobilities of the electron bands and hole bands can be obtained. Clearly, for a real
system with more than one electron or hole band, this oversimplified model averages electron
and hole bands and neglects any interband interactions. Although adding more bands to the
above model is possible in principle, more accurate results may not be obtained with an
overparameterized model. In fact, the two-band model already yields reasonable results for a
variety of material systems, so it is reasonable to extend its application to topological
semimetals.

<COMP: PLEASE INSERT FIGURE 2 HERE>

Figure 2 Magnetoresistance (MR). (a) Magnetic field dependence of the longitudinal (px) and
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transverse (Hall) (pxy) resistivity for Cd;As:z (45). () MR normalized by the zero-field resistivity
for WTe; at 2 K and 10 K. Shubnikov—de Haas (SdH) oscillation is seen for the 7= 2 K data.
(Upper inset) MR at higher temperatures. (Lower inset) Oscillatory component of the resistivity
oscillation, obtained by subtracting the smooth MR background (48). (c) MR normalized by the
zero-field resistivity for NbP at various temperatures. SAdH oscillation is seen at 7' < 10 K. (/nser)
MR at higher temperatures (46). [€**AU: Do the highlights in this caption indicate that
panel a is reproduced from Ref 45, panel b is reproduced from Ref 48, and panel c is
reproduced from Ref 46? Please clarify if not** JH: yes there are from those references]

Equation 3 indicates that p.. tends to saturate at high fields where the B* terms dominate.
Only when n. = ny, i.¢., the case of electron-hole compensation, [€**AU: OK? JH: not
g00d**] py, oc B without saturation. Under such a circumstance, large MR is expected when
mobility is high. Table 1 shows the mobilities of some representative topological semimetals
acquired from two-band model analysis; the mobilities are indeed high, in the range of 10°~10°
cm?/(V-s). Such high transport mobility is consistent with the ultralow residual resistivity at the
zero-temperature limit (~nQ to a few p€; see Table 1) as well as with the high quantum mobility
revealed by quantum oscillation studies (discussed in Section 3.2.2).

The two-band model, while widely used, provides only an approximate description for the
magnetotransport properties of multiple-band materials. First, Equations 3 and 4 are not
applicable if there are open orbits, which occur when the Fermi surface is not closed in the
momentum space (190). Second, the negligence of interband interaction leads to an apparent
contradiction: The carrier compensation appears to be necessary for the nonsaturated MR
according to Equation 3, but the Hall resistivity expressed by Equation 4 must be linearly
dependent on the field when n. = nn, which is not true for most topological semimetals (e.g., see
Figure 2a). Third, according to Equation 3, even approximate electron-hole compensation
should be able to lead to a quadratic or nearly-quadratic field dependence for p... Such a
dependence [€**AU: OK?**] has indeed been observed in a number of topological semimetals
(48, 183, 191-193), but linear or even sublinear MR has also been observed in a variety of

samples (107, 171, 172, 174-180, 182, 183, 191, 194). The linear MR may be a classical effect

due to strong current inhomogeneity (172) or may have a quantum mechanical interpretation
(195) (see Section 3.2.8), while the sublinear MR may be attributed to the weak antilocalization
caused by strong SOC (196). With these considerations, the two-band model appears to be

applicable only for a limited field range or at higher temperatures at which quantum effects are
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not significant.

Although obtaining the precise value of carrier mobility for individual bands might be
challenging, the two-band model still provides an effective approach for the approximate
description of magnetotransport properties of multiband materials. This model successfully
explains the extremely large MR arising from high mobility and approximate carrier
compensation. Then, a key question for topological semimetals is why Dirac/Weyl fermions
have high mobility. This question [€**AU: OK? Or “The answer”?** JH: OK] can be
understood in terms of the energy band characteristics of topological semimetals. Given that the
carrier mobility is determined by relaxation time 7z and effective mass m”",[€**AU: insert “is
determined by”? **].i.e. u = et/m", greater relaxation time and smaller effective mass favor
higher mobility. As shown in Section 3.2.2, the cyclotron effective masses derived from quantum
oscillations are indeed small for many topological semimetals, reaching as low as 0.02m. (where
me 1s the free electron mass) for some materials. Such massless behavior is naturally expected for
ideal topological fermions since they are hosted by linearly dispersed bands crossing near the
Fermi level, which requires zero mass in the Hamiltonian (11).

Greater relaxation time in topological materials may be associated with symmetry protection
in many cases. For topological insulators, it has been well established that backscattering is
forbidden by time-reversal symmetry, even though nonmagnetic defects exist, thus resulting in
longer relaxation time (197-201). In some topological semimetals, a strong suppression of
backscattering due to nontrivial band topology has also been proposed (45); such suppression
would lead to enhanced transport relaxation time. [€**AU: OK? JH: OK**] This idea is
partially supported by the quantum oscillation studies that reveal a long quantum relaxation time

in topological semimetals, as shown in Section 3.2.2.

3.2. Landau Quantization and Quantum Oscillations

In addition to the extremely large MR, another important phenomenon in the magnetotransport
of topological semimetals is quantum oscillation (Figure 25,¢), i.e., the Shubnikov—de Haas
(SdH) effect. Quantum oscillations can also be probed in other measurements such as
magnetization/magnetic torque [i.e., the de Haas—van Alphen (dHvA) effect], thermoelectric
power, and ultrasonic absorption. Quantum oscillations have been widely used for the study of
the 3D topological insulators (202) and topological semimetals, and [€**AU: please clarify

JH: change to “and”**| reveal key parameters for Dirac/Weyl fermions such as effective mass,
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quantum mobility, and (most [€**AU: OK? JH: OK**]| importantly) the Berry phase. In this

section, we review quantum oscillation studies of topological semimetals.

3.2.1. The zeroth Landau level for relativistic fermions.

Quantum oscillation theory for nonrelativistic electrons has been well established and
documented in earlier textbooks and reviews (203, 204). Here we briefly recall the fundamental
theory and put major emphasis on its extension to relativistic fermions. Quantum oscillation
originates from the quantized cyclotron motion of charge carriers under magnetic fields, i.e., the
Landau quantization of the energy states. With the conduction band splitting to LLs, the DOS at
the Fermi level, DOS(EF), becomes periodically modulated by magnetic field (more precisely,
periodic in 1/B), leading to periodic oscillations of physical quantities.

Panels a and b of Figure 3 show the textbook drawings of the Landau quantization for
spinless (i.e., ignoring the Zeeman splitting) nonrelativistic electrons with parabolic dispersion.
The quantized LL energy is &, = (n + 1/2)Ahw., where w. = eB/m is the cyclotron motion
frequency and the LL index n =0, 1, ... The energies of all LLs are field dependent and evenly
spaced by 7., as shown in Figure 3b. For the lowest LL, a finite zero-point energy /w./2 exists,
which is in analogy to the zero-point energy of a harmonic oscillator. To distinguish the lowest
LL for the nonrelativistic fermions [€**AU: please clarify JH: change to “the lowest LL for
the nonrelativistic fermions”**] from the exotic zeroth LL with field-independent zero energy
for the relativistic fermions shown below, we rewrite the LL energy of nonrelativistic electrons
as &, = (n — 1/2)hwc, where n becomes a nonzero integer (1, 2, ...).

<COMP: PLEASE INSERT FIGURE 3 HERE>

Figure 3 Landau quantization. (a,c) Schematics for energy-momentum dispersions of the (a)
normal (nonrelativistic) and (c) relativistic electrons. (b,d) Landau spectra for the 2D spinless (b)
nonrelativistic and (d) relativistic electrons. (e,f) Landau spectra for the 3D spinless (e)
nonrelativistic and (f) relativistic electrons with the magnetic field along the 4. direction (B//k:).
[€**AU: OK that the slashes go to the right? Should they be vertical? JH: can be vertical
or forward slash**] (g) Landau tubes intersecting a 3D spherical Fermi surface. () Landau
rings within the 2D Fermi surface (ring). Panels g and /# show the scenario for nonrelativistic
electrons without the zeroth Landau level.

The LL quantization is completely different for the relativistic fermions with linear

dispersion (Figure 3c¢). Earlier studies on graphene (205, 206) [€**AU: OK? JH: OK**]
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established that the quantized energies of LLs for spinless 2D Dirac fermions are

g, =v,sgn(n)f2eh|B|n| (n=0,£1,%£2..)) 5.

where sgn(n) is the sign function and vr is the Fermi velocity. [€**AU: (1) The highlighted
symbol appears a bit different from the one shown in Equation 5 — please clarify JH: it is
the symbol for velocity, so it should be letter “v”. (2) In Equation 5, the “e” in 2¢# is not
italicized — should it be italicized (if it is, e.g., a variable, then it should be italicized)? Please
also check all equations and indicate any necessary formatting changes to “e” (i.e., italics to

roman font or vice versa) JH: e means the electron charge, italicized **] As illustrated in
Figure 3d, LLs are no longer equally spaced for relativistic fermions given &, oc /| n|. Most

strikingly, a field-independent zeroth (n = 0) LL locked at the band crossing point (go = 0)
appears, which is a signature unique to 2D relativistic electron systems. Such a zero energy can
be understood in terms of the Berry phase arising from the cyclotron motion of carriers in
momentum space (206). The detailed theoretical background of the Berry phase and its

manifestation in transport measurements have been well understood (202, 207-209). In short, the

Berry phase describes a geometrical phase factor of a quantum mechanical system acquired in
the adiabatic evolution along a closed trajectory in the parameter space. Such a phase factor does
not depend on the details of the temporal evolution and thus differs from the dynamical phase. A

nonzero Berry phase ¢, originates from the band touching point, such as Dirac nodes. [€**AU:
For consistency, OK to define “Berry phase” as ¢, and then use ¢, subsequently in text?

JH: under some situations it is better to use the words rather the symbol**] Under magnetic
fields, the cyclotron motion of Dirac fermions, i.e., the [€**AU: OK?JH: OK**] closed
trajectory in momentum space, induces a Berry phase that changes the phase of quantum

oscillations. Ideally, ¢, =x for an exact linear energy-momentum dispersion, and this value

shifts when the bands deviate from linear dispersion and/or the Zeeman effect is strong (209,
210).

Before formulizing the quantum oscillation for relativistic fermions by incorporating the
Berry phase—induced phase shift, we should pay attention to the dimensionality of the
investigated material systems. The Landau quantization of the 2D surface state of topological

insulators is very different from that of the Dirac or Weyl fermions in 3D topological

14



semimetals. Most topological semimetals reported so far are 3D in nature [such as Cd3As> (14,
necessarily required for a Weyl state (10). For nonrelativistic electrons in 3D, the motion along
the magnetic field direction is not quantized, leading to additional energy of (/ik-)*/2m (where k.

is the momentum along the magnetic field direction) for LLs:

272
£ =he*B(n—lj+h k=123 ) o
’ m 2 2m

Similarly, an additional energy term due to unquantized k. also occurs for 3D relativistic

fermions:

g, = v sgn(n)\[2eh | B n|+(hk.)*. 7.

[€**AU: (1) In Equation 7, should v, be vi? Cf. Equations 5 and 7 with the line of text

below Equation 5. JH: vr (2) In Equation 7 (as in Equation 5), the “e” in 2e¢# is not
italicized — should it be italicized (if it is, e.g., a variable, then it should be italicized)?**]
Therefore, although the zeroth LL’s energy is still field independent, it is not strictly zero.
Moreover, Equation 7 is valid for Dirac fermions with n =0, 1, 2, .... For Weyl fermions, the
chirality is well defined due to the lifting of spin degeneracy, so Equation 7 needs to be modified
for the zeroth LL of Weyl fermions. As discussed in Section 3.4, the chiral zeroth LL leads to

one important effect for Weyl fermions, i.e., the chiral anomaly.

3.2.2. The Lifshitz—Kosevich model for de Haas—van Alphen oscillations.

For the perfect 2D case, the Landau bands are degenerate into sharp levels (Figure 35,d), and the
motions of all electrons at the Fermi level are in phase. For the 3D case, due to the additional
energy related to unquantized 4. as shown in Equations 6 and 7, different LLs overlap in energy
space, leading to a mixture of Landau bands for particular energy (Figure 3e,f) and a continuous
energy spectrum. This is better illustrated in Figure 3g: Landau quantization for 3D free
electrons manifests as Landau cylinders along the magnetic field direction, so an equal energy
surface intersects multiple Landau cylinders. [€**AU: Per house style, text such as the
highlighted should be deleted from the main text, as such text pertains specifically to the
figure. Please move the highlighted to the caption where applicable**JH: yes, we did it]
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This scenario is distinct from the 2D case (Figure 3/). Therefore, different models have been
derived for 3D and 2D quantum oscillations.
Here we start with the dHVA oscillation because the magnetization is the derivative of the

Gibbs thermodynamic potential €2 at constant temperature and chemical potential ¢,

M = _(8_(2] , so that it directly reflects the LL spectrum. At the zero temperature limit, the
¢

oscillatory thermodynamic potential Q due to Landau quantization for a 3D system can be

expressed as (in CGS units) (203):

3/2 5/2
e ehB =1 F
Q = E cos| 2mr| ——y |+27mo |, 8.
o (2nchj men’ (0°S,,, 1 0k2)"* = r? [ F(B j/j }

extr

where S

extr

is the extremal Fermi surface cross-section area perpendicular to the magnetic field,
0°S.., / 0k’ is the Fermi surface curvature along the . direction (i.e., the field direction) at the

extremal cross section, and 7 is the harmonic index. Given several damping factors, the general
formula of the magnetization oscillations for a 3D system, derived by Lifshitz & Kosevich (the

LK formula) (203, 204, 212), is (in SI units)

3/2 1/2
S B <N F o
MP =-S5 ext — R.R,Rsin|2mr| ——y+Z || o
osc (27[;_1) nzm*(sz /8kf|] ;rz/z T DRSSH'1|: Tr,r(B 4 rj:|

extr

Rt, Rp, and Rs are the temperature-, field-, and spin-damping factors, which are associated with
the finite temperature corrections to Fermi-Dirac distribution function, the finite relaxation time
due to impurity scattering, and the phase difference between the spin-up and spin-down

subbands, respectively. [€**AU: OK?** JH: OK to move respectively, but may not need to

use multiple “with”] These factors can be expressed as

_raTul/B
' sinh(raTu/B)’

T,
RD:eXp(—mBD'uJ, 11.

10.

Ry = cos%, 12
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where u is the ratio of effective cyclotron mass m” to free electron mass mo. Tpb is the Dingle
temperature that is relevant to the quantum relaxation time, and a = (2n’k,m, )/ (he) ~14.69
T/K. [€**AU: OK as phrased? Please clarify what this is JH: the constant « is not

dimensionless. T/K is the unit.**]

The sine term in Equation 9 describes the oscillation with frequency »F and phase factor

2nr (—7 + éj , where the fundamental frequency F is linked to Sexi by the Onsager relation F' =
r

hSexu/2me. [€**AU: italicize “e”? JH: agree**| The determination of the phase factor is of

particular interest for the quantum oscillation study of topological materials since the Berry

&5

phase ¢, is connected to the phase factor via y = % o The Berry phase, which was not
T

included in Lifshitz & Kosevich’s original formalism (i.e., y = %) (212), can effectively shift the

phase of quantum oscillations (209, 210). The phase shift 6 in Equation 9, which is determined
by the dimensionality of the Fermi surface, is 0 for the 2D case and £1/8 for the 3D case. For the
3D case, 0=—1/8 (+1/8) for maximal (minimal) cross section for a 3D electron pocket (203, 204,
212) and vice versa for a 3D hole pocket. [€**AU: Please clarify what you mean by “vice
versa” JH: means +1/8(-1/8), the signs are changed**]

Although most topological semimetals are 3D, there are also some materials with layered
structure and that thus display a quasi-2D electronic structure, such as ZrSiTe (156) and
(St/Ba)Mn(Bi/Sb), (143, 173, 177, 213). For a perfectly 2D system, the above LK formula has
been modified by Shoenberg and others (203, 204, 214, 215):

=1 F
M =— —R,R,Rgsin| 2nr| —— , 13
(mmj Z:‘r T { r[B 7)}

with the same definitions for damping factors (Rt, Rp, and Rs) and phase factor yas the 3D
in the 3D model

model. The Fermi surface cross-section area become a constant for 2D, so S

extr
(Equation 9) is replaced by S, and the phase factor ois zero. In addition to this phase difference,
the oscillation amplitude (i.e., the prefactor of the summation in Equation 13) and harmonic
components (7 # () are enhanced relative to the 3D model.

Significantly, the above 3D (Equation 9) and 2D (Equation 13) LK models are based on the
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assumption of constant chemical potential, which is appropriate for a 3D system because the
electron energy spectrum is continuous, as mentioned above. In this scenario, the lowest
unoccupied state is always located at Er and is independent of B (i.e., the chemical potential = Er
for 7= 0 K). In contrast, the 2D Landau quantization gives rise to discrete energy levels, so the
chemical potential, which is the minimum energy needed to add an electron to the system, is
pinned to the highest occupied LL and hence also oscillates with ramping magnetic field. This
chemical potential oscillation will affect the quantum oscillations. Furthermore, in real materials,
the interlayer coupling is not negligible in layered compounds, which is also not captured by
Equation 13. [€**AU: Please clarify what is also not captured by Equation 13 JH: the
effect of the interlayer coupling is not included in Eq. 13. For example, it may lead
additional term, or some other corrections to Eq. 13.**] More comprehensive analyses can be
found in References 203 and 204 and references therein.

In practice, the oscillation frequency(ies) F can be directly resolved from the fast Fourier
transform (FFT) of the oscillation pattern, and other important parameters, including effective
cyclotron mass, quantum relaxation time, and Berry phase, can be obtained from the analyses
with the LK formula. From FFT, one can also clarify whether the higher harmonic terms (> 1)
with frequency #F are significant. In principle, these terms attenuate quickly with 7% for a 3D
system (Equation 9) or ! for a 2D system (Equation 13), and thus the quantum oscillations in
real materials are usually dominated by fundamental frequencies (» = 1). If the oscillation
contains only a single frequency without obvious harmonic frequency components, effective
mass m" can be obtained from the fit of the temperature dependence of the oscillation amplitude
Aosc at a fixed magnetic field to the thermal damping factor Rt in Equation 10 [i.e., Mose(T) &
Rrt]. In normal metals with exact parabolic bands, the band effective mass is expected to be a
constant, despite the location of Fermi level. It can be easily shown that such band mass is
equivalent to the cyclotron mass, which is defined as ng[g—z} within the semiclassical

E=E;

approximation, where S is the extremal area enclosed by the cyclotron orbit in momentum space.
Applying the same definition to the linearly dispersed bands with an isotropic Dirac cone, one

can easily find that m" is connected to the Fermi vector kr and velocity ve with m" = hik, / v, .

[€**AU: Please ensure that vr is consistent throughout, per above query**] Thus, m"

should vanish when a Dirac point resides at Er (where k¢ = 0) and should increase [€**AU:
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OK? JH: OK**] when the Dirac point is shifted away from Er. Such a trend has been observed
in various Dirac materials (172, 216). Generally, EF is not too far away from the Dirac band
crossing point in most known topological semimetals, so m" obtained from quantum oscillation is
usually small, as summarized in Table 1.

With a known effective mass, the Dingle temperature that is associated with the quantum
relaxation time can be extracted from the fit of the field dependence of the oscillation amplitude
at a fixed temperature by the field damping factor Rp in Equation 11 [i.e., Mosc(B) X Rp].
Because 7p is included in the exponential term of Rp, the logarithm of the oscillation amplitude
normalized by BY?Rr (for 3D) or Rt (for 2D) should have linear dependence on 1/B according to
Equation 11. Thus, 7Tp can be obtained from the slope of the linear fit of such a Dingle plot. In
practice, Dingle plots are nonlinear in some cases in which accurate 7p cannot be obtained. Such
a scenario [€**AU: Please clarify JH: meaning the situation of the nonlinearity in Dingle
plot**] could be attributed to, e.g., sample inhomogeneity, magnetic field inhomogeneity,
beating oscillation pattern due to the existence of two very close frequencies, or torque
interaction at high fields if using torque magnetometry (203).

From 7p extracted from a Dingle plot, the quantum relaxation time 74 can be derived via 7q =
h/(2mksTp). Because 74 affects the oscillation amplitude exponentially (Equation 11), strong
dHvA oscillations present in low field ranges implies large 74, which is generally the case for
topological semimetals (Table 1). It is important to distinguish the quantum relaxation time from
the transport relaxation time 7, as discussed in Section 3.1. While both arise from the scattering
by static impurities and defects, these two quantities are essentially different (217, 218): 74
characterizes the quantum lifetime of the single-particle relaxation time of the momentum
eigenstate, which determines the LL broadening of the momentum eigenstate by I' = /21,
whereas 7 is introduced in the classical Drude model and affects the Drude conductivity, o = neu
= ne’ty/m’. Given that 7, measures the motion of charged particles along the electric field
gradient, it is largely unaffected by the forward scattering (i.e., small-angle scattering), in
contrast to 7q, which is susceptible to momentum scattering in all directions. Therefore, 7 is
usually larger or even much larger than z4. Taking the form of the classical transport mobility z
= er/m", one can also define the quantum mobility by uq = erq/m”. Consequently, zq obtained
from quantum oscillation is usually less than u derived from magnetotransport, which has been

observed in various topological semimetals, as shown in Table 1. [€**AU: Does the

19



highlighted apply to magnetotransport? Please clarify JH: the highlighted means the whole
prior sentence, i.e., /g obtained from quantum oscillation is usually less than y derived from
magnetotransport *¥]

In addition to nearly zero effective mass and high quantum mobility, nontrivial Berry phase
is a key signature of relativistic fermions. As indicated above, it results in the zeroth LL, which is
absent in the LL spectrum of nonrelativistic electrons. In general, for a system exhibiting

quantum oscillations with a single frequency, ¢, can be determined from the LL index fan

diagram, i.e., the plot of the LL indices n versus the inverse magnetic field 1/B (one example is
shown in Figure 4a,b). This method has been widely used in previous studies on topological
insulators, and a proper way to construct a LL fan diagram has been established, although there
had been some confusions in early studies (202, 219). We first consider a 2D situation. As shown
in Figure 3b, with ramping magnetic field, the LLs successively pass through Er. Integer LL
indices are assigned when EF lies at the middle of two adjacent LLs [i.e., minimum DOS(EF)],
while half-integer indices are assigned when EF is right at the LL [maximum DOS(EF)]. For a LL
fan diagram established with such a definition of the [€**AU: OK? JH: OK**] LL index, the

linear extrapolation of the linear fit of n(1/B) to the % — 0 limit must lead to n = 0 for

nonrelativistic electrons, but n = 1/2 for relativistic fermions due to the zeroth LL pinned
[€**AU: pinned? JH: Yes**] at the zero energy. This n = 1/2 intercept corresponds to an ideal

Berry phase of . For a 3D system, the phase of quantum oscillation is shifted by 2n¢, as
¢

mentioned above, so the linear extrapolation should intercept the » axis at 2—B— 0.
T

<COMP: PLEASE INSERT FIGURE 4 HERE>

Figure 4 Quantum oscillations in topological semimetals. [**AU: Regarding the highlighted
references in this caption: do they denote that panels a and b are reproduced from Ref 178,
panel c is reproduced from Ref 192, and panels d through f are reproduced from Ref 44?
Please clarify** JH: yes they are from the references] (a) The oscillatory component of
resistance for Cd3As», obtained via subtracting the smooth magnetoresistance (MR) background,
as a function of 1/B at various temperatures (178). () Landau level (LL) fan diagram constructed
from Shubnikov—de Haas oscillations for two Cd3As, samples. (Inset) Intercepts of the linear
extrapolations of LL indices for the two samples (178). (c¢) The oscillatory component of
resistance for TaP, obtained via subtracting the smooth MR background, as a function of 1/B at
various temperatures. The red solid lines show the fits of the oscillation data to the two-band
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Lifshitz & Kosevich (LK) model (192). (d) Mixed real and momentum space representation of
the Weyl orbit, which consists of the Fermi arcs at the top and bottom surface connecting the
projections of Weyl nodes with opposite chirality (labeled as + and —, respectively) and the bulk
states with fixed chirality (b/ue and red) (44). (e,f) MR at 2 K and its fast Fourier transform for a
thin (150-nm) slab sample, for magnetic field parallel (90°) and perpendicular (0°) to the surface.
In addition to the bulk frequency F, another oscillation frequency corresponding to the surface
state (Fs) is observed for the perpendicular field (44).

Therefore, proper assignment of LL indices is critically important for guaranteeing precise

determination of Berry phase. Oscillations in differential magnetic susceptibility Z(: %J

offer a straightforward approach to determining integer LL indices; that is, the minima of y
should be assigned with integer LL indices, since they correspond to minimal DOS(EF). This
[€**AU: Please clarify**JH: mans the whole prior sentence “the minima of y ...
DOS(EFr)”’] can be understood as follows: As indicated above, magnetization is equal to the
derivative of the Gibbs thermodynamic potential Q at constant temperature and chemical
potential ', M = _(G_Qj . At zero temperature, Q is indeed proportional to the total energy
¢
of electrons and is modulated by magnetic field in the form of a cosine function (Equation &)

2
(203). Given y = M _ —ZT? , ¥ and Q would oscillate in phase when Landau quantization

occurs with increasing magnetic field. Since the minima of Q correspond to the minimal

DOS(EF), minimal y should be assigned with integer LL indices. Given y = %—A;, if the

oscillations of magnetization are used to establish a LL fan diagram, the minima of M should be
assigned with n-1/4 (where n is an integer number). [€**AU: Please clarify the highlighted —
do you mean 1/4n? JH: it means n minus 1/4**] With this approach, the [€**AU: OK? JH:
OK**] nontrivial Berry phase has been extracted from dHvA oscillations for several topological
semimetals (156, 220-222).

Several factors can affect the value of the Berry phase in topological semimetals. First of all,
the Berry phase can deviate from an ideal value of &t if the band dispersion is not perfectly linear
(210). Second, the Zeeman effect, which has not been considered so far, also leads to a deviation

of the Berry phase obtained from a LL fan diagram (210). Therefore, the Berry phase
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determination using the LL fan diagram should be performed with caution for high-field
quantum oscillations or for materials with large g-factors such as Cd3As; (172, 223) and ZrSiS
(221). Furthermore, from the aspect of data analysis, reading the Berry phase from a LL fan
diagram may bear large uncertainty in some cases. Because the Berry phase is determined by the
intercept of the linear fit of n(1/B), when low-LL indices cannot be reached in experiments due
to high oscillation frequency, a slight change in the slope of the linear fit can lead to a large shift
in the intercept, thus resulting in a large uncertainty in the extracted Berry phase. Therefore,
reaching low-LL indices under high magnetic fields is necessary for obtaining a reliable Berry
phase from a LL fan diagram.

In addition to magnetization measurements, dHvVA oscillations can also be probed by torque

magnetometry since a magnetic moment 77 in a magnetic field is subject to a torque 7 =i x B .
It is convenient to perform magnetic torque measurements on topological semimetals by using a
cantilever (176, 224-230) to high magnetic field, even up to 60 T. One drawback of the torque
magnetometry is the torque interaction, an instrumental effect due to the feedback of the
oscillating magnetic moment on the cantilever position, which leads to artificial effects in

quantum oscillations under high magnetic fields (203).

3.2.3. Shubnikov—de Haas oscillations.
Besides dHVA oscillation, the resistivity oscillation, i.e., the SdH effect, is also widely used to

study topological semimetals (46, 141, 171, 172, 174, 178, 179, 183, 191-193, 231-233). The

extraction of the Berry phase from SdH oscillations seems straightforward. Since the SdH effect
also originates from Landau quantization, the nontrivial Berry phase associated with the zeroth
LL also manifests itself by a phase shift in the SdH oscillation. As stated above, integer LL
indices should be assigned when EF lies in the middle of two adjacent LLs and DOS(EF) reaches
minima. The situation is less complicated in 2D integer quantum Hall systems (including the 2D
surface states of the 3D topological insulators), in which the integer LL indices unambiguously
correspond to the quantized Hall plateaus where the longitudinal conductance reaches minima (

S_.=0) due to the dissipationless edge state. The proper way to build a LL fan diagram from the

SdH effect for topological insulators was discussed in a previous review (202).
In the studies of topological semimetals, however, there have been controversies in

constructing LL fan diagrams from the SdH effect. The literature contains various definitions for
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integer LL indices, including resistivity minimum (141, 178, 234, 235), resistivity maximum

(171, 179, 183, 191, 193, 232, 233, 236-239), and conductivity minimum (143, 172, 213). At

first glance, it is natural to extend the above argument for the quantum Hall system to topological
semimetals, except that the conductivity of topological semimetals cannot be directly measured
through conventional transport experiments but should be obtained through inverting the

resistivity tensor, & = p'. For in-plane (x-y plane) current I and out-of-plane (z-direction)

magnetic field B (i.e., a standard Hall effect setup with B L I) applied to a 2D system, the charge

carriers undergo only in-plane motion, and we have

-1

A O-X)C O-X’ A p,\vc p){

az( }j:plz[ yj .14,
J)’x ny pyx pyy

Here the resistivity tensor elements p; (ij =x, y) are defined as E,/J, (where E; is the electric

field component along the +i direction and J; is the current density along the +; direction) or,

equivalently, V; /1, (where Vi is the voltage drop along the +i direction and J; is the current along

the +7 direction). [€**AU: Please clarify what cannot be directly measured JH: just to

emphasis. Can be deleted**] In fact, from this definition, p, and p  are essentially the

longitudinal and transverse (Hall) resistivity. Under the assumption of isotropic scattering rate

for a given 2D material, it is easy to demonstrate p = p  and p, =-p, . Therefore, precise

conductivity can be obtained from measured p, and p , via o =—2p e
Po TPy

However, additional considerations must be taken for 3D topological semimetals. Although
the integer quantum Hall effect (QHE) also has a semiclassical interpretation based on Landau
quantization, its underlying transport mechanism is distinct from the SdH effect due to its
nonlocal character. As discussed in more detail in Sections 3.2.7 and 3.5, the quantized Hall
conductance plateaus and the zero longitudinal conductance are associated with the
dissipationless edge channels. Such scale-invariant dissipationless edge conduction in quantum
Hall systems is completely different from the transport in conventional diffusive systems, where
the resistance or conductance is associated with the sample dimensions and is governed by the

transport relaxation rate (i.e., the scattering rate). The scattering mechanisms in real materials

can be very complicated. Fortunately, a semiquantitative LK model that gives satisfactory
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descriptions for the SAH effect has been developed for 3D systems. The earlier transport theory
has established that the scattering probability is proportional to the number of available states
that electrons can be scattered into (47, 240) and thus [€**AU: please clarify JH: it means the

scattering probability **] oscillates in concert with the oscillations of DOS(EF) and gives rise

. N2
B oM
to SdH oscillations (203, 204). More explicitly, DOS(E,). . o (’;—J —2. With this relation,

extr
the expression for conductivity/resistivity oscillation, i.e., the LK formula for the SdH effect, can
be derived from the derivative of the magnetization oscillation (203, 204). Clearly, within the
framework of this LK model based on the oscillation scattering rate, conductivity should exhibit
maxima when the scattering rate reaches minima that occur at minimal DOS(EF). Given that
integer LL indices should correspond to DOS(£F) minima as indicated above, the maxima of
conductivity oscillation should be assigned with integer LL indices. However, this approach is
based on the semiquantitative model for the SdH effect (203). The scattering rate in a real
material depends on a number of factors and can be very complicated, particularly in multiband
or anisotropic systems, which could lead the SdH oscillations to strongly deviate from the LK
theory (204). As a result, a simple connection between the integer LL indices and the SdH
oscillation extrema may be problematic in some cases. Therefore, to demonstrate [€**AU:
insert “a” or “the”?JH: the **] nontrivial Berry phase, a better approach might be the
oscillation of thermodynamic properties that are directly linked to [€**AU: insert “the”? JH:
OK**] LL energy spectrum, such as the dHVA effect as discussed above.

In addition, the complication of the scattering rate in the SdH oscillation also leads to
inconsistency between the SAH effect and the dHvA effect. In some layered topological
semimetals, dHvA oscillation is strong for arbitrary magnetic field directions, but SAH
oscillation quickly attenuates when the magnetic field is tilted toward the current direction (221,

226,232, 241, 242). In those materials, the stronger dHVA effect is also useful to distinguish the

Zeeman splitting effect from the oscillation pattern [€**AU: “... from X” — please clarify JH:

from the oscillation pattern**] (221).

3.2.4. Multifrequency quantum oscillations.
The above discussions on LL fan diagram are applicable to quantum oscillations with a

single frequency. However, multiple oscillation frequencies are often observed in most
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topological semimetals, such as those of the TaAs family (179, 180, 182, 183, 191-193, 227,
243) and WHM materials with PbFCl-type structure (W = Zr or Hf; H = Si, Ge, or Sn; M =S, Se,
or Te) (156, 221, 222, 226, 228, 232, 233, 241, 242, 244, 245). Given F = hSexu/2me, [€**AU:

should “e” be italicized? JH: yes**] the dependence of oscillation frequencies on the magnetic

field orientation provides useful information on Fermi surface morphology. In the presence of
multifrequency oscillations, the method used to analyze effective mass, quantum mobility, and
the Berry phase differs from what is discussed for the single-frequency situation. The commonly
used approach to obtain the effective mass for each frequency band is the fits of the FFT

amplitudes for each frequency component by the thermal damping factor Rt (Equation 10). In

this method, the inverse magnetic field Y in Rt is approximated by the average inverse field

1 (1 1 1 1 .
1 , defined as { —)=—| —+— |, where — and — are the upper and lower inverse
B B 2\ B B B

1 2 1 2
fields used for FFT analyses. However, this method may lead to large errors for the fitted

effective mass in some cases, since the obtained effective mass may depend on the range of the

inverse magnetic field (L _, 1) used for FFT. For example, for the NLSM ZrSiS, the

1 2

effective mass obtained from the fit of the FFT amplitude is greatly increased when a narrower
field range is used for the FFT analysis. When the inverse magnetic field range is taken as 0.143
— 1.5 T, the fitted effective mass is small for the Fs=240 T band, ~0.052 mo (221) [€** Add
the current ref. 221 here, Hu, J. PRB 96, 045127 (2017) **]. However, when the inverse field
range is reduced to 0.3 — 0.5 T"!, the fitted effective mass is increased to 0.17 mqo (348) [&**
ref. 348 is a new reference, it should be: “Antony Carrington, private communication”**].
Since the two quantum oscillation frequencies observed in ZrSiS are far apart (i.e. 8.4T and
240T), the effective masses corresponding to these oscillation components can also be obtained
by fitting the temperature dependence of the oscillation amplitude probed at a certain field. The
effective mass obtained using such a method is 0.18 myo for the 240T oscillation component.
This example shows a narrower inverse field range for FFT may improve the accuracy of the
fitted effective mass (348) [€** ref. 348 is a new reference, it should be: “Antony

Carrington, private communication”**|. However, this is not always true.
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Therefore, one must be extremely careful when using FFT amplitude to extract the effective
mass. For multi-frequency oscillations, if the frequencies are far apart, it may be possible to
obtain accurate effective mass by directly reading the oscillation amplitudes as discussed above.
On the other hand, if the frequencies are close to each other, several approaches may be used to
double check effective mass (348) [<** ref. 348 is a new reference, it should be: “Antony
Carrington, private communication”**]. Firstly, as demonstrated above, accurate effective
masses may be obtained from the FFT analyses within a narrow field range. Secondly, it may be
possible to use Fourier filter to separate multi-frequency oscillations to several single frequency
oscillations, which may allow for obtaining accurate effective mass for each frequency. In this
method, the data near the two ends of the magnetic field range should be excluded after applying
the Fourier filter, since the end effect could induce artificial signal. To minimize the errors in
effective mass, the combination of the above methods, together with a simulation of the

oscillation pattern using LK formula after obtaining the effective mass, may be helpful.

The Dingle temperature and Berry phase can be extracted through fitting the oscillation pattern
to the generalized multiband LK formula, with the assumption that the quantum oscillations of
different bands are additive. This method was previously used for the LaAlO3/SrTiO3
heterostructure (246) and was first employed for analyzing the SdH oscillations of TaP (Figure
4c) in the study of topological semimetals (192) and was then proven to be effective in
characterizing topological fermion properties for many other multiband topological semimetals

(143, 156, 221, 226, 230, 245, 247-249). For the multiband LK fit, it is important to include all

major frequency components, as well as the higher harmonic (» > 1 in Equations 9 and 13) terms
if they are significant in the FFT spectrum, although there is a trade-off for accuracy due to the
[€**AU: insert “an” or “the”?JH: “the”**] increased number of parameters. Rs is field
independent (see Equation 12) and can thus be treated as a constant for the fit; it takes effects in
modulating [€**AU: OK as phrased? JH: OK**] the amplitude for the harmonic component,
as it contains . Furthermore, Rs can be used to extract the Landé g-factor of a 2D/quasi-2D
system via the spin-zero method; that is, the oscillation amplitude vanishes at some field
orientation due to the interference of spin split Fermi surfaces. This provides an alternative

method to evaluate the g-factor in addition to the direct measurement of the separation of the
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split oscillation peaks. Such analysis has been reported for ZrSiS (221) and WTe> (250).

3.2.5. Magnetic breakdown.

Multiple oscillation frequencies usually result from multiple Fermi surface extremal cross-
section areas perpendicular to the field. Additionally, charge carriers may tunnel from one
cyclotron orbit to another and jump back to the original one to form a bigger cyclotron orbit,
hence leading to an additional frequency or frequencies equal to the sum or difference of two or
more fundamental frequencies (203, 251). This phenomenon, termed magnetic breakdown,
becomes more pronounced at high fields because the tunneling probability scales exponentially

with the inverse field 1/B as e*5

, where a is a material-dependent parameter relevant to the .-
space separation of the orbits (203). The additional frequencies ascribed to magnetic breakdown
have been observed in high-field quantum oscillation studies on several topological semimetals
(171, 226, 252).

In type I1 WSMs, the magnetic breakdown has been predicted to be associated with the Klein
paradox, which was in 1929 and which states that the tunneling barrier is nearly “transparent” for
relativistic fermions when its height exceeds the electron’s rest energy mc? (253). This
relativistic effect is attributed to the positron or electron emission by a potential barrier when the
barrier is sufficiently high (254-256). The matching between electron and positron wave
functions across the barrier leads to high-probability tunneling (257). However, the requirement
of the high potential barrier (~mc?) imposes a great challenge for the experimental observation of
this phenomenon in particle physics. Fortunately, the (rest) [€**AU: “rest of the”? JH: here
the mass means the “rest mass, it is massless (zero mass)”**] massless relativistic fermions
discovered in condensed matter provide a realistic platform, given that, in principle, there is no
theoretical requirement of the potential barrier for massless relativistic fermions. Klein tunneling
has been demonstrated in graphene, with a potential barrier created by a local gate (257, 258). A
similar effect is expected in topological semimetals with massless relativistic fermions. Recent
theoretical work has predicted a momentum space counterpart of Klein tunneling in quantum
oscillations for type II WSMs (259). In the scenario of magnetic breakdown, quantum tunneling
through different momentum space orbits naturally mimics real space tunneling of carriers [e.g.,
in graphene (257, 258)], which is expected to lead to an unusual dependence of the FFT

amplitude on magnetic field orientation (259).
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3.2.6. Quantum oscillation due to Weyl orbits.

The unusual surface Fermi arc is one distinct property of topological WSMs. For a DSM whose
Dirac node can be viewed as the superposition of two Weyl nodes with opposite chirality, its
surface state exhibits two sets of Fermi arcs curving in opposite directions on two opposite
surfaces, as shown in Figure 4d. It has been predicted that under magnetic fields, electrons can
transport on a cyclotron orbit that connects one surface Fermi arc to the opposite Fermi arc by
coupling to bulk states (Figure 4d) (43, 260). Such an unconventional Weyl orbit manifests itself
by an additional frequency in quantum oscillations (Figure 4e.f), with 2D character that can be
verified by the measurement of the field orientation dependence of oscillation frequency (i.e.,

F oc 1/ cos@). Quantum oscillations due to Weyl orbits exhibit anomalous properties such as a
sample thickness—dependent oscillation phase shift. To observe such a Weyl orbit, it is necessary
to reduce the sample size to suppress the contribution of the bulk states. This has been

demonstrated in nanostructures of Cd3As; (Figure 3e.f) (44, 261) and WTe> (262).

3.2.7. Other anomalous transport signatures originating from the zeroth Landau level.

As indicated above, the field-independent zeroth LL of relativistic fermions leads to a phase shift
in quantum oscillations from which the Berry phase can be inferred. In some layered topological
semimetals, the zeroth LL has been probed more directly by several transport techniques such as
QHE and interlayer tunneling.

The concept for QHE for 2D Dirac fermions has already been established for graphene and
topological insulators (216, 263—-265). Under a magnetic field, Landau quantization gives rise to
quantized electron cyclotron orbits. Semiclassically, under sufficiently strong field, the electrons
are pinned to these quantized small radii orbits, which causes a bulk insulating state. However,
electrons that are close enough to the edges cannot complete cyclotron motions but rather get
bounced back by the edges. Given the direction of the Lorentz force, the reflected electrons have
to move forward until they are reflected by the edge again. This creates the so-called skipping
orbit at the edge that carries current, i.e., the edge channel (Figure 5a). Given that the skipping
orbit originates from [€**AU: insert “the”? JH: OK**] cyclotron orbit, the number of the
edge conduction channels is determined by the number of the quantized cyclotron motion states

that electrons can occupy, which is the number of the filled LLs below Er. This gives rise to

quantized Hall conductance of G,, = nG,, where G, =¢”/ h is the conductance quantum. In the
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language of band theory, the internal (bulk) of the 2D system is gapped when EF locates in
between LLs. At the sample edge, the confining electrostatic potential that keeps electrons inside
the sample bends the LLs upward, as illustrated in Figure 5a. The bent LLs that cross Er form
the edge channels, giving rise to quantized Hall conductance. From the above edge channel
interpretation for the QHE, the QHE is a direct manifestation of Landau quantization of electron
energy states. This is in contrast with SAH oscillation, which arises from the oscillating scattering
rate and is thus an indirect probe of LLs. In other words, the QHE is a nonlocal transport
phenomenon due to LLs, while SdH effect [€**AU: edit to “the SAH effect” or “SdH
oscillation”? JH: effect**] is a manifestation of LLs in local transport. Furthermore, the QHE
also has a topological interpretation, which is discussed in Section 3.5.

<COMP: PLEASE INSERT FIGURE 5 HERE>

Figure 5 Direct manifestations of the zeroth Landau level (LL). [**AU: To clarify the
highlighted refs in this caption: do you mean that panels b and ¢ are reproduced from Ref
177 and panels d/e/f are reproduced from Ref 247? If not, please clarify JH: yes they are
from the references **] (a) Schematic of the real space Landau levels for relativistic electrons
in a finite-size 2D sample. (b) Crystal structure of EuMnBi» (177). (¢) Normalized inverse Hall
resistivity pu’/pxy versus Br/B measured at 1.4 K for two EuMnBi, samples, where B is the SdH
oscillation frequency and B = uo(H + M) is the magnetic induction (177). (d) Schematic of the
interlayer tunneling of the zeroth LLs’ relativistic fermions in YbMnBi; (247). (e) Experimental
setup for the measurement of the angular dependence of interlayer magnetotransport (247). (f)
Angular-dependent interlayer resistance (AMR) measured under different fields up to 31 T and
at 7= 2 K, using the setup in panel e. The black curves superimposed onto the data represent the
fits to the tunneling model. The inset shows the sin?# dependence at low field (247).

Given the existence of the field-independent zeroth LL pinned at the band crossing point
(Figure 3d.f), there is always an edge channel formed by the zeroth LL, as shown in Figure Sa.
Since the zeroth LL is evenly shared by both electrons and holes (Figures 3f and 5a), the
contribution of the zeroth LL to edge conduction is half the contribution of nonzero LLs, leading

to the so-called half-integer quantization, i.e.,

1
ny :GO (I’I'FEJ 15.

This half-integer quantization can also be understood in terms of [€**AU: insert “a”? JH:

“a”**] Berry phase of m for relativistic fermions and has been observed in graphene (216, 263),
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zero-gap HgTe quantum wells (266), and 3D topological insulators (264, 265). In real materials,

an integer factor may be applied for G, due to degeneracy, such as graphene with a factor of 4

originating from spin and valley degeneracies (216, 263). [€**AU: Please clarify what
originates from spin and valley degeneracies JH: the factor of 4 for graphene originates
from spin and valley degeneracies. **]

Given the difference in Landau quantization in 2D and 3D systems as mentioned in Section
3.2.1, it is challenging to probe the half-integer QHE in 3D topological semimetals. One
approach is to pursue their 2D nanostructures, but only the integer QHE has been observed so far
in nanostructures of Cd3;As, and WTe» (261, 267, 268), probably due to the quantum
confinement effect, which gaps the Dirac cone (267). Masuda et al. (177) reported a half-integer
QHE in a bulk DSM EuMnBi, with a layered structure (Figure 5b). This material exhibits
coexistence of two AFM orders, one formed by the Mn sublattice and the other by the Eu
sublattice. Application of a magnetic field induces a spin flop transition for the Eu AFM order,
resulting in a canted AFM state, which significantly reduces interlayer coupling so that Dirac
fermions generated by Bi square-net layers are more confined within the plane (i.e., are
[€**AU: OK? JH: OK**] quasi-2D) and exhibit signatures of the half-integer QHE. As seen
in Figure 5c¢, 1/px, normalized by 1/p.,° (where p., is the step size of successive plateaus)
displays quantized plateaus with half-integers. However, the quantum limit corresponding to
(1/px)/(1/px°) = 1/2 could not be reached in this system due to the fact that the canted AFM state
of Eu sublattice exists only in a limited field range.

In another structurally similar compound, YbMnBi», the zeroth LL was probed via interlayer
transport (247). In this material, the Bi layers that host relativistic fermions are separated by the
relatively insulating Yb-MnBi-YDb blocks, leading to a quasi-2D electronic state. As shown in
Figure 5d, given that two linear bands cross right at Er in this material (269), 2D Landau
quantization leads to the zeroth LL to be pinned to EF, regardless of magnetic field strength.
Therefore, increasing magnetic field leads to a monotonic increase in DOS(EF), which further
enhances tunneling of electrons of neighboring Bi layers through the Yb-MnBi-Yb barrier when
an interlayer electric field is applied. Because 2D Landau quantization in YbMnBi: is governed
by the magnetic field component perpendicular to the Bi plane, such exotic quantum tunneling of
the zeroth LL carriers is sensitive to the magnetic field direction and can be detected in angular-

dependent magnetotransport such as interlayer MR and the interlayer Hall effect. For example,
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for the experimental setup shown in Figure 5e, at low field when LLs are not well separated, LL
broadening and thermal excitations smear out discrete LLs, which leads to conventional (sin)?
dependence for the angular-dependent interlayer resistance (AMR) (Figure 5f, inset). In contrast,
when the magnetic field is strong enough to establish the above quantum tunneling scenario,
AMR reaches a broad minimum, with 8 being approximately 0° due to strong quantum
tunneling, but sharply increases for the in-plane field orientation when 2D Landau quantization is
suppressed. This causes a surprising strong peak centered at = 90° in AMR, which can be well

fitted by the model that includes tunneling of the zeroth LL’s carriers (Figure 5f) (270).

3.2.8. Beyond the quantum limit.
When magnetic field is strong enough to push all LLs above Er except for the lowest LL, all
electrons are condensed to the lowest LL; such a state is generally referred to as a quantum limit.
From this definition, one can find that the critical field needed to reach a quantum limit is at least
comparable to the quantum oscillation frequency. The quantum limit is not accessible under a
moderate magnetic field for most materials with high carrier density (i.e., large Fermi surface
and large quantum oscillation frequency). A system under a quantum limit or an ultraquantum
limit may show unusual properties, which has been a long-standing topic of interest even for
conventional materials. For instance, a fractional QHE can occur near or in the ultraquantum
limit of a 2D electron gas (271). In topological semimetals, the dramatically enhanced
degeneracy for the lowest LL, combined with the unique nature of relativistic fermions, may lead
to some new exotic phenomena. Indeed, a mass enhancement in the quantum limit has been
observed for ZrTes (272). This was interpreted as the dynamic mass generation accompanied by
density wave formation, which is due to the nesting of the zeroth LL driven by enhanced electron
correlation (272). Another example of unusual transport in the quantum limit due to degeneracy
enhancement is the aforementioned quantum tunneling of relativistic fermions in YbMnBi»
(247). Because the zeroth LL is pinned at Er (269), the quantum limit can be reached in
relatively low fields in this material (247).

Another phenomenon directly associated with electron condensation to the zeroth LL in
topological semimetals is anomalous magnetization (224). The Landau quantization for a 3D

WSM yields energy spectra of
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where y = =1 represents the chirality of the Weyl points. [€**AU: In Equation 16, should the

“e” be italicized? JH: Yes Also, again, please check consistency of v, (which appears twice

in Equation 16) versus vr throughout text and equations JH: use ve**] At the quantum limit,

magnetization is entirely due to the zeroth LL states, with M,_, =—0¢,_,, /OB . Taking the

=0,k
derivatives of Equations 6 and 16, one can find that the magnetization per electron should
saturate to a constant in a trivial metal but should vanish in the Weyl case. Therefore, one can
expect a collapse of magnetization for topological semimetals crossing the quantum limit.
Indeed, the magnetic torque anomaly, which has been observed in NbAs, can be quantitatively
described by the topological character of the electronic dispersion (224). [€**AU: OK? JH:
OK*¥]

High magnetic field may also lead to annihilation of a Weyl state. The recent studies on TaP
have shown that the two counterpropagating chiral modes of the lowest LL (represented by y =
+1 in Equation 16) may hybridize and open up an energy gap, leading to a magnetic tunneling—
induced Weyl node annihilation in TaP that manifests as a sharp reversal of the Hall signal
(Figure 6a) (273).

<COMP: PLEASE INSERT FIGURE 6 HERE>

Figure 6 Anomalous transport behavior beyond the quantum limit. (a) Magnetic field
dependence of the longitudinal (p.) and transverse (p.y) resistivity at 1.5 K and 4.2 K for TaP. A
steep drop and sign reversal for p,, are seen at high field (273). [€**AU: In panel a, what does
the “T6” at top right denote? Can it simply be deleted? (If so, our illustration editor will
make the change.) JH: it is the sample number and can de deleted**] (b) The oscillatory
component of resistance AR at 4.2 K of three ZrTes samples (s6, s7, and s9) with log(B) period
(274). [€**AU: Do the highlighted references denote that panel a is reproduced from Ref
273 and panel b is reproduced from Ref 274? Please clarify if not JH: yes they are from the
references**]

In addition to the above phenomena associated with the properties of the relativistic Dirac or
Weyl fermions on the zeroth LL, new quantum states in the quantum limit regime have been
proposed (274, 275). For ZrTes, whose carrier density varies with different crystal growth

techniques, its quantum limit can be reached under a very small magnetic field (~0.2 T) for low-
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carrier-density samples. In the quantum limit, surprising resistivity oscillations periodic in log(B)
have been observed (Figure 6b) (274), and these oscillations are believed to be associated with
the discrete scale invariance and formation of [€**AU: insert “a” or “the”?JH: the**] two-
body quasi-bound state (274, 275).

Another long-known but intensively investigated transport behavior in the quantum limit is
linear MR. As discussed in Section 3.1, orbital MR stemming from the Lorentz effect should
exhibit quadratic or nearly quadratic field dependence. In the quantum limit, however, MR grows
linearly with B (195). Such linear MR was discovered in a number of materials (276—280) before
the establishment of the theory for topological quantum states. Linear MR has been widely
observed in many of the recently reported topological semimetals (45, 172, 173, 175, 234, 235,

281-283). However, linear MR for those materials begins to develop at a field much lower than

the critical field needed to reach their quantum limits (45, 172, 173, 175, 234, 235, 281-283). An

alternative proposition is that the linear MR in Cd3As; may arise from spatial fluctuations of the
magnitude of and direction for local current density in disordered systems (172), which appears
to be applicable for other topological semimetals with linear MR. [€**AU: Please clarify what
appears to be applicable for other topological semimetals with linear MR JH: the above

interpretation using the spatial fluctuations appears to be applicable **]

3.3. The Intrinsic Anomalous Hall Effect

In the last section, [€**AU: please specify section number: 3.2? JH: yes the entire section
3.2*%*] we intensively discuss the phenomena related to the Landau quantization and the zeroth
LL in topological semimetals. As indicated above, the unique zeroth LL originates from the
Berry phase of the band character of relativistic fermions. In this section, we review another
important phenomenon in magnetic topological semimetals, i.e., the intrinsic AHE, which also
stems from Berry phase physics.

AHE, the enhanced Hall signal that couples with the magnetization of magnetic materials,
has been intensively studied, as discussed in previous reviews (e.g., 284). Generally, the total
Hall resistivity py, in a FM material has an anomalous contribution proportional to sample
magnetization M (px,""' = RsM) (284). Anomalous Hall resistivity can originate from extrinsic
mechanisms such as skew scattering (285) and side jumps (286) and from intrinsic mechanisms
due to the topological properties of bands (56, 287-289).

One important feature of magnetic WSMs is their intrinsic AHE. Such an intrinsic Hall
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component can be understood in terms of the Berry curvature Q of the electronic Bloch states,

which leads to an anomalous electron group velocity perpendicular to the longitudinal electric

field [(e / h)E X é} (288). In a magnetic WSM, a pair of Weyl nodes with opposite chirality can

be seen as monopole sources of Berry curvature. In this case, the AHE is purely intrinsic and
tunable by the separation of paired Weyl nodes (54). The intrinsic AHE current is dissipationless
(55, 56, 284, 289) and fully spin polarized (289-291) and therefore has great potential for
spintronic applications.

A time reversal symmetry (TRS)-breaking Weyl state has also been predicted or established
in many magnetic compounds. [€**AU: Please define TRS (at first use here); please check
whether the spelled-out term appears above. If it does, then TRS should be defined above
at first use JH: time reversal symmetry.**] An incomplete list includes Co-based Heusler alloys
CoxXZ (X=1VB or VB; Z=1VA or IIIA) (95-99), half-metallic Co3Sn>S, (93, 94, 292), half-
Heusler compounds RPtBi (R = Gd and Nd) with AFM orders (108—110), and chiral
antiferromagnets MnSn3 and MnGes (102, 103). The FM Co2XZ compounds are known to be
half-metallic ferromagnets, and some of them have Curie temperatures above room temperature,
high spin polarization, and large Seebeck coefficient (293, 294). It has been theoretically
predicted that the locations of the Weyl points of these compounds in momentum space can be
tuned by the magnetization direction (96, 97). These properties, together with the predicted giant
anomalous Hall conductivity (98, 293), make these materials potentially useful for spintronic and
thermoelectric applications. These predictions are awaiting experimental verification. A large
intrinsic AHE and a giant anomalous Hall angle were recently reported in FM Co3Sn2S:z (94,
292), for which the existence of Weyl fermions has been demonstrated by the observation of
surface Fermi arcs (93).

The topological nontrivial states in half-Heusler compounds attracted significant attention
even before the discoveries of topological semimetals (108, 295-297). The recent observations
of chiral anomaly—a unique feature of Weyl fermions—together with band structure
calculations suggest a magnetic field—driven Weyl state in AFM RPtBi (109, 110). Although
different mechanisms such as Zeeman splitting (109) and exchange field (110) have been
proposed for the formation of a TRS-breaking Weyl state in these AFM zero-gap semiconductors
with quadratic band touching, the intrinsic AHE associated with the magnetic field—driven Weyl
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state has been probed (Figure 7a), with a very large anomalous Hall angle of ~0.15 comparable
to the largest observed in bulk ferromagnets (Figure 7b) (110, 298).
<COMP: PLEASE INSERT FIGURE 7 HERE>

Figure 7 Anomalous Hall effect. (a) Magnetic field dependence of the transverse (Hall)
resistivity pxy for GdPtBi, with field along the [001] direction (298). () Anomalous Hall angle
Aoyy/oxy at different temperatures for GdPtBi (298). (c¢) Magnetic field dependence of the Hall
resistivity pu for Mn3Sn (100). [€**AU: Does the highlighted denote that panels a and b are
reproduced from Ref 298 and panel c is reproduced from Ref 100? Please clarify JH: yes
they are from the references **|

The chiral antiferromagnets Mn3Sn and Mn3Ge exhibit large anomalous Hall resistivity in the
AFM-ordered state, with a sharp and narrow hysteresis loop in magnetic field sweeps (Figure
7¢) (100, 101). In particular, Mn3Sn is the first antiferromagnet to be discovered to exhibit such a
surprising large room temperature AHE (100). Furthermore, remarkable anomalous behavior has
also been observed in its Nernst effect (57). [€**AU: Please clarify what “its” refers to JH:
means this material, Mn3Sn**] These anomalous transport features have been ascribed to a
magnetic Weyl state, which was subsequently demonstrated both theoretically (102) and
experimentally (103).

Although the intrinsic AHE results from magnetic Weyl states, the strong intrinsic AHE does
not exclusively occur in magnetic Weyl systems. [€**AU: OK? Please clarify as necessary
JH: it is OK**] Other magnetic systems such as FM kagomé metal Fe>Sn3 (299), FM spinel
CuCr2Ses—Br, (289), and magnetic semiconductors (288, 291) have also been reported to display
the intrinsic AHE.

34. [€**AU: “The”? JH: OK to use The**] Chiral Anomaly

As a hallmark of WSMs, the chiral anomaly is particularly important, as it bridges Weyl
fermions in condensed matter physics and in high-energy physics. [€**AU: OK? JH: OK**]
Generally, the numbers of left- and right-handed Weyl fermions are conserved. This individual
conservation of particles with opposite chirality is violated in the presence of parallel electric and
magnetic fields. This effect, which was originally proposed in particle physics and termed the
Adler—Bell-Jackiw effect or chiral anomaly (17), leads to exotic transport behaviors in
condensed matter, i.e., negative longitudinal MR, AMR narrowing, and the planar Hall effect

(PHE), which are discussed in detail below.
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3.4.1. The chiral magnetic effect and negative longitudinal magnetoresistance.

Negative longitudinal MR (i.e., the increase in magnetic field parallel to the electrical current
leading to a decrease of resistivity) related to chiral anomaly has been discovered in several
topological semimetal systems, as shown below. Chiral anomaly is the manifestation of the
chiral magnetic effect: the generation of electric current under magnetic field induced by the
chirality imbalance. The mechanism of this phenomenon is well established (10, 11, 52, 53).
Here we give a brief overview on its relevant physics. We consider the quantum limit, [€**AU:
OK to add comma here? JH: OK**] where only the zeroth LL is occupied. As described in
Equation 16 and illustrated in Figure 8a, the 3D Landau quantization of a WSM leads to
counterpropagating zeroth LLs for a pair of Weyl cones, which disperse only along the magnetic
field direction. This direction is also the direction for electrons to have coherent motion when an
external electric field E is applied. Such electric field—driven motion leads to electron pumping
between Weyl nodes with a rate o« —E-B (10, 11, 53), which results in imbalanced population of
carriers between the two zeroth LLs of the paired Weyl cones. As a result, the chirality becomes
imbalanced. In condensed matter, this charge pumping process is finally relaxed by inter-Weyl

node scattering, and a steady state is reached, with a chiral current j o BE-Br,  , where Tint is

int >
the internode relaxation time (10, 11, 53). Clearly, this chiral current contributes to negative MR
when E//B. Aside from this quantum mechanical interpretation based on only the zeroth LL, a
semiclassical approach based on the Boltzmann equation also yields the same result; with this
approach, it [€**AU: please clarify “it” JH: “it” means the formulism of the chiral
anomaly**] can also be generalized to the semiclassical regime that involves multiple LLs (10,
11, 53).

<COMP: PLEASE INSERT FIGURE 8 HERE>

Figure 8 Chiral anomaly and negative longitudinal magnetoresistance (MR). (@) Schematic of
chiral charge pumping between two Weyl cones with opposite chiralities under parallel magnetic
and electric fields (105). (b) Magnetic field—induced Weyl state by lifting the spin degeneracy of
a Dirac cone due to the Zeeman effect (105). (¢) Longitudinal py, at various temperatures for
NazBi. Negative longitudinal MR is observed at lower temperatures (105). (d) Longitudinal p,. at
various temperatures for ZrTes. Negative longitudinal MR is observed at lower temperatures
(107). [€**AU: Do the highlighted references denote that panels a through c are
reproduced from Reference 105 and panel d is reproduced from Reference 107? Please
clarify JH: yes they are from those references**|
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Although the negative longitudinal MR originating from chiral magnetic effect occurs in both
the quantum limit and semiclassical regime, the actual field dependence of MR can be material
dependent. Generally, the negative MR is expected to be linearly dependent on B in the quantum
limit while being o B in the low-field range. But the real situation can be more complex if the
internode scattering that relaxes the chiral charge pumping becomes field dependent. This is
possible in the quantum limit at high field, as shown below. In real materials, the situation can be
further complicated by positive orbital MR due to the Lorentz effect, which is determined by the
magnetic field component perpendicular to current, as discussed in Section 3.1. Ideally, such
positive orbital MR should vanish when E//B, but finite orbital MR may arise from a [€**AU:
insert “an” or “the”? JH: a**] anisotropic Fermi surface for E//B (300). Given such orbital
effects, the longitudinal MR may show quadratic field dependence in the low-field range but
becomes negative when the chiral magnetic effect dominates.

It is also worth noting that the chiral magnetic effect is not limited to the case of exact E//B,
since the chiral charge pumping rate is finite for nonorthogonal electric and magnetic fields.
Therefore, negative MR may be observed in a range of field orientation angles and vanishes
when it is compensated by the positive orbital MR component, which is determined by the
transverse magnetic field component. If the negative MR is too sensitive to field orientation (e.g.,
it disappears when the magnetic field is deviated by 1° or 2° from the parallel direction), it may
suggest a classical origin of current jetting, which is discussed below.

The chiral magnetic effect was first observed in Dirac systems such as Bio.97Sbo.03 (301),
NazBi (105), CdzAs> (Figure 8c) (45, 106), and ZrTes (Figure 8d) (107) before the experimental
discovery of WSMs. This effect [€**AU: OK? JH: yes**] can be attributed to the fact that the
Dirac point in a 3D DSM can be viewed as a superposition of two paired Weyl nodes with
opposite chirality. Such two overlapping Weyl nodes can be separated in momentum space by
magnetic field, which breaks time-reversal symmetry (Figure 8b). Half-Heusler RPtBi is another
group of materials that exhibits the [€**AU: OK? JH: OK**] magnetic field—induced chiral
magnetic effect (109, 110). As mentioned in Section 3.3, these materials are zero-gap
semiconductors, and their Weyl points are believed to be caused by the external field—induced
Zeeman splitting (109) or by the [€**AU: OK? JH: OK**] exchange ficld from 4f electrons
(110). It has been proposed that their Weyl points can be induced for any magnetic field

orientation, and the induced Weyl points do not necessarily reside on the axis parallel to the field
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(104). For these field-induced Weyl states, the separation of Weyl points in momentum space
may be dependent on magnetic field, so the negative longitudinal MR could display nonuniversal
field dependence. For example, a quadratic field dependence of negative MR anticipated for a
non—quantum limit regime has been observed for most of the above materials (107, 110, 301).
However, a saturation behavior is seen in Na3Bi (Figure 8c¢), which is attributed to the field-
dependent internode relaxation time in the quantum limit (105).

Since the experimental discoveries of the WSM state in materials such as TaAs class (type I)
groups have reported observation of negative longitudinal MR in those materials and have

attributed it to the chiral magnetic effect (109, 110, 179-181, 183, 192, 225, 302, 303). Although

chiral anomaly is usually viewed as smoking gun evidence for a Weyl state, one must be
cautious before attributing the observed negative longitudinal MR to chiral anomaly, since a
classical effect, current jetting, can also lead to negative longitudinal MR (47). Current jetting is
simply due to the rule that the current flows predominately along the [€**AU: insert “the” or
“a”? JH: the**] high-conductance direction. Once large-conductance anisotropy exists,
equipotential lines are strongly distorted, and the current thus forms jets. For materials with large
transverse MR, which is the case for most DSMs and WSMs, magnetic field causes very strong
conductance anisotropy between the along-current and perpendicular-to-current directions.
Therefore, with increasing magnetic field, the voltage drop between voltage contacts may even
decrease for asymmetric point-like electrical contacts and irregular sample shape, leading to
negative longitudinal MR (10, 304, 305). To minimize such a classical effect, it is important to
use a perfect bar-shape sample with a large aspect ratio and well-separated, symmetric voltage
contacts. Current jetting is also expected to be weak in materials with small transverse MR [e.g.,
GdPtBi (304)] due to reduced-conductance anisotropy under magnetic fields. More
comprehensive discussions of the current jetting effect in topological semimetals can be found in
References 304 and 305.

For type I WSMs such as (W/Mo)Te> (28, 111-122), chiral anomaly shows a different
situation. Given the strongly titled Weyl cones in such WSMs, [€**AU: OK? JH: OK.
Change “of” to “in”**] Landau quantization sensitively depends on the orientation of magnetic
field, and the Landau spectrum is gapped for some field directions. Therefore, their negative

longitudinal MR is strongly anisotropic (28, 306, 307); this has been observed in WTe; (302,
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303). Further studies also found that, in the classical limit characterized by @,z <1 (as opposed
to the quantum limit or semiclassical limit, where @,z > 1, where @, is the cyclotron frequency

and 7 is the transport relaxation time), negative longitudinal MR in type II WSM becomes

isotropic, similar to that in type I semimetals (303, 308).

3.4.2. The Planar Hall effect.
In addition to generating negative MR in longitudinal transport, the chiral anomaly also leads to
a nontrivial transverse (Hall) signal under in-plane magnetic field (Figure 9a). Intuitively, an in-
plane Hall signal is not expected under in-plane magnetic field due to the absence of electron
accumulation on the sample edges. However, in-plane Hall voltage can be generated in the
presence of coplanar electric and magnetic fields (Figure 9a) due to chiral anomaly, leading to
the so-called PHE (309-315).

<COMP: PLEASE INSERT FIGURE 9 HERE>

Figure 9 The planar Hall effect (PHE) and angular-dependent interlayer resistance (AMR)
narrowing. (a) Experimental setup for the PHE. The magnetic field is rotated within the sample
plane (the x-y plane). (b) Experimental setup for the conventional Hall effect. The magnetic field
is rotated from the out-of-plane direction toward the sample plane (the y-z plane). (¢,d) Angular

dependence of the (c) planar (p,,"* ) and (d) conventional ( p,,) Hall resistivity in GdPtBi at 9 T

and 2 K, using the setup shown in panels a and b, respectively. A twofold symmetry is observed
for the PHE, in contrast with a onefold symmetry for the conventional Hall effect (313).
[€**AU: Does the highlighted denote that panels a through d are reproduced from Ref
313? Please clarify JH: yes they are**] (e,f) Magnetic field orientation dependence of the
magnetoconductivity [Acw = ou(B,9) — 0x(B,90°)] of Na3Bi at 4.5 K, measured at (e¢) low and (f)
high magnetic fields. [€**AU: OK? JH: OK**] The insets show the same data in polar
representation. The peak profiles in the angular dependence are clearly narrower at high fields
(105). [€**AU: Does the highlighted denote that panels e and f are reproduced from Ref
105? Please clarify JH: yes they are **]

The PHE, a well-known phenomenon observed in ferromagnets, is due to the resistivity
anisotropy caused by anisotropic magnetization (316). Although topological semimetals have the
same in-plane angular dependence in Hall resistivity px, as do ferromagnets, the PHE in
topological semimetals occurs in the absence of magnetic order, with a significantly enhanced
amplitude (309, 310). With coplanar electric and magnetic fields, the transverse resistance p, of

the PHE is (309)
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=@sin2(o, 17.

Xy

where p, and p, denote resistivity with current flowing along and perpendicular to the direction

of the magnetic field, respectively, and ¢ is the angle between the current flow and magnetic

field orientation (Figure 9a). As discussed in Section 3.2, in the Drude model, the orbital MR for

B//1'is strictly zero unless a multiband effect is involved. Therefore, g — p, represents the

resistivity anisotropy caused by chiral anomaly.
In experimental studies on DSMs and WSMs, an abnormal Hall signal under in-plane

magnetic field was first reported in ZrTes (317). A strict sin2¢ dependence was later observed

in a number of materials, including ZrTes, Cd3As>, GdPtBi, WTe», and VAl; (311-315). With
rotating in-plane field (Figure 9a) and out-of-plane field (Figure 95), the twofold anisotropy of
the PHE (Figure 9c¢) clearly differs from the onefold symmetry seen for the conventional Hall
effect (Figure 94) (313). Unlike the conventional Hall effect, the PHE does not satisfy

antisymmetry; i.e., o, #—p,, . This is because the PHE does not originate from the Lorentz

force (309, 310).

3.4.3. Narrowing of angular-dependent interlayer resistance.

With the above definition of p, and p, , the longitudinal resistivity can be expressed as (309)

Po =P, +(p = p,)cos’ . 18.

Another unusual property that can be derived from Equation 18 is the narrowing of the AMR
peak at high magnetic field (309). For simplicity, the magnetoconductivity with sweeping in-

1

- (a stricter process requires tensor
P.(B,0) p.(0,0)

plane angle ¢ may be expressed as

conversion). At a small angle, the angular dependence of magnetoconductivity has a Lorentzian

2
£ T
Ap = E —, 19
v [th/lBj \frc

where [, =+/%/eB is the magnetic length, 7, is the relaxation time for chiral charge diffusion,

profile with angular width (309):
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and 7 is the conventional momentum relaxation time. At low fields, LLs are wiped out by
energy level broadening and thermal excitation. In this case, the parameters involved in Equation

19 are field independent except for /,, indicating a narrowing of angular width with B that has

been observed in NazBi (Figure 8e,f) (176). When a strong magnetic field drives the system to
the quantum limit, the field dependence of each parameter in Equation 19 leads to the saturation

of Ag, as shown in Figure 9e,f (176).

3.5. Quantum Hall States in the 2D Limit

3.5.1 Classifications of the various quantum Hall states [JH: this subheading is
added to ensure there will be at least two subheadings in this sections]

In the 2D limit, one intriguing aspect of topological semimetals is the potential to generate
various quantum Hall states. In Section 3.2.8, we mention that the QHE in the 3D layered
topological semimetal EuMnBI1> is caused by the formation of 2D electronic states due to
restriction of electron motion in the 2D Bi plane (177). Here we discuss two other quantum Hall
states in the 2D limit that have potential applications in electronics and spintronics: the QSHI
(i.e., 2D topological insulator) state and the QAHI state. [€**AU: OK? (Note that QSHI and
QAHI are now defined above in text, at the first use of each of these terms) JH: OK since
they have been defined in the introduction*¥*]

The 2D quantum Hall states for both nonrelativistic and relativistic electrons reflect the
fundamental topological properties of materials. For example, the integer QHE, an established
[€**AU: OK? JH: OK**] phenomenon that was well understood in terms of the Landau
quantization, now has a topological interpretation based on the topological invariant of the Chern
number, which opens up the field of topological electronic states in condensed matter. As shown
in Figure 10a and mentioned in Section 3.2.7, an integer quantum Hall system under sufficiently
strong fields is characterized by an insulating bulk state with electrons pinned to quantized small
radii orbits and a conducting, dissipationless chiral edge state formed by skipping orbits.
[€**AU: OK? JH: remove the second “by” before the conducting, dissipationless chiral edge
**] The superposition of two copies of time-reversal integer quantum Hall systems in the
quantum limit leads to the QSHI, i.e., the 2D topological insulator, which displays a pair of
counterpropagating, spin-polarized edge states due to spin-orbit locking (Figure 10c).

Apparently, the magnetic field necessary to produce an integer quantum Hall system is no longer
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needed for a QSHI system (76, 79), as the magnetic field is cancelled out when the time-reversal
copies of integer quantum Hall systems are brought together. [€**AU: Edits to the last
sentence OK? JH: OK**] Another modification of the integer quantum Hall system that does
not require an external magnetic field is the QAHI state, [€**AU: OK? JH: OK**] in which
spontaneous magnetization leads to the dissipationless chiral edge state (Figure 105) and the
formation of LLs is not required (76, 79).

<COMP: PLEASE INSERT FIGURE 10 HERE>

Figure 10 Quantum Hall effects in various topological phases. (a—c) Schematic for (a) the integer
quantum Hall insulator (IQHI) state, () the quantum anomalous Hall insulator (QAHI) state, and
(c¢) the quantum spin Hall insulator (QSHI) state. (d—f) The (d) 1H, (e) 1T, and (f) 1T’ structures
of monolayer transition metal dichalcogenides. Panels d—f reproduced from Reference 72.
[€**AU: OK? JH: OK**] (g) Gate voltage dependence of the differential conductance of the
monolayer WTe; at difference temperatures. Panel g reproduced from Reference 74. [€**AU:
OK? JH: OK *¥*]

The QSHI and QAHI states [€**AU: OK? JH: OK**] also provide significant insights
into topological physics beyond simple modification of the integer quantum Hall system (76).
The QAHI and [€**AU: insert, e.g., “insulators in the”? JH: do not inset that**] the integer
quantum Hall system are essentially 2D Chern insulators characterized by nonzero Chern
numbers, in contrast with a trivial insulator with C = 0. With TRS, the Chern number must
vanish, but another topological invariant, the Z> number, can be introduced to clarify the 2D
insulators, becoming 0 for trivial insulators and 1 for a symmetry-protected topological insulator
(QSHI) (318). Simple stacking of these 2D building blocks leads to a 3D weak Chern insulator
or a weak topological insulator that is not robust against disorder (319). It is also possible to
extend the topological classification of a QSHI to 3D and create a strong 3D topological
insulator (319). However, the extension of the 2D Chern insulator to 3D cannot produce a strong
3D Chern insulator. Instead, this development [€**AU: OK? JH: OK**] results in a metallic
phase: the topological semimetal (76). The above discussions show how quantum Hall systems,
the QSHIs, the QAHIs, [€**AU: OK? JH: see my edits**] 3D topological insulators, and
topological semimetals are closely connected in terms of the topological properties, which
implies the possibility of conversion between these states.

From the experimental aspect, QSHIs and QAHIs are expected to display unusual nonlocal
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transport (320, 321). [€**AU: Referring to the insulators (text would remain as is) or the
systems/states (in which case please add “systems” or “states” after “QSHI and QAHI”)?
JH: the insulators**] The resistance or conductance of conventional diffusive systems is
dependent on the dimensions of the sample and is determined by the local resistivity or
conductivity (Ohm’s law). However, in quantum Hall systems, due to scale-invariant
dissipationless edge conduction, transport is nonlocal, and the concepts of resistivity or

conductivity are thus meaningless. The Hall conductance can be obtained from the Chern

number Cby G, = Ce” / h; a half-quantized Hall conductance is also expected for massless
relativistic fermions, as discussed in Section 3.2.8 (Equation 15). Fora QSHI, G, =0 due to C

=0 1in a TRS system, which can be attributed to the fact that the pair of time-reversed chiral edge

states cancels each other (Figure 10c). For the longitudinal conductance G, the measurement

results strongly depend on the configuration of the contact electrodes. This is because an ideal
contact attached to the edge of the sample acts as a reservoir that draws electrons and emits them
from and to the edge channels. [€**AU: OK? JH: OK**] The spin information of an electron
is smeared out during this process. For an integer quantum Hall system or a QAHI system, the
edge state is chiral (Figure 10a.,b), and the electrons emitted from the contact have to flow along
the same direction, which should lead to zero longitudinal conductance and hence zero
longitudinal resistance according to resistivity and conductivity tensor conversion. However, for
a QSHI [€**AU: insert “state” or “system? QSHI can refer to one type of insulator, so
“state” or “system” is not needed here **] with time-reversed spin-polarized edge states, the
spin of the emitted electrons has half probability to be reversed, [€<**AU: OK as phrased? JH:
OK**] corresponding to the back-moving edge channel with opposite spin. Therefore, a finite

resistance depending on the number and configuration of contacts can be expected (320, 321).

3.5.2. Material realizations for the QSHI and QAHI states. [**AU: (1) Edits OK? JH: OK
(2) If using subheadings in a section, there need to be at least two, per house style. Please
either add another subheading to the section (e.g., add a Section 3.5.2) or remove this one
here. JH: another subheading is added at the beginning of this section, so there are two
subheadings now**]

The QSHI state [€**AU: OK? JH: OK. QSHI can refer to the actual insulator or the
quantum state**] has been proposed in the monolayer form of the layered 1T'- transition metal

dichalcogenides MX> (M =W, Mo; X =S, Se, Te) (72) and WHM (322). The structure of
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monolayer MX> is formed from the stacking of X-M-X layers, with its physical properties being
determined by the type of stacking. A hexagonal H structure with 4BA stacking (Figure 10d)
results in the well-known direct-band-gap semiconductors (323). For a rhombohedral 1T phase
with ABC stacking (Figure 10e¢), the structure is unstable and undergoes a spontaneous lattice
distortion to the 1T’ phase (Figure 10f), which consequently leads to a QSHI state in the
presence of SOC (72). The QSHI state in monolayer 1T'-MX> was first demonstrated in WTe, as
this material naturally has the 1T’ structure in the bulk form. There is transport (74, 75) and
spectroscopic (73) evidence of the QSHI state in WTe; monolayers prepared using mechanical
exfoliation or molecular beam epitaxy (MBE) growth. For example, upon [€**AU: OK? JH:
OK**] sweeping the gate voltage, a conductance plateau associated with the 1D edge state of a
QSHI is observed in a WTe> monolayer (Figure 10g) but is absent in bilayer or few-layer
samples (74, 75). More importantly, the temperature at which the conductance plateau starts to
develop is as high as 100 K (Figure 10g), which is greatly higher than the operating temperature
of other well-established QSHIs in semiconductor quantum wells (324) and could be ascribed to
the large bulk band gap of the 1T’-WTez monolayer [which was predicted to be 100 meV (72)
and found to be 55 + 20 meV for MBE-grown samples (73)]. This finding has great potential for
practical device applications. Furthermore, under one proposal, the horizontal electric field may
break the inversion symmetry and may induce strong Rashba splitting of the bands near EF,
which closes the bulk gap at some critical electric fields. Such gap closing leads to a topological
phase transition to a trivial phase; this transition occurs very rapidly and can thus be used for
topological field effect transistors (72).

The tetragonal layered WHM compounds have also been predicted to become QSHIs in the
monolayer form (322). Different from WTe,, which is a type II topological WSM in the bulk
form (28, 111-113, 117), bulk WHM is predicted to be a weak topological insulator formed from

the stacking of QSHIs (322, 325); this is a long-sought topological quantum state (326). In
WHM, C>y symmetry ensures nodal-line crossings near Er in the absence of SOC, but this
symmetry cannot prevent SOC gap opening (154). Because the Fermi level crosses the gapped
cones and the band dispersion is extremely linear over a wide energy range, WHMSs have been
established as topological NLSMs (78, 85, 154). To realize the predicted QSHI state, one
possible route is to exfoliate the bulk WHMs to their monolayers. Although the interlayer
coupling in WHMs is not van der Waals type (322, 327), the weak coupling strength in some
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WHMSs allows for mechanical exfoliation, as has been demonstrated (156). One possible
advantage of using WHMs as a platform for searching [€**AU: “for”? JH: can change
“searching” to “realizing”**] QSHIs is the variable SOC gap with various combinations of I,
H, and M (226); such a gap offers the opportunity to design different QSHIs.

As mentioned above, a QAHI system is in principle similar to the integer quantum Hall
system, but the former occurs without an external magnetic field and LLs (76, 79) and thus
carries great promise for possible applications in spintronics. [€**AU: OK? JH: OK**]
Furthermore, a QAHI system [€**AU: insert “state” or “system”? JH: system**] also
provides a promising platform for the creation, manipulation, and utilization of Majorana
fermions, the hypothetical particles that are their own antiparticles (328, 329). The QAHI state
was first experimentally demonstrated in magnetically doped topological insulators (330-332).
However, it has so far been realized only at very low temperatures (<1 K) (330-332). Room
temperature QAHIs, [€**AU: “QAHI state” or “QAHIs”?, JH: QAHIs**] if realized, will
have the potential to revolutionize information technology through dissipationless spin-polarized
chiral edge transport in spintronic devices. Recent studies have revealed a new possible route to
the realization of high-temperature QAHIs: 3D FM WSMs can evolve into large-gap QAHIs
when the dimensionality is reduced from 3D to 2D, due to the confinement-induced quantization
of low-energy states (21). [€**AU: In the last sentence, change QAHI to “QAHIs”? JH:
OK**] One possible candidate material is HgCr2Ses4 (21), which is awaiting experimental
verification. In addition to these two approaches, there are other proposals for the realization of

QAHIs (76).

4. SUMMARY AND PERSPECTIVE

Above we review distinct electronic transport phenomena associated with nontrivial band
topology in different types of topological semimetals and discuss how to extract the fundamental
properties of Dirac/Weyl fermions such as effective mass, quantum mobility, and the Berry
phase from dHVA or SdH quantum oscillation measurements. The above discussion shows that
topological semimetals exhibit a rich variety of exotic properties that are not seen in
nonrelativistic electron systems. These properties include chiral anomaly and the PHE in WSMs,
the intrinsic AHE in time-reversal symmetry—breaking WSMs, quantum oscillations due to Weyl

orbits and AMR peak narrowing under high magnetic fields in DSMs, the half-integer QHE and
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quantum tunneling of the zeroth LLs in layered magnetic DSMs, and [€**AU: OK? JH:
OK**] vanishing magnetization and dynamic mass generation in the quantum limit of
DSMs/WSMs. We discuss how these properties are connected with nontrivial band topology,
although the mechanisms for some of these properties are not fully understood. Furthermore, we
discuss how DSMs/WSMs are linked with the QSHI and QAHI states [€**AU: OK? JH:
OK**| and how these two quantum Hall states can be approached by reducing NLSMs/FM
WSMs to 2D thin layers.

As previous reviews have noted (10, 11), one challenge in this field is the experimental
realization of ideal model systems like graphene (10) or the hydrogen atom (11) for various types
of topological semimetal phases. An ideal model system should contain only the topological
band(s), with the same types of Dirac or Weyl points being symmetrically related, located at the
Fermi energy level, and well separated in momentum space. For the material aspect, such a
system should be stable in the ambient environment and have minimal defects (10, 11). As noted
above, the topological semimetals discovered so far are probably the tip of the iceberg. Given
that topological semimetals can be predicted by band structure calculations, we believe that
many new topological semimetal phases and candidate materials will be discovered and that
some of them may serve as model systems. There have been recent breakthroughs in topological
phase screening and database development for topological quantum materials (37, 325, 333—
336). With new simple model systems, the trivial bands will not mask or interfere with the
contributions from exotic phenomena arising from the nontrivial bands, and novel knowledge of
various topological semimetal phases can be further revealed.

Topological quantum materials have stimulated great interest because of not only their
connection with high-energy particle physics but also their great potential in future technology
applications. As discussed above, both the QSHI and QAHI states [€**AU: OK? JH: OK**]
can be obtained by reducing the dimension of NLSMs/FM WSMs to 2D, and these two states
can support dissipationless transport through their topological spin-polarized edge states.
[€**AU: Please spell out DNLS (it appears only once in text - in the last sentence) JH:
should be NLSMs**] Therefore, they carry great promise for applications for spintronic devices
and quantum computation. Although both the QSHI and QAHI [€**AU: OK? JH: remove
“states”**] have been demonstrated experimentally, these states currently occur only in the low-

temperature range. Pushing their operation temperature to room temperature is another great
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challenge in the field. Achieving this goal requires discoveries of new topological materials with
better properties, along with integrated efforts in theoretical modeling, computation, synthesis,
characterization, and device demonstrations.

[**AU: Please insert your Disclosure of Potential Bias statement, covering all authors,
here. If you have nothing to disclose, please confirm that the statement below may be
published in your review. Fill out and return the forms sent with your galleys, as
manuscripts CANNOT be sent for page proof layout until these forms are received. JH: the

statement below is OK with me (Jin Hu). Please verify with other authors as well**]

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that

might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

J.H. is supported by the US Department of Energy (DOE), Office of Science, Basic Energy
Sciences program under award DE-SC0019467. Z.-Q.M. is supported by the US National
Science Foundation under grant DMR1707502. N.N. is supported by the US DOE, Office of
Science, Basic Energy Sciences program under award DE-SC0011978. We thank Prof. Antony
Carrington from Bristol University for the informative discussions on the effective mass for

multi-frequency oscillations.

LITERATURE CITED

1. Wilczek F. 1998. Why are there analogies between condensed matter and particle theory?
Phys. Today 51:11

2. Volovik GE. 2009. The Universe in a Helium Droplet. Oxford, UK: Oxford Univ. Press

3. Geim AK, Novoselov KS. 2007. The rise of graphene. Nat. Mater. 6:183-91

4. Hasan MZ, Kane CL. 2010. Topological insulators. Rev. Mod. Phys. 82:3045-67

5. Qi1 X-L, Zhang S-C. 2011. Topological insulators and superconductors. Rev. Mod. Phys.
83:1057-110

6. Vafek O, Vishwanath A. 2014. Dirac fermions in solids: from high-T. cuprates and graphene

47



to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5:83—112

7. Jia S, Xu S-Y, Hasan MZ. 2016. Weyl semimetals, Fermi arcs and chiral anomalies. Nat.

Mater. 15:1140-44

8. Yan B, Felser C. 2017. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter

Phys. 8:337-54

9. Burkov AA. 2018. Weyl metals. Annu. Rev. Condens. Matter Phys. 9:359-78

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

Armitage NP, Mele EJ, Vishwanath A. 2018. Weyl and Dirac semimetals in three-
dimensional solids. Rev. Mod. Phys. 90:015001

Bernevig A, Weng H, Fang Z, Dai X. 2018. Recent progress in the study of topological
semimetals. J. Phys. Soc. Jpn. 87:041001

Young SM, Zaheer S, Teo JCY, Kane CL, Mele EJ, Rappe AM. 2012. Dirac semimetal in
three dimensions. Phys. Rev. Lett. 108:140405

Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, et al. 2012. Dirac semimetal and topological
phase transitions in 43Bi (4 = Na, K, Rb). Phys. Rev. B 85:195320

Wang Z, Weng H, Wu Q, Dai X, Fang Z. 2013. Three-dimensional Dirac semimetal and
quantum transport in CdzAsz. Phys. Rev. B 88:125427

Weyl H. 1929. Elektron und Gravitation. 1. Z. Phys. 56:330-52

Herring C. 1937. Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52:365—
73

Nielsen HB, Ninomiya M. 1983. The Adler-Bell-Jackiw anomaly and Weyl fermions in a
crystal. Phys. Lett. B 130:389-96

Abrikosov AA, Beneslavskii SD. 1971. Some properties of gapless semiconductors of the
second kind. J. Low Temp. Phys. 5:141-54

Wan X, Turner AM, Vishwanath A, Savrasov SY. 2011. Topological semimetal and Fermi-
arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83:205101
Burkov AA, Balents L. 2011. Weyl semimetal in a topological insulator multilayer. Phys.
Rev. Lett. 107:127205

Xu G, Weng H, Wang Z, Dai X, Fang Z. 2011. Chern semimetal and the quantized
anomalous Hall effect in HgCr2Ses. Phys. Rev. Lett. 107:186806

Huang S-M, Xu S-Y, Belopolski I, Lee C-C, Chang G, et al. 2015. A Weyl fermion

semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat.

48



23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Commun. 6:7373

Weng H, Fang C, Fang Z, Bernevig BA, Dai X. 2015. Weyl semimetal phase in
noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5:011029

Dirac PAM. 1928. The quantum theory of the electron. Proc. R. Soc. A 117:610-24

Xu S-Y, Belopolski I, Alidoust N, Neupane M, Bian G, et al. 2015. Discovery of a Weyl
fermion semimetal and topological Fermi arcs. Science 349:613—17

LuL, Wang Z, Ye D, Ran L, Fu L, et al. 2015. Experimental observation of Weyl points.
Science 349:622-24

Lv BQ, Weng HM, Fu BB, Wang XP, Miao H, et al. 2015. Experimental discovery of Weyl
semimetal TaAs. Phys. Rev. X 5:031013

Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M, et al. 2015. Type-II Weyl semimetals.
Nature 527:495-98

Chang T-R, Xu S-Y, Sanchez DS, Tsai W-F, Huang S-M, et al. 2017. Type-II symmetry-
protected topological Dirac semimetals. Phys. Rev. Lett. 119:026404

Burkov AA, Hook MD, Balents L. 2011. Topological nodal semimetals. Phys. Rev. B
84:235126

Bradlyn B, Cano J, Wang Z, Vergniory MG, Felser C, et al. 2016. Beyond Dirac and Weyl
fermions: unconventional quasiparticles in conventional crystals. Science 353:aaf5037
Wieder BJ, Kim Y, Rappe AM, Kane CL. 2016. Double Dirac semimetals in three
dimensions. Phys. Rev. Lett. 116:186402

Weng H, Fang C, Fang Z, Dai X. 2016. Topological semimetals with triply degenerate nodal
points in g-phase tantalum nitride. Phys. Rev. B 93:241202

Zhu Z, Winkler GW, Wu Q, Li J, Soluyanov AA. 2016. Triple point topological metals.
Phys. Rev. X 6:031003

Weng H, Fang C, Fang Z, Dai X. 2016. Coexistence of Weyl fermion and massless triply
degenerate nodal points. Phys. Rev. B 94:165201

Chang G, Xu S-Y, Huang S-M, Sanchez DS, Hsu C-H, et al. 2017. Nexus fermions in
topological symmorphic crystalline metals. Sci. Rep. 7:1688

Watanabe H, Po HC, Vishwanath A. 2018. Structure and topology of band structures in the
1651 magnetic space groups. Sci. Adv. 4:eaat8685

Xu S-Y, Liu C, Kushwaha SK, Sankar R, Krizan JW, et al. 2015. Observation of Fermi arc

49



39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

surface states in a topological metal. Science 347:294-98

Yang LX, Liu ZK, Sun Y, Peng H, Yang HF, et al. 2015. Weyl semimetal phase in the non-
centrosymmetric compound TaAs. Nat. Phys. 11:728-32

Bian G, Chang T-R, Sankar R, Xu S-Y, Zheng H, et al. 2016. Topological nodal-line
fermions in spin-orbit metal PbTaSe>. Nat. Commun. 7:10556

Inoue H, Gyenis A, Wang Z, Li J, Oh SW, et al. 2016. Quasiparticle interference of the
Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351:1184-87
Batabyal R, Morali N, Avraham N, Sun Y, Schmidt M, et al. 2016. Visualizing weakly
bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv.
2:¢1600709

Potter AC, Kimchi I, Vishwanath A. 2014. Quantum oscillations from surface Fermi arcs in
Weyl and Dirac semimetals. Nat. Commun. 5:5161

Moll PJW, Nair NL, Helm T, Potter AC, Kimchi I, et al. 2016. Transport evidence for Fermi-
arc-mediated chirality transfer in the Dirac semimetal Cd3As». Nature 535:266—70

Liang T, Gibson Q, Ali MN, Liu M, Cava RJ, Ong NP. 2015. Ultrahigh mobility and giant
magnetoresistance in the Dirac semimetal Cd3Asz. Nat. Mater. 14:280-84

Shekhar C, Nayak AK, Sun Y, Schmidt M, Nicklas M, et al. 2015. Extremely large
magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP.
Nat. Phys. 11:645-49

Pippard AB. 1989. Magnetoresistance in Metals. Cambridge, UK: Cambridge Univ. Press
Ali MN, Xiong J, Flynn S, Tao J, Gibson QD, et al. 2014. Large, non-saturating
magnetoresistance in WTex. Nature 514:205-8

Skinner B, Fu L. 2018. Large, nonsaturating thermopower in a quantizing magnetic field. Sci.
Adv. 4:eaat2621

Liang T, Gibson Q, Xiong J, Hirschberger M, Koduvayur SP, et al. 2013. Evidence for
massive bulk Dirac fermions in Pbi-.Sn,Se from Nernst and thermopower experiments. Nat.
Commun. 4:2696

Stockert U, Reis RDd, Ajeesh MO, Watzman SJ, Schmidt M, et al. 2017. Thermopower and
thermal conductivity in the Weyl semimetal NbP. J. Phys. Condens. Matter 29:325701

Jho Y-S, Kim K-S. 2013. Interplay between interaction and chiral anomaly: anisotropy in the
electrical resistivity of interacting Weyl metals. Phys. Rev. B 87:205133

50



53.

54.

55.

56.

57.

38.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Son DT, Spivak BZ. 2013. Chiral anomaly and classical negative magnetoresistance of Weyl
metals. Phys. Rev. B 88:104412

Burkov AA. 2014. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113:187202
Karplus R, Luttinger JM. 1954. Hall effect in ferromagnetics. Phys. Rev. 95:1154-60
Haldane FDM. 2004. Berry curvature on the Fermi surface: anomalous Hall effect as a
topological Fermi-liquid property. Phys. Rev. Lett. 93:206602

Ikhlas M, Tomita T, Koretsune T, Suzuki M-T, Nishio-Hamane D, et al. 2017. Large
anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys.
13:1085-90

Sakai A, Mizuta YP, Nugroho AA, Sihombing R, Koretsune T, et al. 2018. Giant anomalous
Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14:1119—
24

Ishizuka H, Hayata T, Ueda M, Nagaosa N. 2016. Emergent electromagnetic induction and
adiabatic charge pumping in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett.
117:216601

Taguchi K, Imaeda T, Sato M, Tanaka Y. 2016. Photovoltaic chiral magnetic effect in Weyl
semimetals. Phys. Rev. B 93:201202

Chan C-K, Lindner NH, Refael G, Lee PA. 2017. Photocurrents in Weyl semimetals. Phys.
Rev. B95:041104

de Juan F, Grushin AG, Morimoto T, Moore JE. 2017. Quantized circular photogalvanic
effect in Weyl semimetals. Nat. Commun. 8:15995

Ma Q, Xu S-Y, Chan C-K, Zhang C-L, Chang G, et al. 2017. Direct optical detection of
Weyl fermion chirality in a topological semimetal. Nat. Phys. 13:842—47

Osterhoudt GB, Diebel LK, Yang X, Stanco J, Huang X, et al. 2017. Colossal photovoltaic
effect driven by the singular Berry curvature in a Weyl semimetal. arXiv:1712.04951 [cond-
mat.mes-hall] [€**AU: OK? JH: OK*¥]

Wu L, Patankar S, Morimoto T, Nair NL, Thewalt E, et al. 2016. Giant anisotropic nonlinear
optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13:350-55
Morimoto T, Nagaosa N. 2016. Topological nature of nonlinear optical effects in solids. Sci.
Adv. 2:¢1501524

Goswami P, Sharma G, Tewari S. 2015. Optical activity as a test for dynamic chiral magnetic

51



68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.
81.

82.

effect of Weyl semimetals. Phys. Rev. B 92:161110

Ma J, Pesin DA. 2015. Chiral magnetic effect and natural optical activity in metals with or
without Weyl points. Phys. Rev. B 92:235205

Zhong S, Moore JE, Souza I. 2016. Gyrotropic magnetic effect and the magnetic moment on
the Fermi surface. Phys. Rev. Lett. 116:077201

Feng W, Guo G-Y, Zhou J, Yao Y, Niu Q. 2015. Large magneto-optical Kerr effect in
noncollinear antiferromagnets Mn3 X (X = Rh, Ir, Pt). Phys. Rev. B 92:144426

Higo T, Man H, Gopman DB, Wu L, Koretsune T, et al. 2018. Large magneto-optical Kerr
effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon.
12:73-78

Qian X, Liu J, Fu L, Li J. 2014. Quantum spin Hall effect in two-dimensional transition
metal dichalcogenides. Science 346:1344-47

Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H-Z, et al. 2017. Quantum spin Hall state in
monolayer 1T'-WTe,. Nat. Phys. 13:683-87

Fei Z, Palomaki T, Wu S, Zhao W, Cai X, et al. 2017. Edge conduction in monolayer WTe,.
Nat. Phys. 13:677-82

Wu S, Fatemi V, Gibson QD, Watanabe K, Taniguchi T, et al. 2018. Observation of the
quantum spin Hall effect up to 100 Kelvin in a monolayer crystal. Science 359:76-79

Weng H, Yu R, Hu X, Dai X, Fang Z. 2015. Quantum anomalous Hall effect and related
topological electronic states. Adv. Phys. 64:227-82

Burkov AA. 2015. Chiral anomaly and transport in Weyl metals. J. Phys. Condens. Matter
27:113201

Chen F, Hongming W, Xi D, Zhong F. 2016. Topological nodal line semimetals. Chin. Phys.
B 25:117106

Liu C-X, Zhang S-C, Qi X-L. 2016. The quantum anomalous Hall effect: theory and
experiment. Annu. Rev. Condens. Matter Phys. 7:301-21

Bansil A, Lin H, Das T. 2016. Topological band theory. Rev. Mod. Phys. 88:021004

Wang S, Lin B-C, Wang A-Q, Yu D-P, Liao Z-M. 2017. Quantum transport in Dirac and
Weyl semimetals: a review. Adv. Phys. X 2:518-44

Hasan MZ, Xu S-Y, Belopolski I, Huang S-M. 2017. Discovery of Weyl fermion semimetals
and topological Fermi arc states. Annu. Rev. Condens. Matter Phys. 8:289-309

52



83.

&4.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Zheng H, Zahid Hasan M. 2018. Quasiparticle interference on type-I and type-I1 Weyl
semimetal surfaces: a review. Adv. Phys. X 3:1466661

Nurit A, Jonathan R, Abhay K-N, Noam M, Rajib B, et al. 2018. Quasiparticle interference
studies of quantum materials. Adv. Mater. 30:1707628

Yang S-Y, Yang H, Derunova E, Parkin SSP, Yan B, Ali MN. 2018. Symmetry demanded
topological nodal-line materials. Adv. Phys. X 3:1414631

Xu S-Y, Alidoust N, Belopolski I, Yuan Z, Bian G, et al. 2015. Discovery of a Weyl fermion
state with Fermi arcs in niobium arsenide. Nat. Phys. 11:748-54

Xu N, Weng HM, Lv BQ, Matt CE, Park J, et al. 2015. Observation of Weyl nodes and
Fermi arcs in tantalum phosphide. Nat. Commun. 7:11006

Belopolski I, Xu S-Y, Sanchez DS, Chang G, Guo C, et al. 2016. Criteria for directly
detecting topological Fermi arcs in Weyl semimetals. Phys. Rev. Lett. 116:066802

Liu ZK, Yang LX, Sun Y, Zhang T, Peng H, et al. 2015. Evolution of the Fermi surface of
Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15:27-31

Souma S, Wang Z, Kotaka H, Sato T, Nakayama K, et al. 2016. Direct observation of
nonequivalent Fermi-arc states of opposite surfaces in the noncentrosymmetric Weyl
semimetal NbP. Phys. Rev. B 93:161112

Xu S-Y, Belopolski I, Sanchez DS, Zhang C, Chang G, et al. 2015. Experimental discovery
of a topological Weyl semimetal state in TaP. Sci. Adv. 1:¢1501092

Xu D-F, Du Y-P, Wang Z, Li Y-P, Niu X-H, et al. 2015. Observation of Fermi arcs in non-
centrosymmetric Weyl semi-metal candidate NbP. Chin. Phys. Lett. 32:107101

Xu Q, Liu E, Shi W, Muechler L, Gayles J, et al. 2018. Topological surface Fermi arcs in the
magnetic Weyl semimetal Co3SnaSa. Phys. Rev. B 97:235416

Wang Q, Xu Y, Lou R, Liu Z, Li M, et al. 2018. Large intrinsic anomalous Hall effect in
half-metallic ferromagnet CozSn2S, with magnetic Weyl fermions. Nat. Commun. 9:3681
[€**AU: OK?**]

Belopolski I, Sanchez DS, Chang G, Manna K, Ernst B, et al. 2017. A three-dimensional
magnetic topological phase. arXiv:1712.09992 [cond-mat.mtrl-sci]

Chang G, Xu S-Y, Zheng H, Singh B, Hsu C-H, et al. 2016. Room-temperature magnetic
topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X

= Si, Ge, or Sn). Sci. Rep. 6:38839

53



97. Wang Z, Vergniory MG, Kushwaha S, Hirschberger M, Chulkov EV, et al. 2016. Time-
reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117:236401

98. Ernst B, Sahoo R, Sun Y, Nayak J, Muechler L, et al. 2017. Manifestation of the Berry
curvature in Co2TiSn Heusler films. arXiv:1710.04393 [cond-mat.mtrl-sci]

99. Kiibler J, Felser C. 2016. Weyl points in the ferromagnetic Heusler compound CooMnAl.
Europhys. Lett. 114:47005

100. Nakatsuji S, Kiyohara N, Higo T. 2015. Large anomalous Hall effect in a non-collinear
antiferromagnet at room temperature. Nature 527:212—15

101. Nayak AK, Fischer JE, Sun Y, Yan B, Karel J, et al. 2016. Large anomalous Hall effect
driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet MnzGe. Sci.
Adv. 2:¢1501870

102. Hao Y, Yan S, Yang Z, Wu-Jun S, Stuart SPP, Binghai Y. 2017. Topological Weyl
semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys.
19:015008

103. Kuroda K, Tomita T, Suzuki MT, Bareille C, Nugroho AA, et al. 2017. Evidence for
magnetic Weyl fermions in a correlated metal. Nat. Mater. 16:1090-95

104. Cano J, Bradlyn B, Wang Z, Hirschberger M, Ong NP, Bernevig BA. 2017. Chiral anomaly
factory: creating Weyl fermions with a magnetic field. Phys. Rev. B 95:161306

105. Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M, et al. 2015. Evidence for the
chiral anomaly in the Dirac semimetal NasBi. Science 350:413—-16

106. Li C-Z, Wang L-X, Liu H, Wang J, Liao Z-M, Yu D-P. 2015. Giant negative
magnetoresistance induced by the chiral anomaly in individual Cd3As> nanowires. Nat.
Commun. 6:10137

107. Li Q, Kharzeev DE, Zhang C, Huang Y, Pletikosic I, et al. 2016. Chiral magnetic effect in
ZrTes. Nat. Phys. 12:550-54

108. Nakajima Y, Hu R, Kirshenbaum K, Hughes A, Syers P, et al. 2015. Topological RPdBi
half-Heusler semimetals: a new family of noncentrosymmetric magnetic superconductors.
Sci. Adv. 1:¢1500242

109. Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, et al. 2016. The chiral anomaly
and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15:1161-65

110. Shekhar C, Nayak AK, Singh S, Kumar N, Wu S-C, et al. 2016. Observation of chiral

54



magneto-transport in RPtBi topological Heusler compounds. arXiv:1604.01641 [cond-mat.mtrl-
sci]

111. Wu 'Y, Mou D, Jo NH, Sun K, Huang L, et al. 2016. Observation of Fermi arcs in type-II
Weyl semimetal candidate WTes. Phys. Rev. B 94:121113(R)

112. Wang C, Zhang Y, Huang J, Nie S, Liu G, et al. 2016. Observation of Fermi arc and its
connection with bulk states in the candidate type-II Weyl semimetal WTex. Phys. Rev. B
94:241119

113. Bruno FY, Tamai A, Wu QS, Cucchi I, Barreteau C, et al. 2016. Observation of large
topologically trivial Fermi arcs in the candidate type-11 Weyl WTes. Phys. Rev. B 94:121112

114. Wang Z, Gresch D, Soluyanov AA, Xie W, Kushwaha S, et al. 2016. MoTe;: a type-II
Weyl topological metal. Phys. Rev. Lett. 117:056805

115. Huang L, McCormick TM, Ochi M, Zhao Z, Suzuki M-T, et al. 2016. Spectroscopic
evidence for a type Il Weyl semimetallic state in MoTe>. Nat. Mater. 15:1155-60

116. Deng K, Wan G, Deng P, Zhang K, Ding S, et al. 2016. Experimental observation of
topological Fermi arcs in type-11 Weyl semimetal MoTez. Nat. Phys. 12:1105-10

117. Belopolski I, Sanchez DS, Ishida Y, Pan X, Yu P, et al. 2016. Discovery of a new type of
topological Weyl fermion semimetal state in Mo,W1-,Te>. Nat. Commun. 7:13643

118. Belopolski I, Xu S-Y, Ishida Y, Pan X, Yu P, et al. 2016. Fermi arc electronic structure and
Chern numbers in the type-II Weyl semimetal candidate MoxW1-.Tez. Phys. Rev. B
94:085127

119. Jiang J, Liu ZK, Sun Y, Yang HF, Rajamathi CR, et al. 2017. Signature of type-1I1 Weyl
semimetal phase in MoTe». Nat. Commun. 8:13973

120. Liang A, Huang J, Nie S, Ding Y, Gao Q, et al. 2016. Electronic evidence for type II Weyl
semimetal state in MoTez. arXiv:1604.01706 [cond-mat.mtrl-sci]

121. Xu N, Wang ZJ, Weber AP, Magrez A, Bugnon P, et al. 2016. Discovery of Weyl
semimetal state violating Lorentz invariance in MoTe;. arXiv:1604.02116 [cond-mat.mtrl-sci]

122. Tamai A, Wu QS, Cucchi I, Bruno FY, Ricco S, et al. 2016. Fermi arcs and their
topological character in the candidate type-ii Weyl semimetal MoTez. Phys. Rev. X 6:031021

123. Koepernik K, Kasinathan D, Efremov DV, Khim S, Borisenko S, et al. 2016. TalrTes: a
ternary type-11 Weyl semimetal. Phys. Rev. B 93:201101

124. Belopolski I, Yu P, Sanchez DS, Ishida Y, Chang T-R, et al. 2017. Signatures of a time-

55



reversal symmetric Weyl semimetal with only four Weyl points. Nat. Commun. 8:942

125. Autes G, Gresch D, Troyer M, Soluyanov AA, Yazyev OV. 2016. Robust type-II Weyl
semimetal phase in transition metal diphosphides XP> (X = Mo, W). Phys. Rev. Lett.
117:066402

126. Liu ZK, Zhou B, Zhang Y, Wang ZJ, Weng HM, et al. 2014. Discovery of a three-
dimensional topological dirac semimetal, Na3Bi. Science 343:864—67

127. Neupane M, Xu S-Y, Sankar R, Alidoust N, Bian G, et al. 2014. Observation of a three-
dimensional topological Dirac semimetal phase in high-mobility Cd3Asz. Nat. Commun.
5:3786

128. Liu ZK, Jiang J, Zhou B, Wang ZJ, Zhang Y, et al. 2014. A stable three-dimensional
topological Dirac semimetal Cd;As;. Nat. Mater. 13:677-81

129. Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Biichner B, Cava RJ. 2014.
Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett.
113:027603

130. Yi H, Wang Z, Chen C, Shi Y, Feng Y, et al. 2014. Evidence of topological surface state in
three-dimensional Dirac semimetal Cd3As;. Sci. Rep. 4:6106

131. Yang B-J, Nagaosa N. 2014. Classification of stable three-dimensional Dirac semimetals
with nontrivial topology. Nat. Commun. 5:4898

132. Steinberg JA, Young SM, Zaheer S, Kane CL, Mele EJ, Rappe AM. 2014. Bulk Dirac
points in distorted spinels. Phys. Rev. Lett. 112:036403

133. Watanabe H, Po HC, Vishwanath A, Zaletel M. 2015. Filling constraints for spin-orbit
coupled insulators in symmorphic and nonsymmorphic crystals. PNAS 112:14551-56

134. Wieder BJ, Kane CL. 2016. Spin-orbit semimetals in the layer groups. Phys. Rev. B
94:155108

135. Young SM, Wieder BJ. 2017. Filling-enforced magnetic Dirac semimetals in two
dimensions. Phys. Rev. Lett. 118:186401

136. Xu S-Y, Xia Y, Wray LA, Jia S, Meier F, et al. 2011. Topological phase transition and
texture inversion in a tunable topological insulator. Science 332:560—64

137. Brahlek M, Bansal N, Koirala N, Xu S-Y, Neupane M, et al. 2012. Topological-metal to

band-insulator transition in (Bl-<1")>5¢ thin films. Phys. Rev. Lett. 109:186403
138. Xu S-Y, Liu C, Alidoust N, Neupane M, Qian D, et al. 2012. Observation of a topological

56



crystalline insulator phase and topological phase transition in Pbi—Sn,Te. Nat. Commun.
3:1192

139. Weng H, Dai X, Fang Z. 2014. Transition-metal pentatelluride ZrTes and HfTes: a
paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 4:011002

140. Manzoni G, Gragnaniello L, Autés G, Kuhn T, Sterzi A, et al. 2016. Evidence for a strong
topological insulator phase in ZrTes. Phys. Rev. Lett. 117:237601

141. Park J, Lee G, Wolff-Fabris F, Koh YY, Eom MJ, et al. 2011. Anisotropic Dirac fermions
in a Bi square net of StMnBi,. Phys. Rev. Lett. 107:126402

142. Feng Y, Wang Z, Chen C, Shi Y, Xie Z, et al. 2014. Strong anisotropy of Dirac cones in
SrMnBi; and CaMnBi; revealed by angle-resolved photoemission spectroscopy. Sci. Rep.
4:5385

143. LiuJY, Hu J, Zhang Q, Graf D, Cao HB, et al. 2017. A magnetic topological semimetal Sri-
yMni-:Sba (v, z < 0.10). Nat. Mater. 16:905-10

144. Kargarian M, Randeria M, Lu Y-M. 2016. Are the surface Fermi arcs in Dirac semimetals
topologically protected? PNAS 113:8648-52

145. Bian G, Chang T-R, Zheng H, Velury S, Xu S-Y, et al. 2016. Drumhead surface states and
topological nodal-line fermions in TITaSe>. Phys. Rev. B 93:121113

146. Fang C, Chen Y, Kee H-Y, Fu L. 2015. Topological nodal line semimetals with and without
spin-orbital coupling. Phys. Rev. B 92:081201

147. Xie LS, Schoop LM, Seibel EM, Gibson QD, Xie W, Cava RJ. 2015. A new form of CazP»
with a ring of Dirac nodes. APL Mater. 3:083602

148. Yu R, Weng H, Fang Z, Dai X, Hu X. 2015. Topological node-line semimetal and dirac
semimetal state in antiperovskite CusPdN. Phys. Rev. Lett. 115:036807

149. Kim Y, Wieder BJ, Kane CL, Rappe AM. 2015. Dirac line nodes in inversion-symmetric
crystals. Phys. Rev. Lett. 115:036806

150. Chiu C-K, Schnyder AP. 2014. Classification of reflection-symmetry-protected topological
semimetals and nodal superconductors. Phys. Rev. B 90:205136

151. Wu 'Y, Wang L-L, Mun E, Johnson DD, Mou D, et al. 2016. Dirac node arcs in PtSny. Nat.
Phys. 12:667-71

152. Ekahana SA, Shu-Chun W, Juan J, Kenjiro O, Dharmalingam P, et al. 2017. Observation of
nodal line in non-symmorphic topological semimetal InBi. New J. Phys. 19:065007

57



153. Feng X, Yue C, Song Z, Wu Q, Wen B. 2018. Topological Dirac nodal-net fermions in
AlBy-type TiBo and ZrBo. Phys. Rev. Mater. 2:014202

154. Schoop LM, Ali MN, Straszer C, Topp A, Varykhalov A, et al. 2016. Dirac cone protected
by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat.
Commun. 7:11696

155. Neupane M, Belopolski I, Hosen MM, Sanchez DS, Sankar R, et al. 2016. Observation of
topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 93:201104

156. HuJ, Tang Z, Liu J, Liu X, Zhu Y, et al. 2016. Evidence of topological nodal-line fermions
in ZrSiSe and ZrSiTe. Phys. Rev. Lett. 117:016602

157. Takane D, Wang Z, Souma S, Nakayama K, Trang CX, et al. 2016. Dirac-node arc in the
topological line-node semimetal HfSiS. Phys. Rev. B 94:121108

158. Chen C, Xu X, Jiang J, Wu SC, Qi YP, et al. 2017. Dirac line nodes and effect of spin-orbit
coupling in the nonsymmorphic critical semimetals MSiS (M = Hf, Zr). Phys. Rev. B
95:125126

159. Yamakage A, Yamakawa Y, Tanaka Y, Okamoto Y. 2015. Line-node Dirac semimetal and
topological insulating phase in noncentrosymmetric pnictides CaAgX (X = P, As). J. Phys.
Soc. Jpn. 85:013708

160. Wang X-B, Ma X-M, Emmanouilidou E, Shen B, Hsu C-H, et al. 2017. Topological surface
electronic states in candidate nodal-line semimetal CaAgAs. Phys. Rev. B 96:161112

161. Liang Q-F, Zhou J, Yu R, Wang Z, Weng H. 2016. Node-surface and node-line fermions
from nonsymmorphic lattice symmetries. Phys. Rev. B 93:085427

162. Bzdusek T, Wu Q, Riiegg A, Sigrist M, Soluyanov AA. 2016. Nodal-chain metals. Nature
538:75-78

163. Wang S-S, Liu Y, Yu Z-M, Sheng X-L, Yang SA. 2017. Hourglass Dirac chain metal in
rhenium dioxide. Nat. Commun. 8:1844

164. BiR, Yan Z, Lu L, Wang Z. 2017. Nodal-knot semimetals. Phys. Rev. B 96:201305

165. Chen W, Lu H-Z, Hou J-M. 2017. Topological semimetals with a double-helix nodal link.
Phys. Rev. B 96:041102

166. Yan Z, Bi R, Shen H, Lu L, Zhang S-C, Wang Z. 2017. Nodal-link semimetals. Phys. Rev.
B 96:041103

167. Chang G, Xu S-Y, Zhou X, Huang S-M, Singh B, et al. 2017. Topological Hopf and chain

58



link semimetal states and their application to CooMnGa. Phys. Rev. Lett. 119:156401

168. Wieder BJ. 2018. Threes company. Nat. Phys. 14:329-30

169. Lv BQ, Feng ZL, Xu QN, Gao X, Ma JZ, et al. 2017. Observation of three-component
fermions in the topological semimetal molybdenum phosphide. Nature 546:627-31

170. Ma JZ, He JB, Xu YF, Lv BQ, Chen D, et al. 2018. Three-component fermions with surface
Fermi arcs in tungsten carbide. Nat. Phys. 14:349-54

171. Gao W, Hao N, Zheng F-W, Ning W, Wu M, et al. 2017. Extremely large
magnetoresistance in a topological semimetal candidate pyrite PtBi>. Phys. Rev. Lett.
118:256601

172. Narayanan A, Watson MD, Blake SF, Bruyant N, Drigo L, et al. 2015. Linear
magnetoresistance caused by mobility fluctuations in n-doped CdsAsy. Phys. Rev. Lett.
114:117201

173. Wang K, Graf D, Lei H, Tozer SW, Petrovic C. 2011. Quantum transport of two-
dimensional Dirac fermions in StMnBi>. Phys. Rev. B 84:220401

174. Novak M, Sasaki S, Segawa K, Ando Y. 2015. Large linear magnetoresistance in the Dirac
semimetal TIBiSSe. Phys. Rev. B 91:041203

175. Yi-Yan W, Qiao-He Y, Tian-Long X. 2016. Large linear magnetoresistance in a new Dirac
material BaMnBi,. Chin. Phys. B 25:107503

176. Xiong J, Kushwaha S, Krizan J, Liang T, Cava RJ, Ong NP. 2016. Anomalous conductivity
tensor in the Dirac semimetal NazBi. Europhys. Lett. 114:27002

177. Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A, et al. 2016. Quantum Hall effect
in a bulk antiferromagnet EuMnBi> with magnetically confined two-dimensional Dirac
fermions. Sci. Adv. 2:¢1501117

178. He LP, Hong XC, Dong JK, Pan J, Zhang Z, et al. 2014. Quantum transport evidence for the
three-dimensional dirac semimetal phase in Cd3Asz. Phys. Rev. Lett. 113:246402

179. Wang Z, Zheng Y, Shen Z, Lu Y, Fang H, et al. 2016. Helicity-protected ultrahigh mobility
Weyl fermions in NbP. Phys. Rev. B 93:121112

180. Yang X, Liu Y, Wang Z, Zheng Y, Xu Z-a. 2015. Chiral anomaly induced negative
magnetoresistance in topological Weyl semimetal NbAs. arXiv:1506.03190 [cond-mat.mtrl-sci]

181. Zhang C, Guo C, Lu H, Zhang X, Yuan Z, et al. 2015. Large magnetoresistance over an

extended temperature regime in monophosphides of tantalum and niobium. Phys. Rev. B

59



92:041203(R)

182. Zhang C-L, Yuan Z, Jiang Q-D, Tong B, Zhang C, et al. 2017. Electron scattering in
tantalum monoarsenide. Phys. Rev. B 95:085202

183. Huang X, Zhao L, Long Y, Wang P, Chen D, et al. 2015. Observation of the chiral-
anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X
5:031023

184. Wang YL, Thoutam LR, Xiao ZL, Hu J, Das S, et al. 2015. Origin of the turn-on
temperature behavior in WTez. Phys. Rev. B 92:180402

185. Zhao Y, Liu H, Yan J, An W, Liu J, et al. 2015. Anisotropic magnetotransport and exotic
longitudinal linear magnetoresistance in WTe: crystals. Phys. Rev. B 92:041104

186. Zhu Z, Lin X, Liu J, Fauqué B, Tao Q, et al. 2015. Quantum oscillations, thermoelectric
coefficients, and the Fermi surface of semimetallic WTez. Phys. Rev. Lett. 114:176601

187. Wang A, Graf D, Liu Y, Du Q, Zheng J, et al. 2017. Large magnetoresistance in the type-II
Weyl semimetal WP. Phys. Rev. B 96:121107

188. Wang C-L, Zhang Y, Huang J-W, Liu G-D, Liang A-J, et al. 2017. Evidence of electron-
hole imbalance in WTe; from high-resolution angle-resolved photoemission spectroscopy.
Chin. Phys. Lett. 34:097305

189. Thirupathaiah S, Jha R, Pal B, Matias JS, Das PK, et al. 2017. MoTe>: an uncompensated
semimetal with extremely large magnetoresistance. Phys. Rev. B 95:241105

190. Chamber RG. 1990. Electrons in Metals and Semiconductors. New Y ork: Chapman and
Hall

191. Luo Y, Ghimire NJ, Wartenbe M, Choi H, Neupane M, et al. 2015. Electron-hole
compensation effect between topologically trivial electrons and nontrivial holes in NbAs.
Phys. Rev. B 92:205134

192. Hu J, Liu JY, Graf D, Radmanesh SMA, Adams DJ, et al. 2016. & Berry phase and Zeeman
splitting of Weyl semimetal TaP. Sci. Rep. 6:18674

193. Du J, Wang H, Mao Q, Khan R, Xu B, et al. 2016. Large unsaturated positive and negative
magnetoresistance in Weyl semimetal TaP. Sci. China Phys. Mech. Astron. 59:657406

194. Ghimire NJ, Yongkang L, Neupane M, Williams DJ, Bauer ED, Ronning F. 2015.
Magnetotransport of single crystalline NbAs. J. Phys. Condens. Matter 27:152201

195. Abrikosov AA. 1998. Quantum magnetoresistance. Phys. Rev. B 58:2788-94

60



196. Datta S. 1995. Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge
Univ. Press

197. Chen YL, Chu J-H, Analytis JG, Liu ZK, Igarashi K, et al. 2010. Massive Dirac fermion on
the surface of a magnetically doped topological insulator. Science 329:659—62

198. Beidenkopt H, Roushan P, Seo J, Gorman L, Drozdov I, et al. 2011. Spatial fluctuations of
helical Dirac fermions on the surface of topological insulators. Nat. Phys. 7:939—43

199. Okada Y, Dhital C, Zhou W, Huemiller ED, Lin H, et al. 2011. Direct observation of
broken time-reversal symmetry on the surface of a magnetically doped topological insulator.
Phys. Rev. Lett. 106:206805

200. Wray LA, Xu S-Y, Xia Y, Hsieh D, Fedorov AV, et al. 2011. A topological insulator
surface under strong Coulomb, magnetic and disorder perturbations. Nat. Phys. 7:32-37

201. Liu M, Zhang J, Chang C-Z, Zhang Z, Feng X, et al. 2012. Crossover between weak
antilocalization and weak localization in a magnetically doped topological insulator. Phys.
Rev. Lett. 108:036805

202. Ando Y. 2013. Topological insulator materials. J. Phys. Soc. Jpn. 82:102001

203. Shoenberg D. 1984. Magnetic Oscillations in Metals. Cambridge, UK: Cambridge Univ.
Press

204. Kartsovnik MV. 2004. High magnetic fields: a tool for studying electronic properties of
layered organic metals. Chem. Rev. 104:5737-82

205. McClure JW. 1956. Diamagnetism of graphite. Phys. Rev. 104:666—71

206. Ando T. 2008. Physics of graphene: zero-mode anomalies and roles of symmetry. Prog.
Theor. Phys. Suppl. 176:203-26

207. Berry MV. 1984. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A
392:45-57

208. Xiao D, Chang M-C, Niu Q. 2010. Berry phase effects on electronic properties. Rev. Mod.
Phys. 82:1959-2007

209. Mikitik GP, Sharlai YV. 1999. Manifestation of Berry’s phase in metal physics. Phys. Rev.
Lett. 82:2147-50

210. Taskin AA, Ando Y. 2011. Berry phase of nonideal Dirac fermions in topological
insulators. Phys. Rev. B 84:035301

211. Lv BQ, Xu N, Weng HM, Ma JZ, Richard P, et al. 2015. Observation of Weyl nodes in

61



TaAs. Nat. Phys. 11:724-27

212. Lifshitz IM, Kosevich AM. 1956. Theory of magnetic susceptibility in metals at low
temperatures. Sov. Phys. JETP 2:636—45

213. Kealhofer R, Jang S, Griffin SM, John C, Benavides KA, et al. 2018. Observation of a two-
dimensional Fermi surface and Dirac dispersion in YbMnSby. Phys. Rev. B 97:045109

214. Shoenberg D. 1984. Magnetization of a two-dimensional electron gas. J. Low Temp. Phys.
56:417-40

215. Champel T, Mineev VP. 2001. de Haas—van Alphen effect in two- and quasi-two-
dimensional metals and superconductors. Philos. Mag. B 81:55-74

216. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson M, et al. 2005. Two-
dimensional gas of massless Dirac fermions in graphene. Nature 438:197-200

217. Das Sarma S, Stern F. 1985. Single-particle relaxation time versus scattering time in an
impure electron gas. Phys. Rev. B 32:8442—44

218. Hwang EH, Das Sarma S. 2008. Single-particle relaxation time versus transport scattering
time in a two-dimensional graphene layer. Phys. Rev. B 77:195412

219. Xiong J, Luo Y, Khoo Y, Jia S, Cava RJ, Ong NP. 2012. High-field Shubnikov—de Haas
oscillations in the topological insulator BixTe>Se. Phys. Rev. B 86:045314

220. Pariari A, Dutta P, Mandal P. 2015. Probing the Fermi surface of three-dimensional Dirac
semimetal CdsAs; through the de Haas—van Alphen technique. Phys. Rev. B 91:155139

221.HuJ, Tang Z, Liu J, Zhu Y, Wei J, Mao Z. 2017. Nearly massless Dirac fermions and
strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas—van Alphen
quantum oscillations. Phys. Rev. B 96:045127

222. Kumar N, Manna K, Qi Y, Wu S-C, Wang L, et al. 2017. Unusual magnetotransport from
Si-square nets in topological semimetal HfSiS. Phys. Rev. B 95:121109(R)

223. Jeon S, Zhou BB, Gyenis A, Feldman BE, Kimchi I, et al. 2014. Landau quantization and
quasiparticle interference in the three-dimensional Dirac semimetal Cd3As,. Nat. Mater.
13:851-56

224. Moll PJW, Potter AC, Nair NL, Ramshaw BJ, Modic KA, et al. 2016. Magnetic torque
anomaly in the quantum limit of Weyl semimetals. Nat. Commun. 7:12492

225. Arnold F, Shekhar C, Wu S-C, Sun Y, dos Reis RD, et al. 2016. Negative

magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun.

62



7:11615

226. HuJ, Zhu YL, Graf D, Tang ZJ, Liu JY, Mao ZQ. 2017. Quantum oscillation studies of
topological semimetal candidate ZrGeM (M =S, Se, Te). Phys. Rev. B 95:205134

227. Arnold F, Naumann M, Wu SC, Sun Y, Schmidt M, et al. 2016. Chiral Weyl pockets and
Fermi surface topology of the Weyl semimetal TaAs. Phys. Rev. Lett. 117:146401

228. HulJ, Zhu Y, Gui X, Graf D, Tang Z, et al. 2018. Quantum oscillation evidence of a
topological semimetal phase in ZrSnTe. Phys. Rev. B 97:155101

229. Zheng W, Schonemann R, Aryal N, Zhou Q, Rhodes D, et al. 2018. Detailed study of the
Fermi surfaces of the type-II Dirac semimetallic candidates XTe> (X = Pd, Pt). Phys. Rev. B
97:235154

230. Zhu Y, Zhang T, Hu J, Kidd J, Graf D, et al. 2018. Multiple topologically non-trivial bands
in non-centrosymmetric YSnz. Phys. Rev. B 98:035117

231. Cai PL, Hu J, He LP, Pan J, Hong XC, et al. 2015. Drastic pressure effect on the extremely
large magnetoresistance in WTe>: quantum oscillation study. Phys. Rev. Lett. 115:057202

232. Ali MN, Schoop LM, Garg C, Lippmann JM, Lara E, et al. 2016. Butterfly
magnetoresistance, quasi-2D Dirac Fermi surfaces, and a topological phase transition in
Z1SiS. Sci. Adv. 2:¢1601742

233. Singha R, Pariari A, Satpati B, Mandal P. 2017. Large nonsaturating magnetoresistance and
signature of nondegenerate Dirac nodes in ZrSiS. PNAS 114:2468-73

234. Wang K, Graf D, Wang L, Lei H, Tozer SW, Petrovic C. 2012. Two-dimensional Dirac
fermions and quantum magnetoresistance in CaMnBi,. Phys. Rev. B 85:041101

235. Li L, Wang K, Graf D, Wang L, Wang A, Petrovic C. 2016. Electron-hole asymmetry,
Dirac fermions, and quantum magnetoresistance in BaMnBiz. Phys. Rev. B 93:115141

236. Cao J, Liang S, Zhang C, Liu Y, Huang J, et al. 2015. Landau level splitting in Cd3As:
under high magnetic fields. Nat. Commun. 6:7779

237. Zhao Y, Liu H, Zhang C, Wang H, Wang J, et al. 2015. Anisotropic Fermi surface and
quantum limit transport in high mobility three-dimensional Dirac semimetal CdzAsz. Phys.
Rev. X'5:031037

238. Liu J, Hu J, Cao H, Zhu Y, Chuang A, et al. 2016. Nearly massless Dirac fermions hosted
by Sb square net in BaMnSba. Sci. Rep. 6:30525

239. Huang S, Kim J, Shelton WA, Plummer EW, Jin R. 2017. Nontrivial Berry phase in

63



magnetic BaMnSb, semimetal. PNAS 114:6256—61

240. Pippard AB. 1965. The Dynamics of Conduction Electrons. New York: Gordon and Breach

241.Lv Y-Y, Zhang B-B, Li X, Yao S-H, Chen YB, et al. 2016. Extremely large and
significantly anisotropic magnetoresistance in ZrSiS single crystals. Appl. Phys. Lett.
108:244101

242. Wang X, Pan X, Gao M, Yu J, Jiang J, et al. 2016. Evidence of both surface and bulk Dirac
bands and anisotropic nonsaturating magnetoresistance in ZrSiS. Adv. Electron. Mater.
2:1600228

243. Zhang C-L, Xu S-Y, Belopolski I, Yuan Z, Lin Z, et al. 2016. Signatures of the Adler—Bell-
Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7:10735

244. Sankar R, Peramaiyan G, Muthuselvam IP, Butler CJ, Dimitri K, et al. 2017. Crystal growth
of Dirac semimetal ZrSiS with high magnetoresistance and mobility. Sci. Rep. 7:40603

245. Pezzini S, van Delft MR, Schoop LM, Lotsch BV, Carrington A, et al. 2018.
Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nat. Phys. 14:178—
83

246. Féte A, Gariglio S, Berthod C, Li D, Stornaiuolo D, et al. 2014. Large modulation of the
Shubnikov—de Haas oscillations by the Rashba interaction at the LaAlO3/SrTiO3 interface.
New J. Phys. 16:112002

247. LiuJY, Hu J, Graf D, Zou T, Zhu M, et al. 2017. Unusual interlayer quantum transport
behavior caused by the zeroth Landau level in YbMnBi2. Nat. Commun. 8:646

248. Fei F, Bo X, Wang R, Wu B, Jiang J, et al. 2017. Nontrivial Berry phase and type-II Dirac
transport in the layered material PdTe>. Phys. Rev. B 96:041201

249. Wang Q, Guo P-J, Sun S, Li C, Liu K, et al. 2018. Extremely large magnetoresistance and
high-density Dirac-like fermions in ZrBa. Phys. Rev. B 97:205105

250. Ran B, Zili F, Xingi L, Jingjing N, Jingyue W, et al. 2018. Spin zero and large Land¢ g-
factor in WTez. New J. Phys. 20:063026

251. Cohen MH, Falicov LM. 1961. Magnetic breakdown in crystals. Phys. Rev. Lett. 7:231-33

252. Matusiak M, Cooper JR, Kaczorowski D. 2017. Thermoelectric quantum oscillations in
ZrSiS. Nat. Commun. 8:15219

253. Klein O. 1929. Die Reflexion von Elektronen an einem Potentialsprung nach der

relativistischen Dynamik von Dirac. Z. Phys. 53:157-65

64



254. Ru-Keng S, Siu GG, Xiu C. 1993. Barrier penetration and Klein paradox. J. Phys. A Math.
Gen. 26:1001

255. Calogeracos A, Dombey N. 1999. History and physics of the Klein paradox. Contemp.
Phys. 40:313-21

256. Dombey N, Calogeracos A. 1999. Seventy years of the Klein paradox. Phys. Rep. 315:41—
58

257. Katsnelson MI, Novoselov KS, Geim AK. 2006. Chiral tunnelling and the Klein paradox in
graphene. Nat. Phys. 2:620-25

258. Young AF, Kim P. 2009. Quantum interference and Klein tunnelling in graphene
heterojunctions. Nat. Phys. 5:222-26

259. O’Brien TE, Diez M, Beenakker CWJ. 2016. Magnetic breakdown and Klein tunneling in a
type-1I Weyl semimetal. Phys. Rev. Lett. 116:236401

260. Zhang Y, Bulmash D, Hosur P, Potter AC, Vishwanath A. 2016. Quantum oscillations from
generic surface Fermi arcs and bulk chiral modes in Weyl semimetals. Sci. Rep. 6:23741

261. Zhang C, Narayan A, Lu S, Zhang J, Zhang H, et al. 2017. Evolution of Weyl orbit and
quantum Hall effect in Dirac semimetal CdsAsz. Nat. Commun. 8:1272

262. Li P, Wen Y, He X, Zhang Q, Xia C, et al. 2017. Evidence for topological type-11 Weyl
semimetal WTez. Nat. Commun. 8:2150

263. Zhang Y, Tan Y-W, Stormer HL, Kim P. 2005. Experimental observation of the quantum
Hall effect and Berry’s phase in graphene. Nature 438:201—4

264. Xu 'Y, Miotkowski I, Liu C, Tian J, Nam H, et al. 2014. Observation of topological surface
state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys.
10:956-63

265. Briine C, Liu CX, Novik EG, Hankiewicz EM, Buhmann H, et al. 2011. Quantum Hall
effect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 106:126803

266. Biittner B, Liu CX, Tkachov G, Novik EG, Briine C, et al. 2011. Single valley Dirac
fermions in zero-gap HgTe quantum wells. Nat. Phys. 7:418-22

267. Uchida M, Nakazawa Y, Nishihaya S, Akiba K, Kriener M, et al. 2017. Quantum Hall states
observed in thin films of Dirac semimetal Cd3Asz. Nat. Commun. 8:2274

268. Schumann T, Galletti L, Kealhofer DA, Kim H, Goyal M, Stemmer S. 2018. Observation of

the quantum Hall effect in confined films of the three-dimensional Dirac semimetal CdsAs:.

65



Phys. Rev. Lett. 120:016801

269. Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Kim T, et al. 2015. Time-reversal
symmetry breaking type-1I Weyl state in YbMnBi». arXiv:1507.04847 [cond-mat.mes-hall]

270. Tajima N, Sugawara S, Kato R, Nishio Y, Kajita K. 2009. Effect of the zero-mode Landau
level on interlayer magnetoresistance in multilayer massless Dirac fermion systems. Phys.
Rev. Lett. 102:176403

271. Stormer HL,, Tsui DC, Gossard AC. 1999. The fractional quantum Hall effect. Rev. Mod.
Phys. 71:5S298-305

272. Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, et al. 2016. Zeeman splitting and dynamical
mass generation in Dirac semimetal ZrTes. Nat. Commun. 7:12516

273. Zhang C-L, Xu S-Y, Wang CM, Lin Z, Du ZZ, et al. 2017. Magnetic-tunnelling-induced
Weyl node annihilation in TaP. Nat. Phys. 13:979-86

274. Wang H, Liu H, Li Y, Liu Y, Wang J, et al. 2018. Discovery of log-periodic oscillations in
ultra-quantum topological materials. Sci. Adv. 4:caau5096 [€**AU: OK? JH: OK**]

275. Liu H, Jiang H, Wang Z, Joynt R, Xie XC. 2018. Discrete scale invariance in topological
semimetals. arXiv:1807.02459 [cond-mat.mtrl-sci]

276. Xu R, Husmann A, Rosenbaum TF, Saboungi ML, Enderby JE, Littlewood PB. 1997. Large
magnetoresistance in non-magnetic silver chalcogenides. Nature 390:57-60

277. HuJ, Liu TJ, Qian B, Mao ZQ. 2013. Coupling of electronic and magnetic properties in
Fei+(Tei—Sey). Phys. Rev. B 88:094505

278. Hu J, Rosenbaum TF. 2008. Classical and quantum routes to linear magnetoresistance. Nat.
Mater. 7:697-700

279. Kuo H-H, Chu J-H, Riggs SC, Yu L, McMahon PL, et al. 2011. Possible origin of the
nonmonotonic doping dependence of the in-plane resistivity anisotropy of Ba(Fei—7x)2As> (T
= Co, Ni, and Cu). Phys. Rev. B 84:054540

280. Huynh KK, Tanabe Y, Tanigaki K. 2011. Both electron and hole Dirac cone states in
Ba(FeAs); confirmed by magnetoresistance. Phys. Rev. Lett. 106:217004

281. Wang K, Petrovic C. 2012. Multiband effects and possible Dirac states in LaAgSbo. Phys.
Rev. B 86:155213

282. Wang K, Graf D, Petrovic C. 2013. Quasi-two-dimensional Dirac fermions and quantum

magnetoresistance in LaAgBi>. Phys. Rev. B 87:235101

66



283. Wang A, Zaliznyak I, Ren W, Wu L, Graf D, et al. 2016. Magnetotransport study of Dirac
fermions in YbMnBi; antiferromagnet. Phys. Rev. B 94:165161

284. Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. 2010. Anomalous Hall effect.
Rev. Mod. Phys. 82:1539-92

285. Smit J. 1955. The spontaneous Hall effect in ferromagnetics. 1. Physica 21:877-87

286. Berger L. 1970. Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B
2:4559-66

287. Onoda M, Nagaosa N. 2002. Topological nature of anomalous Hall effect in ferromagnets.
J. Phys. Soc. Jpn. 71:19-22

288. Jungwirth T, Niu Q, MacDonald AH. 2002. Anomalous Hall effect in ferromagnetic
semiconductors. Phys. Rev. Lett. 88:207208

289. Lee W-L, Watauchi S, Miller VL, Cava RJ, Ong NP. 2004. Dissipationless anomalous Hall
current in the ferromagnetic spinel CuCr2Ses—Bry. Science 303:1647—49

290. Husmann A, Singh LJ. 2006. Temperature dependence of the anomalous Hall conductivity
in the Heusler alloy Co2CrAl. Phys. Rev. B 73:172417

291. Manyala N, Sidis Y, DiTusa JF, Aeppli G, Young DP, Fisk Z. 2004. Large anomalous Hall
effect in a silicon-based magnetic semiconductor. Nat. Mater. 3:255-62

292. Liu E, Sun Y, Miichler L, Sun A, Jiao L, et al. 2017. Giant anomalous Hall angle in a half-
metallic magnetic Weyl semimetal. arXiv:1712.06722 [cond-mat.mtrl-sci]

293. Barth J, Fecher GH, Balke B, Graf T, Shkabko A, et al. 2011. Anomalous transport
properties of the half-metallic ferromagnets Co2TiS1, Co,TiGe and Co,TiSn. Phil. Trans. R.
Soc. 4 369:3588-601

294. Felser C, Hirohata A, eds. 2016. Heusler Alloys: Properties, Growth, Applications. Cham,
Switz.: Springer Int.

295. Chadov S, Qi X, Kiibler J, Fecher GH, Felser C, Zhang SC. 2010. Tunable multifunctional
topological insulators in ternary Heusler compounds. Nat. Mater. 9:541-45

296. Lin H, Wray LA, Xia Y, Xu S, Jia S, et al. 2010. Half-Heusler ternary compounds as new
multifunctional experimental platforms for topological quantum phenomena. Nat. Mater.
9:546-49

297. Al-Sawai W, Lin H, Markiewicz RS, Wray LA, Xia Y, et al. 2010. Topological electronic
structure in half-Heusler topological insulators. Phys. Rev. B 82:125208

67



298. Suzuki T, Chisnell R, Devarakonda A, Liu YT, Feng W, et al. 2016. Large anomalous Hall
effect in a half-Heusler antiferromagnet. Nat. Phys. 12:1119-23

299. Ye L, Kang M, Liu J, von Cube F, Wicker CR, et al. 2018. Massive Dirac fermions in a
ferromagnetic kagome metal. Nature 555:638—42

300. Pal HK, Maslov DL. 2010. Necessary and sufficient condition for longitudinal
magnetoresistance. Phys. Rev. B 81:214438

301. Kim H-J, Kim K-S, Wang JF, Sasaki M, Satoh N, et al. 2013. Dirac versus Weyl fermions
in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. Phys. Rev.
Lett. 111:246603

302. Wang Y, Liu E, Liu H, Pan Y, Zhang L, et al. 2016. Gate-tunable negative longitudinal
magnetoresistance in the predicted type-I1 Weyl semimetal WTez. Nat. Commun. 7:13142

303. Lv Y-Y, Li X, Zhang B-B, Deng WY, Yao S-H, et al. 2017. Experimental observation of
anisotropic Adler-Bell-Jackiw anomaly in type-II Weyl semimetal WTe; 9g crystals at the
quasiclassical regime. Phys. Rev. Lett. 118:096603

304. Liang S, Lin J, Kushwaha S, Xing J, Ni N, et al. 2018. Experimental tests of the chiral
anomaly magnetoresistance in the Dirac-Weyl semimetals NazBi and GdPtBi. Phys. Rev. X
8:031002

305. Reis RDd, Ajeesh MO, Kumar N, Arnold F, Shekhar C, et al. 2016. On the search for the
chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance. New J.
Phys. 18:085006

306. Udagawa M, Bergholtz EJ. 2016. Field-selective anomaly and chiral mode reversal in type-
IT Weyl materials. Phys. Rev. Lett. 117:086401

307. Yu Z-M, Yao Y, Yang SA. 2016. Predicted unusual magnetoresponse in type-1I Weyl
semimetals. Phys. Rev. Lett. 117:077202

308. Sharma G, Goswami P, Tewari S. 2017. Chiral anomaly and longitudinal magnetotransport
in type-II Weyl semimetals. Phys. Rev. B 96:045112

309. Burkov AA. 2017. Giant planar Hall effect in topological metals. Phys. Rev. B 96:041110

310. Nandy S, Sharma G, Taraphder A, Tewari S. 2017. Chiral anomaly as the origin of the
planar Hall effect in Weyl semimetals. Phys. Rev. Lett. 119:176804

311. Li P, Zhang C, Zhang J, Wen Y, Zhang X-x. 2018. Giant planar Hall effect in the Dirac

semimetal ZrTes. arXiv:1803.01213 [cond-mat.mes-hall]

68



312. Li H, Wang H-W, He H, Wang J, Shen S-Q. 2018. Giant anisotropic magnetoresistance and
planar Hall effect in the Dirac semimetal CdsAs>. Phys. Rev. B 97:201110

313. Kumar N, Guin SN, Felser C, Shekhar C. 2018. Planar Hall effect in the Weyl semimetal
GdPtBi. Phys. Rev. B 98:041103 [€**AU: OK? JH: OK*¥]

314. Singha R, Roy S, Pariari A, Satpati B, Mandal P. 2018. Planar Hall effect in the type II
Dirac semimetal VAlz. Phys. Rev. B 98:081103(R) [€**AU: OK? JH: OK**]

315. Wang YJ, Gong JX, Liang DD, Ge M, Wang JR, et al. 2018. Planar Hall effect in type-II
Weyl semimetal WTe». arXiv:1801.05929 [cond-mat.mtrl-sci]

316. West FG. 1963. Rotating-field technique for galvanomagnetic measurements. J. Appl. Phys.
34:1171-73

317. Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, et al. 2018. Anomalous Hall effect in ZrTes.
Nat. Phys. 14:451-55

318. Kane CL, Mele EJ. 2005. Z, topological order and the quantum spin Hall effect. Phys. Rev.
Lett. 95:146802

319. Fu L, Kane CL, Mele EJ. 2007. Topological insulators in three dimensions. Phys. Rev. Lett.
98:106803

320. Roth A, Briine C, Buhmann H, Molenkamp LW, Maciejko J, et al. 2009. Nonlocal transport
in the quantum spin Hall state. Science 325:294-97

321. Kou X, Fan Y, Wang KL. 2017. Review of quantum Hall trio. J. Phys. Chem. Solids. In
press [€**AU: Please update if possible JH: still in press as of Dec. 15, 2018%%*]

322. Xu Q, Song Z, Nie S, Weng H, Fang Z, Dai X. 2015. Two-dimensional oxide topological
insulator with iron-pnictide superconductor LiFeAs structure. Phys. Rev. B 92:205310

323. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. 2012. Electronics and
optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.
7:699-712

324. Koénig M, Wiedmann S, Briine C, Roth A, Buhmann H, et al. 2007. Quantum spin Hall
insulator state in HgTe quantum wells. Science 318:766—70

325. Bradlyn B, Elcoro L, Cano J, Vergniory MG, Wang Z, et al. 2017. Topological quantum
chemistry. Nature 547:298-305

326. Eugene JM. 2015. The winding road to topological insulators. Phys. Scr. 2015:014004

327. Wang C, Hughbanks T. 1995. Main group element size and substitution effects on the

69



structural dimensionality of zirconium tellurides of the ZrSiS type. Inorg. Chem. 34:5524-29

328. Qi X-L, Hughes TL, Zhang S-C. 2010. Chiral topological superconductor from the quantum
Hall state. Phys. Rev. B 82:184516

329. Liu X, Wang Z, Xie XC, Yu Y. 2011. Abelian and non-Abelian anyons in integer quantum
anomalous Hall effect and topological phase transitions via superconducting proximity
effect. Phys. Rev. B 83:125105

330. Chang C-Z, Zhang J, Feng X, Shen J, Zhang Z, et al. 2013. Experimental observation of the
quantum anomalous Hall effect in a magnetic topological insulator. Science 340:167-70

331. Checkelsky JG, Yoshimi R, Tsukazaki A, Takahashi KS, Kozuka Y, et al. 2014. Trajectory
of the anomalous Hall effect towards the quantized state in a ferromagnetic topological
insulator. Nat. Phys. 10:731-36

332. He QL, Pan L, Stern AL, Burks EC, Che X, et al. 2017. Chiral Majorana fermion modes in
a quantum anomalous Hall insulator—superconductor structure. Science 357:294-99

333. Po HC, Vishwanath A, Watanabe H. 2017. Symmetry-based indicators of band topology in
the 230 space groups. Nat. Commun. 8:50

334. Tang F, Po HC, Vishwanath A, Wan X. 2018. Towards ideal topological materials:

comprehensive database searches using symmetry indicators. arXiv:1807.09744 [cond-

mat.mes-hall]

335. Vergniory MG, Elcoro L, Felser C, Bernevig BA, Wang Z. 2018. The (high quality)
topological materials in the world. arXiv:1807.10271 [cond-mat.mtrl-sci]

336. Zhang T, Jiang Y, Song Z, Huang H, He Y, et al. 2018. Catalogue of topological electronic
materials. arXiv:1807.08756 [cond-mat.mtrl-sci]

337. Zhou Q, Rhodes D, Zhang QR, Tang S, Schénemann R, Balicas L. 2016. Hall effect within
the colossal magnetoresistive semimetallic state of MoTez. Phys. Rev. B 94:121101

338. Rhodes D, Schonemann R, Aryal N, Zhou Q, Zhang QR, et al. 2017. Bulk Fermi surface of
the Weyl type-1I semimetallic candidate g-MoTe,. Phys. Rev. B 96:165134

339. Qi Y, Naumov PG, Ali MN, Rajamathi CR, Schnelle W, et al. 2016. Superconductivity in
Weyl semimetal candidate MoTe>. Nat. Commun. 7:11038

340. Chen FC, Lv HY, Luo X, Lu WJ, Pei QL, et al. 2016. Extremely large magnetoresistance in
the type-II Weyl semimetal MoTe. Phys. Rev. B 94:235154

341. Mun E, Ko H, Miller GJ, Samolyuk GD, Bud'ko SL, Canfield PC. 2012. Magnetic field

70



effects on transport properties of PtSna. Phys. Rev. B 85:035135

342. Wang Y], Liang DD, Ge M, Yang J, Gong JX, et al. 2018. Topological nature of the node-
arc semimetal PtSns probed by de Haas—van Alphen quantum oscillations. J. Phys. Condens.
Matter 30:155701

343. Fu C, Scaffidi T, Waissman J, Sun Y, Saha R, et al. 2018. Thermoelectric signatures of the
electron-phonon fluid in PtSny. arXiv:1802.09468 [cond-mat.mtrl-sci]

344. Liang S, Lin J, Kushwaha S, Xing J, Ni N, et al. 2018. Experimental tests of the chiral

anomaly magnetoresistance in the Dirac-Weyl semimetals Na;Bi 3,4 GdPtBi. Phys. Rev. X
8:031002

345. He JB, Wang DM, Chen GF. 2012. Giant magnetoresistance in layered manganese pnictide
CaMnBiz. Appl. Phys. Lett. 100:112405

346. He JB, Fu Y, Zhao LX, Liang H, Chen D, et al. 2017. Quasi-two-dimensional massless
Dirac fermions in CaMnSbs. Phys. Rev. B 95:045128

347. Singha R, Pariari A, Satpati B, Mandal P. 2017. Magnetotransport properties and evidence
of a topological insulating state in LaSbTe. Phys. Rev. B 96:245138

71



Table 1 Parameters obtained from transport and quantum oscillation experiments at base

[€**AU: OK as phrased? JH: change “based” to “base”**] temperatures (1.5-5 K),

including magnetoresistance (MR) at 9 T, residual resistivity pres, transport mobility ur, quantum

relaxation time 7q, quantum mobility uq, and effective mass ratio m*/mo [€**AU: OK to delete

the hyphen beneath the asterisk here and in the table (header row, second-to-last column)?

JH: yes it is OK. In fact in my version there is no such hyphen under the asterisk. Also, for

the table below, each cell should have content in it. For each blank cell, please specify text

that should go in it — e.g., “NA” (if so, please define NA as, e.g., not applicable or not
available) JH: OK**]

MR at9 T | pres (nQ ur [em? 7q (pS) Hq [em? m=/mo Reference(
cm) /(V+s)] /(V+s)] s)
[€**AU:
Should
there be a
multiplicat
ion dot (*)
between
these
units?
Please
clarify JH:
with or
without
dot, both
are fine**]
Cds;As2 34.5-1,336 | 0.032—46.5 | 4 x 10°-8.7 | 0.03-0.21 4,700— 0.023-0.26 | 45,172,
x 106 6,000 178, 236,
237,272
NazBi 5.69-97.1 1.72-87 5,500—- 0.0816 NA[**AU: | 0.11 105, 176
78,900 Blank
cell;
please
specify
content
JH: NA,
not
available*
|
TaAs 3-30,000 0.63-1.9 18,000— 0.038-1.1 32,000 0.021-0.68 | 46, 179—
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family 10,000,00 183, 191-
0 194, 225
227,243
WTe> 4,000— 0.39-1.9 24,000 NA NA 0.41-0.46 | 48, 184,
25,000 176,000 [**AU: 186, 231
Blank
cell;
please
specify
content**
|
MoTe: 2,653 28 16,000— NA NA 0.8-2.9 337-340
58,000 [**AU: [**AU:
Blank Blank
cell; cell;
please please
specify specify
content** | content**
| |
PtSny 1,000- NA NA NA 14,257- 0.05-0.36 | 341-343
2,100 [**AU: [**AU: [**AU: 15,809
Blank Blank Blank
cell; cell; cell;
please please please
specify specify specify
content** | content** | content**
| | |
PtBiz 12,000 NA NA NA NA NA 171
[**AU: [**AU: [**AU: [**AU: [**AU:
Blank Blank Blank Blank Blank
cell; cell; cell; cell; cell;
please please please please please
specify specify specify specify specify
content** | content** | content** | content** | content**
| | | | |
Pt(Te/Se). | A few tens | NA 3,600— NA NA 0.11-3.6 229, 344
[€**AU: | [**AU: 5,500 [**AU: [**AU:
Possible Blank Blank Blank
to be cell; cell; cell;
more please please please
specific, specify specify specify
e.g., “~30 | content** content** | content**
—40”? JH: | ] | |
the
original
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papers
states like

that. They
do not
provide a
number
or
number
range *¥]
PdTe A few tens | NA NA 0.18-0.65 1,293— 0.04-1.16 | 229, 248
[€**AU: | [**AU: [**AU: 6,209
Possible Blank Blank
to be cell; cell;
more please please
specific, specify specify
e.g., “~30 | content** | content**
—40”? JH: | | |
the
original
papers
states like
that. They
do not
provide a
number
or
number
range *¥|
AMn(Sb/Bi | 1 NA 1,500— NA NA NA 141, 143,
)2 [**AU: 3,400 [**AU: [**AU: [**AU: 173, 175,
(4=Ca, Blank Blank Blank Blank 213,234,
Sr, Ba, cell; cell; cell; cell; 235, 238,
Yb) please please please please 239, 247,
specify specify specify specify 283, 345,
content** content** | content** | content** | 346
| | | |
WHM? 1.3— 0.052 2,000- 0.025-0.35 | 209—- 0.025-0.27 | 156, 222,
140,000 28,000 10,000 1.32b 226, 228,
[€**AU: 232,233,
Do these 245, 347
represent
two
different
number
ranges?
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Please
clarify
JH: the
second
one (1.32)
is very
unusual
and have
other
specific
origins, as
denoted
below (the
mass
enhancem
ent)**]

MR, effective mass, and quantum relaxation time widely vary in different WHM materials,

possibly due to the spin-orbit coupling gap, which varies with the atomic number.

bCaused by the mass enhancement at low temperatures (245). [€**AU: OK? Or “Mass is

enhanced at low temperatures (245)”? JH: see my edits**]
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