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Abstract—We study the problem of community detection
when there is covariate information about the node labels
and one observes multiple correlated networks. We provide an
asymptotic upper bound on the per-node mutual information
as well as a heuristic analysis of a multivariate performance
measure called the MMSE matrix. These results show that the
combined effects of seemingly very different types of informa-
tion can be characterized explicitly in terms of formulas involv-
ing low-dimensional estimation problems in additive Gaussian
noise. Our analysis is supported by numerical simulations.

I. INTRODUCTION

Networks model relational data between various nodes,
e.g. friendship networks in schools or social media. The
community detection problem aims to classify the nodes of
a network based on those relationships into various com-
munities. The stochastic block model (SBM) is a generative
model for a network where each node belongs to exactly one
of k communities and the probability of an edge between two
nodes is exclusively a function of their community member-
ships. In this setting, the goal of community detection is to
recover the community labels from the observed network.

A recent line of work has studied the information-theoretic
limits of recovery. Most of this work has focused on either the
two-community SBM [1]-[8] or the so-called k-community
symmetric SBM [6], [9]-[11]. In all of these cases, perfor-
mance is summarized in terms of a single numerical value,
which is often referred to as the effective signal-to-noise
ratio of the problem. General SBMs have been considered by
Abbe and Sandon [9] who characterize conditions for weak
recovery, Lesieuir et al. [6] who analyze the performance of
an approximate message passing algorithm, and Reeves et. al
[12] who study the asymptotic per-node mutual information
and MMSE in degree-balanced SBMs.

The contribution of this paper is to extend the analysis in
[12] to the setting where one observes:

1) covariate information about the node labels; and
2) multiple networks that are conditionally independent
given the same underlying node labels.

Section II gives the problem formulation and describes con-
nections with previous work. Section III provides the main
theoretical results, which are upper bounds on mutual infor-
mation. Numerical simulations are provided in Section IV.
Notation: We use S%, S% to denote the space of d x d
symmetric matrices and symmetric positive semi-definite
matrices, respectively. Given a positive semi-definite matrix
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S, we use S'/2 to denote the unique positive semi-definite
square root. Given matrices A, B € S, the relation A < B
means that B — A € S4.

II. PROBLEM FORMULATION AND RELATED WORK
A. Node labels and covariate information

The labels and covariate information associated with a
collection of n nodes are modeled in terms of an i.i.d. se-
quence of tuples {(X;,Y;, YQ) ?_, where X is the unknown
node label and (Y;,Y;) is observed covariate information
associated with the i-th node.

We focus on the problem of community detection where
each label takes exactly one of k values with probability
vector p = (p1,...,pr). Without loss of generality these
labels can be embedded into finite dimensional Euclidean
space. To facilitate the exposition of our results, we use the
whitened representation described in [12], where the labels
are supported on a set of k points in {y, ..., up} in RF 7!
with the property that

k k
> patta =0, D paptapis = 1. (1)
a=1 a=1

A unique specification of this whitened representation is
described in [12, Remark 1].

There are two types of the covariate information. The
terms Y; are supported on a set Y and are used to model gen-
eral information about the nodes. The terms Y; correspond
to the output of linear Gaussian channel described by

Y, = SY2X; + N; )

where S € S*! is known and N; ~ N(0,1z_1) is
independent Gaussian noise. These terms play a fundamental
role in our proof technique.

Furthermore, we define the information function Z(.5) :
S¥~!' — R and MMSE function M(S) : Skt — sk~!
according to

I(S) £ I(X1; Y1, Y1) 3)
M(S) £ E[Cov(Xy | 1, 11)), @

where S appears in the definition of Y;. The matrix version
of the -lMMSE relation [13] states that

VsI(S) = %M(S).
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Finally, the collection of node labels is represented by an
nx (k—1) matrix X = (X1,...X,)7. Similarly, the covari-
ate information is denoted by matrices Y = (Y7,...,Y,)T
and Y = (V,...,Y,) T with Y = (Y,Y).

B. Correlated networks

We consider the setting where one observes multiple net-
works G1, ..., G that are conditionally independent given
the labels X. Each network is represented by an n X n binary
adjacency matrix G, = (Gy;;) where Gy = Gy = 1 if
there is an edge between nodes ¢ and j and zero otherwise.
Following [12], each network is drawn according to a degree-
balanced SBM of the form

d dg(l —dg/n)

Gij ~ Ber( +

¢ X}Rpg), i< j,
n

®)

where dy is a positive real number that parameterizes the
expected degree of each node in the network and R, is a
symmetric (k — 1) x (k — 1) matrix that describes the rela-
tionship between the community labels and the probability of
an edge. We assume that the parameters (dg, R;) are known
and we use G = (G4,...,GL) to denote the collection of
networks.

C. Multivariate performance metric

The ability to recover the labels X from the observations
(Y, G) is assessed in terms of the MMSE matrix:

MMSE(X | ¥, G) £ 1 3 ElCov(X | ¥, @), ©)
=1

where the expectation is taken with respect to (Y, G). By
the matrix I-MMSE relation [13], this matrix can also be
expressed as the gradient of the mutual information with
respect to the matrix SNR:

MMSE(X | Y, G) = 2VsI(X:Y, G).

Moreover, by the data processing inequality for covariance
and the assumption that the rows of X drawn from the
whitened representation, 0 < MMSE(X | G,Y) < I,_;.
Notice that in the absence of network observations G, the
problem of estimating X from the covariate information Y
decouples into n independent problems and we have:

Lixyy = 29) ¢
MMSE(X | Y) = M(S). )

These terms involve (k — 1)-dimensional integrals that can
be approximated numerically for small values of k. The
problem of estimating the node labels in the presence of
network observations is more difficult to analyze because the
networks induce dependence in the conditional distribution
of the labels.

D. Relation to prior work

In recent years, there has been significant interest in
community detection in the fields of statistical physics and
information theory. The research focuses on quantifying the
performance of community detection as a function of the
graph parameters, and identifying algorithms that achieve
these limits. In [1], the authors conjectured that if community
sizes are equal and R = rlz_y, for any |r| > 1, it is
possible to recover the community labels using a polynomial
time algorithm better than random chance. Since then, a
number of works have proven the conjecture, and extended
the results to general SBMs with two communities. In [12],
the authors extended the results to obtain upper bounds to
the performance for degree balanced SBMs for k& > 2.

In networks with two communities, it has been shown that
revealing additional information about the nodes can measur-
ably improve community detection. The effect of node-wise
ii.d. covariate information on community detection has been
studied in [14]-[17].

Community detection with multiple networks has been
studied in [18], [19]. In [18], the authors use the central
limit theorem to predict the performance in settings where
the communities are well separated (when the eigenvalues of
R are very large). To the best of our knowledge, the infor-
mation theoretic limits of optimal algorithms with multiple
correlated networks have not been addressed. With our work,
we can provide theoretical performance limits over a broad
range of parameters for the degree-balanced setting.

III. FORMULAS FOR MUTUAL INFORMATION AND MMSE

A. Upper bound on the mutual information

Our analysis focuses on a sequence of problem settings
where the number of nodes n scales to infinity. We assume
that node labels and covariate information are drawn i.i.d.
according to the distribution on (X7, Y7, 5;1) and the matrices
{Ry} are fixed. We make two additional assumptions.

Assumption 1 (Diverging Average Degree). The average
degree of each network d, increases with n such that both
dg and (n — dy) tend to infinity.

Assumption 2 (Definite Matrix). Each matrix Ry, is either
positive definite or negative definite.

Our results are stated in terms of a potential function. Let
U={UecS :U=<TI}andlet F: U — [0,00) be
defined as

L L
FU) 2 z(s +3 R(I - U)Re) + =3 w((RU)?).
£=1 =1
©)
The following result provides an asymptotic upper bound

on the per-node mutual information between X and the
observations (Y, G). The proof is given in Section V.

=~ =
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Theorem 1. Under Assumptions 1 and 2,

1
limsup —I(X;Y,G) < mia F(U).

n—oo N Ue

(10)

Theorem 1 provides an extension of [12], which focused
on the setting of a single network (L = 1) without the
covariate information provided by Y. In this setting, [12,
Theorem 1] shows that the upper bound is asymptotically
tight when S = 0, that is

1 1
nh_}n;O EI(X;Q) = rUnelg{I(R(I —U)R) + 1 tr((RU)Q)}.
an

B. Partially revealed labels

As a specific example of covariate information, consider
the setting where a fraction of the true node labels are
revealed. This is also referred to as the semi-supervised
setting [14]. Using the setup introduced in Section II-A,
partially revealed labels can be modeled using an erasure
channel, where Y; is equal to X; with probability o and is
equal to an erasure symbol with probability 1 — «. In this
setting, the mutual information function is given by

I(S) = aH (X1) + (1 — a)[(X1; Y1) (12)
where H(X;) = Z’;Il —pqlogp, is the entropy of the
community labels.

C. Heuristic analysis of MMSE matrix

The MMSE matrix is related to the mutual information via
the matrix [-MMSE relation [13], which implies

I(X;Y,G) - I(X;Y,G)

n ! d
= — tr{ MMSE(X Y —
-/ ( SE( |G,>\S_Swd,ysw)dv,

for any differentiable path S, with Sp = 0 and S; = S.
Following the approach outlined in [12, Appendix A.3], it can
be shown that upper and lower bounds on the asymptotic per-
node mutual information lead to asymptotic bounds on the
MMSE matrix. In particular, for the special case of a single
network without covariate information, [12, Theorem 3]
shows that, for any positive definite S,

MMSE(X | Y,G) < U* + 0,(1),

where U* is any minimizer of F(U) and o,(1) denotes a
sequence of symmetric matrices that converges to zero in
the large-n limit.

Our next result follows a similar approach for the setting
of multiple networks and covariate information. This result
requires the additional assumption that the upper bound on
the mutual information in Theorem 1 is asymptotically tight
for S = 0. Because this assumption is unproven, the resulting
upper bound is considered to be heuristic.

Theorem 2. Consider Assumptions 1 and 2. If the upper
bound in Theorem 1 is asymptotically tight at S = 0, that is

1
lim —I(X;G,Y) =

n—oo n

L L
[r]neig{z( ; Ry(I — U)Rg) + % Ztr((RzU)z)}

(=1

then, for any positive definite S, the MMSE matrix satisfies

MMSE(X | G,Y) X U™ + on(1), (13)
where U* is any minimizer of F(U) and 0,(1) denotes a
sequence of symmetric matrices that converges to zero in the
large-n limit.

IV. SIMULATION RESULTS

A. Covariate information

We first consider the effects of partially revealed labels
in the setting of a single network observation. Results are
obtained on a problem with n = 10° nodes and k = 3
communities with probability vector p = (0.1,0.3,0.6). Con-
ditional on the node labels, the network is drawn according
to a degree-balanced SBM with average degree d = 30
and R = diag(\1, A2). The covariate information in Y
consists of the output of an erasure channel, as described
in Section III-B.

We compare our theoretical results with the empirical
performance of belief propagation (BP). For each problem
setting the MSE is estimated according to 1 Y%  ||X; —
X;||2, where X; is the BP estimate of the i-th label. We
note that this evaluation of the MSE differs slightly from
much of the prior work, which focus on uniform community
assignments and include an additional step that minimizes
over all permutations of community labels. This additional
step is not needed in our setting due to the non-uniformity
in community sizes.

Figure 1 provides a comparison of the heuristic upper
bound on tr(MMSE(X | Y, G) given in Theorem 2 and
the empirical MSE of BP, where each pixel is the median of
8 independent trials. The axes correspond to the eigenvalues
of R. Figure 1(a) corresponds to the setting without covariate
information and Figure 1(b) corresponds to the setting where
1% of the labels are revealed.

Similar to previous work focusing on partially revealed la-
bels [14]-[17], Figure 1 shows that a relatively small amount
of extra information can provide significant performance
gains. One of main takeaways from Figure 1 is that there is a
close qualitative correspondence between the heuristic upper
bound given in this paper and the empirical performance.

Finally, we note that there is a region in Figure 1(a)
where BP becomes unstable. We suspect that this may be
a consequence of asymmetries in the network model.
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(a) No covariate information

(b) 1% of labels revealed

Fig. 1: Comparison of the heuristic upper bound on tr(MMSE(X | Y, G) given in Theorem 2 (black contour lines) with
the empirical MSE of BP (heat map). In the left panel, the solid blue line is the upper bound on the weak recovery threshold
given in [12, Theorem 5] and the dashed blue line is the weak recovery threshold for acyclic BP [9].

B. Correlated networks

Next we consider the effects of multiple network obser-
vations. Results are obtained for a problem with n = 10*
nodes and k£ = 3 communities with non-uniform probability
vector p = (0.1,0.3,0.6). Conditional on the labels, two
networks are drawn according to the degree-balanced SBM
with average degree d = 30 and Ry = rls.

In this setting, we found that the BP has convergence
issues and so we compare our theoretical results with the
empirical performance of a spectral method [20] applied to a
linear combination of the adjacency matrices. Specifically, we
obtain estimates of the community labels using the following
procedure. First, we construct the average of the networks G
and G2 according to

~ 1 1

G \/§G1 + \/5
Note that the conditional expectation of G given X is
comparable to that of a single network with R = V2rlL
Next, we retain the eigenvectors associated with the second
and third leading eigenvalues in the spectral decomposition
of G. The relationship between these eigenvectors and the
node labels is characterized using a Gaussian mixture model
(GMM) approach described in [20], evaluated with R.

Figure 2 shows the MSE as a function of the SBM
parameter r. The solid blue line corresponds to the trace
of the heuristic upper bound to the MMSE for two corre-
lated networks computed from Theorem 2, and the red line
corresponds to the upper bound for a single network. The
black line corresponds to the empirical observations using
the method described in this section. With multiple correlated
networks, we see that the MSE shows an improvement in
the presence of additional information, and our proposed
asymptotic upper bound follows the observed performance.

G,. (14)

— Upper Bound- Two Networks
—MSE 1
— Upper Bound - Single Network | |

0.8
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Fig. 2: MSE as a function of the SBM parameter 7.

V. PROOF OF THEOREM 1

The proof of Theorem 1 follows the approach in [12] with
appropriate modifications to handle the covariate information
and multiple networks. The first step of the proof is to
establish an asymptotic equivalence between the mutual
information in the community detection problem and the mu-
tual information in the symmetric matrix estimation problem
defined by

_ 1 T
W, = \/EXRZX (15)
Zy = \VtW, + &, (16)

where £ is a symmetric matrix with &;; ~ N (0,1) for i < j
and &; ~ N(0,2). We use Z = (Z4,...,Z) to denote the
collection of matrix observations.
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Lemma 3 (Channel Universality). Under Assumption I,

lim l|I(X;X, G) -

n—o00 N

I[(X:Y.Z)|=0. (7
Proof. To simplify the expression, we will prove the result
without Y. The result can then be extended to the setting
with Y following the approach used in [12, Corollary 7].

To proceed, let us define a; = I(X;Z),
I(X;G), and

ar+1 =

af:I(X;le"'7G£717Z€7"'7ZL)7

for £ = 2,...
write

, L. By the triangle inequality, we can then

I(X;G) - I(X;Z)| =

L L
E g1 —ag| < E lagt1 — agl.
=1 =1

Next, by the chain rule for mutual information one finds
that

a1 —ae =I(X;Ge | Do) — 1(X;Z; | Do)
=I1(Wy; G, | D) — I(We; Zg | Do),
where Dy = (Gy,...,Gy_1,Z¢+1,...Z1). Under the as-

sumed distribution on W,, we can apply [12, Theorem 6]
to show that %\agﬂ — ay| converges to zero in the large-n
limit. O

The next step in our proof is to obtain an upper bound on
I(X;Y, Z). We define the function

A

1 -
I(8,t) = ~1(X;Y, Z). (18)
n
where we note that Z(S5,0) = Z(S) is the information
function defined in (3). The function Z(S,t) is concave and
differentiable in (.5,t) with
1

VSI(S,t) = 5 MMSE(X | Y, Z). (19)
The next result provides an upper bound on the partial
derivative with respect to ¢.

Lemma 4. Under Assumption 2,

1 L
<3 ; 0(2VZ(S, 1)) (20)
where
a(U) = % tr(E[(ReXTX)?]) — tr((Re( — U))?).

Proof. Suppose that each observation Z, has a separate
parameters t,. By the chain rule for differentiation, we can
then write

Z o

(XY, Z)

t1=...tp, =t

2y

Furthermore, by the chain rule for mutual information and
the fact that Z, is conditionally independent of everything
else given W), we have

at[I(XaX7Z) = ath(Wf; Z[ | X? ZNZ)a

where the subscript ~ ¢ means that the ¢-th term is omitted.

Following the steps outlined in outlined in [12, App-
dendix D] and the proof of [12, Lemma 11], one finds that the
9, Z(S,t) < 19¢(VsZ(S,t). Plugging this inequality back
into the expression above completes the proof. O

Having established Lemma 4, the rest of the proof follows
similarly to the proof of Theorem 8 in [12]. Specifically, we
obtain

1
< min{ I* -
7(5,1) < {JnelE{I )+ 5 tr(SU) +

1 L
4de(U)}, (22)

{=1

where

T'U) = Sup{I(S) - ;tr(SU)} 23)

S=0

is the convex conjugate of Z(.S).
For the final step in the proof, observe that

ge(U) =60 + QtY(R,%U) — tI‘((RgU)z)

where 0y = L tr(E[(R(XTX —I))?]). For all U € U,
the inequality

—tr(ReU)?) < —2tr(RUR,U) + tr((R,U)?),
leads to

9:(U) < 8¢+ 2tr(R(I — U)RU) + tr((R,U)?)
Combining this inequality with (22), we see that, for all U, U
in U,

L
7(8,1) <IT*(U) + % > (S + Re(I = U)Ry)U)
/=1

+ = Ztr (ReU)?

s

The minimum of the first two terms with respect to U then
leads to

(24)

Uveu

min{I*(U) + % > (S + Re(I - U)R@)U)}

=1
- I(S + iRZ(I . ff)Rg).
=1

where we have used the fact that Z(.S) is concave, and thus
equal to its biconjugate. Plugging this expression back into
(24) and then taking the the minimum with respect to U
yields,

Z(S,1) < min F(U) +
Uecu

(25)

1 L
ZZ(;[
(=1
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Under the assumed distribution on X each term J, vanishes
in the large-n limit. Combining (25) with Lemma 3 com-
pletes the proof of Theorem 1
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