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Abstract—We study the problem of community detection
when there is covariate information about the node labels
and one observes multiple correlated networks. We provide an
asymptotic upper bound on the per-node mutual information
as well as a heuristic analysis of a multivariate performance
measure called the MMSE matrix. These results show that the
combined effects of seemingly very different types of informa-
tion can be characterized explicitly in terms of formulas involv-
ing low-dimensional estimation problems in additive Gaussian
noise. Our analysis is supported by numerical simulations.

I. INTRODUCTION

Networks model relational data between various nodes,

e.g. friendship networks in schools or social media. The

community detection problem aims to classify the nodes of

a network based on those relationships into various com-

munities. The stochastic block model (SBM) is a generative

model for a network where each node belongs to exactly one

of k communities and the probability of an edge between two

nodes is exclusively a function of their community member-

ships. In this setting, the goal of community detection is to

recover the community labels from the observed network.

A recent line of work has studied the information-theoretic

limits of recovery. Most of this work has focused on either the

two-community SBM [1]–[8] or the so-called k-community

symmetric SBM [6], [9]–[11]. In all of these cases, perfor-

mance is summarized in terms of a single numerical value,

which is often referred to as the effective signal-to-noise

ratio of the problem. General SBMs have been considered by

Abbe and Sandon [9] who characterize conditions for weak

recovery, Lesieuir et al. [6] who analyze the performance of

an approximate message passing algorithm, and Reeves et. al

[12] who study the asymptotic per-node mutual information

and MMSE in degree-balanced SBMs.

The contribution of this paper is to extend the analysis in

[12] to the setting where one observes:

1) covariate information about the node labels; and

2) multiple networks that are conditionally independent

given the same underlying node labels.

Section II gives the problem formulation and describes con-

nections with previous work. Section III provides the main

theoretical results, which are upper bounds on mutual infor-

mation. Numerical simulations are provided in Section IV.

Notation: We use S
d, S

d
+ to denote the space of d × d

symmetric matrices and symmetric positive semi-definite

matrices, respectively. Given a positive semi-definite matrix

S, we use S1/2 to denote the unique positive semi-definite

square root. Given matrices A,B ∈ S
d, the relation A � B

means that B −A ∈ S
d
+.

II. PROBLEM FORMULATION AND RELATED WORK

A. Node labels and covariate information

The labels and covariate information associated with a

collection of n nodes are modeled in terms of an i.i.d. se-

quence of tuples {(Xi, Yi, Ỹi)}ni=1 where Xi is the unknown

node label and (Yi, Ỹi) is observed covariate information

associated with the i-th node.

We focus on the problem of community detection where

each label takes exactly one of k values with probability

vector p = (p1, . . . , pk). Without loss of generality these

labels can be embedded into finite dimensional Euclidean

space. To facilitate the exposition of our results, we use the

whitened representation described in [12], where the labels

are supported on a set of k points in {µ1, . . . , µk} in R
k−1

with the property that

k
∑

a=1

paµa = 0,
k
∑

a=1

paµaµ
T
a = I. (1)

A unique specification of this whitened representation is

described in [12, Remark 1].

There are two types of the covariate information. The

terms Yi are supported on a set Y and are used to model gen-

eral information about the nodes. The terms Ỹi correspond

to the output of linear Gaussian channel described by

Yi = S1/2Xi +Ni (2)

where S ∈ S
k−1
+ is known and Ni ∼ N (0, Ik−1) is

independent Gaussian noise. These terms play a fundamental

role in our proof technique.

Furthermore, we define the information function I(S) :
S
k−1
+ → R and MMSE function M(S) : S

k−1
+ → S

k−1
+

according to

I(S) , I(X1;Y1, Ỹ1) (3)

M(S) , E

[

Cov(X1 | Y1, Ỹ1)
]

, (4)

where S appears in the definition of Ỹi. The matrix version

of the I-MMSE relation [13] states that

∇S I(S) = 1

2
M(S).

2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, September 24-27, 2019

978-1-7281-3151-1/19/$31.00 ©2019 IEEE 602



Finally, the collection of node labels is represented by an

n×(k−1) matrix X = (X1, . . . Xn)
T . Similarly, the covari-

ate information is denoted by matrices Y = (Y1, . . . , Yn)
T

and Ỹ = (Ỹ1, . . . , Ỹn)
T with Y = (Y , Ỹ ).

B. Correlated networks

We consider the setting where one observes multiple net-

works G1, . . . ,GL that are conditionally independent given

the labels X . Each network is represented by an n×n binary

adjacency matrix G` = (G`ij) where G`ij = G`ji = 1 if

there is an edge between nodes i and j and zero otherwise.

Following [12], each network is drawn according to a degree-

balanced SBM of the form

G`ij ∼ Ber

(

d`
n

+

√

d`(1− d`/n)

n
XT

i R`Xj

)

, i < j,

(5)

where d` is a positive real number that parameterizes the

expected degree of each node in the network and R` is a

symmetric (k − 1)× (k − 1) matrix that describes the rela-

tionship between the community labels and the probability of

an edge. We assume that the parameters (d`, R`) are known

and we use G = (G1, . . . ,GL) to denote the collection of

networks.

C. Multivariate performance metric

The ability to recover the labels X from the observations

(Y ,G) is assessed in terms of the MMSE matrix:

MMSE(X | Y ,G) ,
1

n

n
∑

i=1

E[Cov(X | Y ,G)], (6)

where the expectation is taken with respect to (Y ,G). By

the matrix I-MMSE relation [13], this matrix can also be

expressed as the gradient of the mutual information with

respect to the matrix SNR:

MMSE(X | Y ,G) = 2∇SI(X;Y ,G).

Moreover, by the data processing inequality for covariance

and the assumption that the rows of X drawn from the

whitened representation, 0 � MMSE(X | G,Y ) � Ik−1.

Notice that in the absence of network observations G, the

problem of estimating X from the covariate information Y

decouples into n independent problems and we have:

1

n
I(X;Y ) = I(S) (7)

MMSE(X | Y ) = M(S). (8)

These terms involve (k − 1)-dimensional integrals that can

be approximated numerically for small values of k. The

problem of estimating the node labels in the presence of

network observations is more difficult to analyze because the

networks induce dependence in the conditional distribution

of the labels.

D. Relation to prior work

In recent years, there has been significant interest in

community detection in the fields of statistical physics and

information theory. The research focuses on quantifying the

performance of community detection as a function of the

graph parameters, and identifying algorithms that achieve

these limits. In [1], the authors conjectured that if community

sizes are equal and R = rIk−1, for any |r| > 1, it is

possible to recover the community labels using a polynomial

time algorithm better than random chance. Since then, a

number of works have proven the conjecture, and extended

the results to general SBMs with two communities. In [12],

the authors extended the results to obtain upper bounds to

the performance for degree balanced SBMs for k ≥ 2.

In networks with two communities, it has been shown that

revealing additional information about the nodes can measur-

ably improve community detection. The effect of node-wise

i.i.d. covariate information on community detection has been

studied in [14]–[17].

Community detection with multiple networks has been

studied in [18], [19]. In [18], the authors use the central

limit theorem to predict the performance in settings where

the communities are well separated (when the eigenvalues of

R are very large). To the best of our knowledge, the infor-

mation theoretic limits of optimal algorithms with multiple

correlated networks have not been addressed. With our work,

we can provide theoretical performance limits over a broad

range of parameters for the degree-balanced setting.

III. FORMULAS FOR MUTUAL INFORMATION AND MMSE

A. Upper bound on the mutual information

Our analysis focuses on a sequence of problem settings

where the number of nodes n scales to infinity. We assume

that node labels and covariate information are drawn i.i.d.

according to the distribution on (X1, Y1, Ỹ1) and the matrices

{R`} are fixed. We make two additional assumptions.

Assumption 1 (Diverging Average Degree). The average

degree of each network d` increases with n such that both

d` and (n− d`) tend to infinity.

Assumption 2 (Definite Matrix). Each matrix R` is either

positive definite or negative definite.

Our results are stated in terms of a potential function. Let

U = {U ∈ S
k−1
+ : U � I} and let F : U → [0,∞) be

defined as

F(U) , I
(

S +
L
∑

`=1

R`(I − U)R`

)

+
1

4

L
∑

`=1

tr((R`U)2).

(9)

The following result provides an asymptotic upper bound

on the per-node mutual information between X and the

observations (Y ,G). The proof is given in Section V.
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Theorem 1. Under Assumptions 1 and 2,

lim sup
n→∞

1

n
I(X;Y ,G) ≤ min

U∈U
F(U). (10)

Theorem 1 provides an extension of [12], which focused

on the setting of a single network (L = 1) without the

covariate information provided by Y . In this setting, [12,

Theorem 1] shows that the upper bound is asymptotically

tight when S = 0, that is

lim
n→∞

1

n
I(X;G) = min

U∈U

{

I(R(I − U)R) +
1

4
tr((RU)2)

}

.

(11)

B. Partially revealed labels

As a specific example of covariate information, consider

the setting where a fraction of the true node labels are

revealed. This is also referred to as the semi-supervised

setting [14]. Using the setup introduced in Section II-A,

partially revealed labels can be modeled using an erasure

channel, where Yi is equal to Xi with probability α and is

equal to an erasure symbol with probability 1 − α. In this

setting, the mutual information function is given by

I(S) = αH(X1) + (1− α)I(X1; Ỹ1) (12)

where H(X1) =
∑k

a=1
−pa log pa is the entropy of the

community labels.

C. Heuristic analysis of MMSE matrix

The MMSE matrix is related to the mutual information via

the matrix I-MMSE relation [13], which implies

I(X;Y ,G)− I(X;Y ,G)

=
n

2

∫ 1

0

tr

(

MMSE(X | G,Y )
∣

∣

∣

S=Sγ

d

dγ
Sγ

)

dγ,

for any differentiable path Sγ with S0 = 0 and S1 = S.

Following the approach outlined in [12, Appendix A.3], it can

be shown that upper and lower bounds on the asymptotic per-

node mutual information lead to asymptotic bounds on the

MMSE matrix. In particular, for the special case of a single

network without covariate information, [12, Theorem 3]

shows that, for any positive definite S,

MMSE(X | Ỹ ,G) � U∗ + on(1),

where U∗ is any minimizer of F(U) and on(1) denotes a

sequence of symmetric matrices that converges to zero in

the large-n limit.

Our next result follows a similar approach for the setting

of multiple networks and covariate information. This result

requires the additional assumption that the upper bound on

the mutual information in Theorem 1 is asymptotically tight

for S = 0. Because this assumption is unproven, the resulting

upper bound is considered to be heuristic.

Theorem 2. Consider Assumptions 1 and 2. If the upper

bound in Theorem 1 is asymptotically tight at S = 0, that is

lim
n→∞

1

n
I(X;G,Y ) =

min
U∈U

{

I
(

L
∑

`=1

R`(I − U)R`

)

+
1

4

L
∑

`=1

tr((R`U)2)

}

then, for any positive definite S, the MMSE matrix satisfies

MMSE(X | G,Y ) � U∗ + on(1), (13)

where U∗ is any minimizer of F(U) and on(1) denotes a

sequence of symmetric matrices that converges to zero in the

large-n limit.

IV. SIMULATION RESULTS

A. Covariate information

We first consider the effects of partially revealed labels

in the setting of a single network observation. Results are

obtained on a problem with n = 105 nodes and k = 3
communities with probability vector p = (0.1, 0.3, 0.6). Con-

ditional on the node labels, the network is drawn according

to a degree-balanced SBM with average degree d = 30
and R = diag(λ1, λ2). The covariate information in Y

consists of the output of an erasure channel, as described

in Section III-B.

We compare our theoretical results with the empirical

performance of belief propagation (BP). For each problem

setting the MSE is estimated according to 1

n

∑n
i=1

‖Xi −
X̂i‖2, where X̂i is the BP estimate of the i-th label. We

note that this evaluation of the MSE differs slightly from

much of the prior work, which focus on uniform community

assignments and include an additional step that minimizes

over all permutations of community labels. This additional

step is not needed in our setting due to the non-uniformity

in community sizes.

Figure 1 provides a comparison of the heuristic upper

bound on tr(MMSE(X | Y ,G) given in Theorem 2 and

the empirical MSE of BP, where each pixel is the median of

8 independent trials. The axes correspond to the eigenvalues

of R. Figure 1(a) corresponds to the setting without covariate

information and Figure 1(b) corresponds to the setting where

1% of the labels are revealed.

Similar to previous work focusing on partially revealed la-

bels [14]–[17], Figure 1 shows that a relatively small amount

of extra information can provide significant performance

gains. One of main takeaways from Figure 1 is that there is a

close qualitative correspondence between the heuristic upper

bound given in this paper and the empirical performance.

Finally, we note that there is a region in Figure 1(a)

where BP becomes unstable. We suspect that this may be

a consequence of asymmetries in the network model.
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Fig. 1: Comparison of the heuristic upper bound on tr(MMSE(X | Y ,G) given in Theorem 2 (black contour lines) with

the empirical MSE of BP (heat map). In the left panel, the solid blue line is the upper bound on the weak recovery threshold

given in [12, Theorem 5] and the dashed blue line is the weak recovery threshold for acyclic BP [9].

B. Correlated networks

Next we consider the effects of multiple network obser-

vations. Results are obtained for a problem with n = 104

nodes and k = 3 communities with non-uniform probability

vector p = (0.1, 0.3, 0.6). Conditional on the labels, two

networks are drawn according to the degree-balanced SBM

with average degree d = 30 and R` = rI2.

In this setting, we found that the BP has convergence

issues and so we compare our theoretical results with the

empirical performance of a spectral method [20] applied to a

linear combination of the adjacency matrices. Specifically, we

obtain estimates of the community labels using the following

procedure. First, we construct the average of the networks G1

and G2 according to

G̃ =
1√
2
G1 +

1√
2
G2. (14)

Note that the conditional expectation of G̃ given X is

comparable to that of a single network with R̃ =
√
2rI.

Next, we retain the eigenvectors associated with the second

and third leading eigenvalues in the spectral decomposition

of G̃. The relationship between these eigenvectors and the

node labels is characterized using a Gaussian mixture model

(GMM) approach described in [20], evaluated with R̃.

Figure 2 shows the MSE as a function of the SBM

parameter r. The solid blue line corresponds to the trace

of the heuristic upper bound to the MMSE for two corre-

lated networks computed from Theorem 2, and the red line

corresponds to the upper bound for a single network. The

black line corresponds to the empirical observations using

the method described in this section. With multiple correlated

networks, we see that the MSE shows an improvement in

the presence of additional information, and our proposed

asymptotic upper bound follows the observed performance.
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Fig. 2: MSE as a function of the SBM parameter r.

V. PROOF OF THEOREM 1

The proof of Theorem 1 follows the approach in [12] with

appropriate modifications to handle the covariate information

and multiple networks. The first step of the proof is to

establish an asymptotic equivalence between the mutual

information in the community detection problem and the mu-

tual information in the symmetric matrix estimation problem

defined by

W` =
1√
n
XR`X

T (15)

Z` =
√
tW` + ξ`, (16)

where ξ is a symmetric matrix with ξij ∼ N (0, 1) for i < j
and ξii ∼ N (0, 2). We use Z = (Z1, . . . ,ZL) to denote the

collection of matrix observations.
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Lemma 3 (Channel Universality). Under Assumption 1,

lim
n→∞

1

n
|I(X;Y ,G)− I(X;Y ,Z)| = 0. (17)

Proof. To simplify the expression, we will prove the result

without Y . The result can then be extended to the setting

with Y following the approach used in [12, Corollary 7].

To proceed, let us define a1 = I(X;Z), aL+1 =
I(X;G), and

a` = I(X;G1, . . . ,G`−1,Z`, . . . ,ZL),

for ` = 2, . . . , L. By the triangle inequality, we can then

write

|I(X;G)− I(X;Z)| =
∣

∣

∣

∣

∣

L
∑

`=1

a`+1 − a`

∣

∣

∣

∣

∣

≤
L
∑

`=1

|a`+1 − a`|.

Next, by the chain rule for mutual information one finds

that

a`+1 − a` = I(X;G` | D`)− I(X;Z` | D`)

= I(W`;G` | D`)− I(W`;Z` | D`),

where D` = (G1, . . . ,G`−1,Z`+1, . . .ZL). Under the as-

sumed distribution on W`, we can apply [12, Theorem 6]

to show that 1

n |a`+1 − a`| converges to zero in the large-n
limit.

The next step in our proof is to obtain an upper bound on

I(X;Y ,Z). We define the function

I(S, t) ∆
=

1

n
I(X; Ỹ ,Z). (18)

where we note that I(S, 0) = I(S) is the information

function defined in (3). The function I(S, t) is concave and

differentiable in (S, t) with

∇SI(S, t) =
1

2
MMSE(X | Y ,Z). (19)

The next result provides an upper bound on the partial

derivative with respect to t.

Lemma 4. Under Assumption 2,

∂tI(S, t) ≤
1

4

L
∑

`=1

g`(2∇SI(S, t)) (20)

where

g`(U) =
1

n2
tr
(

E
[

(R`X
TX)2

])

− tr
(

(R`(I − U))2
)

.

Proof. Suppose that each observation Z` has a separate

parameters t`. By the chain rule for differentiation, we can

then write

∂tI(S, t) =
L
∑

`=1

∂t`
1

n
I(X;Y ,Z)

∣

∣

∣

t1=...tL=t
(21)

Furthermore, by the chain rule for mutual information and

the fact that Z` is conditionally independent of everything

else given W`, we have

∂t`I(X;Y ,Z) = ∂t`I(W`;Z` | Y ,Z∼`),

where the subscript ∼ ` means that the `-th term is omitted.

Following the steps outlined in outlined in [12, App-

dendix D] and the proof of [12, Lemma 11], one finds that the

∂t`I(S, t) ≤ 1

4
g`(∇SI(S, t). Plugging this inequality back

into the expression above completes the proof.

Having established Lemma 4, the rest of the proof follows

similarly to the proof of Theorem 8 in [12]. Specifically, we

obtain

I(S, 1) ≤ min
U∈U

{

I∗(U) +
1

2
tr(SU) +

1

4

L
∑

`=1

g`(U)

}

, (22)

where

I∗(U) = sup
S�0

{

I(S)− 1

2
tr(SU)

}

(23)

is the convex conjugate of I(S).
For the final step in the proof, observe that

g`(U) = δ` + 2 tr(R2
`U)− tr

(

(R`U)2
)

where δ` = 1

n2 tr
(

E
[

(R`(X
TX − I))2

])

. For all Ũ ∈ U ,

the inequality

− tr((R`U)2) ≤ −2 tr(R`UR`Ũ) + tr((R`Ũ)2),

leads to

g`(U) ≤ δ` + 2 tr(R(I − Ũ)RU) + tr((R`Ũ)2)

Combining this inequality with (22), we see that, for all U, Ũ
in U ,

I(S, 1) ≤ I∗(U) +
1

2

L
∑

`=1

tr((S +R`(I − Ũ)R`)U)

+
1

4

L
∑

`=1

tr((R`Ũ)2) +
1

4

L
∑

`=1

δ`. (24)

The minimum of the first two terms with respect to U then

leads to

min
U∈U

{

I∗(U) +
1

2

L
∑

`=1

tr((S +R`(I − Ũ)R`)U)

}

= I
(

S +
L
∑

`=1

R`(I − Ũ)R`

)

.

where we have used the fact that I(S) is concave, and thus

equal to its biconjugate. Plugging this expression back into

(24) and then taking the the minimum with respect to Ũ
yields,

I(S, 1) ≤ min
Ũ∈U

F(Ũ) +
1

4

L
∑

`=1

δ`. (25)

606



Under the assumed distribution on X each term δ` vanishes

in the large-n limit. Combining (25) with Lemma 3 com-

pletes the proof of Theorem 1
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one matrix estimation,” in 2016 IEEE Information Theory Workshop

(ITW), pp. 71–75, IEEE, 2016.
[8] Y. Deshpande, A. Montanari, E. Mossel, and S. Sen, “Contextual

stochastic block models,” in NeurIPS, 2018.
[9] E. Abbe and C. Sandon, “Proof of the achievability conjectures for the

general stochastic block model,” Communications on Pure and Applied

Mathematics, vol. 71, no. 7, pp. 1334–1406, 2018.
[10] J. Banks, C. Moore, J. Neeman, and P. Netrapalli, “Information-

theoretic thresholds for community detection in sparse networks,” in
Conference On Learning Theory, 2016.

[11] E. Abbe, “Community detection and stochastic block models: Re-
cent developments,” Journal of Machine Learning Research, vol. 18,
no. 177, pp. 1–86, 2018.

[12] G. Reeves, V. Mayya, and A. Volfovsky, “The geometry of community
detection via the mmse matrix,” arXiv preprint arXiv:1907.02496,
2019.

[13] G. Reeves, H. D. Pfister, and A. Dytso, “Mutual information as a
function of matrix snr for linear gaussian channels,” in 2018 IEEE

International Symposium on Information Theory (ISIT), pp. 1754–
1758, IEEE, 2018.

[14] P. Zhang, C. Moore, and L. Zdeborová, “Phase transitions in semisu-
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