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Abstract—We consider the statistical connection between the
quantized representation of a high dimensional signal X using
a random spherical code and the observation of X under an
additive white Gaussian noise (AWGN). We show that given
X, the conditional Wasserstein distance between its bitrate-R
quantized version and its observation under AWGN of signal-to-
noise ratio 227 — 1 is sub-linear in the problem dimension. We
then utilize this fact to connect the mean squared error (MSE)
attained by an estimator based on an AWGN-corrupted version
of X to the MSE attained by the same estimator when fed with
its bitrate-R? quantized version.

I. INTRODUCTION

Due to the disproportionate size of modern datasets compared
to available computing and communication resources, many
inference techniques are applied to a compressed representation
of the data rather than the data itself. In the attempt to develop
and analyze inference techniques based on a degraded version
of the data, it is tempting to model inaccuracies resulting
from lossy compression as an additive noise. Indeed, there
exists a rich literature devoted to the characterization of this
“noise”, i.e., the difference between the original data and
its compressed representation [1]. Nevertheless, due to the
difficulty of analyzing non-linear compression operations, this
characterization is generally limited to the high bit compression
regime [2]-[4].

In this paper, we show that quantizing the data using a
random spherical code (RSC) leads to a strong and relatively
simple characterization of the distribution of the quantization
noise. Specifically, consider the output codeword of a bitrate-R
RSC and the output of a Gaussian noise channel with signal-to-
noise ratio (SNR) 22% — 1 illustrated in Fig. 1; our main result
says that the conditional Wasserstein distance [5] between
these two outputs is independent of the problem dimension,
hence the normalized risk in estimating from the compressed
data is asymptotically equivalent to risk in estimating under a
Gaussian noise. This connection allows us to adapt inference
procedures designed for AWGN-corrupted data to be used with
the quantized data, as well as to analyze the performances of
such procedures.

Spherical codes have multiple theoretical and practical uses
in numerous fields [6]. In the context of information theory,
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Fig. 1. Inference about the parameter vector € is based on degraded
observations of the data X. The effects of bitrate constraints are compared
to the effect of additive gaussian noise by studying the Wassertein distance
between Py x and Pz x. Under random spherical encoding, we show that
this distance is order one, and thus independent of the problem dimensions.

Sakrison [7] and Wyner [8] provided a geometric understanding
of random spherical coding in a Gaussian setting, and our
main result can be seen as an extension of their insights.
Specifically, consider the representation of an n-dimensional
standard Gaussian vector X using 227 codewords uniformly
distributed over the sphere of radius r = y/n(1 — 272%). The
left side of Fig. 2, adapted from [7], shows that the angle
o between X and its nearest codeword X concentrates as 7
increases so that sin(a) = 2~ with high probability. As a
result, the quantized representation of X and the error X — X
are orthogonal, and thus the MSE between X and its quantized
representation averaged over all random codebooks converges
to the Gaussian distortion-rate function (DRF) Dg(R) £ 272,
In fact, as noted in [9], this Gaussian coding scheme' achieves
the Gaussian DRF when X is generated by any ergodic source
of unit variance, implying that the distribution of || X — X |2 is
independent of the distribution of X as the problem dimension
n goes to infinity.

In this paper, we show that a much stronger statement holds
for a scaled version of the quantized representation (Y in Fig. 2):
in the limit of high dimension, the distribution of ¥ — X is
independent of the distribution of X and is approximately
Gaussian. This property of Y — X suggests that the underlying
signal or parameter vector ¢ can now be estimated as if X is
observed under AWGN. This paper formalizes this intuition by
showing that estimators of ¢ from an AWGN-corrupted version
of X (Z in Fig. 1) attain similar performances if applied to
the scaled representation Y.

!We denote this scheme as Gaussian since r is chosen according to the
distribution attaining the Gaussian DRF.
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Fig. 2. Left: In the standard source coding problem [7], [8], the representation
sphere is chosen such that the error X — X is orthogonal to the reconstruction
X. Right: In this paper the representation sphere is chosen such that the error
Y — X is orthogonal to the input X.

We emphasize that the scaling of the quantized representation
and the estimation of # are done at the decoder, and thus X is
essentially represented by the codeword maximizing the cosine
similarity. In particular, no additional information about X or
0 is required by the encoder. This situation is in contrast to
optimal quantization schemes in indirect source coding [10],
[11] and in problems involving estimation from compressed
information [12]-[16] in which the encoder depends on Py x.
As a result, the random spherical coding scheme we rely on is
in general sub-optimal, although it can be applied in situations
where 6 or the model that generated X are unspecified or
unknown. Coding schemes with similar properties were studied
in the context of indirect source coding under the name
compress-and-estimate in [17]-[20]. Finally, we note that our
approach is similar in spirit to dither based quantization [4] in

the sense that it relies on randomness in the coding procedure.

To summarize the contributions of this paper, consider the
vectors Y and Z illustrated in Fig. 1, describing the output of
a bitrate-R RSC applied to X and the output of an AWGN
channel with input X, respectively. Our main result shows that
the quadratic Wasserstein distance between Y and Z given the
input X is sub-linear in the problem dimension n. We further
use this result to establish the equivalence

Dy (R) = M(snr), )

where Ds,(R) is the MSE of estimating 6 from Y with input
X as a function of the bitrate, and M(snr) is the MSE of
estimating 6 under additive Gaussian noise as a function of
the SNR in the channel from X to Z. Next, we use (1) to
analyze the MSE of Lipschitz continuous estimators of 6

snr=22F _ 1

from Y by considering their MSE in estimating 6 from Z.

The benefit is twofold: Allowing inference techniques from
AWGN-corrupted measurements to be applied directly on the
quantized measurements to recover 6, as well as providing the
expected MSE in this recovery. Finally, we apply our results
to two special cases where the measurement model Py g is
Gaussian. The first case demonstrates how RSC can be used in
conjunction with the prior distribution to attain MSE smaller

than D¢ (R) when this prior is not Gaussian. The second case
demonstrates how to derive an achievable distortion for the
quantized compressed sensing problem [17], [21] using the
approximate message passing (AMP) algorithm and its state
evolution property [22], [23].

Due to space limitation, the proofs are omitted and can be
found in [24].

II. PRELIMINARIES

Our basic setting considers an n-dimensional random vector
X with distribution Py g, where 6 is a d-dimensional random
vector with prior Py. We refer to X as the measurements and
to 6 as the underlying signal, and consider the problem of
recovering 6 from a bitrate-R quantized version of X.

A. Random Spherical Codes

We quantize X using a random spherical code. Such code
consists of a list of M codewords (codebook):

Cop(M,n) 2{C(1),....C(M)},

where each C(i), i = 1,..., M, is drawn independently from
the uniform distribution over the sphere of radius® 1/n in R™.
The quantized representation of X is given by the codeword
¢(i*) that maximizes the cosine similarity between X and the
codewords, namely:

(c(i), X)

Enc(X) =c(@), " =arg [EGIEY

m
1<is<My,

Let the cosine similarity between the vector X and its
quantized representation be denoted by the random variable

s (X, Enc(X))

SE e
I X[[Enc(X)]|

Proposition 1 ( [7], [8]). The cosine similarity S is independent
of X and has distribution function

P[S < S} = (1 - Q1b(s))1w’ 2

where

1
Qn(s) :nn/ (1 — ) (=372 gy, 3)

with Kk, = F(%)/(ﬁF("T_I))
Proof. Proposition 1 follows from [7, Eq. (12)]. Od

Proposition 2. Ler M > 4n and r = MY ("= Then

2
]E“Sﬂ/kr*?ﬂzo( log n +1) )

r2(r2 — 1)n? n?

2
EU\/lfSer’lﬂ :0<Lg T+ 1). 5)

r2n2 n2

2Qur results remain essentially unchanged if the codewords are drawn
instead from the standard normal distribution in R".
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B. Wasserstein Distance and Lipschitz Continuity

The p-Wasserstein distance between R"™-valued random
vectors X and Y is defined as

W, (X,Y) = W,(Px, Py) £ inf (E[| X — Y[2]) "7,

where the infimum is over all joint distributions (X,Y)
satisfying the marginal constraints X ~ Px and Y ~ Py.
For p > 1 the p-Wasserstein distance is a metric on the space
of distributions with finite p-th moments.

For the purposes of this paper, it is also useful to intro-
duce the conditional Wasserstein distance as follows. Given
conditional distributions Px |y and Py |y and Py, we define

P

WX,y | U) & / W2(Px t—us Priv—u) APy (6)

Equivalently, we have W?(X,Y | U) = infE[| X — Y|?],
where the infimum is over all couplings of (U, X,Y") satisfying
the marginal constraints (U, X) ~ Py x and (U,Y) ~ Pyy.
Notice that

Wo(X,Y) <W,(Pux,Puy) <W,(X, Y |U). (T)

Remark 1. The difference between the conditional and
unconditional Wasserstein distances in (7) can be arbitrarily
large. For example, suppose that U is uniform on {u,—u}
and let Py y—, = N(u,I) and Pyjy—, = N(—u,I). Then
Wa(X,Y) =0but Wo(X,Y | U) = Wa(N(2u,I),N(0,1)),
which increases without bound as ||u|| increases .

Given a Markov chain 6 — X — (Y, Z), the conditional

Wasserstein distance associated with Py, ;| x provides a natural
upper bound on the difference between the marginals Py y
and Py 7. For the following result, recall that a function f :
R™ — R? is L-Lipschitz if || f(u) — f(v)|| < L|ju — ]| for all
u,v € R"
Proposition 3. Let Py x be a distribution on R? x R"™ and
let Py x and Py x be conditional distributions from R™ to
R™. For any p > 1 and L-Lipschitz function f : R" — R%, we
have

(E[6 = I > — (E[l0 — f(2)I"])>
SLW,(Y,Z | X),
provided that the expectations exist.

III. QUANTIZATION ERROR VERSUS GAUSSIAN NOISE

This section addresses the extent to which the quantization
error induced by random spherical coding can be approximated
by isotropic Gaussian noise. Given an integer M and positive
number p, let Py|x be the conditional distribution of

Y = pEnc(X), ®)

obtained by marginalizing over the randomness in the codebook.
By construction, Y is supported on the sphere of radius /np.

For comparison, we define the Gaussian noise observation
model Pz x according to

Z=X+oW, )

where W ~ N(0, I) is standard Gaussian independent of X
and o2 is the noise power.

A. Finite-Length Bounds

Theorem 4. Let Py |z and Py x be the conditional distribution
defined by (8) and (9), respectively. For any distribution Px
on R™, there exists a joint distribution Px y,7z with marginals
Px, Py|z, and Py x, such that

IY = Z|I? = (vVapS — | X|| - oU)* + (VapV1=82 — o V)2,

where (S,U,V,X) are mutually independent with U ~
N(0,1), V ~ xn_1, and S is distributed according to (2).

Theorem 4 is general in the sense that it holds for any
choice of the parameters (M, p, o). Optimizing over (p, o) as
a function of E[||X||] and M leads to the following upper
bound on the conditional Wasserstein distance.

Theorem 5. Let Px be a distribution on R™ with finite second
moments. Given R > 0, let M = [2"F] and put

o EXI] o _Ex)
/n(1 —272R)’ /n(22F —1)
Then, the conditional Wasserstein distance between the distri-

butions defined in (8) and (9) satisfies
E[JIX][]* log® n

b
n?

Wi(Y,Z | X) < Var(|| X|)) +20* + Cr

where Cr is a constant that depends only on R.

The significance of Theorem 5 is that the second and third
terms are inversely proportional to the dimension of the signal.
Dividing both sides by the expected norm yields:

BT o L),

EfIX1]
It is also interesting to note that the signal-to-noise ratio of
the Gaussian observation model (9) depends primarily on the
code bitrate R, with
2
SENXI° _
o o

W (Y, Z | X)
E[IXN]  —

2R _ 7.

Combining Proposition 3 and Theorem 5 provides a mean-
ingful comparison whenever the Lipschitz constant times the
variance of || X|| is sufficiently small. For example, one setting
of interest is if L = o(v/d) and Var ||6]| = O(1), since in this
case the difference between the normalized MSE in estimating
0 using f(Y) and f(Z) converges to zero.

B. Asymptotic Equivalence

In the context of the problem of estimating 6 from a
quantized version of X, our results can be stated as follows.
We consider a sequence of distributions on (6, X) where both
d and n scale to infinity with

1
CE[IXIP] =y + o(1),

Var(| X)) = O(1).  (10)
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We further suppose that there exists a nonincreasing function
MRy — Ry with M(0) < oo and a sequence of estimators
0 = 0,1 n,o such that for almost all o € R, we have

Lip(d) = o(v/d,,) (11)
1 . 2
d—EMQ - e(Z)H } = M(snr) + o(1), (12)
where snr = /02, and we assume that the dimension d,, of §

is an explicit function of n.
The following result follows from Proposition 3 and Theo-
rem 5.

Theorem 6. Let M~ (snr) and M™ (snr) be the left and right
limits, respectively, of M(s) at the point s = snr. For almost
all R € Ry, the MSE distortion of random spherical encoding
with decoding function 6 satisfies

hgng— {He oy M>M+(21’R a3
hgl:up/—E{HG 1% M<M 22F —1).  (14)

In particular

lim —E[HH (9 H }

n—oo 'I’L

M2 - 1)

if 2°F=1 is a continuity point of M(s).

Remark 2. The assumption that (12) holds almost everywhere
allow for the possibility that M (snr) has a countable number
of jump discontinuities. This can arise, for example, in the
context of random linear estimation [25].

IV. APPLICATIONS AND EXAMPLES

This section provides some specific examples of problem
settings satistying the assumptions of Theorem 6. Given jointly
random vectors (6,U) on R? x R", denote by

mmse(9 | U) £ LE[16 - B0 | U]

the quadratic Bayes optimal risk in estimating € from U. In
the following we give some examples where the Bayes optimal
estimator of # from Z satisfies the Lipschitz condition (11),
and thus M(snr) corresponds to mmse(f | Z).

A. Noisy Source Coding

Consider the additive Gaussian noise model
X=0+eW

where 6 € R™ and W ~ N(0, I). The problem of quantizing
X at bitrate R and estimating ¢ from this quantized version
is an instance of the noisy (a.k.a. indirect or remote) source
coding problem [10], [11]. An achievable distortion for this
problem using RSC is given by the following theorem.

Theorem 7. Assume that the entries of 0 are i.i.d. from a distri-
bution with second moment ~y and finite fourth moment. There
exists a bitrate-R spherical code achieving MSE distortion

Dsp(R,€) & mmse(6 | 0; +nW),

where W ~ N(0,1) and

/62 + 72—21{
n= T](.R7 62) = W

B. Standard Source Coding

An interesting special case of the setting of Theorem 7 arises
in the limit /€2 — oo, in which the noisy source coding
problem reduces to a standard one. The minimal achievable
distortion for this problem is known to be Shannon’s DRF of 6,
denoted here by Dsp(R). Theorem 7 implies that there exists

val

a spherical code attaining
/—22 T 1 Wl) )

hence D, (R) is an achievable distortion for this source coding
problem. Furthermore, Dg,(R) is achievable using a source
code agnostic to the distribution of 6. We also note that if 6 is
zero mean, then

DSP(R) £ DSP(R, 0) = mmse (91 ‘ 0, +

Dsn(R) < Dyp(R) < Da(R) £27%%,  (15)
with equality if and only if Py, = N(0,7). The fact that
the Gaussian DRF D¢ (R) is achievable for this problem
already follows from [7], [9]. Our results shows that one can
usually do much better than the Gaussian DRF by applying the
Bayes optimal estimator of 6 from 6 + /~/(22F — 1)W to
an appropriately scaled version of the encoded representation.

Figure 3 illustrates the distortion attained by RSC compared
to Shannon’s and the Gaussian DRFs in encoding an i.i.d.
signal uniform over {—1, 1}. This figure reveals that a RSC in
this setting does not attain the Shannon limit. Indeed, this is
the case whenever 6 has any distribution satisfying the moment
condition that is not Gaussian. In particular, for Py with a
finite entropy, Dsp(R) > 0 for any R whereas Dsp(R) equals
zero for any R exceeding this entropy. In this sense, RSC can
be seen as a compromise between the optimal indirect source
coding scheme that requires the full specification of Fp x at
the encoder [11] and the Gaussian coding scheme that assumes
the least favorable prior on X.

C. Inference in High-Dimensional Linear Models

Consider the case where X = Af + W with A € R"*4
and W ~ N (0, ). The corresponding relation between 6 and
Z is given by

Z = Al + W, (16)

where £ £ £(snr) £ (/€2 +E[|X][2]/nsnr. We use the
approximate message passing (AMP) algorithm [22] to estimate
0 from Z, and evaluate the Bayes risk of this estimator using
the state evolution property of AMP. Specifically, let 6%),5(2)
denote the result of T’ iterations of the AMP algorithm applied
to z € R™. Under the assumption that 6 is iid with a bounded
support and the operator norm of A is uniformly bounded in 7,
we show in the Appendix that %, has a Lipschitz constant
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MSE

Fig. 3. MSE in encoding an equiprobable binary signal versus coding bitrate
R: Dsp(R) is achievable using a RSC, Dg(R) is the Gaussian distortion-
rate function achievable using a Gaussian code, and Dsy(R) is Shannon’s
distortion-rate function describing the minimal achievable distortion under any
bitrate- R code.

independent of n and d. In addition, let M%,,5(snr) = 72 be
defined by the recursion

€2+ £ Var(0y) t=0,

€+ 4E[(Elf1]61 + riaW1] — 61)°] 1<¢<T.
(17

2 _
T =

If we assume that A has i.i.d. entries A'(0,1/n) and n/d —
0 € (0,00), then the main result of [23] says that

1 2
E[[[6 = 0Fup(2)||’] = Mfp (snr) + o(1).
Thm. 6 now implies that for almost all R, ¢ and ¢, the limit

. 1
lim —E[HG—G{MP(Y)W]

n—oo d

exists and is given by M¥%,,p (227 — 1).

V. CONCLUSIONS

We considered the problem of estimating an underlying
signal from the lossy compressed version of another high
dimensional signal. We showed that when the compression is
obtained using a RSC of bitrate R, the conditional distribution
of the output codeword is close in Wasserstein distance to the
conditional distribution of the output of an AWGN channel with
SNR 22% — 1. This equivalence between the noise associated
with lossy compression and an AWGN channel allows us to
adapt existing techniques for inference from AWGN-corrupted
measurements to estimate the underlying signal from the
compressed measurements, as well as to characterize their
asymptotic performance.
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