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dimensional (3D) topological semimetals represent a new class of topological matters. The study 

of this family of materials has been at the frontiers of condensed matter physics, and many 

breakthroughs have been made. Several topological semimetal phases, including Dirac 

semimetals (DSMs), Weyl semimetals (WSMs), nodal-line semimetals (NLSMs), and triple-

point semimetals, have been theoretically predicted and experimentally demonstrated. The low-

energy excitation around the Dirac/Weyl nodal points, nodal line, or triply degenerated nodal 

point can be viewed as emergent relativistic fermions. [**AU: Could the highlighted be 

hyphenated to “low-energy excitation”? JH: OK**] Experimental studies have shown 

relativistic fermions can result in  a rich variety of exotic transport properties, e.g., extremely 

large magnetoresistance, the chiral anomaly, intrinsic anomalous Hall effect (AHE), etc.  

[**AU: Below, sometimes “the chiral anomaly” appears and sometimes simply “chiral 

anomaly” (with no definite object “the”). For consistency, please indicate whether this term 

should have “the” before it; changes will be made to text according to your response**] In 

this review, we first briefly introduce band structural characteristics of each topological 

semimetal phase and then review the current studies on quantum oscillations and exotic transport 

properties of various topological semimetals, and finally provide a perspective of this area. 

1. INTRODUCTION 

The rich cross-pollination between high-energy physics and condensed matter physics has led to 

deeper knowledge of important topics in physics such as spontaneous symmetry breaking, phase 

transitions, and renormalization (1, 2). Such knowledge has, in turn, greatly helped physicists 

and materials scientists to better understand magnets, superconductors, and other novel materials, 

leading to practical device applications (1). In the past decade, there has been significant interest 

in realizing high-energy particles in solid-state systems. The theoretical attempts to explain 

graphene’s properties (3) by using solid-state physics led to an equation similar to one otherwise 

seen in cosmology and colliders: the Dirac equation. Following graphene’s discovery, many 

materials with nodal band crossings, known as topological insulators and semimetals (4–11), 

were discovered, generating significant research excitement. The topological Dirac semimetals 

(DSMs) (12–14) and Weyl semimetals (WSMs) (2, 15–23) are crystalline solids whose low-

energy electronic excitations resemble the Dirac (24) and Weyl (15) fermions in high-energy 

particle physics, respectively. In particular, although the Weyl fermion played a crucial rule in 
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the Standard Model (15), it has never been observed as a fundamental particle. The realization of 

the topological WSM state (22, 23, 25–27) enables the observation of this elusive particle in 

physics. Topological semimetals further allow for band crossings beyond high-energy 

classifications. Primary examples include the type II WSMs (28) and DSMs (29), the nodal-line 

semimetals (NLSMs) (30), and the unconventional fermion semimetals (31–36). Due to the rich 

variety of crystalline and magnetic symmetry properties of condensed matter systems (37), it is 

likely that such breakthroughs are only the tip of an iceberg and that there are ample new 

topological semimetals awaiting discovery. [**AU: OK? – JH: OK**] These topological 

semimetals provide platforms for studying a number of important concepts in high-energy 

physics (e.g., the chiral anomaly) in tabletop experiments. Moreover, such materials extend the 

classification of topological phases from gapped matter (e.g., insulators) to gapless systems (e.g., 

metals). 

Topological semimetals enable a kaleidoscope of novel electronic properties. They support 

exotic, topologically protected boundary modes such as the topological Fermi arcs and drumhead 

surface states. These surface states have been directly observed in spectroscopic measurements 

(19, 25, 27, 38–42). The Fermi arcs also lead to unusual quantum cyclotron orbits (the Weyl 

orbits) as observed in quantum oscillation measurements (43, 44). Because of linear dispersion 

and spin (pseudospin) momentum locking, low-energy electrons in topological semimetals are 

highly robust against crystalline disorder and imperfections, leading to very high electron 

mobilities (45, 46). The compensating electron and hole carriers further cause nonsaturating 

magnetoresistance (MR) (46–48) and magnetothermopower (49–51). The application of parallel 

electric and magnetic fields can break the apparent conservation of the chiral charge (10, 11, 52, 

53). Such chiral anomaly leads to enhanced conductivity with an increasing magnetic field. The 

diverging Berry curvatures near the nodal points support distinct anomalous transport 

phenomena, including intrinsic AHEs (54–56) and anomalous Nernst effects (57, 58). Such 

curvatures also support significantly enhanced optical and optoelectronic phenomena, including 

large (even quantized) photocurrents (59–64), second-harmonic generation (65, 66), optical 

activity and gyrotopy (67–69), and Kerr rotation (70, 71). Furthermore, thinning down a 3D 

topological semimetal into 2D may give rise to new 2D topology, including the quantum spin 

Hall insulator (QSHI) and the quantum anomalous Hall insulator (QAHI) (14, 20, 21, 72–76). 

These unconventional transport and optical properties of topological semimetals can pave the 
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way for the realization of dissipationless electronic and spintronic devices as well as efficient 

photodetectors and energy harvesters. 

The area of 3D topological semimetals is fast growing; many papers have been published on 

theoretical predictions and experimental studies. There have been many reviews that introduce 

progress in theoretical and experimental studies on topological semimetals (8–11, 76–85). In this 

review, we focus on electronic transport and quantum oscillation studies on topological 

semimetals; these two topics have not been reviewed comprehensively in previous reviews. 

Before we discuss these topics in detail, we first briefly introduce each prototype topological 

semimetal phase and discuss their band structure characteristics, topological invariants, 

[**AU: invariants? JH: yes**] and symmetry protections. 

2. CATEGORIES OF TOPOLOGICAL SEMIMETALS 

In this section, we discuss various 3D topological semimetal phases of matter, including WSMs, 

DSMs, NLSMs, and unconventional fermion semimetals beyond the Dirac and Weyl paradigm. 

For each kind of topological semimetal, we focus on three aspects: the characteristic band 

structure (the number of bands that cross, the dimensionality of the band crossing in k space, and 

the typical energy-momentum dispersion), the topological invariant and the symmetry 

protections, and representative materials. 

2.1. Weyl Semimetals 
WSMs are a class of topological semimetals that host Weyl fermions as low-energy quasiparticle 

excitations (2, 6–11, 15–21). In a WSM, two singly degenerate bands cross at discrete points, 

i.e., Weyl nodes, and disperse linearly in all three momentum space directions away from each 

Weyl node (Figure 1a). Weyl fermions have distinct chiralities that are [**AU: OK? JH: 

OK**] either left handed or right handed. The chiralities of the Weyl nodes give rise to chiral 

charges, which can be understood as monopoles and antimonopoles of Berry flux in momentum 

space. The separation of the opposite chiral charges in momentum space leads to surface Fermi 

arcs, whose constant energy contours are open arcs that connect the Weyl nodes of opposite 

chiralities on the surface. 

<COMP: PLEASE INSERT FIGURE 1 HERE> 



 5 

Figure 1 Schematic band structure of different types of topological semimetals. (a) Type I 
Weyl/Dirac semimetal. The degeneracy of a Weyl point is half of that of a Dirac point. On a 2D 
closed surface (the green surface) that encloses the Weyl node in k space, the band structure is 
fully gapped and therefore allows a topological invariant to be defined (19). [**AU: Meaning 
that panel a is reproduced from Ref 19? (Are any of the other panels from Ref 19, or are 
they from other references?) Please clarify JH: none of the panels from Ref 19. This 
reference can be deleted**] Specifically, the topological invariant for a Weyl node is a chiral 
charge, which corresponds to the Chern number associated with the 2D closed surface. (b) Type 
II Weyl/Dirac semimetal. At the energy of the type II Weyl/Dirac node, the constant energy 
contour consists of an electron pocket and a hole pocket touching at the node. (c) Nodal-line 
semimetal. The conduction and valence bands are degenerate on a 1D closed loop, shown as the 
green circle in the Brillouin zone. The topological invariant of the nodal line is a winding 
number w, which is defined as the line integral of the Berry connection along a closed loop, 
shown as the green circle that interlinks the nodal line. (d) Triple-point semimetal. Three singly 
degenerate bands cross at discrete points, the triple points. The triple point can also be viewed as 
the meeting point between two nodal lines along the ky axis. 

[**AU: It is the author's responsibility to obtain permissions for figures being adapted 

or reprinted from previous publications. Please obtain permissions as necessary and add 

permissions verbiage to figure captions where applicable. JH: obtained already**] 

Because of the existence of Weyl nodes, WSMs lack a global band gap. The absence of a 

global band gap prevents the definition of a topological invariant for the entire 3D bulk Brillouin 

zone (BZ). In contrast, on a 2D closed surface that encloses the Weyl node in k space (Figure 

1a), the band structure is fully gapped and therefore allows a topological invariant to be defined 

(19). Specifically, the Chern number associated with the 2D closed surface directly corresponds 

to the topological invariant of a Weyl node (i.e., the chiral charge). Mathematically, the chiral 

charge C can be calculated by the integral of the Berry curvature (the Berry flux) as shown 

below: 

d ,
S

C = ⋅∫ Ω S  1. 

where S is the 2D closed surface in k space that encloses the Weyl node and Ω is the Berry 

curvature. Due to the chiral charge, Weyl nodes can appear at generic k points of the BZ. In the 

presence of translational symmetry, these Weyl nodes are topologically stable and cannot be 

removed without pair annihilation. The existence of Weyl nodes does not rely on any additional 

crystalline point group symmetries. 

Real materials that host the WSM state are usually further classified into either inversion-
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symmetry–breaking WSMs or time-reversal symmetry–breaking WSMs. Representative 

inversion-symmetry–breaking WSMs include the TaAs family of noncentrosymmetric crystals 

(22, 23, 25, 27, 39, 86–92). Representative time-reversal symmetry–breaking WSMs can be 

realized in naturally occurring ferromagnetic (FM) semimetals such as pyrochlore iridate (19), 

HgCr2Se4 (21), Co3Sn2S2 (93, 94), Heuslers (95–99), and the noncollinear antiferromagnets 

Mn3Sn and Mn3Ge (57, 100–103) or by applying an external magnetic field to a nonmagnetic or 

antiferromagnetic (AFM) semimetal, as demonstrated in the magnetotransport experiments (104) 

on Na3Bi (105), Cd3As2 (45, 106), ZrTe5 (107), and half-Heuslers (108–110). From a different 

angle, WSMs can also be classified by the energy-momentum dispersions near the Weyl nodes. 

Type I WSMs have untilted or weakly tilted Weyl cones with a point-like Fermi surface when 

the chemical potential is placed at the Weyl node. By contrast, type II WSMs have strongly tilted 

Weyl cones (Figure 1b) (28). Their Fermi surface consists of electron and hole pockets that 

touch at the type II Weyl nodes. Representative type II WSMs include WTe2 (28, 111–113), 

MoTe2 (114–122), TaIrTe4 (123, 124), and (W/Mo)P2 (125). These different classifications are 

not mutually exclusive. For instance, MoTe2 is not only an inversion-breaking WSM but also a 

type II WSM. 

2.2. Dirac Semimetals 
DSMs host Dirac fermions as low-energy quasiparticle excitations (12–14, 38, 126–131). In a 

DSM, two doubly degenerate bands cross to form a Dirac node and disperse linearly in all three 

momentum directions away from the node. Each Dirac node can be viewed as a pair of 

degenerate Weyl nodes of opposite chiralities. Since a pair of degenerate Weyl nodes of opposite 

chiralities is in general unstable and may annihilate, additional crystalline point group 

symmetries are needed to realize a stable DSM phase (131). One route is to rely on uniaxial 

rotational symmetries (131). Specifically, a band inversion can create a pair of 3D Dirac nodes 

on the opposite sites of the time-reversal invariant momenta. Representative DSMs of this kind 

include Na3Bi (13, 38, 126) and Cd3As2 (14, 127–130) (type I) as well as VAl3 (29) (type II). 

Another route is to rely on nonsymmorphic symmetries, i.e., glide reflections and screw 

rotations. It has been theoretically shown that nonsymmorphic symmetries can lead to nontrivial 

band connectivity at the BZ boundaries, giving rise to filling-enforced DSMs or NLSMs, 

depending on the specific space groups (12, 132–135). Representative filling-enforced DSM 

candidates include β-BiO2 (12) and distorted spinels (132). Furthermore, a DSM can be realized 
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as the critical point of the topological phase transition between a trivial insulator and a 

topological insulator. This is achieved in the BiTl(S1−xSex)2 (12, 136), Bi2−xInxSe3 (137), and 

Pb1−x SnxTe (138) systems by fine-tuning the chemical doping concentration. Alternatively, 

compounds like ZrTe5 (107, 139, 140) and those in the SrMnSb2 family (141–143) naturally sit 

near the critical point of such a topological phase transition and therefore approximate a DSM 

state. [**AU: By ZrTe5 do you mean “ZrTe5 family”? If so, the highlighted will be edited 

to “those in the ZrTe5 (107, 139, 140) and SrMnSb2 (141–143) families” – if not, please clarify 

JH: ZrTe5 is one material, not family. For SrMnSb2, there are some others materials with same 

SrMnSb2-type structure, so it is a “SrMnSb2 family”. **] According to current theoretical 

understanding, Dirac nodes are not associated with any nontrivial topological invariant (i.e., they 

have zero chiral charge) (144). 

2.3. Nodal-Line Semimetals 
In NLSMs, conduction and valence bands cross at 1D lines in k space (Figure 1a) (30, 40, 78, 

85, 133, 134, 145–161). Compared to DSMs/WSMs, the electronic structure of NLSMs is 

distinct in three aspects: (a) The bulk Fermi surface consists of 1D lines in NLSMs but of 0D 

points in WSMs; (b) the density of states (DOS) is proportional to (E − EF)2 in NLSMs but to 

[**AU: should “is” or “to” be inserted here? JH: “to” is better **] |E − EF| in WSMs; and 

(c) on the surface, nodal lines are accompanied by drumhead-like surface states, whereas Weyl 

nodes are connected by 1D Fermi arc surface states. 

We now discuss the topological invariant of NLSMs. We consider a 1D closed loop that 

interlinks the nodal line in k space (Figure 1c). The band structure is fully gapped and therefore 

allows for the definition of a topological invariant, i.e., the winding number (150). 

Mathematically, the winding number w is defined as the integral of the Berry connection along 

the 1D closed loop that links the nodal line as shown below: 

d ,
l

w = ⋅∫ A l  2. 

where l is the 1D closed loop that links the nodal line and A is the Berry connection. 

NLSMs also come in a variety of forms, depending on the characteristic band structure and 

the symmetry protection. First, nodal lines can be closed loops (also termed nodal circles) inside 

the 3D BZ. [**AU: OK? Please clarify as necessary JH: OK**] Such nodal circles are 
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naturally formed by a band inversion. The nodal circles are further classified on the basis of the 

symmetry protection. There are nodal circles that are strictly gapless only in the absence of spin-

orbit coupling (SOC) (78, 146, 149, 150). They are usually protected by the combination of time-

reversal and time-inversion symmetries (78, 146, 150). Representative materials include Cu3N 

(149), Ca3P2 (147), Cu3PdN (148), and those in the ZrSiS family (154–158). Alternatively, nodal 

circles can be formed in noncentrosymmetric crystals protected by a mirror plane. These nodal 

circles are stable even upon the inclusion of SOC. Representative materials include PbTaSe2, 

TlTaSe2, and CaAgAs (40, 145, 159, 160). Second, nodal lines can also be a straight line that 

span across the BZ. Representative materials include those in the BaNbS3 family (161). Third, 

nodal circles can interlink with each other in k space, forming Hopf links and nodal chains (162–

167). These Hopf links and nodal chains [**AU: please clarify. JH: Hopf links and nodal 

chains **] may be protected by the presence of multiple perpendicular mirror planes (167) or by 

nonsymmorphic symmetries (162, 163). 

2.4. Unconventional Fermion Semimetals 
In contrast to [**AU: insert “the case for”? JH: not necessary**] high-energy physics, 

solid-state crystals can support band crossings beyond the Dirac/Weyl paradigm (31–36). These 

band crossings, broadly referred as unconventional fermions, include three-, four-, six-, and 

eightfold degeneracies (31). [**AU: Quotation marks used for purposes other than direct 

quotation have been removed throughout, per house style. JH: OK**] 

Here we take a particular type of three-band crossing as an example (33–36, 168–170). In 

such a triple-point semimetal, three singly degenerate bands cross at discrete points, the triple 

points (Figure 1d). Moving away from one triple point along kx or kz, all three bands become 

nondegenerate. By contrast, moving away along ky, bands 1 and 2 remain degenerate for −ky, 

whereas bands 2 and 3 remain degenerate for +ky. Therefore, the triple point can also be viewed 

as the meeting point between two nodal lines along the ky axis. These triple points are protected 

by the combination of a uniaxial rotational axis, mirror planes, and time-reversal symmetry. 

These triple points are not associated with any topological invariant due to the lack of a global 

band gap on any 2D closed surface that encloses the triple point. Representative materials 

include MoC, WC, MoP, and ZrTe (33–36, 169, 170). 
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3. TRANSPORT SIGNATURES OF TOPOLOGICAL SEMIMETALS 

The relativistic nature of the Dirac and Weyl fermions in topological semimetals manifests in 

many distinct transport properties, including extremely large MR, high mobility, light effective 

mass, nontrivial Berry phase, chiral anomaly, and the AHE. These relativistic fermion properties 

have great potential for future electronic and spintronic applications. Characterization of 

relativistic fermions through transport measurements provides a convenient approach to verify a 

nontrivial topological state, complementary to the direct observation of nontrivial band topology 

by ARPES experiments. In this section, we summarize these transport signatures of topological 

DSMs and WSMs. 

3.1. Magnetoresistance 
Electron transport in topological semimetals is usually strongly affected by external magnetic 

field. Large MR is a common signature often seen in most DSMs and WSMs. MR is usually 

expressed as the change in resistance (resistivity) under field normalized by the zero-field 

resistance (resistivity), i.e., [R(B) − R(B = 0)]/R(B = 0) or [ρ(B) − ρ(B = 0)]/ρ(B = 0). The 

transverse MR, measured with the field perpendicular to the current direction, can reach up to 

0.1–1 million percent at low temperatures (0.5–5 K) and a field of 9 T (see Table 1), without any 

sign of saturation up to 30–100 T in WSMs/DSMs such as Cd3As2, PtBi2, WTe2, and NbP (46, 

48, 171, 172). A power law field dependence (MR ∝ Bn) is usually seen in various topological 

semimetals, with the exponent n ranging from 1 to 2 (45, 46, 48, 107, 171–187). 

<COMP: PLEASE INSERT TABLE 1 HERE> 

In a simple metal, a positive transverse MR with quadratic field dependence is generally 

expected due to the Lorentz effect (47). Such Lorentz effect–induced orbital MR is usually weak 

and saturates for systems with a closed Fermi surface, contrasted with the giant, nonsaturating 

MR seen in topological semimetals. The origin of the unusually large MR of topological 

semimetals has been intensively studied. Electron-hole compensation has been proposed to be a 

possible mechanism (46, 48, 171). However, reports also indicate that carrier compensation is 

not achieved in some topological semimetals (188, 189). An alternative explanation is that the 

backscattering at zero field is strongly suppressed by some protection mechanisms associated 

with nontrivial band topology but is [**AU: OK? JH: also change “and” to “but”**] 

significantly enhanced by magnetic fields (45). 
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The strong coupling between MR, high mobility, and linearly dispersed Dirac/Weyl cones 

may provide some clues for further understanding of the large MR. High mobility is another 

signature accompanied with large MR in topological semimetals. Mobility (μ) is related to 

conductivity σ via σ = nqμ, where n and q are the carrier density and charge, respectively. For a 

single-band system, the Hall coefficient RH = 1/nq, and thus μ = σ • RH. However, in multiple-

band systems, the field dependence of Hall resistivity ρxy deviates from linearity. Figure 2a 

shows one example. In this case, the Hall coefficient, defined as dρxy/dB, becomes field 

dependent, and both mobility and carrier density cannot be directly derived as for a single-band 

system. A commonly used approach for analyzing the transport properties of multiband systems 

is the multiple-band model, i.e., assuming that the contributions of various bands to the 

conductivity are additive. In practice, for a system with more than two bands, a further simplified 

model, which considers only one electron band and one hole band, is widely used to describe the 

longitudinal resistivity (ρxx) and transverse resistivity (ρxy, i.e., the Hall resistivity), as shown by 

Equations 3 and 4 below (190): 

2 2 2
e e h h e e h h h e

2 2 2 2 2
e e h h e h h e

( ) ( ) 1 ,
( ) ( - )xx

n n n n B
n n n n B e
µ µ µ µ µ µρ
µ µ µ µ
+ + +

= ⋅
+ +

 3. 

2 2 2 2 2

2 2 2 2 2

( ) ( - ) ,
( ) ( - )

h h e e h e h e
xy

e e h h h e h e

n n n n B B
n n n n B e

µ µ µ µρ
µ µ µ µ

− +
= ⋅

+ +
 4. 

where ne (nh) and μe (μh) are the density and mobility of the electron (hole) band, respectively. 

From the simultaneous fitting for ρxx(B) and ρxy(B) by using such a two-band model, both the 

densities and mobilities of the electron bands and hole bands can be obtained. Clearly, for a real 

system with more than one electron or hole band, this oversimplified model averages electron 

and hole bands and neglects any interband interactions. Although adding more bands to the 

above model is possible in principle, more accurate results may not be obtained with an 

overparameterized model. In fact, the two-band model already yields reasonable results for a 

variety of material systems, so it is reasonable to extend its application to topological 

semimetals. 

<COMP: PLEASE INSERT FIGURE 2 HERE> 

Figure 2 Magnetoresistance (MR). (a) Magnetic field dependence of the longitudinal (ρxx) and 
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transverse (Hall) (ρxy) resistivity for Cd3As2 (45). (b) MR normalized by the zero-field resistivity 
for WTe2 at 2 K and 10 K. Shubnikov–de Haas (SdH) oscillation is seen for the T = 2 K data. 
(Upper inset) MR at higher temperatures. (Lower inset) Oscillatory component of the resistivity 
oscillation, obtained by subtracting the smooth MR background (48). (c) MR normalized by the 
zero-field resistivity for NbP at various temperatures. SdH oscillation is seen at T < 10 K. (Inset) 
MR at higher temperatures (46). [**AU: Do the highlights in this caption indicate that 
panel a is reproduced from Ref 45, panel b is reproduced from Ref 48, and panel c is 
reproduced from Ref 46? Please clarify if not** JH: yes there are from those references] 

Equation 3 indicates that ρxx tends to saturate at high fields where the B2 terms dominate. 

Only when ne = nh, i.e., the case of electron-hole compensation, [**AU: OK? JH: not 

good**] ρxx ∝ B2 without saturation. Under such a circumstance, large MR is expected when 

mobility is high. Table 1 shows the mobilities of some representative topological semimetals 

acquired from two-band model analysis; the mobilities are indeed high, in the range of 103–106 

cm2/(V∙s). Such high transport mobility is consistent with the ultralow residual resistivity at the 

zero-temperature limit (~nΩ to a few μΩ; see Table 1) as well as with the high quantum mobility 

revealed by quantum oscillation studies (discussed in Section 3.2.2). 

The two-band model, while widely used, provides only an approximate description for the 

magnetotransport properties of multiple-band materials. First, Equations 3 and 4 are not 

applicable if there are open orbits, which occur when the Fermi surface is not closed in the 

momentum space (190). Second, the negligence of interband interaction leads to an apparent 

contradiction: The carrier compensation appears to be necessary for the nonsaturated MR 

according to Equation 3, but the Hall resistivity expressed by Equation 4 must be linearly 

dependent on the field when ne = nh, which is not true for most topological semimetals (e.g., see 

Figure 2a). Third, according to Equation 3, even approximate electron-hole compensation 

should be able to lead to a quadratic or nearly-quadratic field dependence for ρxx. Such a 

dependence [**AU: OK?**] has indeed been observed in a number of topological semimetals 

(48, 183, 191–193), but linear or even sublinear MR has also been observed in a variety of 

samples (107, 171, 172, 174–180, 182, 183, 191, 194). The linear MR may be a classical effect 

due to strong current inhomogeneity (172) or may have a quantum mechanical interpretation 

(195) (see Section 3.2.8), while the sublinear MR may be attributed to the weak antilocalization 

caused by strong SOC (196). With these considerations, the two-band model appears to be 

applicable only for a limited field range or at higher temperatures at which quantum effects are 
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not significant. 

Although obtaining the precise value of carrier mobility for individual bands might be 

challenging, the two-band model still provides an effective approach for the approximate 

description of magnetotransport properties of multiband materials. This model successfully 

explains the extremely large MR arising from high mobility and approximate carrier 

compensation. Then, a key question for topological semimetals is why Dirac/Weyl fermions 

have high mobility. This question [**AU: OK? Or “The answer”?** JH: OK] can be 

understood in terms of the energy band characteristics of topological semimetals. Given that the 

carrier mobility is determined by relaxation time τ and effective mass m*,[**AU: insert “is 

determined by”? **].i.e. μ = eτ/m*, greater relaxation time and smaller effective mass favor 

higher mobility. As shown in Section 3.2.2, the cyclotron effective masses derived from quantum 

oscillations are indeed small for many topological semimetals, reaching as low as 0.02me (where 

me is the free electron mass) for some materials. Such massless behavior is naturally expected for 

ideal topological fermions since they are hosted by linearly dispersed bands crossing near the 

Fermi level, which requires zero mass in the Hamiltonian (11). 

Greater relaxation time in topological materials may be associated with symmetry protection 

in many cases. For topological insulators, it has been well established that backscattering is 

forbidden by time-reversal symmetry, even though nonmagnetic defects exist, thus resulting in 

longer relaxation time (197–201). In some topological semimetals, a strong suppression of 

backscattering due to nontrivial band topology has also been proposed (45); such suppression 

would lead to enhanced transport relaxation time. [**AU: OK? JH: OK**] This idea is 

partially supported by the quantum oscillation studies that reveal a long quantum relaxation time 

in topological semimetals, as shown in Section 3.2.2. 

3.2. Landau Quantization and Quantum Oscillations 
In addition to the extremely large MR, another important phenomenon in the magnetotransport 

of topological semimetals is quantum oscillation (Figure 2b,c), i.e., the Shubnikov–de Haas 

(SdH) effect. Quantum oscillations can also be probed in other measurements such as 

magnetization/magnetic torque [i.e., the de Haas–van Alphen (dHvA) effect], thermoelectric 

power, and ultrasonic absorption. Quantum oscillations have been widely used for the study of 

the 3D topological insulators (202) and topological semimetals, and [**AU: please clarify 

JH: change to “and”**] reveal key parameters for Dirac/Weyl fermions such as effective mass, 
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quantum mobility, and (most [**AU: OK? JH: OK**] importantly) the Berry phase. In this 

section, we review quantum oscillation studies of topological semimetals. 

3.2.1. The zeroth Landau level for relativistic fermions. 
Quantum oscillation theory for nonrelativistic electrons has been well established and 

documented in earlier textbooks and reviews (203, 204). Here we briefly recall the fundamental 

theory and put major emphasis on its extension to relativistic fermions. Quantum oscillation 

originates from the quantized cyclotron motion of charge carriers under magnetic fields, i.e., the 

Landau quantization of the energy states. With the conduction band splitting to LLs, the DOS at 

the Fermi level, DOS(EF), becomes periodically modulated by magnetic field (more precisely, 

periodic in 1/B), leading to periodic oscillations of physical quantities. 

Panels a and b of Figure 3 show the textbook drawings of the Landau quantization for 

spinless (i.e., ignoring the Zeeman splitting) nonrelativistic electrons with parabolic dispersion. 

The quantized LL energy is εn = (n + 1/2)ħωc, where ωc = eB/m is the cyclotron motion 

frequency and the LL index n = 0, 1, … The energies of all LLs are field dependent and evenly 

spaced by ħωc, as shown in Figure 3b. For the lowest LL, a finite zero-point energy ħωc/2 exists, 

which is in analogy to the zero-point energy of a harmonic oscillator. To distinguish the lowest 

LL for the nonrelativistic fermions [**AU: please clarify JH: change to “the lowest LL for 

the nonrelativistic fermions”**] from the exotic zeroth LL with field-independent zero energy 

for the relativistic fermions shown below, we rewrite the LL energy of nonrelativistic electrons 

as εn = (n − 1/2)ħωc, where n becomes a nonzero integer (1, 2, …). 

<COMP: PLEASE INSERT FIGURE 3 HERE> 

Figure 3 Landau quantization. (a,c) Schematics for energy-momentum dispersions of the (a) 
normal (nonrelativistic) and (c) relativistic electrons. (b,d) Landau spectra for the 2D spinless (b) 
nonrelativistic and (d) relativistic electrons. (e,f) Landau spectra for the 3D spinless (e) 
nonrelativistic and (f) relativistic electrons with the magnetic field along the kz direction (B//kz). 
[**AU: OK that the slashes go to the right? Should they be vertical? JH: can be vertical 
or forward slash**] (g) Landau tubes intersecting a 3D spherical Fermi surface. (h) Landau 
rings within the 2D Fermi surface (ring). Panels g and h show the scenario for nonrelativistic 
electrons without the zeroth Landau level. 

The LL quantization is completely different for the relativistic fermions with linear 

dispersion (Figure 3c). Earlier studies on graphene (205, 206) [**AU: OK? JH: OK**] 
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established that the quantized energies of LLs for spinless 2D Dirac fermions are 

F sgn( ) 2 | || | ( )0, 1, 2n n e B n nε υ= = ± ±   5. 

where sgn(n) is the sign function and vF is the Fermi velocity. [**AU: (1) The highlighted 

symbol appears a bit different from the one shown in Equation 5 – please clarify JH: it is 

the symbol for velocity, so it should be letter “v”. (2) In Equation 5, the “e” in 2e  is not 

italicized – should it be italicized (if it is, e.g., a variable, then it should be italicized)? Please 

also check all equations and indicate any necessary formatting changes to “e” (i.e., italics to 

roman font or vice versa) JH: e means the electron charge, italicized **] As illustrated in 

Figure 3d, LLs are no longer equally spaced for relativistic fermions given | |n nε ∝ . Most 

strikingly, a field-independent zeroth (n = 0) LL locked at the band crossing point (ε0 = 0) 

appears, which is a signature unique to 2D relativistic electron systems. Such a zero energy can 

be understood in terms of the Berry phase arising from the cyclotron motion of carriers in 

momentum space (206). The detailed theoretical background of the Berry phase and its 

manifestation in transport measurements have been well understood (202, 207–209). In short, the 

Berry phase describes a geometrical phase factor of a quantum mechanical system acquired in 

the adiabatic evolution along a closed trajectory in the parameter space. Such a phase factor does 

not depend on the details of the temporal evolution and thus differs from the dynamical phase. A 

nonzero Berry phase Bφ  originates from the band touching point, such as Dirac nodes. [**AU: 

For consistency, OK to define “Berry phase” as Bφ and then use Bφ subsequently in text? 

JH: under some situations it is better to use the words rather the symbol**] Under magnetic 

fields, the cyclotron motion of Dirac fermions, i.e., the [**AU: OK?JH: OK**] closed 

trajectory in momentum space, induces a Berry phase that changes the phase of quantum 

oscillations. Ideally, B πφ =  for an exact linear energy-momentum dispersion, and this value 

shifts when the bands deviate from linear dispersion and/or the Zeeman effect is strong (209, 

210). 

Before formulizing the quantum oscillation for relativistic fermions by incorporating the 

Berry phase–induced phase shift, we should pay attention to the dimensionality of the 

investigated material systems. The Landau quantization of the 2D surface state of topological 

insulators is very different from that of the Dirac or Weyl fermions in 3D topological 
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semimetals. Most topological semimetals reported so far are 3D in nature [such as Cd3As2 (14, 

127–130), Na3Bi (13, 126), and the TaAs family (22, 23, 25, 27, 39, 86, 87, 211)], and 3D is 

necessarily required for a Weyl state (10). For nonrelativistic electrons in 3D, the motion along 

the magnetic field direction is not quantized, leading to additional energy of (ħkz)2/2m (where kz 

is the momentum along the magnetic field direction) for LLs: 

2 2

, * *

1  1,  2,  3( ).
2

,  
2

z
n k

keB n
m m

nε  = − + 
 

= 



 6. 

Similarly, an additional energy term due to unquantized kz also occurs for 3D relativistic 

fermions: 

2
F sgn( ) 2 | || | ( ) .n zn e B n kε υ= +   7. 

[**AU: (1) In Equation 7, should Fυ be vF? Cf. Equations 5 and 7 with the line of text 

below Equation 5. JH: vF (2) In Equation 7 (as in Equation 5), the “e” in 2e  is not 

italicized – should it be italicized (if it is, e.g., a variable, then it should be italicized)?**] 

Therefore, although the zeroth LL’s energy is still field independent, it is not strictly zero. 

Moreover, Equation 7 is valid for Dirac fermions with n = 0, 1, 2, …. For Weyl fermions, the 

chirality is well defined due to the lifting of spin degeneracy, so Equation 7 needs to be modified 

for the zeroth LL of Weyl fermions. As discussed in Section 3.4, the chiral zeroth LL leads to 

one important effect for Weyl fermions, i.e., the chiral anomaly. 

3.2.2. The Lifshitz–Kosevich model for de Haas–van Alphen oscillations. 
For the perfect 2D case, the Landau bands are degenerate into sharp levels (Figure 3b,d), and the 

motions of all electrons at the Fermi level are in phase. For the 3D case, due to the additional 

energy related to unquantized kz as shown in Equations 6 and 7, different LLs overlap in energy 

space, leading to a mixture of Landau bands for particular energy (Figure 3e,f) and a continuous 

energy spectrum. This is better illustrated in Figure 3g: Landau quantization for 3D free 

electrons manifests as Landau cylinders along the magnetic field direction, so an equal energy 

surface intersects multiple Landau cylinders. [**AU: Per house style, text such as the 

highlighted should be deleted from the main text, as such text pertains specifically to the 

figure. Please move the highlighted to the caption where applicable**JH: yes, we did it] 
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This scenario is distinct from the 2D case (Figure 3h). Therefore, different models have been 

derived for 3D and 2D quantum oscillations. 

Here we start with the dHvA oscillation because the magnetization is the derivative of the 

Gibbs thermodynamic potential Ω  at constant temperature and chemical potential ζ , 

,T

M
B ζ

∂Ω = − ∂ 
, so that it directly reflects the LL spectrum. At the zero temperature limit, the 

oscillatory thermodynamic potential Ω due to Landau quantization for a 3D system can be 

expressed as (in CGS units) (203): 

3/2 5/2

osc 2 2 2 1/2 5/2
1extr

1= cos 2π 2π ,
2π π ( / ) rz

e e B Fr
c mc S k r B

γ δ
∞

=

    Ω − +    ∂ ∂    
∑



 8. 

where extrS  is the extremal Fermi surface cross-section area perpendicular to the magnetic field, 

2 2
extr / zS k∂ ∂  is the Fermi surface curvature along the kz direction (i.e., the field direction) at the 

extremal cross section, and r is the harmonic index. Given several damping factors, the general 

formula of the magnetization oscillations for a 3D system, derived by Lifshitz & Kosevich (the 

LK formula) (203, 204, 212), is (in SI units) 

1/23/2
3D extr
osc T D S2 * 2 2 3/2

1extr

1 sin 2π .
2π π | / | rz

Se B FM R R R r
m S k r B r

δγ
∞

=

      = − − +     ∂ ∂     
∑



 9. 

RT, RD, and RS are the temperature-, field-, and spin-damping factors, which are associated with 

the finite temperature corrections to Fermi-Dirac distribution function, the finite relaxation time 

due to impurity scattering, and the phase difference between the spin-up and spin-down 

subbands, respectively. [**AU: OK?** JH: OK to move respectively, but may not need to 

use multiple “with”] These factors can be expressed as 

T
/

sin
,

(h / )
raT B

raT B
R µ

µ
=  10. 

D exp ,DraT
B

R µ = − 
 

 11. 

S
πcos ,
2

r gR µ
=  12. 
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where μ is the ratio of effective cyclotron mass m* to free electron mass m0. TD is the Dingle 

temperature that is relevant to the quantum relaxation time, and 2
B 02π /( ) ( ) 14.69a k m e ≈=   

T/K. [**AU: OK as phrased? Please clarify what this is JH: the constant a is not 

dimensionless. T/K is the unit.**] 

The sine term in Equation 9 describes the oscillation with frequency rF and phase factor 

2πr
r
δγ − + 

 
, where the fundamental frequency F is linked to Sextr by the Onsager relation F = 

ħSextr/2πe. [**AU: italicize “e”? JH: agree**] The determination of the phase factor is of 

particular interest for the quantum oscillation study of topological materials since the Berry 

phase Bφ  is connected to the phase factor via B1
2 2π

φγ = − . The Berry phase, which was not 

included in Lifshitz & Kosevich’s original formalism (i.e., 1
2

γ = ) (212), can effectively shift the 

phase of quantum oscillations (209, 210). The phase shift δ in Equation 9, which is determined 

by the dimensionality of the Fermi surface, is 0 for the 2D case and ±1/8 for the 3D case. For the 

3D case, δ = −1/8 (+1/8) for maximal (minimal) cross section for a 3D electron pocket (203, 204, 

212) and vice versa for a 3D hole pocket. [**AU: Please clarify what you mean by “vice 

versa” JH: means +1/8(-1/8), the signs are changed**] 

Although most topological semimetals are 3D, there are also some materials with layered 

structure and that thus display a quasi-2D electronic structure, such as ZrSiTe (156) and 

(Sr/Ba)Mn(Bi/Sb)2 (143, 173, 177, 213). For a perfectly 2D system, the above LK formula has 

been modified by Shoenberg and others (203, 204, 214, 215): 

2D
osc T D S2 *

1

1 sin 2π ,
2π π r

e S FM R R R r
m r B

γ
∞

=

    = − −        
∑



 13. 

with the same definitions for damping factors (RT, RD, and RS) and phase factor γ as the 3D 

model. The Fermi surface cross-section area become a constant for 2D, so extrS  in the 3D model 

(Equation 9) is replaced by S, and the phase factor δ is zero. In addition to this phase difference, 

the oscillation amplitude (i.e., the prefactor of the summation in Equation 13) and harmonic 

components ( 0r ≠ ) are enhanced relative to the 3D model. 

Significantly, the above 3D (Equation 9) and 2D (Equation 13) LK models are based on the 
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assumption of constant chemical potential, which is appropriate for a 3D system because the 

electron energy spectrum is continuous, as mentioned above. In this scenario, the lowest 

unoccupied state is always located at EF and is independent of B (i.e., the chemical potential = EF 

for T = 0 K). In contrast, the 2D Landau quantization gives rise to discrete energy levels, so the 

chemical potential, which is the minimum energy needed to add an electron to the system, is 

pinned to the highest occupied LL and hence also oscillates with ramping magnetic field. This 

chemical potential oscillation will affect the quantum oscillations. Furthermore, in real materials, 

the interlayer coupling is not negligible in layered compounds, which is also not captured by 

Equation 13. [**AU: Please clarify what is also not captured by Equation 13 JH: the 

effect of the interlayer coupling is not included in Eq. 13. For example, it may lead 

additional term, or some other corrections to Eq. 13.**] More comprehensive analyses can be 

found in References 203 and 204 and references therein. 

In practice, the oscillation frequency(ies) F can be directly resolved from the fast Fourier 

transform (FFT) of the oscillation pattern, and other important parameters, including effective 

cyclotron mass, quantum relaxation time, and Berry phase, can be obtained from the analyses 

with the LK formula. From FFT, one can also clarify whether the higher harmonic terms (r > 1) 

with frequency rF are significant. In principle, these terms attenuate quickly with r−3/2 for a 3D 

system (Equation 9) or r−1 for a 2D system (Equation 13), and thus the quantum oscillations in 

real materials are usually dominated by fundamental frequencies (r = 1). If the oscillation 

contains only a single frequency without obvious harmonic frequency components, effective 

mass m* can be obtained from the fit of the temperature dependence of the oscillation amplitude 

Aosc at a fixed magnetic field to the thermal damping factor RT in Equation 10 [i.e., Mosc(T) ∝ 

RT]. In normal metals with exact parabolic bands, the band effective mass is expected to be a 

constant, despite the location of Fermi level. It can be easily shown that such band mass is 

equivalent to the cyclotron mass, which is defined as 
F

2
* S=

2π E EE
m

=

∂ 
 ∂ 

  within the semiclassical 

approximation, where S is the extremal area enclosed by the cyclotron orbit in momentum space. 

Applying the same definition to the linearly dispersed bands with an isotropic Dirac cone, one 

can easily find that m* is connected to the Fermi vector kF and velocity vF with *
F F/m k v=  . 

[**AU: Please ensure that vF is consistent throughout, per above query**] Thus, m* 

should vanish when a Dirac point resides at EF (where kF = 0) and should increase [**AU: 
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OK? JH: OK**] when the Dirac point is shifted away from EF. Such a trend has been observed 

in various Dirac materials (172, 216). Generally, EF is not too far away from the Dirac band 

crossing point in most known topological semimetals, so m* obtained from quantum oscillation is 

usually small, as summarized in Table 1. 

With a known effective mass, the Dingle temperature that is associated with the quantum 

relaxation time can be extracted from the fit of the field dependence of the oscillation amplitude 

at a fixed temperature by the field damping factor RD in Equation 11 [i.e., Mosc(B) ∝ RD]. 

Because TD is included in the exponential term of RD, the logarithm of the oscillation amplitude 

normalized by B1/2RT (for 3D) or RT (for 2D) should have linear dependence on 1/B according to 

Equation 11. Thus, TD can be obtained from the slope of the linear fit of such a Dingle plot. In 

practice, Dingle plots are nonlinear in some cases in which accurate TD cannot be obtained. Such 

a scenario [**AU: Please clarify JH: meaning the situation of the nonlinearity in Dingle 

plot**] could be attributed to, e.g., sample inhomogeneity, magnetic field inhomogeneity, 

beating oscillation pattern due to the existence of two very close frequencies, or torque 

interaction at high fields if using torque magnetometry (203). 

From TD extracted from a Dingle plot, the quantum relaxation time τq can be derived via τq = 

ħ/(2πkBTD). Because τq affects the oscillation amplitude exponentially (Equation 11), strong 

dHvA oscillations present in low field ranges implies large τq, which is generally the case for 

topological semimetals (Table 1). It is important to distinguish the quantum relaxation time from 

the transport relaxation time τt, as discussed in Section 3.1. While both arise from the scattering 

by static impurities and defects, these two quantities are essentially different (217, 218): τq 

characterizes the quantum lifetime of the single-particle relaxation time of the momentum 

eigenstate, which determines the LL broadening of the momentum eigenstate by Γ = ħ/2τq, 

whereas τt is introduced in the classical Drude model and affects the Drude conductivity, σ = neμ 

= ne2τt/m*. Given that τt measures the motion of charged particles along the electric field 

gradient, it is largely unaffected by the forward scattering (i.e., small-angle scattering), in 

contrast to τq, which is susceptible to momentum scattering in all directions. Therefore, τt is 

usually larger or even much larger than τq. Taking the form of the classical transport mobility μt 

= eτt/m*, one can also define the quantum mobility by μq = eτq/m*. Consequently, μq obtained 

from quantum oscillation is usually less than μt derived from magnetotransport, which has been 

observed in various topological semimetals, as shown in Table 1. [**AU: Does the 
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highlighted apply to magnetotransport? Please clarify JH: the highlighted means the whole 

prior sentence, i.e., μq obtained from quantum oscillation is usually less than μt derived from 

magnetotransport **] 

In addition to nearly zero effective mass and high quantum mobility, nontrivial Berry phase 

is a key signature of relativistic fermions. As indicated above, it results in the zeroth LL, which is 

absent in the LL spectrum of nonrelativistic electrons. In general, for a system exhibiting 

quantum oscillations with a single frequency, Bφ  can be determined from the LL index fan 

diagram, i.e., the plot of the LL indices n versus the inverse magnetic field 1/B (one example is 

shown in Figure 4a,b). This method has been widely used in previous studies on topological 

insulators, and a proper way to construct a LL fan diagram has been established, although there 

had been some confusions in early studies (202, 219). We first consider a 2D situation. As shown 

in Figure 3b, with ramping magnetic field, the LLs successively pass through EF. Integer LL 

indices are assigned when EF lies at the middle of two adjacent LLs [i.e., minimum DOS(EF)], 

while half-integer indices are assigned when EF is right at the LL [maximum DOS(EF)]. For a LL 

fan diagram established with such a definition of the [**AU: OK? JH: OK**] LL index, the 

linear extrapolation of the linear fit of n(1/B) to the 1 0
B
→  limit must lead to n = 0 for 

nonrelativistic electrons, but n = 1/2 for relativistic fermions due to the zeroth LL pinned 

[**AU: pinned? JH: Yes**] at the zero energy. This n = 1/2 intercept corresponds to an ideal 

Berry phase of π. For a 3D system, the phase of quantum oscillation is shifted by 2πδ, as 

mentioned above, so the linear extrapolation should intercept the n axis at B

2π
φ δ− . 

<COMP: PLEASE INSERT FIGURE 4 HERE> 

Figure 4 Quantum oscillations in topological semimetals. [**AU: Regarding the highlighted 
references in this caption: do they denote that panels a and b are reproduced from Ref 178, 
panel c is reproduced from Ref 192, and panels d through f are reproduced from Ref 44? 
Please clarify** JH: yes they are from the references] (a) The oscillatory component of 
resistance for Cd3As2, obtained via subtracting the smooth magnetoresistance (MR) background, 
as a function of 1/B at various temperatures (178). (b) Landau level (LL) fan diagram constructed 
from Shubnikov–de Haas oscillations for two Cd3As2 samples. (Inset) Intercepts of the linear 
extrapolations of LL indices for the two samples (178). (c) The oscillatory component of 
resistance for TaP, obtained via subtracting the smooth MR background, as a function of 1/B at 
various temperatures. The red solid lines show the fits of the oscillation data to the two-band 
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Lifshitz & Kosevich (LK) model (192). (d) Mixed real and momentum space representation of 
the Weyl orbit, which consists of the Fermi arcs at the top and bottom surface connecting the 
projections of Weyl nodes with opposite chirality (labeled as + and −, respectively) and the bulk 
states with fixed chirality (blue and red) (44). (e,f) MR at 2 K and its fast Fourier transform for a 
thin (150-nm) slab sample, for magnetic field parallel (90°) and perpendicular (0°) to the surface. 
In addition to the bulk frequency FB, another oscillation frequency corresponding to the surface 
state (FS) is observed for the perpendicular field (44). 

Therefore, proper assignment of LL indices is critically important for guaranteeing precise 

determination of Berry phase. Oscillations in differential magnetic susceptibility d
d
M
B

χ  = 
 

 

offer a straightforward approach to determining integer LL indices; that is, the minima of χ 

should be assigned with integer LL indices, since they correspond to minimal DOS(EF). This 

[**AU: Please clarify**JH: mans the whole prior sentence “the minima of χ … 

DOS(EF)”] can be understood as follows: As indicated above, magnetization is equal to the 

derivative of the Gibbs thermodynamic potential Ω  at constant temperature and chemical 

potential ζ , 
,T

M
B ζ

∂Ω = − ∂ 
. At zero temperature, Ω is indeed proportional to the total energy 

of electrons and is modulated by magnetic field in the form of a cosine function (Equation 8) 

(203). Given
2

2

M
B B

χ ∂ ∂ Ω
= = −
∂ ∂

, χ and Ω would oscillate in phase when Landau quantization 

occurs with increasing magnetic field. Since the minima of Ω correspond to the minimal 

DOS(EF), minimal χ should be assigned with integer LL indices. Given M
B

χ ∂
=
∂

, if the 

oscillations of magnetization are used to establish a LL fan diagram, the minima of M should be 

assigned with n-1/4 (where n is an integer number). [**AU: Please clarify the highlighted – 

do you mean 1/4n? JH: it means n minus 1/4**] With this approach, the [**AU: OK? JH: 

OK**] nontrivial Berry phase has been extracted from dHvA oscillations for several topological 

semimetals (156, 220–222). 

Several factors can affect the value of the Berry phase in topological semimetals. First of all, 

the Berry phase can deviate from an ideal value of π if the band dispersion is not perfectly linear 

(210). Second, the Zeeman effect, which has not been considered so far, also leads to a deviation 

of the Berry phase obtained from a LL fan diagram (210). Therefore, the Berry phase 
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determination using the LL fan diagram should be performed with caution for high-field 

quantum oscillations or for materials with large g-factors such as Cd3As2 (172, 223) and ZrSiS 

(221). Furthermore, from the aspect of data analysis, reading the Berry phase from a LL fan 

diagram may bear large uncertainty in some cases. Because the Berry phase is determined by the 

intercept of the linear fit of n(1/B), when low-LL indices cannot be reached in experiments due 

to high oscillation frequency, a slight change in the slope of the linear fit can lead to a large shift 

in the intercept, thus resulting in a large uncertainty in the extracted Berry phase. Therefore, 

reaching low-LL indices under high magnetic fields is necessary for obtaining a reliable Berry 

phase from a LL fan diagram. 

In addition to magnetization measurements, dHvA oscillations can also be probed by torque 

magnetometry since a magnetic moment m  in a magnetic field is subject to a torque m Bτ = ×


  . 

It is convenient to perform magnetic torque measurements on topological semimetals by using a 

cantilever (176, 224–230) to high magnetic field, even up to 60 T. One drawback of the torque 

magnetometry is the torque interaction, an instrumental effect due to the feedback of the 

oscillating magnetic moment on the cantilever position, which leads to artificial effects in 

quantum oscillations under high magnetic fields (203). 

3.2.3. Shubnikov–de Haas oscillations. 
Besides dHvA oscillation, the resistivity oscillation, i.e., the SdH effect, is also widely used to 

study topological semimetals (46, 141, 171, 172, 174, 178, 179, 183, 191–193, 231–233). The 

extraction of the Berry phase from SdH oscillations seems straightforward. Since the SdH effect 

also originates from Landau quantization, the nontrivial Berry phase associated with the zeroth 

LL also manifests itself by a phase shift in the SdH oscillation. As stated above, integer LL 

indices should be assigned when EF lies in the middle of two adjacent LLs and DOS(EF) reaches 

minima. The situation is less complicated in 2D integer quantum Hall systems (including the 2D 

surface states of the 3D topological insulators), in which the integer LL indices unambiguously 

correspond to the quantized Hall plateaus where the longitudinal conductance reaches minima (

= 0xxS ) due to the dissipationless edge state. The proper way to build a LL fan diagram from the 

SdH effect for topological insulators was discussed in a previous review (202). 

In the studies of topological semimetals, however, there have been controversies in 

constructing LL fan diagrams from the SdH effect. The literature contains various definitions for 
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integer LL indices, including resistivity minimum (141, 178, 234, 235), resistivity maximum 

(171, 179, 183, 191, 193, 232, 233, 236–239), and conductivity minimum (143, 172, 213). At 

first glance, it is natural to extend the above argument for the quantum Hall system to topological 

semimetals, except that the conductivity of topological semimetals cannot be directly measured 

through conventional transport experiments but should be obtained through inverting the 

resistivity tensor, 1ˆσ̂ ρ −= . For in-plane (x-y plane) current I and out-of-plane (z-direction) 

magnetic field B (i.e., a standard Hall effect setup with B ⊥ I) applied to a 2D system, the charge 

carriers undergo only in-plane motion, and we have 

1

1ˆˆ .xx xy xx xy

yx yy yx yy

σ σ ρ ρ
σ ρ

σ σ ρ ρ

−

−   
= = =   
   

 14. 

Here the resistivity tensor elements ijρ  (i,j = x, y) are defined as /i jE J   (where Ei is the electric 

field component along the +i direction and Jj is the current density along the +j direction) or, 

equivalently, /i jV I  (where Vi is the voltage drop along the +i direction and Ij is the current along 

the +j direction). [**AU: Please clarify what cannot be directly measured JH: just to 

emphasis. Can be deleted**] In fact, from this definition, xxρ  and xyρ  are essentially the 

longitudinal and transverse (Hall) resistivity. Under the assumption of isotropic scattering rate 

for a given 2D material, it is easy to demonstrate xx yyρ ρ=  and xy yxρ ρ= − . Therefore, precise 

conductivity can be obtained from measured xxρ  and xyρ  via 2 2
xx

xx
xx xy

ρσ
ρ ρ

=
+

. 

However, additional considerations must be taken for 3D topological semimetals. Although 

the integer quantum Hall effect (QHE) also has a semiclassical interpretation based on Landau 

quantization, its underlying transport mechanism is distinct from the SdH effect due to its 

nonlocal character. As discussed in more detail in Sections 3.2.7 and 3.5, the quantized Hall 

conductance plateaus and the zero longitudinal conductance are associated with the 

dissipationless edge channels. Such scale-invariant dissipationless edge conduction in quantum 

Hall systems is completely different from the transport in conventional diffusive systems, where 

the resistance or conductance is associated with the sample dimensions and is governed by the 

transport relaxation rate (i.e., the scattering rate). The scattering mechanisms in real materials 

can be very complicated. Fortunately, a semiquantitative LK model that gives satisfactory 
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descriptions for the SdH effect has been developed for 3D systems. The earlier transport theory 

has established that the scattering probability is proportional to the number of available states 

that electrons can be scattered into (47, 240) and thus [**AU: please clarify JH: it means the 

scattering probability **] oscillates in concert with the oscillations of DOS(EF) and gives rise 

to SdH oscillations (203, 204). More explicitly, 
2*

osc
osc

ext
F

r

DOS( ) Mm B
S B

E
  ∂

∝   ∂ 
. With this relation, 

the expression for conductivity/resistivity oscillation, i.e., the LK formula for the SdH effect, can 

be derived from the derivative of the magnetization oscillation (203, 204). Clearly, within the 

framework of this LK model based on the oscillation scattering rate, conductivity should exhibit 

maxima when the scattering rate reaches minima that occur at minimal DOS(EF). Given that 

integer LL indices should correspond to DOS(EF) minima as indicated above, the maxima of 

conductivity oscillation should be assigned with integer LL indices. However, this approach is 

based on the semiquantitative model for the SdH effect (203). The scattering rate in a real 

material depends on a number of factors and can be very complicated, particularly in multiband 

or anisotropic systems, which could lead the SdH oscillations to strongly deviate from the LK 

theory (204). As a result, a simple connection between the integer LL indices and the SdH 

oscillation extrema may be problematic in some cases. Therefore, to demonstrate [**AU: 

insert “a” or “the”?JH: the **] nontrivial Berry phase, a better approach might be the 

oscillation of thermodynamic properties that are directly linked to [**AU: insert “the”? JH: 

OK**] LL energy spectrum, such as the dHvA effect as discussed above. 

In addition, the complication of the scattering rate in the SdH oscillation also leads to 

inconsistency between the SdH effect and the dHvA effect. In some layered topological 

semimetals, dHvA oscillation is strong for arbitrary magnetic field directions, but SdH 

oscillation quickly attenuates when the magnetic field is tilted toward the current direction (221, 

226, 232, 241, 242). In those materials, the stronger dHvA effect is also useful to distinguish the 

Zeeman splitting effect from the oscillation pattern [**AU: “… from X” – please clarify JH: 

from the oscillation pattern**] (221).  

3.2.4. Multifrequency quantum oscillations. 
The above discussions on LL fan diagram are applicable to quantum oscillations with a 

single frequency. However, multiple oscillation frequencies are often observed in most 
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topological semimetals, such as those of the TaAs family (179, 180, 182, 183, 191–193, 227, 

243) and WHM materials with PbFCl-type structure (W = Zr or Hf; H = Si, Ge, or Sn; M = S, Se, 

or Te) (156, 221, 222, 226, 228, 232, 233, 241, 242, 244, 245). Given F = ħSextr/2πe, [**AU: 

should “e” be italicized? JH: yes**] the dependence of oscillation frequencies on the magnetic 

field orientation provides useful information on Fermi surface morphology. In the presence of 

multifrequency oscillations, the method used to analyze effective mass, quantum mobility, and 

the Berry phase differs from what is discussed for the single-frequency situation. The commonly 

used approach to obtain the effective mass for each frequency band is the fits of the FFT 

amplitudes for each frequency component by the thermal damping factor RT (Equation 10). In 

this method, the inverse magnetic field 1
B

 in RT is approximated by the average inverse field  

1
B

, defined as 
1 2

1 1 1 1
2B B B

= +
 
 
 

, where 
1

1
B

 and 
2

1
B

 are the upper and lower inverse 

fields used for FFT analyses. However, this method may lead to large errors for the fitted 

effective mass in some cases, since the obtained effective mass may depend on the range of the 

inverse magnetic field (
1 2

1 1
B B
→ ) used for FFT. For example, for the NLSM ZrSiS, the 

effective mass obtained from the fit of the FFT amplitude is greatly increased when a narrower 

field range is used for the FFT analysis. When the inverse magnetic field range is taken as 0.143 

– 1.5 T-1, the fitted effective mass is small for the Fβ = 240 T band,  ~0.052 m0 (221) [** Add 

the current ref. 221 here, Hu, J. PRB 96, 045127 (2017) **]. However, when the inverse field 

range is reduced to 0.3 – 0.5 T-1, the fitted effective mass is increased to 0.17 m0 (348)  [** 

ref. 348 is a new reference, it should be: “Antony Carrington, private communication”**]. 

Since the two quantum oscillation frequencies observed in ZrSiS are far apart (i.e. 8.4T and 

240T), the effective masses corresponding to these oscillation components can also be obtained 

by fitting the temperature dependence of the oscillation amplitude probed at a certain field. The 

effective mass obtained using such a method is  0.18 m0 for the 240T oscillation component.  

This example shows a narrower inverse field range for FFT may improve the accuracy of the 

fitted effective mass (348)  [** ref. 348 is a new reference, it should be: “Antony 

Carrington, private communication”**]. However, this is not always true.  
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Therefore, one must be extremely careful when using FFT amplitude to extract the effective 

mass. For multi-frequency oscillations, if the frequencies are far apart, it may be possible to 

obtain accurate effective mass by directly reading the oscillation amplitudes as discussed above. 

On the other hand, if the frequencies are close to each other, several approaches may be used to 

double check effective mass (348) [** ref. 348 is a new reference, it should be: “Antony 

Carrington, private communication”**]. Firstly, as demonstrated above, accurate effective 

masses may be obtained from the FFT analyses within a narrow field range. Secondly, it may be 

possible to use Fourier filter to separate multi-frequency oscillations to several single frequency 

oscillations, which may allow for obtaining accurate effective mass for each frequency. In this 

method, the data near the two ends of the magnetic field range should be excluded after applying 

the Fourier filter, since the end effect could induce artificial signal. To minimize the errors in 

effective mass, the combination of the above methods, together with a simulation of the 

oscillation pattern using LK formula after obtaining the effective mass, may be helpful. 

 

 

The Dingle temperature and Berry phase can be extracted through fitting the oscillation pattern 

to the generalized multiband LK formula, with the assumption that the quantum oscillations of 

different bands are additive. This method was previously used for the LaAlO3/SrTiO3 

heterostructure (246) and was first employed for analyzing the SdH oscillations of TaP (Figure 

4c) in the study of topological semimetals (192) and was then proven to be effective in 

characterizing topological fermion properties for many other multiband topological semimetals 

(143, 156, 221, 226, 230, 245, 247–249). For the multiband LK fit, it is important to include all 

major frequency components, as well as the higher harmonic (r > 1 in Equations 9 and 13) terms 

if they are significant in the FFT spectrum, although there is a trade-off for accuracy due to the 

[**AU: insert “an” or “the”?JH: “the”**] increased number of parameters. RS is field 

independent (see Equation 12) and can thus be treated as a constant for the fit; it takes effects in 

modulating [**AU: OK as phrased? JH: OK**] the amplitude for the harmonic component, 

as it contains r. Furthermore, RS can be used to extract the Landé g-factor of a 2D/quasi-2D 

system via the spin-zero method; that is, the oscillation amplitude vanishes at some field 

orientation due to the interference of spin split Fermi surfaces. This provides an alternative 

method to evaluate the g-factor in addition to the direct measurement of the separation of the 
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split oscillation peaks. Such analysis has been reported for ZrSiS (221) and WTe2 (250). 

3.2.5. Magnetic breakdown. 
Multiple oscillation frequencies usually result from multiple Fermi surface extremal cross-

section areas perpendicular to the field. Additionally, charge carriers may tunnel from one 

cyclotron orbit to another and jump back to the original one to form a bigger cyclotron orbit, 

hence leading to an additional frequency or frequencies equal to the sum or difference of two or 

more fundamental frequencies (203, 251). This phenomenon, termed magnetic breakdown, 

becomes more pronounced at high fields because the tunneling probability scales exponentially 

with the inverse field 1/B as e−α/B, where α is a material-dependent parameter relevant to the k-

space separation of the orbits (203). The additional frequencies ascribed to magnetic breakdown 

have been observed in high-field quantum oscillation studies on several topological semimetals 

(171, 226, 252). 

In type II WSMs, the magnetic breakdown has been predicted to be associated with the Klein 

paradox, which was in 1929 and which states that the tunneling barrier is nearly “transparent” for 

relativistic fermions when its height exceeds the electron’s rest energy mc2 (253). This 

relativistic effect is attributed to the positron or electron emission by a potential barrier when the 

barrier is sufficiently high (254–256). The matching between electron and positron wave 

functions across the barrier leads to high-probability tunneling (257). However, the requirement 

of the high potential barrier (~mc2) imposes a great challenge for the experimental observation of 

this phenomenon in particle physics. Fortunately, the (rest) [**AU: “rest of the”? JH: here 

the mass means the “rest mass, it is massless (zero mass)”**] massless relativistic fermions 

discovered in condensed matter provide a realistic platform, given that, in principle, there is no 

theoretical requirement of the potential barrier for massless relativistic fermions. Klein tunneling 

has been demonstrated in graphene, with a potential barrier created by a local gate (257, 258). A 

similar effect is expected in topological semimetals with massless relativistic fermions. Recent 

theoretical work has predicted a momentum space counterpart of Klein tunneling in quantum 

oscillations for type II WSMs (259). In the scenario of magnetic breakdown, quantum tunneling 

through different momentum space orbits naturally mimics real space tunneling of carriers [e.g., 

in graphene (257, 258)], which is expected to lead to an unusual dependence of the FFT 

amplitude on magnetic field orientation (259). 
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3.2.6. Quantum oscillation due to Weyl orbits. 
The unusual surface Fermi arc is one distinct property of topological WSMs. For a DSM whose 

Dirac node can be viewed as the superposition of two Weyl nodes with opposite chirality, its 

surface state exhibits two sets of Fermi arcs curving in opposite directions on two opposite 

surfaces, as shown in Figure 4d. It has been predicted that under magnetic fields, electrons can 

transport on a cyclotron orbit that connects one surface Fermi arc to the opposite Fermi arc by 

coupling to bulk states (Figure 4d) (43, 260). Such an unconventional Weyl orbit manifests itself 

by an additional frequency in quantum oscillations (Figure 4e,f), with 2D character that can be 

verified by the measurement of the field orientation dependence of oscillation frequency (i.e., 

1/ cosF θ∝ ). Quantum oscillations due to Weyl orbits exhibit anomalous properties such as a 

sample thickness–dependent oscillation phase shift. To observe such a Weyl orbit, it is necessary 

to reduce the sample size to suppress the contribution of the bulk states. This has been 

demonstrated in nanostructures of Cd3As2 (Figure 3e,f) (44, 261) and WTe2 (262). 

3.2.7. Other anomalous transport signatures originating from the zeroth Landau level. 
As indicated above, the field-independent zeroth LL of relativistic fermions leads to a phase shift 

in quantum oscillations from which the Berry phase can be inferred. In some layered topological 

semimetals, the zeroth LL has been probed more directly by several transport techniques such as 

QHE and interlayer tunneling. 

The concept for QHE for 2D Dirac fermions has already been established for graphene and 

topological insulators (216, 263–265). Under a magnetic field, Landau quantization gives rise to 

quantized electron cyclotron orbits. Semiclassically, under sufficiently strong field, the electrons 

are pinned to these quantized small radii orbits, which causes a bulk insulating state. However, 

electrons that are close enough to the edges cannot complete cyclotron motions but rather get 

bounced back by the edges. Given the direction of the Lorentz force, the reflected electrons have 

to move forward until they are reflected by the edge again. This creates the so-called skipping 

orbit at the edge that carries current, i.e., the edge channel (Figure 5a). Given that the skipping 

orbit originates from [**AU: insert “the”? JH: OK**] cyclotron orbit, the number of the 

edge conduction channels is determined by the number of the quantized cyclotron motion states 

that electrons can occupy, which is the number of the filled LLs below EF. This gives rise to 

quantized Hall conductance of 0xyG nG= , where 2
0 /G e h=  is the conductance quantum. In the 
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language of band theory, the internal (bulk) of the 2D system is gapped when EF locates in 

between LLs. At the sample edge, the confining electrostatic potential that keeps electrons inside 

the sample bends the LLs upward, as illustrated in Figure 5a. The bent LLs that cross EF form 

the edge channels, giving rise to quantized Hall conductance. From the above edge channel 

interpretation for the QHE, the QHE is a direct manifestation of Landau quantization of electron 

energy states. This is in contrast with SdH oscillation, which arises from the oscillating scattering 

rate and is thus an indirect probe of LLs. In other words, the QHE is a nonlocal transport 

phenomenon due to LLs, while SdH effect [**AU: edit to “the SdH effect” or “SdH 

oscillation”? JH: effect**] is a manifestation of LLs in local transport. Furthermore, the QHE 

also has a topological interpretation, which is discussed in Section 3.5. 

<COMP: PLEASE INSERT FIGURE 5 HERE> 

Figure 5 Direct manifestations of the zeroth Landau level (LL). [**AU: To clarify the 
highlighted refs in this caption: do you mean that panels b and c are reproduced from Ref 
177 and panels d/e/f are reproduced from Ref 247? If not, please clarify JH: yes they are 
from the references **] (a) Schematic of the real space Landau levels for relativistic electrons 
in a finite-size 2D sample. (b) Crystal structure of EuMnBi2 (177). (c) Normalized inverse Hall 
resistivity ρxy

0/ρxy versus BF/B measured at 1.4 K for two EuMnBi2 samples, where BF is the SdH 
oscillation frequency and B = μ0(H + M) is the magnetic induction (177). (d) Schematic of the 
interlayer tunneling of the zeroth LLs’ relativistic fermions in YbMnBi2 (247). (e) Experimental 
setup for the measurement of the angular dependence of interlayer magnetotransport (247). (f) 
Angular-dependent interlayer resistance (AMR) measured under different fields up to 31 T and 
at T = 2 K, using the setup in panel e. The black curves superimposed onto the data represent the 
fits to the tunneling model. The inset shows the sin2θ dependence at low field (247). 

Given the existence of the field-independent zeroth LL pinned at the band crossing point 

(Figure 3d,f), there is always an edge channel formed by the zeroth LL, as shown in Figure 5a. 

Since the zeroth LL is evenly shared by both electrons and holes (Figures 3f and 5a), the 

contribution of the zeroth LL to edge conduction is half the contribution of nonzero LLs, leading 

to the so-called half-integer quantization, i.e., 

0
1 .
2xyG G n = + 

 
 15. 

This half-integer quantization can also be understood in terms of [**AU: insert “a”? JH: 

“a”**] Berry phase of π for relativistic fermions and has been observed in graphene (216, 263), 
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zero-gap HgTe quantum wells (266), and 3D topological insulators (264, 265). In real materials, 

an integer factor may be applied for 0G  due to degeneracy, such as graphene with a factor of 4 

originating from spin and valley degeneracies (216, 263). [**AU: Please clarify what 

originates from spin and valley degeneracies JH: the factor of 4 for graphene originates 

from spin and valley degeneracies. **] 

Given the difference in Landau quantization in 2D and 3D systems as mentioned in Section 

3.2.1, it is challenging to probe the half-integer QHE in 3D topological semimetals. One 

approach is to pursue their 2D nanostructures, but only the integer QHE has been observed so far 

in nanostructures of Cd3As2 and WTe2 (261, 267, 268), probably due to the quantum 

confinement effect, which gaps the Dirac cone (267). Masuda et al. (177) reported a half-integer 

QHE in a bulk DSM EuMnBi2 with a layered structure (Figure 5b). This material exhibits 

coexistence of two AFM orders, one formed by the Mn sublattice and the other by the Eu 

sublattice. Application of a magnetic field induces a spin flop transition for the Eu AFM order, 

resulting in a canted AFM state, which significantly reduces interlayer coupling so that Dirac 

fermions generated by Bi square-net layers are more confined within the plane (i.e., are 

[**AU: OK? JH: OK**] quasi-2D) and exhibit signatures of the half-integer QHE. As seen 

in Figure 5c, 1/ρxy normalized by 1/ρxy
0 (where ρxy

0 is the step size of successive plateaus) 

displays quantized plateaus with half-integers. However, the quantum limit corresponding to 

(1/ρxy)/(1/ρxy
0) = 1/2 could not be reached in this system due to the fact that the canted AFM state 

of Eu sublattice exists only in a limited field range. 

In another structurally similar compound, YbMnBi2, the zeroth LL was probed via interlayer 

transport (247). In this material, the Bi layers that host relativistic fermions are separated by the 

relatively insulating Yb-MnBi-Yb blocks, leading to a quasi-2D electronic state. As shown in 

Figure 5d, given that two linear bands cross right at EF in this material (269), 2D Landau 

quantization leads to the zeroth LL to be pinned to EF, regardless of magnetic field strength. 

Therefore, increasing magnetic field leads to a monotonic increase in DOS(EF), which further 

enhances tunneling of electrons of neighboring Bi layers through the Yb-MnBi-Yb barrier when 

an interlayer electric field is applied. Because 2D Landau quantization in YbMnBi2 is governed 

by the magnetic field component perpendicular to the Bi plane, such exotic quantum tunneling of 

the zeroth LL carriers is sensitive to the magnetic field direction and can be detected in angular-

dependent magnetotransport such as interlayer MR and the interlayer Hall effect. For example, 
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for the experimental setup shown in Figure 5e, at low field when LLs are not well separated, LL 

broadening and thermal excitations smear out discrete LLs, which leads to conventional (sinθ)2 

dependence for the angular-dependent interlayer resistance (AMR) (Figure 5f, inset). In contrast, 

when the magnetic field is strong enough to establish the above quantum tunneling scenario, 

AMR reaches a broad minimum, with θ being approximately 0° due to strong quantum 

tunneling, but sharply increases for the in-plane field orientation when 2D Landau quantization is 

suppressed. This causes a surprising strong peak centered at θ = 90° in AMR, which can be well 

fitted by the model that includes tunneling of the zeroth LL’s carriers (Figure 5f) (270). 

3.2.8. Beyond the quantum limit. 
When magnetic field is strong enough to push all LLs above EF except for the lowest LL, all 

electrons are condensed to the lowest LL; such a state is generally referred to as a quantum limit. 

From this definition, one can find that the critical field needed to reach a quantum limit is at least 

comparable to the quantum oscillation frequency. The quantum limit is not accessible under a 

moderate magnetic field for most materials with high carrier density (i.e., large Fermi surface 

and large quantum oscillation frequency). A system under a quantum limit or an ultraquantum 

limit may show unusual properties, which has been a long-standing topic of interest even for 

conventional materials. For instance, a fractional QHE can occur near or in the ultraquantum 

limit of a 2D electron gas (271). In topological semimetals, the dramatically enhanced 

degeneracy for the lowest LL, combined with the unique nature of relativistic fermions, may lead 

to some new exotic phenomena. Indeed, a mass enhancement in the quantum limit has been 

observed for ZrTe5 (272). This was interpreted as the dynamic mass generation accompanied by 

density wave formation, which is due to the nesting of the zeroth LL driven by enhanced electron 

correlation (272). Another example of unusual transport in the quantum limit due to degeneracy 

enhancement is the aforementioned quantum tunneling of relativistic fermions in YbMnBi2 

(247). Because the zeroth LL is pinned at EF (269), the quantum limit can be reached in 

relatively low fields in this material (247). 

Another phenomenon directly associated with electron condensation to the zeroth LL in 

topological semimetals is anomalous magnetization (224). The Landau quantization for a 3D 

WSM yields energy spectra of 
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where χ = ±1 represents the chirality of the Weyl points. [**AU: In Equation 16, should the 

“e” be italicized? JH: Yes Also, again, please check consistency of Fυ (which appears twice 

in Equation 16) versus vF throughout text and equations JH: use vF**] At the quantum limit, 

magnetization is entirely due to the zeroth LL states, with 0 0, /n n kM Bε= == −∂ ∂ . Taking the 

derivatives of Equations 6 and 16, one can find that the magnetization per electron should 

saturate to a constant in a trivial metal but should vanish in the Weyl case. Therefore, one can 

expect a collapse of magnetization for topological semimetals crossing the quantum limit. 

Indeed, the magnetic torque anomaly, which has been observed in NbAs, can be quantitatively 

described by the topological character of the electronic dispersion (224). [**AU: OK? JH: 

OK**] 

High magnetic field may also lead to annihilation of a Weyl state. The recent studies on TaP 

have shown that the two counterpropagating chiral modes of the lowest LL (represented by χ = 

±1 in Equation 16) may hybridize and open up an energy gap, leading to a magnetic tunneling–

induced Weyl node annihilation in TaP that manifests as a sharp reversal of the Hall signal 

(Figure 6a) (273). 

<COMP: PLEASE INSERT FIGURE 6 HERE> 

Figure 6 Anomalous transport behavior beyond the quantum limit. (a) Magnetic field 
dependence of the longitudinal (ρxx) and transverse (ρxy) resistivity at 1.5 K and 4.2 K for TaP. A 
steep drop and sign reversal for ρxy are seen at high field (273). [**AU: In panel a, what does 
the “T6” at top right denote? Can it simply be deleted? (If so, our illustration editor will 
make the change.) JH: it is the sample number and can de deleted**] (b) The oscillatory 
component of resistance ΔR at 4.2 K of three ZrTe5 samples (s6, s7, and s9) with log(B) period 
(274). [**AU: Do the highlighted references denote that panel a is reproduced from Ref 
273 and panel b is reproduced from Ref 274? Please clarify if not JH: yes they are from the 
references**] 

In addition to the above phenomena associated with the properties of the relativistic Dirac or 

Weyl fermions on the zeroth LL, new quantum states in the quantum limit regime have been 

proposed (274, 275). For ZrTe5, whose carrier density varies with different crystal growth 

techniques, its quantum limit can be reached under a very small magnetic field (~0.2 T) for low-
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carrier-density samples. In the quantum limit, surprising resistivity oscillations periodic in log(B) 

have been observed (Figure 6b) (274), and these oscillations are believed to be associated with 

the discrete scale invariance and formation of [**AU: insert “a” or “the”?JH: the**] two-

body quasi-bound state (274, 275). 

Another long-known but intensively investigated transport behavior in the quantum limit is 

linear MR. As discussed in Section 3.1, orbital MR stemming from the Lorentz effect should 

exhibit quadratic or nearly quadratic field dependence. In the quantum limit, however, MR grows 

linearly with B (195). Such linear MR was discovered in a number of materials (276–280) before 

the establishment of the theory for topological quantum states. Linear MR has been widely 

observed in many of the recently reported topological semimetals (45, 172, 173, 175, 234, 235, 

281–283). However, linear MR for those materials begins to develop at a field much lower than 

the critical field needed to reach their quantum limits (45, 172, 173, 175, 234, 235, 281–283). An 

alternative proposition is that the linear MR in Cd3As2 may arise from spatial fluctuations of the 

magnitude of and direction for local current density in disordered systems (172), which appears 

to be applicable for other topological semimetals with linear MR. [**AU: Please clarify what 

appears to be applicable for other topological semimetals with linear MR JH: the above 

interpretation using the spatial fluctuations appears to be applicable  **] 

3.3. The Intrinsic Anomalous Hall Effect 
In the last section, [**AU: please specify section number: 3.2? JH: yes the entire section 

3.2**] we intensively discuss the phenomena related to the Landau quantization and the zeroth 

LL in topological semimetals. As indicated above, the unique zeroth LL originates from the 

Berry phase of the band character of relativistic fermions. In this section, we review another 

important phenomenon in magnetic topological semimetals, i.e., the intrinsic AHE, which also 

stems from Berry phase physics. 

AHE, the enhanced Hall signal that couples with the magnetization of magnetic materials, 

has been intensively studied, as discussed in previous reviews (e.g., 284). Generally, the total 

Hall resistivity ρxy in a FM material has an anomalous contribution proportional to sample 

magnetization M (ρxy
AH = RsM) (284). Anomalous Hall resistivity can originate from extrinsic 

mechanisms such as skew scattering (285) and side jumps (286) and from intrinsic mechanisms 

due to the topological properties of bands (56, 287–289). 

One important feature of magnetic WSMs is their intrinsic AHE. Such an intrinsic Hall 
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component can be understood in terms of the Berry curvature 


Ω  of the electronic Bloch states, 

which leads to an anomalous electron group velocity perpendicular to the longitudinal electric 

field ( )/e E × 






Ω  (288). In a magnetic WSM, a pair of Weyl nodes with opposite chirality can 

be seen as monopole sources of Berry curvature. In this case, the AHE is purely intrinsic and 

tunable by the separation of paired Weyl nodes (54). The intrinsic AHE current is dissipationless 

(55, 56, 284, 289) and fully spin polarized (289–291) and therefore has great potential for 

spintronic applications. 

A time reversal symmetry (TRS)-breaking Weyl state has also been predicted or established 

in many magnetic compounds. [**AU: Please define TRS (at first use here); please check 

whether the spelled-out term appears above. If it does, then TRS should be defined above 

at first use JH: time reversal symmetry.**] An incomplete list includes Co-based Heusler alloys 

Co2XZ (X = IVB or VB; Z = IVA or IIIA) (95–99), half-metallic Co3Sn2S2 (93, 94, 292), half-

Heusler compounds RPtBi (R = Gd and Nd) with AFM orders (108–110), and chiral 

antiferromagnets MnSn3 and MnGe3 (102, 103). The FM Co2XZ compounds are known to be 

half-metallic ferromagnets, and some of them have Curie temperatures above room temperature, 

high spin polarization, and large Seebeck coefficient (293, 294). It has been theoretically 

predicted that the locations of the Weyl points of these compounds in momentum space can be 

tuned by the magnetization direction (96, 97). These properties, together with the predicted giant 

anomalous Hall conductivity (98, 293), make these materials potentially useful for spintronic and 

thermoelectric applications. These predictions are awaiting experimental verification. A large 

intrinsic AHE and a giant anomalous Hall angle were recently reported in FM Co3Sn2S2 (94, 

292), for which the existence of Weyl fermions has been demonstrated by the observation of 

surface Fermi arcs (93). 

The topological nontrivial states in half-Heusler compounds attracted significant attention 

even before the discoveries of topological semimetals (108, 295–297). The recent observations 

of chiral anomaly—a unique feature of Weyl fermions—together with band structure 

calculations suggest a magnetic field–driven Weyl state in AFM RPtBi (109, 110). Although 

different mechanisms such as Zeeman splitting (109) and exchange field (110) have been 

proposed for the formation of a TRS-breaking Weyl state in these AFM zero-gap semiconductors 

with quadratic band touching, the intrinsic AHE associated with the magnetic field–driven Weyl 



 35 

state has been probed (Figure 7a), with a very large anomalous Hall angle of ~0.15 comparable 

to the largest observed in bulk ferromagnets (Figure 7b) (110, 298). 

<COMP: PLEASE INSERT FIGURE 7 HERE> 

Figure 7 Anomalous Hall effect. (a) Magnetic field dependence of the transverse (Hall) 
resistivity ρxy for GdPtBi, with field along the [001] direction (298). (b) Anomalous Hall angle 
Δσxy/σxx at different temperatures for GdPtBi (298). (c) Magnetic field dependence of the Hall 
resistivity ρH for Mn3Sn (100). [**AU: Does the highlighted denote that panels a and b are 
reproduced from Ref 298 and panel c is reproduced from Ref 100? Please clarify JH: yes 
they are from the references **] 

The chiral antiferromagnets Mn3Sn and Mn3Ge exhibit large anomalous Hall resistivity in the 

AFM-ordered state, with a sharp and narrow hysteresis loop in magnetic field sweeps (Figure 

7c) (100, 101). In particular, Mn3Sn is the first antiferromagnet to be discovered to exhibit such a 

surprising large room temperature AHE (100). Furthermore, remarkable anomalous behavior has 

also been observed in its Nernst effect (57). [**AU: Please clarify what “its” refers to JH: 

means this material, Mn3Sn**] These anomalous transport features have been ascribed to a 

magnetic Weyl state, which was subsequently demonstrated both theoretically (102) and 

experimentally (103). 

Although the intrinsic AHE results from magnetic Weyl states, the strong intrinsic AHE does 

not exclusively occur in magnetic Weyl systems. [**AU: OK? Please clarify as necessary 

JH: it is OK**] Other magnetic systems such as FM kagomé metal Fe2Sn3 (299), FM spinel 

CuCr2Se4−xBrx (289), and magnetic semiconductors (288, 291) have also been reported to display 

the intrinsic AHE. 

3.4. [**AU: “The”? JH: OK to use The**] Chiral Anomaly 
As a hallmark of WSMs, the chiral anomaly is particularly important, as it bridges Weyl 

fermions in condensed matter physics and in high-energy physics. [**AU: OK? JH: OK**] 

Generally, the numbers of left- and right-handed Weyl fermions are conserved. This individual 

conservation of particles with opposite chirality is violated in the presence of parallel electric and 

magnetic fields. This effect, which was originally proposed in particle physics and termed the 

Adler–Bell–Jackiw effect or chiral anomaly (17), leads to exotic transport behaviors in 

condensed matter, i.e., negative longitudinal MR, AMR narrowing, and the planar Hall effect 

(PHE), which are discussed in detail below. 
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3.4.1. The chiral magnetic effect and negative longitudinal magnetoresistance. 
Negative longitudinal MR (i.e., the increase in magnetic field parallel to the electrical current 

leading to a decrease of resistivity) related to chiral anomaly has been discovered in several 

topological semimetal systems, as shown below. Chiral anomaly is the manifestation of the 

chiral magnetic effect: the generation of electric current under magnetic field induced by the 

chirality imbalance. The mechanism of this phenomenon is well established (10, 11, 52, 53). 

Here we give a brief overview on its relevant physics. We consider the quantum limit, [**AU: 

OK to add comma here? JH: OK**] where only the zeroth LL is occupied. As described in 

Equation 16 and illustrated in Figure 8a, the 3D Landau quantization of a WSM leads to 

counterpropagating zeroth LLs for a pair of Weyl cones, which disperse only along the magnetic 

field direction. This direction is also the direction for electrons to have coherent motion when an 

external electric field E is applied. Such electric field–driven motion leads to electron pumping 

between Weyl nodes with a rate ∝ − ⋅E B  (10, 11, 53), which results in imbalanced population of 

carriers between the two zeroth LLs of the paired Weyl cones. As a result, the chirality becomes 

imbalanced. In condensed matter, this charge pumping process is finally relaxed by inter-Weyl 

node scattering, and a steady state is reached, with a chiral current c intj B τ∝ ⋅E B , where τint is 

the internode relaxation time (10, 11, 53). Clearly, this chiral current contributes to negative MR 

when E//B. Aside from this quantum mechanical interpretation based on only the zeroth LL, a 

semiclassical approach based on the Boltzmann equation also yields the same result; with this 

approach, it [**AU: please clarify “it” JH: “it” means the formulism of the chiral 

anomaly**] can also be generalized to the semiclassical regime that involves multiple LLs (10, 

11, 53). 

<COMP: PLEASE INSERT FIGURE 8 HERE> 

Figure 8 Chiral anomaly and negative longitudinal magnetoresistance (MR). (a) Schematic of 
chiral charge pumping between two Weyl cones with opposite chiralities under parallel magnetic 
and electric fields (105). (b) Magnetic field–induced Weyl state by lifting the spin degeneracy of 
a Dirac cone due to the Zeeman effect (105). (c) Longitudinal ρxx at various temperatures for 
Na3Bi. Negative longitudinal MR is observed at lower temperatures (105). (d) Longitudinal ρxx at 
various temperatures for ZrTe5. Negative longitudinal MR is observed at lower temperatures 
(107). [**AU: Do the highlighted references denote that panels a through c are 
reproduced from Reference 105 and panel d is reproduced from Reference 107? Please 
clarify JH: yes they are from those references**] 
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Although the negative longitudinal MR originating from chiral magnetic effect occurs in both 

the quantum limit and semiclassical regime, the actual field dependence of MR can be material 

dependent. Generally, the negative MR is expected to be linearly dependent on B in the quantum 

limit while being ∝ B2 in the low-field range. But the real situation can be more complex if the 

internode scattering that relaxes the chiral charge pumping becomes field dependent. This is 

possible in the quantum limit at high field, as shown below. In real materials, the situation can be 

further complicated by positive orbital MR due to the Lorentz effect, which is determined by the 

magnetic field component perpendicular to current, as discussed in Section 3.1. Ideally, such 

positive orbital MR should vanish when E//B, but finite orbital MR may arise from a [**AU: 

insert “an” or “the”? JH: a**] anisotropic Fermi surface for E//B (300). Given such orbital 

effects, the longitudinal MR may show quadratic field dependence in the low-field range but 

becomes negative when the chiral magnetic effect dominates. 

It is also worth noting that the chiral magnetic effect is not limited to the case of exact E//B, 

since the chiral charge pumping rate is finite for nonorthogonal electric and magnetic fields. 

Therefore, negative MR may be observed in a range of field orientation angles and vanishes 

when it is compensated by the positive orbital MR component, which is determined by the 

transverse magnetic field component. If the negative MR is too sensitive to field orientation (e.g., 

it disappears when the magnetic field is deviated by 1° or 2° from the parallel direction), it may 

suggest a classical origin of current jetting, which is discussed below. 

The chiral magnetic effect was first observed in Dirac systems such as Bi0.97Sb0.03 (301), 

Na3Bi (105), Cd3As2 (Figure 8c) (45, 106), and ZrTe5 (Figure 8d) (107) before the experimental 

discovery of WSMs. This effect [**AU: OK? JH: yes**] can be attributed to the fact that the 

Dirac point in a 3D DSM can be viewed as a superposition of two paired Weyl nodes with 

opposite chirality. Such two overlapping Weyl nodes can be separated in momentum space by 

magnetic field, which breaks time-reversal symmetry (Figure 8b). Half-Heusler RPtBi is another 

group of materials that exhibits the [**AU: OK? JH: OK**] magnetic field–induced chiral 

magnetic effect (109, 110). As mentioned in Section 3.3, these materials are zero-gap 

semiconductors, and their Weyl points are believed to be caused by the external field–induced 

Zeeman splitting (109) or by the [**AU: OK? JH: OK**] exchange field from 4f electrons 

(110). It has been proposed that their Weyl points can be induced for any magnetic field 

orientation, and the induced Weyl points do not necessarily reside on the axis parallel to the field 
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(104). For these field-induced Weyl states, the separation of Weyl points in momentum space 

may be dependent on magnetic field, so the negative longitudinal MR could display nonuniversal 

field dependence. For example, a quadratic field dependence of negative MR anticipated for a 

non–quantum limit regime has been observed for most of the above materials (107, 110, 301). 

However, a saturation behavior is seen in Na3Bi (Figure 8c), which is attributed to the field-

dependent internode relaxation time in the quantum limit (105). 

Since the experimental discoveries of the WSM state in materials such as TaAs class (type I) 

materials (22, 23, 25, 27, 39, 86–92) and (W/Mo)Te2 (type II) materials (28, 111–122), many 

groups have reported observation of negative longitudinal MR in those materials and have 

attributed it to the chiral magnetic effect (109, 110, 179–181, 183, 192, 225, 302, 303). Although 

chiral anomaly is usually viewed as smoking gun evidence for a Weyl state, one must be 

cautious before attributing the observed negative longitudinal MR to chiral anomaly, since a 

classical effect, current jetting, can also lead to negative longitudinal MR (47). Current jetting is 

simply due to the rule that the current flows predominately along the [**AU: insert “the” or 

“a”? JH: the**] high-conductance direction. Once large-conductance anisotropy exists, 

equipotential lines are strongly distorted, and the current thus forms jets. For materials with large 

transverse MR, which is the case for most DSMs and WSMs, magnetic field causes very strong 

conductance anisotropy between the along-current and perpendicular-to-current directions. 

Therefore, with increasing magnetic field, the voltage drop between voltage contacts may even 

decrease for asymmetric point–like electrical contacts and irregular sample shape, leading to 

negative longitudinal MR (10, 304, 305). To minimize such a classical effect, it is important to 

use a perfect bar-shape sample with a large aspect ratio and well-separated, symmetric voltage 

contacts. Current jetting is also expected to be weak in materials with small transverse MR [e.g., 

GdPtBi (304)] due to reduced-conductance anisotropy under magnetic fields. More 

comprehensive discussions of the current jetting effect in topological semimetals can be found in 

References 304 and 305. 

For type II WSMs such as (W/Mo)Te2 (28, 111–122), chiral anomaly shows a different 

situation. Given the strongly titled Weyl cones in such WSMs, [**AU: OK? JH: OK. 

Change “of” to “in”**] Landau quantization sensitively depends on the orientation of magnetic 

field, and the Landau spectrum is gapped for some field directions. Therefore, their negative 

longitudinal MR is strongly anisotropic (28, 306, 307); this has been observed in WTe2 (302, 
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303). Further studies also found that, in the classical limit characterized by c 1ω τ   (as opposed 

to the quantum limit or semiclassical limit, where c 1ω τ  , where cω  is the cyclotron frequency 

and τ  is the transport relaxation time), negative longitudinal MR in type II WSM becomes 

isotropic, similar to that in type I semimetals (303, 308). 

3.4.2. The Planar Hall effect. 
In addition to generating negative MR in longitudinal transport, the chiral anomaly also leads to 

a nontrivial transverse (Hall) signal under in-plane magnetic field (Figure 9a). Intuitively, an in-

plane Hall signal is not expected under in-plane magnetic field due to the absence of electron 

accumulation on the sample edges. However, in-plane Hall voltage can be generated in the 

presence of coplanar electric and magnetic fields (Figure 9a) due to chiral anomaly, leading to 

the so-called PHE (309–315). 

<COMP: PLEASE INSERT FIGURE 9 HERE> 

Figure 9 The planar Hall effect (PHE) and angular-dependent interlayer resistance (AMR) 
narrowing. (a) Experimental setup for the PHE. The magnetic field is rotated within the sample 
plane (the x-y plane). (b) Experimental setup for the conventional Hall effect. The magnetic field 
is rotated from the out-of-plane direction toward the sample plane (the y-z plane). (c,d) Angular 
dependence of the (c) planar ( PHE

xyρ ) and (d) conventional ( xyρ ) Hall resistivity in GdPtBi at 9 T 
and 2 K, using the setup shown in panels a and b, respectively. A twofold symmetry is observed 
for the PHE, in contrast with a onefold symmetry for the conventional Hall effect (313). 
[**AU: Does the highlighted denote that panels a through d are reproduced from Ref 
313? Please clarify JH: yes they are**] (e,f) Magnetic field orientation dependence of the 
magnetoconductivity [Δσxx = σxx(B,ϕ) − σxx(B,90°)] of Na3Bi at 4.5 K, measured at (e) low and (f) 
high magnetic fields. [**AU: OK? JH: OK**] The insets show the same data in polar 
representation. The peak profiles in the angular dependence are clearly narrower at high fields 
(105). [**AU: Does the highlighted denote that panels e and f are reproduced from Ref 
105? Please clarify JH: yes they are **] 

The PHE, a well-known phenomenon observed in ferromagnets, is due to the resistivity 

anisotropy caused by anisotropic magnetization (316). Although topological semimetals have the 

same in-plane angular dependence in Hall resistivity ρxy as do ferromagnets, the PHE in 

topological semimetals occurs in the absence of magnetic order, with a significantly enhanced 

amplitude (309, 310). With coplanar electric and magnetic fields, the transverse resistance ρxy of 

the PHE is (309) 
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||( )
sin 2 ,

2xy

ρ ρ
ρ ϕ⊥−

=  17. 

where ||ρ  and ρ⊥  denote resistivity with current flowing along and perpendicular to the direction 

of the magnetic field, respectively, and ϕ  is the angle between the current flow and magnetic 

field orientation (Figure 9a). As discussed in Section 3.2, in the Drude model, the orbital MR for 

B//I is strictly zero unless a multiband effect is involved. Therefore, ||ρ ρ⊥−  represents the 

resistivity anisotropy caused by chiral anomaly. 

In experimental studies on DSMs and WSMs, an abnormal Hall signal under in-plane 

magnetic field was first reported in ZrTe5 (317). A strict sin 2ϕ  dependence was later observed 

in a number of materials, including ZrTe5, Cd3As2, GdPtBi, WTe2, and VAl3 (311–315). With 

rotating in-plane field (Figure 9a) and out-of-plane field (Figure 9b), the twofold anisotropy of 

the PHE (Figure 9c) clearly differs from the onefold symmetry seen for the conventional Hall 

effect (Figure 9d) (313). Unlike the conventional Hall effect, the PHE does not satisfy 

antisymmetry; i.e., xy yxρ ρ≠ − . This is because the PHE does not originate from the Lorentz 

force (309, 310). 

3.4.3. Narrowing of angular-dependent interlayer resistance. 

With the above definition of ρ


 and ρ⊥ , the longitudinal resistivity can be expressed as (309) 

2( ) cos .xxρ ρ ρ ρ ϕ⊥ ⊥= + −


 18. 

Another unusual property that can be derived from Equation 18 is the narrowing of the AMR 

peak at high magnetic field (309). For simplicity, the magnetoconductivity with sweeping in-

plane angle ϕ  may be expressed as 1 1
( , ) (0, )xx xxBρ ϕ ρ ϕ

−  (a stricter process requires tensor 

conversion). At a small angle, the angular dependence of magnetoconductivity has a Lorentzian 

profile with angular width (309): 

2

F

F B c

,
/v l

ε τϕ
τ

 
∆ ≈  

 

 19. 

where B /l eB=   is the magnetic length, cτ  is the relaxation time for chiral charge diffusion, 



 41 

and τ  is the conventional momentum relaxation time. At low fields, LLs are wiped out by 

energy level broadening and thermal excitation. In this case, the parameters involved in Equation 

19 are field independent except for Bl , indicating a narrowing of angular width with B that has 

been observed in Na3Bi (Figure 8e,f) (176). When a strong magnetic field drives the system to 

the quantum limit, the field dependence of each parameter in Equation 19 leads to the saturation 

of ϕ∆ , as shown in Figure 9e,f (176). 

3.5. Quantum Hall States in the 2D Limit 

3.5.1 Classifications of the various quantum Hall states [JH: this subheading is 
added to ensure there will be at least two subheadings in this sections] 
In the 2D limit, one intriguing aspect of topological semimetals is the potential to generate 

various quantum Hall states. In Section 3.2.8, we mention that the QHE in the 3D layered 

topological semimetal EuMnBi2 is caused by the formation of 2D electronic states due to 

restriction of electron motion in the 2D Bi plane (177). Here we discuss two other quantum Hall 

states in the 2D limit that have potential applications in electronics and spintronics: the QSHI 

(i.e., 2D topological insulator) state and the QAHI state. [**AU: OK? (Note that QSHI and 

QAHI are now defined above in text, at the first use of each of these terms) JH: OK since 

they have been defined in the introduction**] 

The 2D quantum Hall states for both nonrelativistic and relativistic electrons reflect the 

fundamental topological properties of materials. For example, the integer QHE, an established 

[**AU: OK? JH: OK**] phenomenon that was well understood in terms of the Landau 

quantization, now has a topological interpretation based on the topological invariant of the Chern 

number, which opens up the field of topological electronic states in condensed matter. As shown 

in Figure 10a and mentioned in Section 3.2.7, an integer quantum Hall system under sufficiently 

strong fields is characterized by an insulating bulk state with electrons pinned to quantized small 

radii orbits and a conducting, dissipationless chiral edge state formed by skipping orbits. 

[**AU: OK? JH: remove the second “by” before the conducting, dissipationless chiral edge 

**] The superposition of two copies of time-reversal integer quantum Hall systems in the 

quantum limit leads to the QSHI, i.e., the 2D topological insulator, which displays a pair of 

counterpropagating, spin-polarized edge states due to spin-orbit locking (Figure 10c). 

Apparently, the magnetic field necessary to produce an integer quantum Hall system is no longer 
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needed for a QSHI system (76, 79), as the magnetic field is cancelled out when the time-reversal 

copies of integer quantum Hall systems are brought together. [**AU: Edits to the last 

sentence OK? JH: OK**] Another modification of the integer quantum Hall system that does 

not require an external magnetic field is the QAHI state, [**AU: OK? JH: OK**] in which 

spontaneous magnetization leads to the dissipationless chiral edge state (Figure 10b) and the 

formation of LLs is not required (76, 79). 

<COMP: PLEASE INSERT FIGURE 10 HERE> 

Figure 10 Quantum Hall effects in various topological phases. (a–c) Schematic for (a) the integer 
quantum Hall insulator (IQHI) state, (b) the quantum anomalous Hall insulator (QAHI) state, and 
(c) the quantum spin Hall insulator (QSHI) state. (d–f) The (d) 1H, (e) 1T, and (f) 1T′ structures 
of monolayer transition metal dichalcogenides. Panels d–f reproduced from Reference 72. 
[**AU: OK? JH: OK**] (g) Gate voltage dependence of the differential conductance of the 
monolayer WTe2 at difference temperatures. Panel g reproduced from Reference 74. [**AU: 
OK? JH: OK **] 

The QSHI and QAHI states [**AU: OK? JH: OK**] also provide significant insights 

into topological physics beyond simple modification of the integer quantum Hall system (76). 

The QAHI and [**AU: insert, e.g., “insulators in the”? JH: do not inset that**] the integer 

quantum Hall system are essentially 2D Chern insulators characterized by nonzero Chern 

numbers, in contrast with a trivial insulator with C = 0. With TRS, the Chern number must 

vanish, but another topological invariant, the Z2 number, can be introduced to clarify the 2D 

insulators, becoming 0 for trivial insulators and 1 for a symmetry-protected topological insulator 

(QSHI) (318). Simple stacking of these 2D building blocks leads to a 3D weak Chern insulator 

or a weak topological insulator that is not robust against disorder (319). It is also possible to 

extend the topological classification of a QSHI to 3D and create a strong 3D topological 

insulator (319). However, the extension of the 2D Chern insulator to 3D cannot produce a strong 

3D Chern insulator. Instead, this development [**AU: OK? JH: OK**] results in a metallic 

phase: the topological semimetal (76). The above discussions show how quantum Hall systems, 

the QSHIs, the QAHIs, [**AU: OK? JH: see my edits**] 3D topological insulators, and 

topological semimetals are closely connected in terms of the topological properties, which 

implies the possibility of conversion between these states. 

From the experimental aspect, QSHIs and QAHIs are expected to display unusual nonlocal 
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transport (320, 321). [**AU: Referring to the insulators (text would remain as is) or the 

systems/states (in which case please add “systems” or “states” after “QSHI and QAHI”)? 

JH: the insulators**] The resistance or conductance of conventional diffusive systems is 

dependent on the dimensions of the sample and is determined by the local resistivity or 

conductivity (Ohm’s law). However, in quantum Hall systems, due to scale-invariant 

dissipationless edge conduction, transport is nonlocal, and the concepts of resistivity or 

conductivity are thus meaningless. The Hall conductance can be obtained from the Chern 

number C by 2 /xyG Ce h= ; a half-quantized Hall conductance is also expected for massless 

relativistic fermions, as discussed in Section 3.2.8 (Equation 15). For a QSHI, 0xyG =  due to C 

= 0 in a TRS system, which can be attributed to the fact that the pair of time-reversed chiral edge 

states cancels each other (Figure 10c). For the longitudinal conductance xxG , the measurement 

results strongly depend on the configuration of the contact electrodes. This is because an ideal 

contact attached to the edge of the sample acts as a reservoir that draws electrons and emits them 

from and to the edge channels. [**AU: OK? JH: OK**] The spin information of an electron 

is smeared out during this process. For an integer quantum Hall system or a QAHI system, the 

edge state is chiral (Figure 10a,b), and the electrons emitted from the contact have to flow along 

the same direction, which should lead to zero longitudinal conductance and hence zero 

longitudinal resistance according to resistivity and conductivity tensor conversion. However, for 

a QSHI [**AU: insert “state” or “system? QSHI can refer to one type of insulator, so 

“state” or “system” is not needed here **] with time-reversed spin-polarized edge states, the 

spin of the emitted electrons has half probability to be reversed, [**AU: OK as phrased? JH: 

OK**] corresponding to the back-moving edge channel with opposite spin. Therefore, a finite 

resistance depending on the number and configuration of contacts can be expected (320, 321). 

3.5.2. Material realizations for the QSHI and QAHI states. [**AU: (1) Edits OK? JH: OK 
(2) If using subheadings in a section, there need to be at least two, per house style. Please 
either add another subheading to the section (e.g., add a Section 3.5.2) or remove this one 
here. JH: another subheading is added at the beginning of this section, so there are two 
subheadings now**] 
The QSHI state [**AU: OK? JH: OK. QSHI can refer to the actual insulator or the 

quantum state**] has been proposed in the monolayer form of the layered 1T′- transition metal 

dichalcogenides MX2 (M = W, Mo; X = S, Se, Te) (72) and WHM (322). The structure of 
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monolayer MX2 is formed from the stacking of X-M-X layers, with its physical properties being 

determined by the type of stacking. A hexagonal H structure with ABA stacking (Figure 10d) 

results in the well-known direct-band-gap semiconductors (323). For a rhombohedral 1T phase 

with ABC stacking (Figure 10e), the structure is unstable and undergoes a spontaneous lattice 

distortion to the 1T′ phase (Figure 10f), which consequently leads to a QSHI state in the 

presence of SOC (72). The QSHI state in monolayer 1T′-MX2 was first demonstrated in WTe2, as 

this material naturally has the 1T′ structure in the bulk form. There is transport (74, 75) and 

spectroscopic (73) evidence of the QSHI state in WTe2 monolayers prepared using mechanical 

exfoliation or molecular beam epitaxy (MBE) growth. For example, upon [**AU: OK? JH: 

OK**] sweeping the gate voltage, a conductance plateau associated with the 1D edge state of a 

QSHI is observed in a WTe2 monolayer (Figure 10g) but is absent in bilayer or few-layer 

samples (74, 75). More importantly, the temperature at which the conductance plateau starts to 

develop is as high as 100 K (Figure 10g), which is greatly higher than the operating temperature 

of other well-established QSHIs in semiconductor quantum wells (324) and could be ascribed to 

the large bulk band gap of the 1T′-WTe2 monolayer [which was predicted to be 100 meV (72) 

and found to be 55 ± 20 meV for MBE-grown samples (73)]. This finding has great potential for 

practical device applications. Furthermore, under one proposal, the horizontal electric field may 

break the inversion symmetry and may induce strong Rashba splitting of the bands near EF, 

which closes the bulk gap at some critical electric fields. Such gap closing leads to a topological 

phase transition to a trivial phase; this transition occurs very rapidly and can thus be used for 

topological field effect transistors (72). 

The tetragonal layered WHM compounds have also been predicted to become QSHIs in the 

monolayer form (322). Different from WTe2, which is a type II topological WSM in the bulk 

form (28, 111–113, 117), bulk WHM is predicted to be a weak topological insulator formed from 

the stacking of QSHIs (322, 325); this is a long-sought topological quantum state (326). In 

WHM, C2v symmetry ensures nodal-line crossings near EF in the absence of SOC, but this 

symmetry cannot prevent SOC gap opening (154). Because the Fermi level crosses the gapped 

cones and the band dispersion is extremely linear over a wide energy range, WHMs have been 

established as topological NLSMs (78, 85, 154). To realize the predicted QSHI state, one 

possible route is to exfoliate the bulk WHMs to their monolayers. Although the interlayer 

coupling in WHMs is not van der Waals type (322, 327), the weak coupling strength in some 
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WHMs allows for mechanical exfoliation, as has been demonstrated (156). One possible 

advantage of using WHMs as a platform for searching [**AU: “for”? JH: can change 

“searching” to “realizing”**] QSHIs is the variable SOC gap with various combinations of W, 

H, and M (226); such a gap offers the opportunity to design different QSHIs. 

As mentioned above, a QAHI system is in principle similar to the integer quantum Hall 

system, but the former occurs without an external magnetic field and LLs (76, 79) and thus 

carries great promise for possible applications in spintronics. [**AU: OK? JH: OK**] 

Furthermore, a QAHI system [**AU: insert “state” or “system”? JH: system**] also 

provides a promising platform for the creation, manipulation, and utilization of Majorana 

fermions, the hypothetical particles that are their own antiparticles (328, 329). The QAHI state 

was first experimentally demonstrated in magnetically doped topological insulators (330–332). 

However, it has so far been realized only at very low temperatures (<1 K) (330–332). Room 

temperature QAHIs, [**AU: “QAHI state” or “QAHIs”?, JH: QAHIs**] if realized, will 

have the potential to revolutionize information technology through dissipationless spin-polarized 

chiral edge transport in spintronic devices. Recent studies have revealed a new possible route to 

the realization of high-temperature QAHIs: 3D FM WSMs can evolve into large-gap QAHIs 

when the dimensionality is reduced from 3D to 2D, due to the confinement-induced quantization 

of low-energy states (21). [**AU: In the last sentence, change QAHI to “QAHIs”? JH: 

OK**] One possible candidate material is HgCr2Se4 (21), which is awaiting experimental 

verification. In addition to these two approaches, there are other proposals for the realization of 

QAHIs (76). 

4. SUMMARY AND PERSPECTIVE 

Above we review distinct electronic transport phenomena associated with nontrivial band 

topology in different types of topological semimetals and discuss how to extract the fundamental 

properties of Dirac/Weyl fermions such as effective mass, quantum mobility, and the Berry 

phase from dHvA or SdH quantum oscillation measurements. The above discussion shows that 

topological semimetals exhibit a rich variety of exotic properties that are not seen in 

nonrelativistic electron systems. These properties include chiral anomaly and the PHE in WSMs, 

the intrinsic AHE in time-reversal symmetry–breaking WSMs, quantum oscillations due to Weyl 

orbits and AMR peak narrowing under high magnetic fields in DSMs, the half-integer QHE and 
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quantum tunneling of the zeroth LLs in layered magnetic DSMs, and [**AU: OK? JH: 

OK**] vanishing magnetization and dynamic mass generation in the quantum limit of 

DSMs/WSMs. We discuss how these properties are connected with nontrivial band topology, 

although the mechanisms for some of these properties are not fully understood. Furthermore, we 

discuss how DSMs/WSMs are linked with the QSHI and QAHI states [**AU: OK? JH: 

OK**] and how these two quantum Hall states can be approached by reducing NLSMs/FM 

WSMs to 2D thin layers. 

As previous reviews have noted (10, 11), one challenge in this field is the experimental 

realization of ideal model systems like graphene (10) or the hydrogen atom (11) for various types 

of topological semimetal phases. An ideal model system should contain only the topological 

band(s), with the same types of Dirac or Weyl points being symmetrically related, located at the 

Fermi energy level, and well separated in momentum space. For the material aspect, such a 

system should be stable in the ambient environment and have minimal defects (10, 11). As noted 

above, the topological semimetals discovered so far are probably the tip of the iceberg. Given 

that topological semimetals can be predicted by band structure calculations, we believe that 

many new topological semimetal phases and candidate materials will be discovered and that 

some of them may serve as model systems. There have been recent breakthroughs in topological 

phase screening and database development for topological quantum materials (37, 325, 333–

336). With new simple model systems, the trivial bands will not mask or interfere with the 

contributions from exotic phenomena arising from the nontrivial bands, and novel knowledge of 

various topological semimetal phases can be further revealed. 

Topological quantum materials have stimulated great interest because of not only their 

connection with high-energy particle physics but also their great potential in future technology 

applications. As discussed above, both the QSHI and QAHI states [**AU: OK? JH: OK**] 

can be obtained by reducing the dimension of NLSMs/FM WSMs to 2D, and these two states 

can support dissipationless transport through their topological spin-polarized edge states. 

[**AU: Please spell out DNLS (it appears only once in text - in the last sentence) JH: 

should be NLSMs**] Therefore, they carry great promise for applications for spintronic devices 

and quantum computation. Although both the QSHI and QAHI [**AU: OK? JH: remove 

“states”**] have been demonstrated experimentally, these states currently occur only in the low-

temperature range. Pushing their operation temperature to room temperature is another great 
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challenge in the field. Achieving this goal requires discoveries of new topological materials with 

better properties, along with integrated efforts in theoretical modeling, computation, synthesis, 

characterization, and device demonstrations. 
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Table 1 Parameters obtained from transport and quantum oscillation experiments at base 

[**AU: OK as phrased? JH: change “based” to “base”**] temperatures (1.5–5 K), 

including magnetoresistance (MR) at 9 T, residual resistivity ρres, transport mobility μT, quantum 

relaxation time τq, quantum mobility μq, and effective mass ratio m*/m0 [**AU: OK to delete 

the hyphen beneath the asterisk here and in the table (header row, second-to-last column)? 

JH: yes it is OK. In fact in my version there is no such hyphen under the asterisk. Also, for 

the table below, each cell should have content in it. For each blank cell, please specify text 

that should go in it – e.g., “NA” (if so, please define NA as, e.g., not applicable or not 

available) JH: OK**] 

 MR at 9 T ρres (μΩ 
cm) 
[**AU: 
Should 
there be a 
multiplicat
ion dot (∙) 
between 
these 
units? 
Please 
clarify JH: 
with or 
without 
dot, both 
are fine**] 

μT [cm2 
/(V∙s)] 

τq (ps) μq [cm2 
/(V∙s)] 

m*/m0 Reference(
s) 

Cd3As2 34.5–1,336 0.032–46.5 4 × 103–8.7 
× 106 

0.03–0.21 4,700–
6,000 

0.023–0.26 45, 172, 
178, 236, 
237, 272 

Na3Bi 5.69–97.1 1.72–87 5,500–
78,900 

0.0816 NA[**AU: 
Blank 
cell; 
please 
specify 
content 
JH: NA, 
not 
available*
*] 

0.11 105, 176 

TaAs 3–30,000 0.63–1.9 18,000– 0.038–1.1 32,000 0.021–0.68 46, 179–
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family 10,000,00
0 

183, 191–
194, 225, 
227, 243 

WTe2 4,000–
25,000 

0.39–1.9 24,000–
176,000 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 0.41–0.46 48, 184, 
186, 231 

MoTe2 2,653 28 16,000–
58,000 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

0.8–2.9 337–340 

PtSn4 1,000–
2,100 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

14,257–
15,809 

0.05–0.36 341–343 

PtBi2 12,000 NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

171 

Pt(Te/Se)2 A few tens 
[**AU:
Possible 
to be 
more 
specific, 
e.g., “~30 
–40”? JH: 
the 
original 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

3,600–
5,500 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

0.11–3.6 229, 344 



 74 

papers 
states like 
that. They 
do not 
provide a 
number 
or 
number 
range **] 

PdTe2 A few tens 
[**AU:
Possible 
to be 
more 
specific, 
e.g., “~30 
–40”? JH: 
the 
original 
papers 
states like 
that. They 
do not 
provide a 
number 
or 
number 
range **] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

0.18–0.65 1,293–
6,209 

0.04–1.16 229, 248 

AMn(Sb/Bi
)2 

(A = Ca, 
Sr, Ba, 
Yb) 

1 NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

1,500–
3,400 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

NA 
[**AU: 
Blank 
cell; 
please 
specify 
content**
] 

141, 143, 
173, 175, 
213, 234, 
235, 238, 
239, 247, 
283, 345, 
346 

WHMa 1.3–
140,000 

0.052 2,000–
28,000 

0.025–0.35  209–
10,000  

0.025–0.27 
1.32b 

[**AU: 
Do these 
represent 
two 
different 
number 
ranges? 

156, 222, 
226, 228, 
232, 233, 
245, 347 
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Please 
clarify 
JH: the 
second 
one (1.32) 
is very 
unusual 
and have 
other 
specific 
origins, as 
denoted 
below (the 
mass 
enhancem
ent)**] 

aMR, effective mass, and quantum relaxation time widely vary in different WHM materials, 

possibly due to the spin-orbit coupling gap, which varies with the atomic number. 
bCaused by the mass enhancement at low temperatures (245). [**AU: OK? Or “Mass is 

enhanced at low temperatures (245)”? JH: see my edits**] 

 

 


