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We construct rotating black holes in Einstein-scalar-Gauss-Bonnet theory with a quadratic cou-
pling function. We map the domain of existence of the rotating fundamental solutions, we construct
radially excited rotating black holes (including their existence lines), and we show that there are
angularly excited rotating black holes. The bifurcation points of the radially and angularly excited
solutions branching out of the Schwarzschild solution follow a regular pattern.
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I. INTRODUCTION

In General Relativity (GR) the existence of asymptotically flat black holes is subject to severe constraints,
often termed no-hair theorems (see e.g. [1-3]). In generalized theories of gravity, on the other hand, less
restrictions may arise and thus these may lead to interesting new kinds of asymptotically flat black holes,
that carry hair (see e.g. [4]). These hairy black holes might in fact represent contenders to explain current
astrophysical observations [5, 6].

A particularly interesting class of generalized theories of gravity is represented by metric theories with
higher curvature terms. Such theories arise, for instance, in the low-energy limit of string theory, where
these higher curvature terms are accompanied by a scalar field, the dilaton [7, 8]. The resulting black holes
then carry scalar hair, as shown for the case of a Gauss-Bonnet (GB) term coupled to a dilaton [9-12].

The physical properties of nonrotating hairy black holes can differ significantly from their GR counterparts,
the Schwarzschild black holes. In particular, the presence of the scalar field will give rise to additional
branches in the black hole quasinormal mode spectrum [12-15]. When set into rotation, the quadrupole
moments of these hairy black holes can exhibit large deviations from those of Kerr black holes, and their
angular momentum may even exceed the Kerr bound, j = J/M? = 1 [16-21]. In constrast, the shadows of
hairy black holes and their X-ray reflection spectrum will be very close to those of Kerr black holes [22, 23].

Einstein-dilaton-Gauss-Bonnet gravity is characterized by an exponential coupling function f(¢) to the
GB term, whose exponent is linear in the dilaton field ¢. Therefore Schwarzschild or Kerr black holes are not
solutions of the theory: they are only approached asymptotically. If, however, one allows for other choices of
the coupling function (the simplest being a quadratic coupling function f(¢) x ¢?) Schwarzschild and Kerr
black holes can be solutions of the theory, and an interesting new phenomenon can arise: curvature-induced
spontaneous scalarization of black holes [24-32].

Spontaneous scalarization was first observed in neutron stars within scalar-tensor theory. Here the insta-
bility arises when the product —5yT, where Sy is the effective linear matter-scalar coupling and 7' is the trace
of the stress-energy tensor, is larger than some critical value [33]: spontaneous scalarization in neutron stars
is induced by couplings with matter (see also [34, 35]). Later it was realized that spontaneous scalarization
can occur for charged black holes in Einstein-Maxwell-scalar (EMs) theory, for certain choices of the scalar
coupling function and coupling strength [36-41]. This “charge-induced” spontaneous scalarization presents
many similarities with the case of curvature-induced spontaneous scalarization of black holes [24-32].

In Einstein-scalar-Gauss-Bonnet (EsGB) gravity, the presence of black holes with scalar hair that is spon-
taneously induced by curvature is associated with instabilities of Schwarzschild black holes. In particular,
as the coupling constant A/M is varied, a set of bifurcation points arises, where branches of scalarized black
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holes emerge [24, 25]. Labelling these bifurcation points by the integer n, the scalarized solutions on the
nth branch possess n radial nodes. Thus, besides the fundamental (n = 0) scalarized black hole, one can
have radially excited modes with n > 0 . With every new bifurcation point the Schwarzschild black hole
gains another unstable mode [28]. The stability of the fundamental static solution depends on the coupling
function [24-30, 32] and on self-interaction terms, if they are present [31].

Recently, Ref. [32] studied the fundamental (n = 0) solution for rotating BHs in EsGB theory with a
“Gaussian” coupling function of the form e‘¢2, as well as its domain of existence and various of its physical
properties. The domain of existence is quite broad for small rotation rates (as expected from the static
solution), but it becomes narrower as rotation increases. This fact has been exploited in calculations of the
shadow of such black holes, which might be used to put a bound on the coupling constant [32].

Here we consider the static and rotating black holes of EsGB theory with a simple quadratic coupling
function. We explore the domain of existence of the fundamental rotating black holes and consider their
first radial excitations. Moreover, we show that the scalarized static and rotating black holes also possess
angular excitations (labelled by an angular integer 1). We determine the bifurcation points of the lowest
excitations and determine the existence lines of some of the resulting radially and angularly excited rotating
black holes. In Section IT we describe the theory and the general properties of axially symmetric EsGB black
holes. In Section IIT we present our numerical results, and in Section IV we outline possible directions for
future work.

II. GENERAL FRAMEWORK

A. Action

The action of EsGB gravity is

5= d%¢—[R——m@>+fw> , 1)

where ¢ is a (real) scalar field, f(¢) is the coupling function of the theory, and
Rip = Ruupo R*P° — 4R, R + R? (2)

is the Gauss-Bonnet invariant, which would not yield any modifications of the Einstein equations when f(¢)

is a constant, because it corresponds to a boundary term in the action. This is no longer the case if the GB

invariant couples to dynamical matter fields. Note that here and below we use geometrical units (¢ = G = 1).
Here we consider the coupling function [25, 28]

A2,
16) =5, 3)
i.e., a purely quadratic coupling. We will compare our results with those for a Gaussian coupling
)\2
@) =35 (1—e772), (4)

which was studied in [24, 28, 32].
Varying the action (1) with respect to the metric g,,, we obtain the generalized Einstein equations with
contributions from the GB term
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In the above relations, we denote by F,,,, the divergence free part of the Riemann tensor, i.e. V, Pl = = 0.
Obviously, the equations (5) can be written in an Einstein-like form

1
G = 5T (7)

where we have introduced an effective energy-momentum tensor that has acquired a contribution arising
from the GB term

eff) _ m(¢ GBd
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with
T(SBY = H,,\, + 4V*V £() Pupvo- (9)
Variation of Eq. (1) with respect to the scalar field leads to a generalized Klein-Gordon equation,

df

2
Vio+ s

Rip = 0. (10)

B. The ansatz and equations of motion

We would like to focus on stationary, axially symmetric spacetimes possessing two commuting Killing
vector fields, £ and 7, with

£€=0, and =20, (11)

in a system of adapted coordinates. Such spacetimes are typically described by a Lewis-Papapetrou—type
ansatz [44], which satisfies the circularity condition and contains four unknown functions. Here we employ
the version of this ansatz originally introduced in [45], with the parametrization

ds® = —befodt? + 1 (dr2 + T2d92) + ef2r? sin? O(dp — Edt)2, (12)
r

where 7, 6, and ¢ are “quasi-isotropic” spherical coordinates, and ¢ is the time coordinate. Here b = (1— &)2

is an auxiliary function, and rg denotes the isotropic horizon radius. The metric functions Fy, Fi, F> and
w depend on the coordinates r and 6. The scalar field is also a function of r and 6 only:

C. Boundary conditions and asymptotic behavior

Large-r asymptotics. We here consider solutions that approach a Minkowski spacetime background
as r — oo. This implies the following boundary conditions:

Fy(o0) = Fi(00) = Fa(o0) = w(oo) = ¢(oc0) =0 . (14)

Since the scalar field is massless, one can construct an approximate solution of the field equations (5) and
(10), that is compatible with these asymptotic conditions as a power series in 1/7.

Expansion on the event horizon. The event horizon of the (non-extremal) stationary black hole
solutions resides at a surface of constant radial coordinate, »r = rg > 0. At a regular horizon the metric
functions must satisfy

1 2 2
arFO(TH) = E ; 67‘F1(TH) = _E ) aTF?(TH) = _E ) W(TH) = WH, (15)



where wy is a constant, while the condition imposed on the scalar field is
Again, it is possible to construct an approximate (power series) solution, this time in terms of
r
6=——1. 17
- (1)

Note that, similar to the case of pure Einstein gravity, the equation EY = 0 implies that the ratio F/F}
is constant. This implies the constancy of the Hawking temperature, and also represents a supplementary
condition which is used as further test of numerical accuracy.

Behavior on the symmetry axis. Axial symmetry and regularity impose the following boundary
conditions for the metric functions on the symmetry axis (i.e. at = 0,7):

0o Folo=0,xr = OpF1]o=0,x = 09 F2|p=0,r = Opw|o=0,r =0 , (18)
while for the scalar field we impose
Opplo=0,r = 0. (19)

Near the symmetry axis it is possible to construct an approximate form of the solutions as a power series,
now in terms of ¢ (and m — 6, respectively). Further, the absence of conical singularities implies Fi|g—o,» =
Flg=0,x-

All fundamental solutions discussed here are symmetric with respect to reflection across the equatorial
plane, § = /2. Therefore, in the numerical calculations, it is sufficient to consider the range 0 < 6§ < 7/2
for the angular variable . Then the metric functions and the scalar field are required to satisfy Neumann
boundary conditions in the equatorial plane:

09 Folo=r/2 = 00 F1lo=r/2 = OoF2lo—r/2 = Opw|g—r/2 = O9@lo—r/2 = 0. (20)

Note that the scalar field of the first angular excitation possesses odd parity. In this case the boundary
condition in the equatorial plane reads ¢[g—r/2 = 0.

D. Physical properties

Let us now briefly address the physical properties of these black holes. Starting with the horizon properties,
we note that the metric of a spatial cross section of the horizon is

d¥? = hijda'da? = ri (eF1d6* + e sin® 0dyp?) |T]H . (21)
The Killing vector field
x =0 —2o, (22)
TH

is orthogonal to (and null on) the horizon [44]. The boundary parameter wy defined in Eq. (15) determines
the horizon angular velocity Qg

O =—— = Jet| 1 (23)
§-n Git |,y TH

The Hawking temperature Ty = r/(27) is obtained from the surface gravity s [44], where k? =

—%(VaXb)(V“xb)|rH, yielding

1
T — (Fo—F1)/2 24
H 27T’I“He (24)



The horizon area of the black holes is given by
Ag = 2777“%1/ df sin geFo+12)/2, (25)
0

Black holes in GR possess an entropy which is a quarter of the horizon area [44]. However, because of
the scalar coupling to the GB term, the entropy of the EsGB black holes acquires an extra contribution.
Following Wald [47], the total entropy can then be given as an integral over the horizon

S=1 / V(20 (0)R) (26)

where h is the determinant of the induced metric on the horizon (defined in (21)), and R represents the
horizon curvature.

Similar to GR solutions, the total mass M and the angular momentum J are read from the asymptotic
behavior of the metric functions

_ _JF Fa 2029 _ 2M
g = —e 0 +ewisin®f=—-1+=%+ ..., (27)

P, 220 2] 2
Jot = —eRwsin”f = —==sin“ 0 + ...

In addition, the solutions possess a scalar “charge” D, which is determined by the 1/r term of the far-field
asymptotics of the scalar field.

E. Numerical approach

Let us briefly address the numerical approach employed to construct the EsGB black holes. The unknown
metric and scalar field functions (Fy, Fy, Fa,w; ¢) are obtained as solutions of a rather lengthy coupled set
of partial differential equations (PDEs), subject to the associated set of boundary conditions, guaranteeing
regularity and asymptotic flatness.

The only non-trivial components of the generalized Einstein equations (5) are Ef, Ey, Ef, EZ, E!, and Ef.
Following [45], we divide the resulting six equations into two groups. Four equations for the metric functions
are obtained from a suitable linear combination of EY, EZ, E:; and ET + ES. The remaining two equations
(Er — Ej and E?) represent constraints. We solve the four equations together with the scalar field equation
(10), each containing more than 340 independent terms, while we follow the two constraints to check the
accuracy of the numerical solutions.

The domain of integration corresponds to the region outside the horizon. We therefore introduce a new
radial variable = 1 — rig/r, which maps the semi-infinite interval [rg, o) to the closed interval [0, 1]. We
then discretize the equations on a non-equidistant grid in z and 6. Typical grids used have sizes 91 x 51, and
cover the integration region 0 < x < 1 and 0 < § < /2. We perform the numerical calculations using the
professional package FIDISOL/CADSOL [46], which is based on a Newton-Raphson method. The typical
numerical error for the functions is estimated to be lower than 1073.

For each solution we provide three input parameters, A\, rg and Qg = ‘:—;‘ After convergence has been
reached, the physical properties are computed from the numerical solutions. In particular, the mass M and
the angular momentum J are obtained from the asymptotic behavior of the solutions (27), whereas the
horizon area Ay, the entropy S and the temperature Ty are extracted from the horizon metric.

III. RESULTS

Before we turn to rotating black holes, let us briefly recall the properties of static black holes in this theory
[25, 28]. The bifurcation points of the sets of static scalarized black holes from the branch of Schwarzschild
black holes have been obtained for the quadratic coupling function in [25], and they agree with those of
the exponential coupling [24], since the latter reduces to the quadratic coupling in the limit of small scalar
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FIG. 1: Domain of existence of scalarized black holes: (a) fundamental and radially and angularly excited static
solutions: scaled secalar charge Q/M vs scaled mass M /X for even [ (I = 0: solid blue, I = 2: green), scaled
dipole moment P/M? vs scaled mass M/ (I = 1: dashed red); (b) fundamental rotating solutions: scaled angular
momentum J/A? vs scaled mass M/A (existence line: solid blue, critical line dashed blue). Also shown are the
extremal Kerr solutions (solid red).

field. The fundamental (n = 0) static branch thus arises at the bifurcation point M/A = 0.587, where
the Schwarzschild solution developes a zero mode, which turns into a first unstable radial mode for smaller
M/X. At the n-th (n > 0) bifurcation point, the Schwarzschild solution developes the (n + 1)-th unstable
radial mode, while the associated n-th branch of scalarized black hole solutions possesses n radial nodes
and (n + 1) unstable radial modes. Thus all scalarized black hole solutions are unstable, including the
fundamental solution [28]. Furthermore we note that all branches of static scalarized black hole solutions
exist only in a small domain that decreases with increasing n, as illustrated by the solid blue curves in
Fig. 1(a), where their scaled scalar charge @ /M is shown versus the scaled mass M /). Note, that the figure
also contains some angularly excitated solutions (dashed red: [ = 1, green dots: [ = 2) discussed below.

In the following we present our results, starting with the domain of existence of the fundamental rotating
solutions. Subsequently, we address rotating radial excitations and angular excitations.

A. Fundamental rotating black holes

The fundamental static black holes exist only in a small interval of M /A. As these black holes are set into
rotation, this small interval shrinks further, as seen in Fig. 1(b) where we plot the scaled angular momentum
J/A? as a function of the scaled mass M/\. The boundaries of the domain of existence correspond to the
“existence line” to the left (solid blue line starting at M /A = 0.587), and the critical (dashed blue) line on
the right where hairy solutions cease to exist: beyond the critical line, there are only complex solutions for
the scalar field.

The domain of existence resides fully within the domain of existence of the Kerr black holes for the angular
momenta studied. As the scaled angular momentum J/\? increases, the domain of existence of the scalarized
black holes tends towards the set of extremal Kerr black holes. We note that this behavior is rather similar
to the case of exponential coupling [32]. However, in the latter case, the domain of static scalarized black
holes extends from the existence point all the way to M /A = 0, yielding a large domain of existence for small
angular momenta J/\2.

In Fig. 2(a) we illustrate the domain of existence by plotting the scaled scalar charge /M as a function
of the scaled angular momentum j = J/M?2. The scalar charge decreases with the angular momentum, i.e. it
decreases as we approach the extremal Kerr limit, where Q/M = 0. On the other hand, Figure 2(b) shows
the domain of existence with respect to the coupling constant. It also includes curves of constant wy, which
for constant ry corresponds to a constant angular velocity of the horizon Qy [cf. Eq. (23)]. Interestingly,
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FIG. 2: Domain of existence of fundamental rotating scalarized black holes: (a) scaled scalar charge Q/M vs scaled
angular momentum j = J/M? (critical line: dashed blue, static solutions: solid black); (b) scaled coupling constant
A/M versus scaled sealar charge @Q/M (existence line: solid blue, eritical line: dashed blue, static solutions: solid
black), for several fixed values of the horizon parameter wy = Qurn.
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FIG. 3: Domain of existence of fundamental rotating scalarized black holes: (a) scaled horizon mass Mu/M vs scaled
angular momentum j (ecritical line: dashed blue, static line: solid black, Kerr solutions: green); (b) scaled horizon
area ay = An/16wM? and secaled entropy s = S/4xM? vs scaled angular momentum j (critical line: dashed blue,
static solutions: solid black, Kerr solutions: solid pink), the inset illustrates the small difference in entropy. The first
radially excited solutions are also included in the figures (red curves).

the static curve does not describe the boundary curve here, but A/M can slightly exceed this curve for small
rotation.

As demonstrated in Fig. 3(a), the scaled horizon mass My /M is typically slightly smaller than one.
Again, for large angular momenta this is similar to the exponential coupling case, where, however, much
larger deviations are observed for small angular momenta [32]. Figure 3(b) exhibits the domain of existence
for the scaled area Ay/16mM?. The horizon area is smaller than in the Kerr case, but nowhere are the
deviations between the two very large. As noted in [32], large deviations are possible for Gaussian coupling
functions, and this can be used to put bounds on the coupling via the black hole shadow of M87 [48].

Of considerable interest for such scalarized black holes is the calculation of the entropy, which differs
from the corresponding value obtained from the horizon area. If the entropy for the scalarized solutions
is larger than the entropy for Kerr (or Schwarzschild) black holes, this is an indication that the scalarized
solutions will be stable. Here we do not expect stability, since static black holes are already known to be



FIG. 4: Bifurcation points of excited static scalarized black holes: scaled coupling constant A/M vs angular integer
I for the lowest radial excitations n; [ = 0 (blue), I = 1 (red) and [ = 2 (green).

unstable. Indeed, Fig. 3(b) shows an explicit calculation of the scaled entropy, which is smaller than in GR
(as expected). However, the domain of existence for the entropy of the scalarized solutions is extremely close
to the case of Kerr black holes. The difference is highlighted in the inset of Fig. 3(b).

B. Excited static black holes

Scalarized black holes come in many variants. Besides the well-studied radial excitations, labeled by the
integer n, there are also angular excitations and combinations of both. In the static limit, this is easily seen
when expanding the scalar field in terms of spherical harmonics

6= filr)Yim(6,9) (28)
Im

involving the integers [ and m. We exhibit the bifurcation points of the lowest radially and angularly
excited static scalarized black holes in Fig. 4, where the scaled coupling constant A/M is shown versus
angular excitations, labelled by the integer [, for the lowest radial excitations (labelled by the integer n).
Interestingly, the observed pattern of bifurcation points is highly regular, formed by adjacent rhomboids.

Let us now consider the extension of the associated radially and angularly excited static solutions, re-
stricting attention to their existence lines, where the scalar field equation is solved in the background of
the Schwarzschild black hole. For these existence lines, Fig. 5(a) shows the scaled scalar charge Q/M (solid
lines) and the scaled dipole moment P/M? (dashed lines) as functions of the scaled mass M /). In particular,
we show solutions with n = 0,1 = 0 (fundamental), n = 0,l = 1 (one angular excitation) n = 0,l = 2 (two
angular excitations) and n = 1,] = 0 (one radial excitation). The dots in the figure indicate the bifurcation
points from the Schwarzschild black holes for I = 0 (blue), [ =1 (red) and I = 2 (green). Note that solutions
with [ = 1 possess a parity-odd scalar field, therefore they do not carry scalar charge. The dipole term
represents the lowest term In their asymptotic expansion, so in the figure we plot their dipole moment.

We can ask whether static excited black holes are stable. A glance at their entropy — as shown in Fig. 5(b)
— indicates that not only the radially excited static solutions are unstable [28], but also the angularly excited
solutions should be unstable.

Of course, one might also consider static solutions, that in the presence of backreaction will lose axial
symmetry. Examples would be black holes labelled by the above set of 3 integers (n,l,m), where the
azimuthal integer m # 0, as in the solutions considered in [38]. For given integers n and [, these would
possess a degenerate bifurcation point for all allowed values of m, but give rise to a set of [ + 1 distinct
families of scalarized black holes, one with axial symmetry (m = 0) and ! without any continuous symmetry

(m # 1).



03 : : : : : : : :
1 =
k=]
02 b | 09995 | 7 X 3 ]
) T S
0.999 | T |
- o
01t £ I 2 -
o = < < 0.9985 | 1
— =  — =
& >
- 0 S — ©  0gog | 1
]
ol | 0.9975 | 1
=0 e
=1 e 0997 | |
02 = .
2. 0.995 | 1
_0_3 1 1 1 1 U_% 1 1 1 1
0 0.2 04 06 038 1 0 02 04 06 038 1
W W

FIG. 5: Excited static scalarized black holes: (a) scaled scalar charge @/ for even [ (I = 0: solid blue, I = 2: green),
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mass M/ for the lowest radial and angular exitations. Bifurcation points: [ = 0 (blue), I = 1 (red) and [ = 2 (green).
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FIG. 6: Excited rotating scalarized black holes: (a) scaled angular momentum J/A2? vs scaled mass M/X; (b) scaled
coupling constant A/M vs scaled angular momentum j. Shown are (n,l) = (0,0) (blue), (n,l) = (1,0) (blue),
(n,1) = (0,2) (green) (existence lines: solid, critical lines: dashed).

C. Excited rotating black holes

Let us next consider excited rotating scalarized black holes. We show the existence line for several such
black holes in Fig. 6(a). In particular, in addition to the fundamental solution for [ = 0, n = 0 (blue), the
figure exhibits the existence line for its first radial excitation [ = 0, n = 1 (blue), together with the existence
line of two branches of solutions starting from the bifurcation points l =2, n =0 and | =2, n =1 (green).
As seen in the figure, the existence lines [ = 2, n = 0 and [ = 0, n = 1 approach the set of extremal Kerr
solutions quite rapidly. Also shown are the critical solutions with I =0,n =0 and [ =0,n =1 (dashed).

In Fig. 6(b) we plot the existence lines as functions of the scaled coupling constant A\/M and of the
scaled angular momentum j. Besides the fundamental rotating solution (n,l) = (0,0), we show also the first
radially excited solution (n,l) = (1,0), and the second angularly excited solution (n,l) = (0,2) [50]. The
short black lines on the axis indicate the domain of existence of the static (0,0) and (1,0) solutions. We
have also obtained part of the existence lines of further excited solutions like the second angularly excited
solution (n,l) = (0, 2); however, these remain challenging to fully map out.
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IV. CONCLUSIONS

Spontaneously scalarized black holes can exist when the coupling function and coupling constant satisfy
certain conditions. In this paper we have studied curvature-induced scalarization mediated by the presence
of a GB term. In particular, we have focused on a quadratic coupling function, extending previous studies
of the fundamental (n = 0) nonrotating static solution and of its radial excitations.

We have mapped out the domain of existence of rotating generalizations of these solutions, showing that
the domain of existence is a small band starting from the static solutions and extending to larger angular
momenta. This band shrinks as the angular momentum grows, approaching the extremal Kerr solutions. As
for static black holes, the entropy of these rotating scalarized black holes is smaller than the entropy of Kerr
black holes, suggesting that rotating scalarized black holes should also be unstable.

We have further considered excited (static and rotating) solutions considering also angular excitations
with I > 0. The bifurcation points form a simple regular pattern in (n,l), at least for small values of n
and [. Branches of excited black holes emerge from these bifurcation points: this behavior is similar to the
case of static, charge-induced spontaneously scalarized black holes [38]. Taking this similarity further, we
conjecture that there should also exist static EsGB black holes without any continuous symmetry.

As long as axial symmetry is retained, the excited solutions can also be set into rotation, forming stationary
sets of solutions. Here we have mainly explored the existence lines of these radially and angularly excited
rotating black holes, but we also constructed solutions with backreaction.

While we do not expect stable spontaneously scalarized black holes for this theory, it should be possible
to restore stability by adding higher-order terms to the coupling function [24, 28] or by including a potential
term V(@) for the scalar field [31, 49]. The latter approach is particularly attractive, since these corrections
would emerge naturally in an effective field theory scenario.
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structures will be left to future work.
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