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Abstract—The information-theoretic limits of community de-
tection have been studied extensively for network models with
high levels of symmetry or homogeneity. The contribution of this
paper is to study a broader class of network models that allow for
variability in the sizes and behaviors of the different communities,
and thus better reflect the behaviors observed in real-world
networks. Our results show that the ability to detect communities
can be described succinctly in terms of a matrix of effective
signal-to-noise ratios that provides a geometrical representation
of the relationships between the different communities. This
characterization follows from a matrix version of the I-MMSE
relationship and generalizes the concept of an effective scalar
signal-to-noise ratio introduced in previous work. We provide
explicit formulas for the asymptotic per-node mutual information
and upper bounds on the minimum mean-squared error. The
theoretical results are supported by numerical simulations.

Index Terms—community detection, I-MMSE, matrix factor-
ization, recovery thresholds, stochastic block model.

I. INTRODUCTION

Modern data problems often ask questions about how

individuals (or computers or countries) interact or relate to

each other within a network. A frequently studied problem

in this context is that of community detection: how does one

partition a network into clusters (or communities or groups) of

nodes? A natural partition of a network is into communities that

exhibit similar connection patterns, both within and between

communities. A generative model for random networks called

the stochastic block model (SBM) exhibits such behavior and

hence much of the theoretical analysis of community detection

has focused on it [1]. Under the SBM each individual belongs to

one of k communities, and the probability of an edge between

two individuals is exclusively a function of their community

memberships.

The problem of community detection can be modeled in

terms of a joint distribution on (X,G) where G is a simple

graph on n vertices and X = (X1, . . . , Xn) is a collection

of labels associated with the vertices. In the SBM this joint

distribution is governed by two parameters: a probability vector

p of each node being assigned to one of k labels, and a k × k
matrix of probabilities Q where Qab is the probability of an

edge between nodes in communities a and b. The community

detection task is recovering the labels X given the graph G

and potentially side information.
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Inspired by the work of Decelle et al. [2], a recent line of

work has studied the information-theoretic limits of recovery

when the distribution of (X,G) is known. Most of this work

has focused on either the two-community SBM [3]–[9] or

the so-called k-community symmetric SBM [7], [10]–[12].

In all of these cases, performance is summarized in terms

of a single numerical value, which is often referred to as

the effective signal-to-noise ratio of the problem. General

SBMs have been considered by Abbe and Sandon [10] who

characterize conditions for weak recovery and also by Lesieuir

et al. [7] who analyze the performance of an approximate

message passing algorithm.

A different line of research within the statistics community

has focused on settings where the parameters of the distribution,

such as the distribution of communities and the conditional

probabilities of edges, are unknown quantities that must also

be inferred, along with the community memberships [13],

[14]. While the models considered in this literature are highly

flexible, the conditions needed for consistent recovery of

communities corresponds to a very high SNR regime relative

to the information theoretic analysis.

A. Our Contributions

The contribution of this paper is to characterize the

information-theoretic limits for a large class of degree-balanced

SBMs. In comparison to the symmetric SBM, these models

allow for variability in the sizes and behaviors of the different

communities, and thus reflect behaviors observed in real-world

networks. While previous work is limited to a scalar measure

of performance for the overall community detection problem,

we introduce a multivariate measure of performance, the

minimum mean-squared error (MMSE) matrix, which describes

detection limits for individual communities. For example, this

matrix allows us to characterize settings where some of the

communities can be detected while other cannot.

Our analysis of the community detection problem leverages

a matrix version of the I-MMSE [15] relation, which both

simplifies and generalizes techniques used in previous work.

In particular, the upper bound on the mutual information

in Theorem 2 is a consequence of a novel non-asymptotic

inequality that holds under any distribution on the community

labels. Many of our techniques can be applied more generally

to other high-dimensional inference problems, including matrix

and tensor factorization.

400978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019



B. Overview of Approach

This paper introduces a multivariate measure of performance,

which we refer to as the MMSE matrix:

MMSE(X | G) ,
1

n

n
∑

i=1

EG[Cov(Xi | G)]. (1)

In this expression, Cov(Xi | G) is the covariance matrix

of the i-th node’s label after is has been embedded in to

an `-dimensional Euclidean space (where ` is either k or

k − 1). We show that the MMSE matrix provides important

geometrical information about the uncertainty in the community

memberships. While the trace of the MMSE matrix corresponds

to standard measures of performance such as the average

overlap, the information provided by individual entries in the

MMSE matrix can be used to answer more nuanced questions

about which of the community relationships can (or cannot)

be recovered.

One of the key ideas in this paper is to focus on community

detection in the setting where there is additional covariate

information about the labels. Specifically, we assume that one

has side-information from the signal-plus-noise model:

Y = XS1/2 +N , (2)

where S is an `× ` positive semidefinite matrix, known as the

matrix SNR, and N is an n × ` matrix with i.i.d. standard

Gaussian entries.

The introduction of the signal-plus-noise model plays an

important role both for our analysis and for our interpretation

of the results. For example, it allows us to leverage the matrix

I-MMSE relation [15] to characterize the MMSE matrix in

terms of the gradient of the mutual information:

∇SI(X;G,Y ) =
n

2
MMSE(X | G,Y ). (3)

Remarkably, this relationship holds generally for any joint

distribution on the pair (X,G). Notice that the matrix MMSE

in (1) is obtained by evaluating this expression at S = 0.

The signal-plus-noise model also provides a natural way to

address non-identifiability issues that arise when the distribution

over the labels is invariant to permutations. The key idea is

that in the large-n limit, an arbitrarily small amount of side-

information is sufficient to break the symmetry in the model.

Hence, focusing on the double limit

lim
S→0

lim
n→∞

MMSE(X | G,Y ),

provides a meaningful and interpretable measure of average

performance that bypasses the need to optimize over an

equivalence class of permutations.

Section IV provides explicit formulas for the per-vertex

mutual information and MMSE matrix in the large-n limit.

These formulas are stated for a degree-balanced stochastic

block model and are given in terms of single-letter formulas.

Numerical simulations are provided in Section V. The proofs

are omitted due to space constraints and are available in the

online version of the paper

C. Notation

We use S
d, Sd+ to denote the space d×d symmetric matrices

and symmetric positive semi-definite matrices, respectively.

Given a symmetric positive semi-definite matrix S, we use

S1/2 to denote the unique positive semi-definite square root.

Given matrix A,B ∈ S
d, the relation A � B means that

B −A ∈ S
d
+.

II. MMSE MATRIX

Without loss of generality, the community labels can be

embedded into finite dimensional Euclidean space. Two useful

representations are considered in the following.

A. Standard Basis Representation

A natural embedding associates the labels with the standard

basis vectors {e1, . . . , ek} in R
k, i.e., the columns of the

identity matrix. Under this representation, the expected value

of a label vector Xi is a point on the probability simplex. The

conditional covariance is defined by

Cov(Xi | G) , EX|G

[

(Xi − E[Xi|G])
T
(Xi − E[Xi|G])

]

,

and the MMSE matrix is defined according to (1). By the data

processing inequality for MMSE, this matrix satisfies

0 � MMSE(X | G) � MMSE(X) ,
1

n

n
∑

i=1

Cov(Xi).

As a consequence, the difference between the MMSE matrix

and covariance provides a measure of the difference between

the prior and posterior marginals of the labels.

Proposition 1. Under the standard basis representation, the

k × k MMSE matrix satisfies

tr(MMSE(X)−MMSE(X | G))

=
1

n

n
∑

i=1

EG

[

∥

∥PXi|G(· | G)− PXi
(·)

∥

∥

2

2

]

.

Furthermore, the individual entries of the MMSE matrix

also provide information about different recovery tasks. For

example, consider the problem of determining whether a label

belongs to a subset A ⊂ [k]. If we define 1A =
∑

`∈A e`, then

1
T
AXi is binary random variable indicating whether the i-th

label belongs to A. Summing the entries in the MMSE matrix

indexed by the set A provides a measures of the average error

probability:

1
T
A MMSE(X | G)1A =

1

n

n
∑

i=1

EG

[

Var(1T
AXi | G)

]

.

B. Whitened Representation

Next, we focus on the setting where the labels are identically

distributed with probability vector p = (p1, . . . , pk). The

whitened representation is defined to be of a set of k points

{µ1, . . . , µk} in R
k−1 with the property that

∑

`

p`µ` = 0,
∑

`

p`µ`µ
T
` = Ik−1.
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Under the whitened representation, each label vector has zero

mean and identity covariance and thus the MMSE matrix

satisfies 0 � MMSE(X | G) � Ik−1.

Remark 1 (Unique Specification of Whitened Representation).

The whitened representation can be defined explicitly as a

function of p as follows. Let p̃ = (
√
p1, . . . ,

√
pk)

T and apply

the Gram-Schmidt process to the vectors {p̃, e1, . . . , ek−1} to

obtain an orthonormal basis for Rk of the form [p̃, B] where B
is k× (k−1). Then, the support of the whitened representation

is related to the standard basis vectors according to

µ` = BTP−1/2e` ⇐⇒ e` = p+ P 1/2Bµ`, (4)

where P = diag(p). This construction is unique and has the

useful property that µ` lies in the span of {e1, . . . , e`}.

Proposition 2. If the labels are identically distributed then the

(k− 1)× (k− 1) MMSE matrix of the whitened representation

satisfies

tr(I −MMSE(X | G)) =
1

n

n
∑

i=1

χ2(PXi,G ‖PXi
PG),

where χ2(P ‖Q) =
∫

(dP/dQ)2 dQ denotes the chi-squared

divergence.

For the purposes of analysis, the two representations de-

scribed above are equivalent in the sense that there is a one-to-

one mapping between the k × k MMSE matrix defined under

the standard basis representation and the (k − 1) × (k − 1)
MMSE matrix defined under the whitened representation. For

notational convenience we work in the whitened representation.

III. SIGNAL-PLUS-NOISE PROBLEM

Our analysis uses properties of the signal-plus-noise model

given in (2). Throughout this section we will assume the

labels are drawn i.i.d. according to a probability vector

p = (p1, . . . , pk) with strictly positive entries and are supported

on the whitened representation described in Section II-B. For

each S ∈ S
k−1
+ , the task of recovering X from Y decouples

into n independent copies of the problem

Y = S1/2X +N,

where X is supported on {µ1, . . . , µk} with probability vector

p and N ∼ N (0, I) is independent Gaussian noise.

Following [15] we define the the mutual information function

IX : Sk−1
+ → [0,∞) and matrix-valued MMSE function MX :

S
k−1
+ → S

k−1
+ according to

IX(S) = I(X;Y ) (5)

MX(S) = E[Cov(X | Y )]. (6)

The gradient and Hessian of IX(S) are given by [15, Lemma 4]

∇SIX(S) =
1

2
MX(S) (7)

∇2
SIX(S) = −1

2
E[Cov(X | Y )⊗ Cov(X | Y )], (8)

where ⊗ denotes the Kronecker product. We note that these

functions can be approximated using numerical integration

methods or Monte-Carlo sampling.

IV. MAIN RESULTS

A. Degree-Balanced SBM

An SBM is frequently parameterized in terms of the tuple

(n, p,Q) where p = (p1, . . . , pk) is a distribution over k
communities and Q ∈ [0, 1]k×k is a symmetric matrix such that

Qab is the probability of an edge between nodes in communities

a and b. The average degree of an SBM corresponds to the

expected number of edges for a node chosen uniformly at

random and is denoted by d. An SBM is said to be degree-

balanced if the expected degree of a node does not depend

on its community assignments. This condition is equivalent to

saying that Qp is proportional to the all ones vector.

For the purposes of this paper, it is useful to consider a

different parameterization of the degree-balanced SBM in terms

of the tuple (n, d, p, R) where d is the average degree and

R ∈ S
k−1. Using this parameterization, the entries of Q are

given by

Qab =
d

n
+

√

d(1− d/n)

n
µT
aRµb, (9)

where {µ1, . . . , µk} are defined as a function of p using the

procedure described in Remark 1. The tuple (n, d, p, R) is

valid only if the entries of Q are between zero and one.

The matrix R quantifies the relative strength of relationships

between different communities. The eigenvalue decomposition

is given by

R = U diag(λ)UT ,

where λ = (λ1, . . . , λk−1) are real numbers. To simplify the

analysis, we will assume throughout that all the eigenvalues

are nonzero so that R is invertible.

We remark that the definition of signal-to-noise ratio given

by Abbe and Sandon [10, Section 2.1] corresponds to maxi λ
2
i .

Furthermore, for the special case of k = 2 communities, the

representation of Xi is one-dimensional and our formulation

is equivalent to the one given by Lelarge and Miolane [5].

B. Formulas for Mutual Information and MMSE

Our analysis focuses on a sequence of degree-balanced SBMs

where the parameters (p,R) are fixed as the size of the network

n scales to infinity. Additionally, we make two assumptions.

Assumption 1 (Diverging Average Degree). The average

degree of the network d increases with n such that both d and

(n− d) tend to infinity.

Assumption 2 (Definite Matrix). The matrix R is either

positive definite or negative definite.

Our first result is stated in terms of the potential function

F : Sk−1
+ → R+ defined by

F(∆) = IX(∆) +
1

4
tr
(

(

R−R−1∆
)2
)

. (10)

where IX(·) is defined by (5). Notice that the first term in

the potential function is defined by the distribution the labels

p whereas the second term is defined by the matrix R. By
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the matrix I-MMSE relation [15], it can be verified that every

stationary point of F(∆) satisfies the fixed-point equation

MX(∆) = I −R−1∆R−1. (11)

where MX(·) is defined by (6). Noting that MX(0) = I , we

see that ∆ = 0 is always a stationary point. Furthermore, every

solution of (11) belongs to the set {∆ : 0 � ∆ � R2}.

Theorem 1. Under Assumptions 1 and 2,

lim
n→∞

1

n
I(X;G) = min

∆∈S
k−1

+

F(∆),

where F(∆) is given in (10).

The next result provides an upper bound on the mutual

information in the setting where side information is generated

according to the signal-plus-noise model (2) parameterized by

a positive semi-definite matrix S. To characterize this setting,

we define the modified potential function:

F(∆, S) = IX(S +∆) +
1

4
tr
(

(

R−R−1∆
)2
)

. (12)

Notice that the main difference from (11) is that the side

information changes the prior information about the labels.

Theorem 2. Suppose that Y is generated according to the

signal-plus-noise model (2) with matrix S ∈ S
k−1
+ . Under

Assumption 1,

lim sup
n→∞

1

n
I(X;G,Y ) ≤ min

∆∈S
k−1

+

F(∆, S).

where F(∆, S) is given in (12).

Remark 2. Similar to previous work [3]–[8], our proofs of

Theorems 1 and 2 use a channel universality argument to relate

the community detection problem to a low-rank estimation

problem. Assumption 2 is needed for the proof of Theorem 1,

which leverages [5, Theorem 12]. To prove Theorem 2 we

develop a novel variation of the Guerra interpolation method

that exploits the matrix I-MMSE relationship [15] to provide

a general and non-asymptotic upper bound.

Next, we recall that that by the data processing inequality,

the MMSE matrix satisfies

MMSE(X | G) � MMSE(X | G,Y ),

for all S ∈ S
k−1
+ . For any fixed problem size n, the difference

between these matrices converges to zero as S → 0. However,

in the large-n limit it is possible that the limiting behavior is

discontinuous with respect to S. This can occur, for example,

when the SBM is invariant to permutations of the labels and

hence MMSE(X | G) = MMSE(X). The presence of side-

information with an arbitrarily small positive definite matrix

S is sufficient to break the permutation invariance, and thus

the small-S limit provides a meaningful measure of recovery

performance that overcomes the non-identifiability issues.

The following result follows from the matrix I-MMSE

relation and Theorems 1 and 2.

Theorem 3. Consider Assumptions 1 and 2. For every S � 0,

lim sup
n→∞

λmax(MMSE(X | G,Y )−MX(∆∗)) ≤ 0

where ∆∗ denotes any minimizer of F(∆). In other words,

MMSE(X | G,Y ) � MX(∆∗) + on(1),

where on(1) denotes a sequence of symmetric matrices that

converges to zero as n → ∞.

Following heuristic arguments, we postulate that upper

bounds in Theorem 2 is asymptotically tight and that the

MMSE matrix satisfies

MMSE(X | G,Y ) = MX(S +∆∗) + on(1)

for almost all S, where ∆∗ is the unique minimizer of F(·, S).
These conjectures are supported by the numerical experiments

in Section V.

C. Implications for Weak Recovery

In the context of community detection, weak recovery refers

to the ability to produce an estimate of the community labels

that is positively correlated with the ground truth. Within

the literature, the measure of correlation usually includes an

additional step that maximizes over all permutations of the

labels; see e.g., [10, Section 2].

Using the results in this paper, we see that a natural

alternative is to focus on the small-S behavior of the MMSE

matrix. In particular, we say that weak recovery is possible if

inf
S�0

lim inf
n→∞

‖MMSE(X | G,Y )−MMSE(X)‖ > 0. (13)

In view of this definition, we see that Theorem 3 provides a

sufficient condition for weak recovery.

Theorem 4. Consider Assumptions 1 and 2. If F(·) has a

minimizer ∆∗ with MX(∆∗) ≺ MX(0) then weak recovery in

the sense of (13) is possible.

Evaluating the Hessian of the potential function at zero

provides a simple test to determine whether ∆ = 0 is a local

minimum. Using (8), it can be shown that

∇2F(∆)
∣

∣

∣

∆=0
∝ R−1 ⊗R−1 − I(k−1)2 .

Therefore, if maxi λ
2
i > 1 then ∆ = 0 is not a local minimizer.

V. NUMERICAL EXPERIMENTS

This section compares the asymptotic bounds given in

Section IV with the MSE obtained using belief propagation. The

case of the three-community degree balanced SBM (n, d, p, R)
is illustrated in Figure 1. The black contour lines correspond

to the trace of MX(∆∗) where ∆∗ is the global minimizer of

the potential function defined in (10). The heat map values

correspond to the empirical MSE of the belief propagation

algorithm described in [2] applied to a network of size n = 105

with average degree d = 10. Each pixel is the average of ten

independent trials and the MSE is measured with respect to

the whitened basis representation.
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∆∗ = 0

(a) p = (1/3, 1/3, 1/3)

∆∗ = 0

(b) p = (0.6, 0.3, 0.1)

Fig. 1: Comparison of upper bound on tr(MMSE(X | G)) given in Theorem 3 (black contour lines) and the empirical MSE of belief
propagation (heat map) on a network of size n = 105 with average degree d = 10. In both cases, R = diag(λ1, λ2). The upper bound on
the weak recovery threshold given in Theorem 4 (solid blue line) corresponds to the boundary where ∆∗ = 0. The weak recovery threshold
for acyclic BP [10] (dashed blue line) corresponds to max(λ1, λ2) = 1.

In the case of uniform community assignments (Figure 1a),

our upper bound on the weak detection threshold is equal to

the weak recovery limit for acyclic BP [10]. Furthermore, we

see that there is a close correspondence between the asymptotic

formula and the empirical results. Note that the special case

λ1 = λ2 corresponds to the three-community symmetric SBM.

In the case of non-uniform community assignments (Fig-

ure 1b) there exists a region of the parameter space where weak

recovery is possible with max(λ1, λ2) < 1. The existence of

such a region has been shown previously in the special case of

the two-community asymmetric SBM [4]. We also see that the

asymptotic formulas match the empirical behavior qualitatively,

although the empirical MSE is worse than is suggested by the

formulas. The grey region in Figure 1b corresponds to settings

where (n, d, p, R) does not define a valid SBM.

Numerical Approximation of Formulas: We use Monte Carlo

sampling to approximately evaluate the functions IX and MX ,

and we use the concave-convex procedure [16] to explore

the local minima of the potential function. Starting is an

initialization point ∆0, a sequence of iterates is obtained

according to

∆t+1 = (1− ε)
(

R2 −RMX(∆t)R
)

+ ε∆t,

where ε ∈ [0, 1) is a dampening parameter.
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