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ABSTRACT

We consider the problem of estimating a p-dimensional vec-

tor β from n observations Y = Xβ + W , where βj
i.i.d.∼ π

for a real-valued distribution π with zero mean and unit vari-

ance, Xij
i.i.d.∼ N (0, 1), and Wi

i.i.d.∼ N (0, σ2). In the asymptotic

regime where n/p → δ and p/σ2 → snr for two fixed con-

stants δ, snr ∈ (0,∞) as p → ∞, the limiting (normalized)

minimum mean-squared error (MMSE) has been characterized

by a single-letter (additive Gaussian scalar) channel.

In this paper, we show that if the MMSE function of the

single-letter channel converges to a step function, then the lim-

iting MMSE of estimating β converges to a step function which

jumps from 1 to 0 at a critical threshold. Moreover, we estab-

lish that the limiting mean-squared error of the (MSE-optimal)

approximate message passing algorithm also converges to a

step function with a larger threshold, providing evidence for

the presence of a computational-statistical gap between the

two thresholds.

1. INTRODUCTION

Consider the classical linear regression model

Y = Xβ +W (1)

where X ∈ R
n×p with Xij

i.i.d.∼ N (0, 1), β ∈ R
p with βj

i.i.d.∼ π
for a distribution π with zero mean and unit variance, and

W ∈ R
n with Wi

i.i.d.∼ N (0, σ2). We are interested in estimating

β from observation of (X,Y ). For a given estimator β̂(X,Y ),
the normalized mean squared-error of estimating β is given by

MSE

(
β̂
)
:=

1

p
E

[∥∥∥β − β̂
∥∥∥
2
]
.

Let MMSE denote the minimum of MSE

(
β̂
)

among all possi-

ble estimators β̂, or equivalently,

MMSE :=
1

p
E

[
‖β − E[β | X,Y ]‖2

]
. (2)
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In this paper, we focus on the asymptotic regime:

n

p
→ δ and

p

σ2
→ snr, as p → ∞, (3)

for two fixed constants δ, snr ∈ (0,∞). Note that δ is the

under-sampling ratio and snr is the signal-to-noise ratio in

view of E
[
‖Xβ‖2

]
/E

[
‖W‖2

]
= p/σ2.

Recent work [1–3] proves that under certain structural

assumptions in terms of (π, δ, snr), the limiting MMSE in

the asymptotic regime (3) is characterized by the replica-

symmetric (RS) formula through a single letter channel

y =
√
sβ0 +N, (4)

where s > 0, β0 ∼ π and N ∼ N (0, 1) are independent.

However, often the RS formula is too complicated to extract

structural behavior of the limiting MMSE.

In this work, we discover that the limiting MMSE exhibits

an all-or-nothing phenomena. More precisely, consider a fam-

ily (πε, δε, snrε) indexed by a positive parameter ε where πε

has finite entropy Hε := H(πε). We show that if the MMSE

of the single letter channel (4) as a function of s converges to

a step function as ε → 0, then the limiting MMSE of the linear

regression model (1) also converges to a step function, which

jumps from 1 to 0 at a critical threshold δε = δε,MMSE, where

δε,MMSE :=
2Hε

log(1 + snrε)
. (5)

In other words, an all-or-nothing phenomena in the single

letter channel implies an all-or-nothing phenomena in the high-

dimensional linear regression model. Moreover, we establish

that the limiting MSE of the (MSE-optimal) approximate mes-

sage passing (AMP) algorithm also converges to a step func-

tion, which jumps from 1 to 0 at a larger threshold δε = δε,AMP,

where

δε,AMP :=
2Hε(1 + snrε)

snrε
. (6)

An important application of our general result is the binary

linear regression model where βj
i.i.d.∼ Bern(ε). In this case, we

show that the MMSE function of the single letter channel con-

verges to a step function as the sparsity ε → 0. Then we obtain

from our general result that the limiting MMSE of the binary

linear regression model converges to a step function which
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jumps from 1 to 0 at the critical threshold δε = 2ε log(1/ε)
log(1+snrε)

.

This coincides with the all-or-nothing phenomena established

in [4] for the binary linear regression model where β is chosen

uniformly at random from the set of binary k-sparse vectors, in

the highly sparse and high signal-to-noise ratio regime where

k/
√
p → 0 and k/σ2 is above a sufficiently large constant.

Furthermore, we deduce from our general result that the lim-

iting MSE of the (MSE-optimal) AMP converges to a step

function which jumps from 1 to 0 at the critical threshold

δε =
2ε log(1/ε)(1+snrε)

snrε
. This coincides with the computational

threshold for a number of computationally efficient methods in

the literature such as LASSO or Orthogonal Matching Pursuit.

In particular, our result adds to the existing evidence for the

presence of a computational-statistical gap (see [5, 6] for an

extended discussion and literature review on the presence of

this computational-statistical gap).

2. PRELIMINARIES

2.1. The Replica Symmetric Formulas

To describe the RS formulas, we first define the mutual in-

formation and MMSE functions for the single letter channel

(4):

I(s) := I(β0;
√
sβ0 +N), s > 0 (7)

M(s) := mmse(β0 | √sβ0 +N), s > 0 (8)

where β0 ∼ π and N ∼ N (0, 1) are independent. Both of

these functions are non-negative and the unit variance assump-

tion on π means that for any s > 0, (see [7] for details)

I(s) ≤ 1

2
log(1 + s) ≤ s

2
, (9)

M(s) ≤ 1

1 + s
≤ 1. (10)

Next, we define the potential function F : [0,∞) →
[0,∞) according to

F(s) := I(s) +
δ

2
φ
( s

δ snr

)
, (11)

where φ(x) = x− log x−1, and δ, snr are respectively the un-

dersampling ratio and the signal-to-noise ratio of our original

model. Note that φ(x) is convex and non-negative on (0,∞).

Lemma 1. All stationary points of F(s) lie on the open inter-

val between δ snr /(1 + snr) and δ snr.

Proof. By differentiation with respect to s and the I-MMSE

relation for the single-letter channel [7], we have that for any

s > 0
F ′(s) ∝ M(s) + 1/ snr−δ/s.

The fact that M(s) > 0 for all s implies that F ′(s) is strictly

positive for all s ≥ δ snr, and thus F(s) is strictly increasing

on [δ snr,∞). Alternatively, the fact that M(s) < 1 for all s >
0 implies that F ′(s) is strictly negative for all s ≤ δ snr /(1 +
snr), and thus F(s) is strictly decreasing on (0, δ snr /(1 +
snr)].

In view of Lemma 1, the minimum of the potential function

and the smallest and largest minimizers can be defined as

follows:

F∗ := min
s

F(s), (12)

s∗ := min{s : F(s) = F∗}, (13)

s∗ := max{s : F(s) = F∗}. (14)

Note that s∗ = s∗ if and only if the minimum is attained at a

unique point.

Proposition 2 (RS MMSE [2, 3, 8]). For any (δ, snr, π) for

which (snr, π) satisfies the single-crossing property [2] and π
has finite fourth moment 1, the mutual information and MMSE

satisfy

lim
p→∞

1

p
I(β;X,Y ) = F∗, (15)

lim sup
p→∞

1

p
E

[
‖β − E[β | y,X]‖2

]
≤ M(s∗), (16)

lim inf
p→∞

1

p
E

[
‖β − E[β | y,X]‖2

]
≥ M(s∗), (17)

where the limits are taken as (n = np, p, σ
2 = σ2

p) scale to

infinity with p → +∞, n/p → δ and p/σ2 → snr.

Next, we turn to the family of approximate message pass-

ing (AMP) [9, 10] algorithms and specifically to the case of

MMSE-AMP which is proven in to be optimal among AMP

algorithms in minimizing the MSE of the recovery problem

of interest [11]. For simplicity from now on when we say

AMP we refer to the AMP-MMSE algorithm. We show how a

related formula to the one described in Proposition 2 describes

the asymptotic MSE associated with AMP.

The smallest stationary point is defined as

sAMP := inf{s : F ′(s) = 0}. (18)

It is rather straightforward to check that sAMP is attained by

some positive value s and therefore its a stationary point of

F(s). In particular, by Lemma 1 we have sAMP ∈ (δ snr /(1+
snr), δ snr).

For the next result, for T ∈ N let β̂AMP,T (Y,X) the output

of the AMP estimator [11, Section II.C] with input data (Y,X)
after T iterations.

1Different set of assumptions on (δ, snr, π) for which the Proposition

holds can be found in [3, 8]
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Proposition 3 (AMP, [10, 11]). For any (δ, snr, π) where π
has a finite fourth moment, AMP satisfies

lim
T→+∞

lim
p→+∞

1

p
E

[∥∥∥β − β̂AMP,T (Y,X)
∥∥∥
2
]
= M(sAMP)

(19)

where the outer limit is taken as (n = np, p, σ
2 = σ2

p) scale

to infinity with p → +∞, n/p → δ and p/σ2 → snr.

Remark 1. The results stated above imply that AMP is opti-

mal whenever s∗ = s∗ = sAMP.

Remark 2. For a proof of Proposition 3 we refer the reader

to the statement and proof of [11, Theorem 6].

3. MAIN RESULTS

Let us consider now a family of coefficient distributions

(πε)ε>0 indexed by a positive-valued parameter ε > 0. We

assume throughout the section that for each ε > 0 the distri-

butions πε has zero mean, unit variance and finite entropy Hε.

Our results are all based on the following assumption on the

family πε.

Assumption 1. Let (πε)ε>0 be a family of distributions with

unit variance and finite entropy Hε. The MMSE function

Mε(s) of the single letter channel, as defined in (8), for πε

coefficient distribution is assumed to converge pointwise to a

step function as ε → 0 in the following sense

lim
ε→0

Mε(2Hε t) =

{
1, t ∈ [0, 1)

0, t ∈ (1,∞).
(20)

Remark 3. It can be straightforwardly checked using the I-

MMSE relation for the single-letter channel [7] that the rescal-

ing in the argument of Mε by twice the entropy term, i.e. by

2Hε, is necessary for the convergence of Mε to the step func-

tion.

Remark 4. As we establish later in the section, Assumption 1

is satisfied for the family of (normalized) Bernoulli distribu-

tions with probability ε. We expect the assumption to hold

under greater generality.

We now present our two main results assuming the family

of distributions (πε)ε>0 satisfies Assumption 1.

Theorem 4. Let (πε)ε>0 satisfying Assumption 1. Given a

number r ∈ (0, 1) ∪ (1,∞), let (δε, snrε, πε)ε>0 be a family

of triplets such that

lim
ε→0

δε
δε,MMSE

= r. (21)

Then, the minimizers of the RS potential function exhibit the all-

or-nothing behavior in the small-ε limit depending on whether

r is greater than or less than one:

r ∈ (0, 1) =⇒ Mε(s
∗

ε ) → 0 (22)

r ∈ (1,∞) =⇒ Mε(s
∗

ε ) → 1. (23)

Combining Theorem 4 with Proposition 2 we obtain the

following Corollary.

Corollary 5 (All-or-nothing MMSE behavior). Let r ∈
(0, 1) ∪ (1,∞). For any family of triplets (δε, snrε, πε)ε>0,

suppose that for any ε > 0, (snrε, πε) satisfies the single-

crossing property, πε has finite fourth moment, (πε)ε>0

satisfies Assumption 1, and (21) holds. Then it holds that

lim
ε→0

lim
p→∞

1

p
E

[
‖β − E[β | Y,X]‖2

]
=

{
1, r ∈ [0, 1)

0, r ∈ (1,∞).

(24)

where the inner limits are taken as (n = np, p, σ
2 = σ2

p) scale

to infinity with p → +∞, n/p → δε and p/σ2 → snrε.

We next present our second main result.

Theorem 6. Let (πε)ε>0 satisfying Assumption 1. Given a

number r ∈ (0, 1) ∪ (1,∞), let (δε, snrε, πε) be such that

lim
ε→0

δε
δε,AMP

= r (25)

Then, the smallest stationary point sAMP exhibits the all-or-

nothing behavior in the small-ε limit depending on whether r
is greater than or less than one:

r ∈ (0, 1) =⇒ Mε

(
sAMP

ε

)
→ 1 (26)

r ∈ (1,∞) =⇒ Mε

(
sAMP

ε

)
→ 0. (27)

For the result, for T ∈ N let β̂AMP,T (Y,X) the output of

the AMP estimator [11, Section II.C] with input data (Y,X)
after T iterations. Combining Theorem 6 with Proposition 3

we obtain the following Corollary on the performance of AMP.

Corollary 7 (All-or-nothing AMP behavior). Let r ∈ (0, 1)∪
(1,∞). For any family of triplets (δε, snrε, πε)ε>0, suppose

that each πε has a finite fourth moment, the family (πε)ε>0

satisfies Assumption 1, and (25) holds. Then it holds that

lim
ε→0

lim
T→+∞

lim
p→∞

1

p
E

[∥∥∥β − β̂AMP,T (Y,X)
∥∥∥
2
]

=

{
1, r ∈ [0, 1)

0, r ∈ (1,∞).
(28)

where the inner limits are taken as (n = np, p, σ
2 = σ2

p) scale

to infinity with p → +∞, n/p → δε and p/σ2 → snrε.

4. APPLICATION: SPARSE BINARY REGRESSION

We now present our main application of our two results to

sparse binary regression, where βi
i.i.d.∼ Bern(ε). To this end,

we first consider the case where βi is i.i.d. drawn from the

following two-point distribution:

πε = (1− ε) δµ1
+ ε δµ2

, (29)
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where δx denotes a Dirac distribution with mass at x ∈ R,

and µ1 = −
√
ε/(1− ε) and µ2 =

√
(1− ε)/ε are chosen

such that πε has zero mean and unit variance. The following

Lemma holds for the family of MMSE functions (Mε(s))ε>0 :

Lemma 8. The distribution πε in (29) has entropy Hε =
−ε log ε− (1− ε) log(1− ε) and MMSE function

Mε(s) = E




1

1− ε+ ε exp

(
s

2ε(1−ε) +
√

s
ε(1−ε)N

)


,

(30)

where N ∼ N (0, 1). Furthermore, the distribution πε satisfies

the single-crossing condition [2] for all snr > 0 and

lim
ε→0

Hε/(ε log 1/ε) = 1 (31)

lim
ε→0

sup
s>0

∣∣∣∣Mε(s)−Q

(
s− 2ε log(1/ε)

2
√
sε

)∣∣∣∣ = 0, (32)

where Q(z) =
∫
∞

z
(2π)−1/2 exp(−t2/2) dt.

An immediate implication of the result is that the family

of distributions (πε)ε>0 satisfies Assumption 1 as well as

the conditions of Corollaries 5 and 7. Hence, all-or-nothing

phase transitions hold for the limiting MMSE around δε,MMSE

and for the MSE of the AMP around δε,AMP. Using that

limε→0 Hε/(ε log 1/ε) = 1, we can further simplify the phase

transition points given in (5), (6) by observing

lim
ε→0

δε,MMSE/

(
2ε log(1/ε)

log(1 + snrε)

)
= 1 (33)

and

lim
ε→0

δε,AMP/

(
2(1 + snrε)ε log(1/ε)

snrε

)
= 1. (34)

Next, we extend the above results to the sparse binary re-

gression problem of interest, where βi
i.i.d.∼ Bern(ε). We denote

by k = εp the (expected) number of non-zero coordinates of

β. Define

β̃ =
β − E[β]√
ε(1− ε)

.

Then β̃i
i.i.d.∼ πε as given in (29). Moreover, define

Ỹ =
Y −XE[β]√

ε(1− ε)
, W̃ =

W√
ε(1− ε)

.

Then it follows that Ỹ = Xβ̃ + W̃ . Since W̃i
i.i.d.∼ N (0, σ̃2)

with σ̃ = σ/
√
ε(1− ε), it follows that

snrε =
p

σ̃2
=

pε(1− ε)

σ2
. (35)

Hence, according to Corollary 5, (33), (35), we obtain that

the limiting MMSE exhibits an all-or-nothing behavior at

δε,MMSE = 2ε log(1/ε)/ log(1 + ε(1− ε)p/σ2),

which using k = εp as ε → 0 simplifies with negligible

multiplicative error to

δε,MMSE = 2(k/p) log(p/k)/ log(1 + k/σ2).

Note that this is the exact information-theoretic threshold for

which an all-or-nothing phenomenon has been proven to hold

when lim supp log k/ log p < 0.5 in [4].

Similarly, according to Corollary 7, (34), and (35), the

limiting MSE of the AMP exhibits an all-or-nothing behavior

at:

δε,AMP = 2

(
1 +

σ2

pε(1− ε)

)
ε log(1/ε),

which using k = εp as ε → 0 simplifies with negligible

multiplicative error to

δε,AMP = 2
(
k + σ2

)
log(p/k)/p.

Note that this is the exact computational threshold for a number

of computationally efficient methods in the literature such

as LASSO or Orthogonal Matching Pursuit (see [5, 6] for

references). Our result suggest that the threshold corresponds

to a barrier also for AMP in a strong sense.
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