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Spinning and excited black holes in Einstein-scalar-Gauss-Bonnet theory
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We construct rotating black holes in Einstein-scalar-Gauss-Bonnet theory with a quadratic cou-
pling function. We map the domain of existence of the rotating fundamental solutions, we construct
radially excited rotating black holes (including their existence lines), and we show that there are
angularly excited rotating black holes. The bifurcation points of the radially and angularly excited
solutions branching out of the Schwarzschild solution follow a regular pattern.

PACS numbers: 04.50.-h, 04.70.Bw, 97.60.Jd

I. INTRODUCTION

In General Relativity (GR) the existence of asymptotically flat black holes is subject to severe constraints,
often termed no-hair theorems (see e.g. [1–3]). In generalized theories of gravity, on the other hand, less
restrictions may arise and thus these may lead to interesting new kinds of asymptotically flat black holes,
that carry hair (see e.g. [4]). These hairy black holes might in fact represent contenders to explain current
astrophysical observations [5, 6].
A particularly interesting class of generalized theories of gravity is represented by metric theories with

higher curvature terms. Such theories arise, for instance, in the low-energy limit of string theory, where
these higher curvature terms are accompanied by a scalar field, the dilaton [7, 8]. The resulting black holes
then carry scalar hair, as shown for the case of a Gauss-Bonnet (GB) term coupled to a dilaton [9–12].
The physical properties of nonrotating hairy black holes can differ significantly from their GR counterparts,

the Schwarzschild black holes. In particular, the presence of the scalar field will give rise to additional
branches in the black hole quasinormal mode spectrum [12–15]. When set into rotation, the quadrupole
moments of these hairy black holes can exhibit large deviations from those of Kerr black holes, and their
angular momentum may even exceed the Kerr bound, j = J/M2 = 1 [16–21]. In constrast, the shadows of
hairy black holes and their X-ray reflection spectrum will be very close to those of Kerr black holes [22, 23].
Einstein-dilaton-Gauss-Bonnet gravity is characterized by an exponential coupling function f(φ) to the

GB term, whose exponent is linear in the dilaton field φ. Therefore Schwarzschild or Kerr black holes are not
solutions of the theory: they are only approached asymptotically. If, however, one allows for other choices of
the coupling function (the simplest being a quadratic coupling function f(φ) ∝ φ2) Schwarzschild and Kerr
black holes can be solutions of the theory, and an interesting new phenomenon can arise: curvature-induced
spontaneous scalarization of black holes [24–32].
Spontaneous scalarization was first observed in neutron stars within scalar-tensor theory. Here the insta-

bility arises when the product −β0T , where β0 is the effective linear matter-scalar coupling and T is the trace
of the stress-energy tensor, is larger than some critical value [33]: spontaneous scalarization in neutron stars
is induced by couplings with matter (see also [34, 35]). Later it was realized that spontaneous scalarization
can occur for charged black holes in Einstein-Maxwell-scalar (EMs) theory, for certain choices of the scalar
coupling function and coupling strength [36–41]. This “charge-induced” spontaneous scalarization presents
many similarities with the case of curvature-induced spontaneous scalarization of black holes [24–32].
In Einstein-scalar-Gauss-Bonnet (EsGB) gravity, the presence of black holes with scalar hair that is spon-

taneously induced by curvature is associated with instabilities of Schwarzschild black holes. In particular,
as the coupling constant λ/M is varied, a set of bifurcation points arises, where branches of scalarized black
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holes emerge [24, 25]. Labelling these bifurcation points by the integer n, the scalarized solutions on the
nth branch possess n radial nodes. Thus, besides the fundamental (n = 0) scalarized black hole, one can
have radially excited modes with n > 0 . With every new bifurcation point the Schwarzschild black hole
gains another unstable mode [28]. The stability of the fundamental static solution depends on the coupling
function [24–30, 32] and on self-interaction terms, if they are present [31].
Recently, Ref. [32] studied the fundamental (n = 0) solution for rotating BHs in EsGB theory with a

“Gaussian” coupling function of the form e−φ2

, as well as its domain of existence and various of its physical
properties. The domain of existence is quite broad for small rotation rates (as expected from the static
solution), but it becomes narrower as rotation increases. This fact has been exploited in calculations of the
shadow of such black holes, which might be used to put a bound on the coupling constant [32].
Here we consider the static and rotating black holes of EsGB theory with a simple quadratic coupling

function. We explore the domain of existence of the fundamental rotating black holes and consider their
first radial excitations. Moreover, we show that the scalarized static and rotating black holes also possess
angular excitations (labelled by an angular integer l). We determine the bifurcation points of the lowest
excitations and determine the existence lines of some of the resulting radially and angularly excited rotating
black holes. In Section II we describe the theory and the general properties of axially symmetric EsGB black
holes. In Section III we present our numerical results, and in Section IV we outline possible directions for
future work.

II. GENERAL FRAMEWORK

A. Action

The action of EsGB gravity is

S =
1

16π

∫

d4x
√−g

[

R − 1

2
(∂µφ)

2 + f(φ)R2
GB

]

, (1)

where φ is a (real) scalar field, f(φ) is the coupling function of the theory, and

R2
GB = RµνρσR

µνρσ − 4RµνR
µν +R2 (2)

is the Gauss-Bonnet invariant, which would not yield any modifications of the Einstein equations when f(φ)
is a constant, because it corresponds to a boundary term in the action. This is no longer the case if the GB
invariant couples to dynamical matter fields. Note that here and below we use geometrical units (c = G = 1).
Here we consider the coupling function [25, 28]

f(φ) =
λ2

8
φ2, (3)

i.e., a purely quadratic coupling. We will compare our results with those for a Gaussian coupling

f(φ) =
λ2

12

(

1− e−3φ2/2
)

, (4)

which was studied in [24, 28, 32].
Varying the action (1) with respect to the metric gµν , we obtain the generalized Einstein equations with

contributions from the GB term

Eµν = Gµν − 1

2
T (φ)
µν + f(φ)

[

Hµν + 4(γ2∇ρφ∇σφ− γ∇ρ∇σφ)Pµρνσ

]

= 0, (5)

where

Gµν = Rµν − 1

2
gµνR, T (φ)

µν = ∇µφ∇νφ− 1

2
gµν(∇φ)2,

Hµν = 2
(

RRµν − 2RµρR
ρ
ν − 2RρσRµρνσ +R ρσλ

µ Rνρσλ

)

− 1

2
gµνR

2
GB, (6)

Pµνρσ = Rµνρσ + 2gµ[σRρ]ν + 2gν[ρRσ]µ +Rgµ[ρgσ]ν .
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In the above relations, we denote by Pµνρσ the divergence free part of the Riemann tensor, i.e. ∇µP
µ
νρσ = 0.

Obviously, the equations (5) can be written in an Einstein-like form

Gµν =
1

2
T (eff)
µν , (7)

where we have introduced an effective energy-momentum tensor that has acquired a contribution arising
from the GB term

T (eff)
µν = T (φ)

µν − 2T (GBd)
µν , (8)

with

T (GBd)
µν = Hµν + 4∇ρ∇σf(φ)Pµρνσ . (9)

Variation of Eq. (1) with respect to the scalar field leads to a generalized Klein-Gordon equation,

∇2φ+
df

dφ
R2

GB = 0. (10)

B. The ansatz and equations of motion

We would like to focus on stationary, axially symmetric spacetimes possessing two commuting Killing
vector fields, ξ and η, with

ξ = ∂t and η = ∂ϕ (11)

in a system of adapted coordinates. Such spacetimes are typically described by a Lewis-Papapetrou–type
ansatz [44], which satisfies the circularity condition and contains four unknown functions. Here we employ
the version of this ansatz originally introduced in [45], with the parametrization

ds2 = −beF0dt2 + eF1

(

dr2 + r2dθ2
)

+ eF2r2 sin2 θ(dϕ − ω

r
dt)2, (12)

where r, θ, and ϕ are “quasi-isotropic” spherical coordinates, and t is the time coordinate. Here b = (1− r
rH

)2

is an auxiliary function, and rH denotes the isotropic horizon radius. The metric functions F0, F1, F2 and
ω depend on the coordinates r and θ. The scalar field is also a function of r and θ only:

φ = φ(r, θ). (13)

C. Boundary conditions and asymptotic behavior

Large-r asymptotics. We here consider solutions that approach a Minkowski spacetime background
as r → ∞. This implies the following boundary conditions:

F0(∞) = F1(∞) = F2(∞) = ω(∞) = φ(∞) = 0 . (14)

Since the scalar field is massless, one can construct an approximate solution of the field equations (5) and
(10), that is compatible with these asymptotic conditions as a power series in 1/r.

Expansion on the event horizon. The event horizon of the (non-extremal) stationary black hole
solutions resides at a surface of constant radial coordinate, r = rH > 0. At a regular horizon the metric
functions must satisfy

∂rF0(rH) =
1

rH
, ∂rF1(rH) = − 2

rH
, ∂rF2(rH) = − 2

rH
, ω(rH) = ωH, (15)
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where ωH is a constant, while the condition imposed on the scalar field is

∂rφ(rH) = 0. (16)

Again, it is possible to construct an approximate (power series) solution, this time in terms of

δ =
r

rH
− 1. (17)

Note that, similar to the case of pure Einstein gravity, the equation Eθ
r = 0 implies that the ratio F0/F1

is constant. This implies the constancy of the Hawking temperature, and also represents a supplementary
condition which is used as further test of numerical accuracy.

Behavior on the symmetry axis. Axial symmetry and regularity impose the following boundary
conditions for the metric functions on the symmetry axis (i.e. at θ = 0, π):

∂θF0|θ=0,π = ∂θF1|θ=0,π = ∂θF2|θ=0,π = ∂θω|θ=0,π = 0 , (18)

while for the scalar field we impose

∂θφ|θ=0,π = 0. (19)

Near the symmetry axis it is possible to construct an approximate form of the solutions as a power series,
now in terms of θ (and π − θ, respectively). Further, the absence of conical singularities implies F1|θ=0,π =
F2|θ=0,π.
All fundamental solutions discussed here are symmetric with respect to reflection across the equatorial

plane, θ = π/2. Therefore, in the numerical calculations, it is sufficient to consider the range 0 ≤ θ ≤ π/2
for the angular variable θ. Then the metric functions and the scalar field are required to satisfy Neumann
boundary conditions in the equatorial plane:

∂θF0|θ=π/2 = ∂θF1|θ=π/2 = ∂θF2|θ=π/2 = ∂θω|θ=π/2 = ∂θφ|θ=π/2 = 0. (20)

Note that the scalar field of the first angular excitation possesses odd parity. In this case the boundary
condition in the equatorial plane reads φ|θ=π/2 = 0.

D. Physical properties

Let us now briefly address the physical properties of these black holes. Starting with the horizon properties,
we note that the metric of a spatial cross section of the horizon is

dΣ2 = hijdx
idxj = r2H

(

eF1dθ2 + eF2 sin2 θdϕ2
)∣

∣

rH
. (21)

The Killing vector field

χ = ∂t −
ωH

rH
∂ϕ (22)

is orthogonal to (and null on) the horizon [44]. The boundary parameter ωH defined in Eq. (15) determines
the horizon angular velocity ΩH

ΩH = − ξ2

ξ · η = −gϕt

gtt

∣

∣

∣

∣

rH

=
ωH

rH
. (23)

The Hawking temperature TH = κ/(2π) is obtained from the surface gravity κ [44], where κ2 =
− 1

2 (∇aχb)(∇aχb)|rH , yielding

TH =
1

2πrH
e(F0−F1)/2 . (24)
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The horizon area of the black holes is given by

AH = 2πr2H

∫ π

0

dθ sin θe(F0+F2)/2. (25)

Black holes in GR possess an entropy which is a quarter of the horizon area [44]. However, because of
the scalar coupling to the GB term, the entropy of the EsGB black holes acquires an extra contribution.
Following Wald [47], the total entropy can then be given as an integral over the horizon

S =
1

4

∫

ΣH

d2x
√
h(1 + 2f(φ)R̃), (26)

where h is the determinant of the induced metric on the horizon (defined in (21)), and R̃ represents the
horizon curvature.
Similar to GR solutions, the total mass M and the angular momentum J are read from the asymptotic

behavior of the metric functions

gtt = −eF0 + eF2ω2 sin2 θ = −1 + 2M
r + . . . , (27)

gϕt = −eF2ω2 sin2 θ = − 2J
r sin2 θ + . . . .

In addition, the solutions possess a scalar “charge” D, which is determined by the 1/r term of the far-field
asymptotics of the scalar field.

E. Numerical approach

Let us briefly address the numerical approach employed to construct the EsGB black holes. The unknown
metric and scalar field functions (F0, F1, F2, ω;φ) are obtained as solutions of a rather lengthy coupled set
of partial differential equations (PDEs), subject to the associated set of boundary conditions, guaranteeing
regularity and asymptotic flatness.
The only non-trivial components of the generalized Einstein equations (5) are Et

t , E
r
r , E

θ
θ , E

ϕ
ϕ , E

t
ϕ and Eθ

r .
Following [45], we divide the resulting six equations into two groups. Four equations for the metric functions
are obtained from a suitable linear combination of Et

t , E
ϕ
ϕ , E

t
ϕ and Er

r + Eθ
θ . The remaining two equations

(Er
r −Eθ

θ and Eθ
r ) represent constraints. We solve the four equations together with the scalar field equation

(10), each containing more than 340 independent terms, while we follow the two constraints to check the
accuracy of the numerical solutions.
The domain of integration corresponds to the region outside the horizon. We therefore introduce a new

radial variable x = 1 − rH/r, which maps the semi-infinite interval [rH,∞) to the closed interval [0, 1]. We
then discretize the equations on a non-equidistant grid in x and θ. Typical grids used have sizes 91×51, and
cover the integration region 0 ≤ x ≤ 1 and 0 ≤ θ ≤ π/2. We perform the numerical calculations using the
professional package FIDISOL/CADSOL [46], which is based on a Newton-Raphson method. The typical
numerical error for the functions is estimated to be lower than 10−3.
For each solution we provide three input parameters, λ, rH and ΩH = ωH

rH
. After convergence has been

reached, the physical properties are computed from the numerical solutions. In particular, the mass M and
the angular momentum J are obtained from the asymptotic behavior of the solutions (27), whereas the
horizon area AH, the entropy S and the temperature TH are extracted from the horizon metric.

III. RESULTS

Before we turn to rotating black holes, let us briefly recall the properties of static black holes in this theory
[25, 28]. The bifurcation points of the sets of static scalarized black holes from the branch of Schwarzschild
black holes have been obtained for the quadratic coupling function in [25], and they agree with those of
the exponential coupling [24], since the latter reduces to the quadratic coupling in the limit of small scalar
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FI G. 1: D o m ai n of e xi s t e n c e of s c al a ri z e d bl a c k h ol e s: ( a ) f u n d a m e nt al a n d r a di all y a n d a n g ul a rl y e x ci t e d s t a ti c
s ol u ti o n s: s c al e d s c al a r c h a r g e Q / M v s s c al e d m a s s M / λ f o r e v e n l ( l = 0: s oli d bl u e, l = 2: g r e e n ), s c al e d
di p ol e m o m e nt P / M 2 v s s c al e d m a s s M / λ ( l = 1: d a s h e d r e d ); ( b ) f u n d a m e nt al r o t a ti n g s ol u ti o n s: s c al e d a n g ul a r
m o m e nt u m J / λ 2 v s s c al e d m a s s M / λ ( e xi s t e n c e li n e: s oli d bl u e, c ri ti c al li n e d a s h e d bl u e ). Al s o s h o w n a r e t h e
e x t r e m al K e r r s ol u ti o n s ( s oli d r e d ).

fi el d. T h e f u n d a m e nt al ( n = 0 ) st a ti c br a n c h t h u s a ri s e s a t t h e bif ur c a ti o n p oi nt M / λ = 0 .5 8 7, w h e r e
t h e S c h w a r z s c hil d s ol uti o n d e v el o p e s a z e r o m o d e, w hi c h t ur n s i nt o a fir st u n st a bl e r a di al m o d e f o r s m all e r
M / λ . At t h e n - t h (n > 0 ) bif ur c a ti o n p oi nt, t h e S c h w a r z s c hil d s ol uti o n d e v el o p e s t h e ( n + 1 )- t h u n st a bl e
r a di al m o d e, w hil e t h e a s s o ci a t e d n - t h br a n c h of s c al a ri z e d bl a c k h ol e s ol uti o n s p o s s e s s e s n r a di al n o d e s
a n d ( n + 1 ) u n st a bl e r a di al m o d e s. T h u s all s c al a ri z e d bl a c k h ol e s ol uti o n s a r e u n st a bl e, i n cl u di n g t h e
f u n d a m e nt al s ol uti o n [ 2 8]. F ur t h e r m o r e w e n o t e t h a t all br a n c h e s of st a ti c s c al a ri z e d bl a c k h ol e s ol uti o n s
e xi st o nl y i n a s m all d o m ai n t h a t d e c r e a s e s wit h i n c r e a si n g n , a s ill u str a t e d b y t h e s oli d bl u e c ur v e s i n
Fi g. 1( a ), w h e r e t h eir s c al e d s c al a r c h a r g e Q / M i s s h o w n v e r s u s t h e s c al e d m a s s M / λ . N o t e, t h a t t h e fi g ur e
al s o c o nt ai n s s o m e a n g ul a rl y e x cit a t e d s ol uti o n s ( d a s h e d r e d: l = 1, g r e e n d o ts: l = 2 ) di s c u s s e d b el o w.

I n t h e f oll o wi n g w e pr e s e nt o ur r e s ults, st a r ti n g wit h t h e d o m ai n of e xi st e n c e of t h e f u n d a m e nt al r o t a ti n g
s ol uti o n s. S u b s e q u e ntl y, w e a d dr e s s r o t a ti n g r a di al e x cit a ti o n s a n d a n g ul a r e x cit a ti o n s.

A.  F u n d a m e n t al r o t a ti n g bl a c k h ol e s

T h e f u n d a m e nt al st a ti c bl a c k h ol e s e xi st o nl y i n a s m all i nt e r v al of M / λ . As t h e s e bl a c k h ol e s a r e s et i nt o
r o t a ti o n, t hi s s m all i nt e r v al s hri n k s f ur t h e r, a s s e e n i n Fi g. 1 ( b) w h e r e w e pl o t t h e s c al e d a n g ul a r m o m e nt u m
J / λ 2 a s a f u n cti o n of t h e s c al e d m a s s M / λ . T h e b o u n d a ri e s of t h e d o m ai n of e xi st e n c e c o r r e s p o n d t o t h e
“ e xi st e n c e li n e ” t o t h e l eft (s oli d bl u e li n e st a r ti n g a t M / λ = 0 .5 8 7 ), a n d t h e c riti c al ( d a s h e d bl u e) li n e o n
t h e ri g ht w h e r e h air y s ol uti o n s c e a s e t o e xi st: b e y o n d t h e c riti c al li n e, t h e r e a r e o nl y c o m pl e x s ol uti o n s f o r
t h e s c al a r fi el d.

T h e d o m ai n of e xi st e n c e r e si d e s f ull y wit hi n t h e d o m ai n of e xi st e n c e of t h e K e r r bl a c k h ol e s f o r t h e a n g ul a r
m o m e nt a st u di e d. As t h e s c al e d a n g ul a r m o m e nt u m J / λ 2 i n c r e a s e s, t h e d o m ai n of e xi st e n c e of t h e s c al a ri z e d
bl a c k h ol e s t e n d s t o w a r d s t h e s et of e xtr e m al K e r r bl a c k h ol e s. We n o t e t h a t t hi s b e h a vi o r i s r a t h e r si mil a r
t o t h e c a s e of e x p o n e nti al c o u pli n g [ 3 2]. H o w e v e r, i n t h e l a tt e r c a s e, t h e d o m ai n of st a ti c s c al a ri z e d bl a c k
h ol e s e xt e n d s fr o m t h e e xi st e n c e p oi nt all t h e w a y t o M / λ = 0, yi el di n g a l a r g e d o m ai n of e xi st e n c e f o r s m all
a n g ul a r m o m e nt a J / λ 2 .

I n Fi g. 2( a ) w e ill u str a t e t h e d o m ai n of e xi st e n c e b y pl o tti n g t h e s c al e d s c al a r c h a r g e Q / M a s a f u n cti o n
of t h e s c al e d a n g ul a r m o m e nt u m j = J / M 2 . T h e s c al a r c h a r g e d e c r e a s e s wit h t h e a n g ul a r m o m e nt u m, i. e. it
d e c r e a s e s a s w e a p pr o a c h t h e e xtr e m al K e r r li mit, w h e r e Q / M = 0. O n t h e o t h e r h a n d, Fi g ur e 2 ( b) s h o w s
t h e d o m ai n of e xi st e n c e wit h r e s p e ct t o t h e c o u pli n g c o n st a nt. It al s o i n cl u d e s c ur v e s of c o n st a nt ω H , w hi c h
f o r c o n st a nt r H c o r r e s p o n d s t o a c o n st a nt a n g ul a r v el o cit y of t h e h o ri z o n Ω H [ cf. E q. ( 2 3 )]. I nt e r e sti n gl y,
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a r e a a H = A H / 1 6 π M 2 a n d s c al e d e nt r o p y s = S / 4 π M 2 v s s c al e d a n g ul a r m o m e nt u m j ( c ri ti c al li n e: d a s h e d bl u e,
s t a ti c s ol u ti o n s: s oli d bl a c k, K e r r s ol u ti o n s: s oli d pi n k ), t h e i n s e t ill u s t r a t e s t h e s m all di ff e r e n c e i n e nt r o p y. T h e fi r s t
r a di all y e x ci t e d s ol u ti o n s a r e al s o i n cl u d e d i n t h e fi g u r e s ( r e d c u r v e s ).

t h e st a ti c c ur v e d o e s n o t d e s c ri b e t h e b o u n d a r y c ur v e h e r e, b ut λ / M c a n sli g htl y e x c e e d t hi s c ur v e f o r s m all
r o t a ti o n.

As d e m o n str a t e d i n Fi g. 3 ( a ), t h e s c al e d h o ri z o n m a s s M H / M i s t y pi c all y sli g htl y s m all e r t h a n o n e.
A g ai n, f o r l a r g e a n g ul a r m o m e nt a t hi s i s si mil a r t o t h e e x p o n e nti al c o u pli n g c a s e, w h e r e, h o w e v e r, m u c h
l a r g e r d e vi a ti o n s a r e o b s e r v e d f o r s m all a n g ul a r m o m e nt a [ 3 2]. Fi g ur e 3( b) e x hi bits t h e d o m ai n of e xi st e n c e
f o r t h e s c al e d a r e a A H / 1 6 π M 2 . T h e h o ri z o n a r e a i s s m all e r t h a n i n t h e K e r r c a s e, b ut n o w h e r e a r e t h e
d e vi a ti o n s b et w e e n t h e t w o v e r y l a r g e. As n o t e d i n [ 3 2], l a r g e d e vi a ti o n s a r e p o s si bl e f o r G a u s si a n c o u pli n g
f u n cti o n s, a n d t hi s c a n b e u s e d t o p ut b o u n d s o n t h e c o u pli n g vi a t h e bl a c k h ol e s h a d o w of M 8 7 [ 4 8].

Of c o n si d e r a bl e i nt e r e st f o r s u c h s c al a ri z e d bl a c k h ol e s i s t h e c al c ul a ti o n of t h e e ntr o p y, w hi c h di ff e r s
fr o m t h e c o r r e s p o n di n g v al u e o bt ai n e d fr o m t h e h o ri z o n a r e a. If t h e e ntr o p y f o r t h e s c al a ri z e d s ol uti o n s
i s l a r g e r t h a n t h e e ntr o p y f o r K e r r ( o r S c h w a r z s c hil d) bl a c k h ol e s, t hi s i s a n i n di c a ti o n t h a t t h e s c al a ri z e d
s ol uti o n s will b e st a bl e. H e r e w e d o n o t e x p e ct st a bilit y, si n c e st a ti c bl a c k h ol e s a r e alr e a d y k n o w n t o b e
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FI G. 4: Bif u r c a ti o n p oi nt s of e x ci t e d s t a ti c s c al a ri z e d bl a c k h ol e s: s c al e d c o u pli n g c o n s t a nt λ / M v s a n g ul a r i nt e g e r
l f o r t h e l o w e s t r a di al e x ci t a ti o n s n ; l = 0 ( bl u e ), l = 1 ( r e d ) a n d l = 2 ( g r e e n ).

u n st a bl e. I n d e e d, Fi g. 3 ( b) s h o w s a n e x pli cit c al c ul a ti o n of t h e s c al e d e ntr o p y, w hi c h i s s m all e r t h a n i n G R
( a s e x p e ct e d). H o w e v e r, t h e d o m ai n of e xi st e n c e f o r t h e e ntr o p y of t h e s c al a ri z e d s ol uti o n s i s e xtr e m el y cl o s e
t o t h e c a s e of K e r r bl a c k h ol e s. T h e di ff e r e n c e i s hi g hli g ht e d i n t h e i n s et of Fi g. 3( b).

B.  E x ci t e d s t a ti c bl a c k h ol e s

S c al a ri z e d bl a c k h ol e s c o m e i n m a n y v a ri a nts. B e si d e s t h e w ell- st u di e d r a di al e x cit a ti o n s, l a b el e d b y t h e
i nt e g e r n , t h e r e a r e al s o a n g ul a r e x cit a ti o n s a n d c o m bi n a ti o n s of b o t h. I n t h e st a ti c li mit, t hi s i s e a sil y s e e n
w h e n e x p a n di n g t h e s c al a r fi el d i n t e r m s of s p h e ri c al h a r m o ni c s

φ =
l m

f l (r )Y l m (θ, φ ) ( 2 8 )

i n v ol vi n g t h e i nt e g e r s l a n d m . We e x hi bit t h e bif ur c a ti o n p oi nts of t h e l o w e st r a di all y a n d a n g ul a rl y
e x cit e d st a ti c s c al a ri z e d bl a c k h ol e s i n Fi g. 4, w h e r e t h e s c al e d c o u pli n g c o n st a nt λ / M i s s h o w n v e r s u s
a n g ul a r e x cit a ti o n s, l a b ell e d b y t h e i nt e g e r l, f o r t h e l o w e st r a di al e x cit a ti o n s (l a b ell e d b y t h e i nt e g e r n ).
I nt e r e sti n gl y, t h e o b s e r v e d p a tt e r n of bif ur c a ti o n p oi nts i s hi g hl y r e g ul a r, f o r m e d b y a dj a c e nt r h o m b oi d s.

L et u s n o w c o n si d e r t h e e xt e n si o n of t h e a s s o ci a t e d r a di all y a n d a n g ul a rl y e x cit e d st a ti c s ol uti o n s, r e-
stri cti n g a tt e nti o n t o t h eir e xi st e n c e li n e s, w h e r e t h e s c al a r fi el d e q u a ti o n i s s ol v e d i n t h e b a c k g r o u n d of
t h e S c h w a r z s c hil d bl a c k h ol e. F o r t h e s e e xi st e n c e li n e s, Fi g. 5 ( a ) s h o w s t h e s c al e d s c al a r c h a r g e Q / M (s oli d
li n e s) a n d t h e s c al e d di p ol e m o m e nt P / M 2 ( d a s h e d li n e s) a s f u n cti o n s of t h e s c al e d m a s s M / λ . I n p a r ti c ul a r,
w e s h o w s ol uti o n s wit h n = 0 , l = 0 (f u n d a m e nt al), n = 0 , l = 1 ( o n e a n g ul a r e x cit a ti o n) n = 0 , l = 2 (t w o
a n g ul a r e x cit a ti o n s) a n d n = 1 , l = 0 ( o n e r a di al e x cit a ti o n). T h e d o ts i n t h e fi g ur e i n di c a t e t h e bif ur c a ti o n
p oi nts fr o m t h e S c h w a r z s c hil d bl a c k h ol e s f o r l = 0 ( bl u e), l = 1 (r e d) a n d l = 2 ( g r e e n). N o t e t h a t s ol uti o n s
wit h l = 1 p o s s e s s a p a rit y- o d d s c al a r fi el d, t h e r ef o r e t h e y d o n o t c a r r y s c al a r c h a r g e. T h e di p ol e t e r m
r e pr e s e nts t h e l o w e st t e r m I n t h eir a s y m pt o ti c e x p a n si o n, s o i n t h e fi g ur e w e pl o t t h eir di p ol e m o m e nt.

We c a n a s k w h et h e r st a ti c e x cit e d bl a c k h ol e s a r e st a bl e. A gl a n c e a t t h eir e ntr o p y – a s s h o w n i n Fi g. 5 ( b)
– i n di c a t e s t h a t n o t o nl y t h e r a di all y e x cit e d st a ti c s ol uti o n s a r e u n st a bl e [ 2 8], b ut al s o t h e a n g ul a rl y e x cit e d
s ol uti o n s s h o ul d b e u n st a bl e.

Of c o ur s e, o n e mi g ht al s o c o n si d e r st a ti c s ol uti o n s, t h a t i n t h e pr e s e n c e of b a c k r e a cti o n will l o s e a xi al
s y m m etr y. E x a m pl e s w o ul d b e bl a c k h ol e s l a b ell e d b y t h e a b o v e s et of 3 i nt e g e r s ( n, l, m ), w h e r e t h e
a zi m ut h al i nt e g e r m = 0, a s i n t h e s ol uti o n s c o n si d e r e d i n [ 3 8]. F o r gi v e n i nt e g e r s n a n d l, t h e s e w o ul d
p o s s e s s a d e g e n e r a t e bif ur c a ti o n p oi nt f o r all all o w e d v al u e s of m , b ut gi v e ri s e t o a s et of l + 1 di sti n ct
f a mili e s of s c al a ri z e d bl a c k h ol e s, o n e wit h a xi al s y m m etr y (m = 0 ) a n d l wit h o ut a n y c o nti n u o u s s y m m etr y
(m = 1 ).
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FI G. 5: E x ci t e d s t a ti c s c al a ri z e d bl a c k h ol e s: ( a ) s c al e d s c al a r c h a r g e Q / λ f o r e v e n l ( l = 0: s oli d bl u e, l = 2: g r e e n ),
a n d s c al e d di p ol e m o m e nt P / λ 2 ( l = 1: d a s h e d r e d ) v s s c al e d m a s s M / λ ; ( b ) s c al e d e nt r o p y s = S / 4 π M 2 v s s c al e d
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FI G. 6: E x ci t e d r o t a ti n g s c al a ri z e d bl a c k h ol e s: ( a ) s c al e d a n g ul a r m o m e nt u m J / λ 2 v s s c al e d m a s s M / λ ; ( b ) s c al e d
c o u pli n g c o n s t a nt λ / M v s s c al e d a n g ul a r m o m e nt u m j . S h o w n a r e (n, l ) = ( 0 , 0 ) ( bl u e ), ( n, l ) = ( 1 , 0 ) ( bl u e ),
( n, l ) = ( 0 , 2 ) ( g r e e n ) ( e xi s t e n c e li n e s: s oli d, c ri ti c al li n e s: d a s h e d ).

C.  E x ci t e d r o t a ti n g bl a c k h ol e s

L et u s n e xt c o n si d e r e x cit e d r o t a ti n g s c al a ri z e d bl a c k h ol e s. We s h o w t h e e xi st e n c e li n e f o r s e v e r al s u c h
bl a c k h ol e s i n Fi g. 6( a ). I n p a r ti c ul a r, i n a d diti o n t o t h e f u n d a m e nt al s ol uti o n f o r l = 0, n = 0 ( bl u e), t h e
fi g ur e e x hi bits t h e e xi st e n c e li n e f o r its fir st r a di al e x cit a ti o n l = 0, n = 1 ( bl u e), t o g et h e r wit h t h e e xi st e n c e
li n e of t w o br a n c h e s of s ol uti o n s st a r ti n g fr o m t h e bif ur c a ti o n p oi nt s l = 2, n = 0 a n d l = 2, n = 1 ( g r e e n).
As s e e n i n t h e fi g ur e, t h e e xi st e n c e li n e s l = 2, n = 0 a n d l = 0, n = 1 a p pr o a c h t h e s et of e xtr e m al K e r r
s ol uti o n s q uit e r a pi dl y. Al s o s h o w n a r e t h e c riti c al s ol uti o n s wit h l = 0 , n = 0 a n d l = 0 , n = 1 ( d a s h e d).

I n Fi g. 6 ( b) w e pl o t t h e e xi st e n c e li n e s a s f u n cti o n s of t h e s c al e d c o u pli n g c o n st a nt λ / M a n d of t h e
s c al e d a n g ul a r m o m e nt u m j . B e si d e s t h e f u n d a m e nt al r o t a ti n g s ol uti o n (n, l ) = ( 0 , 0 ), w e s h o w al s o t h e fir st
r a di all y e x cit e d s ol uti o n ( n, l ) = ( 1 , 0 ), a n d t h e s e c o n d a n g ul a rl y e x cit e d s ol uti o n ( n, l ) = ( 0 , 2 ) [ 5 0]. T h e
s h o r t bl a c k li n e s o n t h e a xi s i n di c a t e t h e d o m ai n of e xi st e n c e of t h e st a ti c ( 0 , 0 ) a n d ( 1 , 0 ) s ol uti o n s. We
h a v e al s o o bt ai n e d p a r t of t h e e xi st e n c e li n e s of f ur t h e r e x cit e d s ol uti o n s li k e t h e s e c o n d a n g ul a rl y e x cit e d
s ol uti o n ( n, l ) = ( 0 , 2 ); h o w e v e r, t h e s e r e m ai n c h all e n gi n g t o f ull y m a p o ut.
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IV. CONCLUSIONS

Spontaneously scalarized black holes can exist when the coupling function and coupling constant satisfy
certain conditions. In this paper we have studied curvature-induced scalarization mediated by the presence
of a GB term. In particular, we have focused on a quadratic coupling function, extending previous studies
of the fundamental (n = 0) nonrotating static solution and of its radial excitations.
We have mapped out the domain of existence of rotating generalizations of these solutions, showing that

the domain of existence is a small band starting from the static solutions and extending to larger angular
momenta. This band shrinks as the angular momentum grows, approaching the extremal Kerr solutions. As
for static black holes, the entropy of these rotating scalarized black holes is smaller than the entropy of Kerr
black holes, suggesting that rotating scalarized black holes should also be unstable.
We have further considered excited (static and rotating) solutions considering also angular excitations

with l > 0. The bifurcation points form a simple regular pattern in (n, l), at least for small values of n
and l. Branches of excited black holes emerge from these bifurcation points: this behavior is similar to the
case of static, charge-induced spontaneously scalarized black holes [38]. Taking this similarity further, we
conjecture that there should also exist static EsGB black holes without any continuous symmetry.
As long as axial symmetry is retained, the excited solutions can also be set into rotation, forming stationary

sets of solutions. Here we have mainly explored the existence lines of these radially and angularly excited
rotating black holes, but we also constructed solutions with backreaction.
While we do not expect stable spontaneously scalarized black holes for this theory, it should be possible

to restore stability by adding higher-order terms to the coupling function [24, 28] or by including a potential
term V (φ) for the scalar field [31, 49]. The latter approach is particularly attractive, since these corrections
would emerge naturally in an effective field theory scenario.
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structures will be left to future work.
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