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Abstract—The information-theoretic limits of community de-
tection have been studied extensively for network models with
high levels of symmetry or homogeneity. The contribution of this
paper is to study a broader class of network models that allow for
variability in the sizes and behaviors of the different communities,
and thus better reflect the behaviors observed in real-world
networks. Our results show that the ability to detect communities
can be described succinctly in terms of a matrix of effective
signal-to-noise ratios that provides a geometrical representation
of the relationships between the different communities. This
characterization follows from a matrix version of the I-lMMSE
relationship and generalizes the concept of an effective scalar
signal-to-noise ratio introduced in previous work. We provide
explicit formulas for the asymptotic per-node mutual information
and upper bounds on the minimum mean-squared error. The
theoretical results are supported by numerical simulations.

Index Terms—community detection, I-MMSE, matrix factor-
ization, recovery thresholds, stochastic block model.

I. INTRODUCTION

Modern data problems often ask questions about how
individuals (or computers or countries) interact or relate to
each other within a network. A frequently studied problem
in this context is that of community detection: how does one
partition a network into clusters (or communities or groups) of
nodes? A natural partition of a network is into communities that
exhibit similar connection patterns, both within and between
communities. A generative model for random networks called
the stochastic block model (SBM) exhibits such behavior and
hence much of the theoretical analysis of community detection
has focused on it [1]. Under the SBM each individual belongs to
one of £ communities, and the probability of an edge between
two individuals is exclusively a function of their community
memberships.

The problem of community detection can be modeled in
terms of a joint distribution on (X, G) where G is a simple
graph on n vertices and X = (X3,...,X,,) is a collection
of labels associated with the vertices. In the SBM this joint
distribution is governed by two parameters: a probability vector
p of each node being assigned to one of k labels, and a k x k
matrix of probabilities () where Q) is the probability of an
edge between nodes in communities a and b. The community
detection task is recovering the labels X given the graph G
and potentially side information.
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Inspired by the work of Decelle et al. [2], a recent line of
work has studied the information-theoretic limits of recovery
when the distribution of (X, G) is known. Most of this work
has focused on either the two-community SBM [3]-[9] or
the so-called k-community symmetric SBM [7], [10]-[12].
In all of these cases, performance is summarized in terms
of a single numerical value, which is often referred to as
the effective signal-to-noise ratio of the problem. General
SBMs have been considered by Abbe and Sandon [10] who
characterize conditions for weak recovery and also by Lesieuir
et al. [7] who analyze the performance of an approximate
message passing algorithm.

A different line of research within the statistics community
has focused on settings where the parameters of the distribution,
such as the distribution of communities and the conditional
probabilities of edges, are unknown quantities that must also
be inferred, along with the community memberships [13],
[14]. While the models considered in this literature are highly
flexible, the conditions needed for consistent recovery of
communities corresponds to a very high SNR regime relative
to the information theoretic analysis.

A. Our Contributions

The contribution of this paper is to characterize the
information-theoretic limits for a large class of degree-balanced
SBMs. In comparison to the symmetric SBM, these models
allow for variability in the sizes and behaviors of the different
communities, and thus reflect behaviors observed in real-world
networks. While previous work is limited to a scalar measure
of performance for the overall community detection problem,
we introduce a multivariate measure of performance, the
minimum mean-squared error (MMSE) matrix, which describes
detection limits for individual communities. For example, this
matrix allows us to characterize settings where some of the
communities can be detected while other cannot.

Our analysis of the community detection problem leverages
a matrix version of the I-MMSE [15] relation, which both
simplifies and generalizes techniques used in previous work.
In particular, the upper bound on the mutual information
in Theorem 2 is a consequence of a novel non-asymptotic
inequality that holds under any distribution on the community
labels. Many of our techniques can be applied more generally
to other high-dimensional inference problems, including matrix
and tensor factorization.
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B. Overview of Approach

This paper introduces a multivariate measure of performance,
which we refer to as the MMSE matrix:

MMSE(X | G) 2 % iEG[Cov(Xi @),

i=1

ey

In this expression, Cov(X; | G) is the covariance matrix
of the i-th node’s label after is has been embedded in to
an {-dimensional Euclidean space (where ¢ is either k or
k —1). We show that the MMSE matrix provides important
geometrical information about the uncertainty in the community
memberships. While the trace of the MMSE matrix corresponds
to standard measures of performance such as the average
overlap, the information provided by individual entries in the
MMSE matrix can be used to answer more nuanced questions
about which of the community relationships can (or cannot)
be recovered.

One of the key ideas in this paper is to focus on community
detection in the setting where there is additional covariate
information about the labels. Specifically, we assume that one
has side-information from the signal-plus-noise model:

Y = XS5'?+ N, ()

where S is an £ x £ positive semidefinite matrix, known as the
matrix SNR, and IV is an n X £ matrix with i.i.d. standard
Gaussian entries.

The introduction of the signal-plus-noise model plays an
important role both for our analysis and for our interpretation
of the results. For example, it allows us to leverage the matrix
I-MMSE relation [15] to characterize the MMSE matrix in
terms of the gradient of the mutual information:

VsI(X;G,Y) = g MMSE(X | G,Y). 3)

Remarkably, this relationship holds generally for any joint
distribution on the pair (X, G). Notice that the matrix MMSE
in (1) is obtained by evaluating this expression at S = 0.

The signal-plus-noise model also provides a natural way to
address non-identifiability issues that arise when the distribution
over the labels is invariant to permutations. The key idea is
that in the large-n limit, an arbitrarily small amount of side-
information is sufficient to break the symmetry in the model.
Hence, focusing on the double limit

lim lim MMSE(X | G,Y),

S—0n—o0
provides a meaningful and interpretable measure of average
performance that bypasses the need to optimize over an
equivalence class of permutations.

Section IV provides explicit formulas for the per-vertex
mutual information and MMSE matrix in the large-n limit.
These formulas are stated for a degree-balanced stochastic
block model and are given in terms of single-letter formulas.
Numerical simulations are provided in Section V. The proofs
are omitted due to space constraints and are available in the
online version of the paper

C. Notation

We use S¢, Si to denote the space d X d symmetric matrices
and symmetric positive semi-definite matrices, respectively.
Given a symmetric positive semi-definite matrix S, we use
S1/2 to denote the unique positive semi-definite square root.
Given matrix A, B € S%, the relation A < B means that
B—-Aest.

II. MMSE MATRIX

Without loss of generality, the community labels can be
embedded into finite dimensional Euclidean space. Two useful
representations are considered in the following.

A. Standard Basis Representation

A natural embedding associates the labels with the standard
basis vectors {ej,...,ex} in RF, ie., the columns of the
identity matrix. Under this representation, the expected value
of a label vector X; is a point on the probability simplex. The
conditional covariance is defined by

Cov(X; | G) 2 Ex g |(X: — E[X|G]) (X; - ELX;|G])]

and the MMSE matrix is defined according to (1). By the data
processing inequality for MMSE, this matrix satisfies
1 n
0 < MMSE(X | G) < MMSE(X) 2 - > Cov(X;).
i=1
As a consequence, the difference between the MMSE matrix
and covariance provides a measure of the difference between
the prior and posterior marginals of the labels.

Proposition 1. Under the standard basis representation, the
k x k MMSE matrix satisfies

tr(MMSE(X) — MMSE(X | G))

1 n
= -3 Bo|[IPxiel | 6) - PO
i=1

Furthermore, the individual entries of the MMSE matrix
also provide information about different recovery tasks. For
example, consider the problem of determining whether a label
belongs to a subset A C [k]. If we define 14 = ), 4 e¢, then
17 X; is binary random variable indicating whether the i-th
label belongs to A. Summing the entries in the MMSE matrix
indexed by the set A provides a measures of the average error
probability:

1 n
1Y MMSE(X | G)14 = - > Eg[Var(1}X; | G)].
i=1
B. Whitened Representation

Next, we focus on the setting where the labels are identically
distributed with probability vector p = (p1,...,px). The
whitened representation is defined to be of a set of k points
{u1,..., s} in RE=1 with the property that

ZP:{M =0, ZP@MWT =TIp_1.
¢ ¢
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Under the whitened representation, each label vector has zero
mean and identity covariance and thus the MMSE matrix
satisfies 0 < MMSE(X | G) =< Ij._1.

Remark 1 (Unique Specification of Whitened Representation).
The whitened representation can be defined explicitly as a
function of p as follows. Let p = (\/p1, ..., \/]Tk)T and apply
the Gram-Schmidt process to the vectors {p,e1,...,ex_1} to
obtain an orthonormal basis for R¥ of the form [, B] where B
is k x (k—1). Then, the support of the whitened representation
is related to the standard basis vectors according to

pe = BT P12, (4)
where P = diag(p). This construction is unique and has the

useful property that p, lies in the span of {ey,..., ez}

Proposition 2. If the labels are identically distributed then the
(k—1) x (k—1) MMSE matrix of the whitened representation
satisfies

<~ ey :p—‘,—Pl/QBp,g,

X*(Px,.cll Px,Pa),

S|

Il
-

tr(I — MMSE(X | G)) =

where x?(P || Q) = [(dP/dQ)*dQ denotes the chi-squared

divergence.

~

For the purposes of analysis, the two representations de-
scribed above are equivalent in the sense that there is a one-to-
one mapping between the k x k¥ MMSE matrix defined under
the standard basis representation and the (k — 1) x (k — 1)
MMSE matrix defined under the whitened representation. For
notational convenience we work in the whitened representation.

III. SIGNAL-PLUS-NOISE PROBLEM

Our analysis uses properties of the signal-plus-noise model
given in (2). Throughout this section we will assume the
labels are drawn i.i.d. according to a probability vector
p = (p1,...,px) with strictly positive entries and are supported
on the whitened representation described in Section II-B. For
each S € Sffl, the task of recovering X from Y decouples
into n independent copies of the problem

Y =SY2X + N,

where X is supported on {u1, ..., ux} with probability vector
p and N ~ N(0,1) is independent Gaussian noise.
Following [15] we define the the mutual information function
Ix :SE71 — [0, 00) and matrix-valued MMSE function My :
Si‘l — Si‘l according to
Ix(S) = I(X;Y) Q)
My (S) = E[Cov(X | Y)]. ©)

The gradient and Hessian of Ix (.S) are given by [15, Lemma 4]
1
@)

VsIx(S) = éMx(S)
1

Vilx(S) = —5E[Cov(X [ V)@ Cov(X | V)], (8)

where ® denotes the Kronecker product. We note that these

functions can be approximated using numerical integration

methods or Monte-Carlo sampling.

IV. MAIN RESULTS
A. Degree-Balanced SBM

An SBM is frequently parameterized in terms of the tuple
(n,p,@) where p = (p1,...,px) is a distribution over k
communities and @ € [0, 1]*** is a symmetric matrix such that
Qqp 18 the probability of an edge between nodes in communities
a and b. The average degree of an SBM corresponds to the
expected number of edges for a node chosen uniformly at
random and is denoted by d. An SBM is said to be degree-
balanced if the expected degree of a node does not depend
on its community assignments. This condition is equivalent to
saying that (Jp is proportional to the all ones vector.

For the purposes of this paper, it is useful to consider a
different parameterization of the degree-balanced SBM in terms
of the tuple (n,d,p, R) where d is the average degree and
R € S*~!. Using this parameterization, the entries of Q are
given by

Qup = d n d(1 —d/n)
n n

where {1, ..., 1} are defined as a function of p using the
procedure described in Remark 1. The tuple (n,d,p, R) is
valid only if the entries of () are between zero and one.

The matrix R quantifies the relative strength of relationships
between different communities. The eigenvalue decomposition
is given by

fia Riw, ©9)

R = U diag(\)UT,

where A = (A1,...,A\p_1) are real numbers. To simplify the
analysis, we will assume throughout that all the eigenvalues
are nonzero so that R is invertible.

We remark that the definition of signal-to-noise ratio given
by Abbe and Sandon [10, Section 2.1] corresponds to max; )\ZZ.
Furthermore, for the special case of k& = 2 communities, the
representation of X; is one-dimensional and our formulation
is equivalent to the one given by Lelarge and Miolane [5].

B. Formulas for Mutual Information and MMSE

Our analysis focuses on a sequence of degree-balanced SBMs
where the parameters (p, R) are fixed as the size of the network
n scales to infinity. Additionally, we make two assumptions.

Assumption 1 (Diverging Average Degree). The average
degree of the network d increases with n such that both d and
(n — d) tend to infinity.

Assumption 2 (Definite Matrix). The matrix R is either

positive definite or negative definite.

Our first result is stated in terms of the potential function
F:SE71 5 Ry defined by
1
F(A) = Ix(A) + 5 tr((R - R—IA)2). (10)
where Ix(-) is defined by (5). Notice that the first term in

the potential function is defined by the distribution the labels
p whereas the second term is defined by the matrix R. By
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the matrix I-MMSE relation [15], it can be verified that every
stationary point of F(A) satisfies the fixed-point equation

Mx(A)=TI—-R AR (11)

where Mx(+) is defined by (6). Noting that Mx (0) = I, we
see that A = 0 is always a stationary point. Furthermore, every
solution of (11) belongs to the set {A : 0 < A < R?}.

Theorem 1. Under Assumptions 1 and 2,

1
lim —I(X;G) = min F(A),
n—oo N Aeslj:l

where F(A) is given in (10).

The next result provides an upper bound on the mutual
information in the setting where side information is generated
according to the signal-plus-noise model (2) parameterized by
a positive semi-definite matrix S. To characterize this setting,
we define the modified potential function:

F(A,S) =Ix(S+A)+ itr((R - R—lA)Q). (12)

Notice that the main difference from (11) is that the side
information changes the prior information about the labels.

Theorem 2. Suppose that Y is generated according to the
signal-plus-noise model (2) with matrix S € Si_l. Under
Assumption 1,

limsuplI(X;G,Y)S min F(A,S).

n—oo N AES{”’;l
where F(A,S) is given in (12).

Remark 2. Similar to previous work [3]—[8], our proofs of
Theorems 1 and 2 use a channel universality argument to relate
the community detection problem to a low-rank estimation
problem. Assumption 2 is needed for the proof of Theorem 1,
which leverages [5, Theorem 12]. To prove Theorem 2 we
develop a novel variation of the Guerra interpolation method
that exploits the matrix [-MMSE relationship [15] to provide
a general and non-asymptotic upper bound.

Next, we recall that that by the data processing inequality,
the MMSE matrix satisfies

MMSE(X | G) = MMSE(X | G,Y),

for all S € Sffl. For any fixed problem size n, the difference
between these matrices converges to zero as S — 0. However,
in the large-n limit it is possible that the limiting behavior is
discontinuous with respect to S. This can occur, for example,
when the SBM is invariant to permutations of the labels and
hence MMSE(X | G) = MMSE(X). The presence of side-
information with an arbitrarily small positive definite matrix
S is sufficient to break the permutation invariance, and thus
the small-S' limit provides a meaningful measure of recovery
performance that overcomes the non-identifiability issues.

The following result follows from the matrix I-MMSE
relation and Theorems 1 and 2.

Theorem 3. Consider Assumptions 1 and 2. For every S - 0,
lim sup Apax(MMSE(X | G, Y) — Mx(A*)) <0

n—oo

where A* denotes any minimizer of F(A). In other words,
MMSE(X | G,Y) <X Mx(A*) + o,(1),

where 0,(1) denotes a sequence of symmetric matrices that
converges to zero as n — oQ.

Following heuristic arguments, we postulate that upper
bounds in Theorem 2 is asymptotically tight and that the
MMSE matrix satisfies

MMSE(X | G,Y) = Mx (S + A*) + 0,(1)

for almost all S, where A* is the unique minimizer of F (-, S).
These conjectures are supported by the numerical experiments
in Section V.

C. Implications for Weak Recovery

In the context of community detection, weak recovery refers
to the ability to produce an estimate of the community labels
that is positively correlated with the ground truth. Within
the literature, the measure of correlation usually includes an
additional step that maximizes over all permutations of the
labels; see e.g., [10, Section 2].

Using the results in this paper, we see that a natural
alternative is to focus on the small-S behavior of the MMSE
matrix. In particular, we say that weak recovery is possible if

inf lim inf[MMSE(X | G,Y) — MMSE(X)|| > 0. (13)
S>=0 n—oo

In view of this definition, we see that Theorem 3 provides a
sufficient condition for weak recovery.

Theorem 4. Consider Assumptions 1 and 2. If F(-) has a
minimizer A* with Mx (A*) < Mx (0) then weak recovery in
the sense of (13) is possible.

Evaluating the Hessian of the potential function at zero
provides a simple test to determine whether A = 0 is a local
minimum. Using (8), it can be shown that

V2F(A) e ™ RMYQR™ = Iy

Therefore, if max; )\f > 1 then A = 0 is not a local minimizer.

V. NUMERICAL EXPERIMENTS

This section compares the asymptotic bounds given in
Section IV with the MSE obtained using belief propagation. The
case of the three-community degree balanced SBM (n, d, p, R)
is illustrated in Figure 1. The black contour lines correspond
to the trace of Mx (A*) where A* is the global minimizer of
the potential function defined in (10). The heat map values
correspond to the empirical MSE of the belief propagation
algorithm described in [2] applied to a network of size n = 10°
with average degree d = 10. Each pixel is the average of ten
independent trials and the MSE is measured with respect to
the whitened basis representation.
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(b) p = (0.6,0.3,0.1)

Fig. 1: Comparison of upper bound on tr(MMSE(X | G)) given in Theorem 3 (black contour lines) and the empirical MSE of belief
propagation (heat map) on a network of size n = 10° with average degree d = 10. In both cases, R = diag(\1, X2). The upper bound on
the weak recovery threshold given in Theorem 4 (solid blue line) corresponds to the boundary where A* = 0. The weak recovery threshold
for acyclic BP [10] (dashed blue line) corresponds to max(A1, A2) = 1.

In the case of uniform community assignments (Figure la),
our upper bound on the weak detection threshold is equal to
the weak recovery limit for acyclic BP [10]. Furthermore, we
see that there is a close correspondence between the asymptotic
formula and the empirical results. Note that the special case
A1 = Ag corresponds to the three-community symmetric SBM.

In the case of non-uniform community assignments (Fig-
ure 1b) there exists a region of the parameter space where weak
recovery is possible with max (A1, A2) < 1. The existence of
such a region has been shown previously in the special case of
the two-community asymmetric SBM [4]. We also see that the
asymptotic formulas match the empirical behavior qualitatively,
although the empirical MSE is worse than is suggested by the
formulas. The grey region in Figure 1b corresponds to settings
where (n,d, p, R) does not define a valid SBM.

Numerical Approximation of Formulas: We use Monte Carlo
sampling to approximately evaluate the functions /x and Mx,
and we use the concave-convex procedure [16] to explore
the local minima of the potential function. Starting is an
initialization point A%, a sequence of iterates is obtained
according to

A= (1—€)(R* — RMx(A"R) + €A,
where € € [0,1) is a dampening parameter.
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