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ABSTRACT

We consider the problem of estimating a p-dimensional vec-
tor 5 from n observations Y = X3 + W, where 5j1'1r\'51'7r
for a real-valued distribution 7 with zero mean and unit vari-
ance, XZ-J-"r'iSi'J\f(O7 1), and m‘kﬁj'N(o’ o?). In the asymptotic
regime where n/p — § and p/a? — snr for two fixed con-
stants d,snr € (0,00) as p — oo, the limiting (normalized)
minimum mean-squared error (MMSE) has been characterized
by a single-letter (additive Gaussian scalar) channel.

In this paper, we show that if the MMSE function of the
single-letter channel converges to a step function, then the lim-
iting MMSE of estimating 3 converges to a step function which
jumps from 1 to 0 at a critical threshold. Moreover, we estab-
lish that the limiting mean-squared error of the (MSE-optimal)
approximate message passing algorithm also converges to a
step function with a larger threshold, providing evidence for
the presence of a computational-statistical gap between the
two thresholds.

1. INTRODUCTION

Consider the classical linear regression model

Y=X3+W )]
where X € R™"*P with Xiji'fi\'fj'./\f(o, 1), 8 € R? with ﬁji'fi'vdﬁr
for a distribution 7 with zero mean and unit variance, and
W € R with W; XN (0,0%). We are interested in estimating
B from observation of (X, Y). For a given estimator 3(X,Y"),
the normalized mean squared-error of estimating (3 is given by

wse(3) = 23]} -1

Let MMSE denote the minimum of MSE (3) among all possi-

ble estimators f3, or equivalently,

1 2
MMSE := -E —-Ef|X,Y . 2
JE[ls Bl | X, V)] @
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In this paper, we focus on the asymptotic regime:

E—>5 and

% — snr,
P o

as p — 00, 3)
for two fixed constants J,snr € (0,00). Note that § is the
under-sampling ratio and snr is the signal-to-noise ratio in
view of E[[| X B8|]2]/E[|W]]?] = p/c?.

Recent work [1-3] proves that under certain structural
assumptions in terms of (m,d,snr), the limiting MMSE in
the asymptotic regime (3) is characterized by the replica-
symmetric (RS) formula through a single letter channel

y=+Vsbo+N, “)

where s > 0, By ~ mand N ~ N(0,1) are independent.
However, often the RS formula is too complicated to extract
structural behavior of the limiting MMSE.

In this work, we discover that the limiting MMSE exhibits
an all-or-nothing phenomena. More precisely, consider a fam-
ily (¢, e, snre) indexed by a positive parameter € where 7.
has finite entropy H, := H (). We show that if the MMSE
of the single letter channel (4) as a function of s converges to
a step function as e — 0, then the limiting MMSE of the linear
regression model (1) also converges to a step function, which
jumps from 1 to 0 at a critical threshold d. = dc mmse, where

2H
0 = 5

©MMSE log(1 + snr.) )
In other words, an all-or-nothing phenomena in the single
letter channel implies an all-or-nothing phenomena in the high-
dimensional linear regression model. Moreover, we establish
that the limiting MSE of the (MSE-optimal) approximate mes-
sage passing (AMP) algorithm also converges to a step func-
tion, which jumps from 1 to 0 at a larger threshold . = 6. amp,
where

2H.(1 + snr,)

de,AMP i= —ar 6)

An important application of our general result is the binary
linear regression model where ﬁjl‘rl'vd‘Bern(e). In this case, we
show that the MMSE function of the single letter channel con-
verges to a step function as the sparsity ¢ — 0. Then we obtain

from our general result that the limiting MMSE of the binary
linear regression model converges to a step function which
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jumps from 1 to 0 at the critical threshold 6, = %.

This coincides with the all-or-nothing phenomena established
in [4] for the binary linear regression model where (3 is chosen
uniformly at random from the set of binary k-sparse vectors, in
the highly sparse and high signal-to-noise ratio regime where
k/\/p — 0 and k/o? is above a sufficiently large constant.
Furthermore, we deduce from our general result that the lim-
iting MSE of the (MSE-optimal) AMP converges to a step
function which jumps from 1 to O at the critical threshold
0 = %. This coincides with the computational
threshold for a number of computationally efficient methods in
the literature such as LASSO or Orthogonal Matching Pursuit.
In particular, our result adds to the existing evidence for the
presence of a computational-statistical gap (see [5, 6] for an
extended discussion and literature review on the presence of
this computational-statistical gap).

2. PRELIMINARIES

2.1. The Replica Symmetric Formulas

To describe the RS formulas, we first define the mutual in-
formation and MMSE functions for the single letter channel

“:
I(s) == 1(Bo; V380 + N), >0 ©)
M(s) :==mmse(Bo | VsBo+N), s>0 3)

where 8y ~ mand N ~ N(0,1) are independent. Both of
these functions are non-negative and the unit variance assump-
tion on 7 means that for any s > 0, (see [7] for details)

1
H@siba1+@s§7 ©)
1
M(s) < s <1 (10)

Next, we define the potential function F : [0,00) —
[0, 00) according to

6 S
F(s) = 1(s) + = ( ) , 11
() (S)+2¢ dsnr an
where ¢(z) = z —logx — 1, and ¢, snr are respectively the un-
dersampling ratio and the signal-to-noise ratio of our original
model. Note that ¢(x) is convex and non-negative on (0, c0).

Lemma 1. All stationary points of F(s) lie on the open inter-
val between ¢ snr /(1 + snr) and 0 snr.

Proof. By differentiation with respect to s and the -MMSE
relation for the single-letter channel [7], we have that for any
s>0

F'(s) o< M(s) +1/snr—d/s.

The fact that M (s) > 0 for all s implies that F'(s) is strictly
positive for all s > d snr, and thus F(s) is strictly increasing
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on [d'snr, 00). Alternatively, the fact that M (s) < 1 forall s >
0 implies that () is strictly negative for all s < dsnr /(1 +
snr), and thus F(s) is strictly decreasing on (0,dsnr /(1 +
snr)]. O

In view of Lemma 1, the minimum of the potential function
and the smallest and largest minimizers can be defined as
follows:

F* := min F(s), (12)
s* :=min{s : F(s) = F*}, (13)
5* :=max{s : F(s) = F*}. (14)

Note that s* = 5* if and only if the minimum is attained at a
unique point.

Proposition 2 (RS MMSE (2, 3, 8]). For any (§,snr, ) for
which (snr, ) satisfies the single-crossing property [2] and
has finite fourth moment ', the mutual information and MMSE
satisfy

lim 11(3:X,Y) = F*,

15)
p—00 P
1
limsup —E[||8 ~ E[3 |y, X]I| < M), (16)
p—oo P
1
liminf ~E[|§ —E[3 |y, X]|*| > M(s"), (D)
p—co P
where the limits are taken as (n = n,,p,0* = o) scale to

infinity with p — +00, n/p — 6 and p/a? — snr.

Next, we turn to the family of approximate message pass-
ing (AMP) [9, 10] algorithms and specifically to the case of
MMSE-AMP which is proven in to be optimal among AMP
algorithms in minimizing the MSE of the recovery problem
of interest [11]. For simplicity from now on when we say
AMP we refer to the AMP-MMSE algorithm. We show how a
related formula to the one described in Proposition 2 describes
the asymptotic MSE associated with AMP.

The smallest stationary point is defined as

$"MP = inf{s : F'(s) = 0}. (18)

It is rather straightforward to check that sAMP is attained by
some positive value s and therefore its a stationary point of
F(s). In particular, by Lemma 1 we have s"MP € (§snr /(1 +
snr), d snr).

For the next result, for 7' € N let B\AM p,7 (Y, X) the output
of the AMP estimator [11, Section II.C] with input data (Y, X)
after T iterations.

I Different set of assumptions on (8, snr, 7) for which the Proposition
holds can be found in [3, 8]



Proposition 3 (AMP, [10, 11]). For any (J,snr,7) where
has a finite fourth moment, AMP satisfies

: . 1 2 2l AMP
it e[ a0 o
(19)

where the outer limit is taken as (n = n,, p, 0% = o2) scale

»
to infinity with p — 400, n/p — 6 and p/c? — snr.

Remark 1. The results stated above imply that AMP is opti-
mal whenever s* = 5* = sAMP,

Remark 2. For a proof of Proposition 3 we refer the reader
to the statement and proof of [11, Theorem 6].

3. MAIN RESULTS

Let us consider now a family of coefficient distributions
(me)e>0 indexed by a positive-valued parameter € > 0. We
assume throughout the section that for each € > 0 the distri-
butions 7. has zero mean, unit variance and finite entropy H..
Our results are all based on the following assumption on the
family 7.

Assumption 1. Let (7).~ be a family of distributions with
unit variance and finite entropy H.. The MMSE function
M.(s) of the single letter channel, as defined in (8), for 7,
coefficient distribution is assumed to converge pointwise to a
step function as € — 0 in the following sense

1, telo,1)

2
0, te(l,00). @0)

lim M (2H.t) = {
e—0
Remark 3. It can be straightforwardly checked using the I-
MMSE relation for the single-letter channel [7] that the rescal-
ing in the argument of M, by twice the entropy term, i.e. by
2H., is necessary for the convergence of M, to the step func-
tion.

Remark 4. As we establish later in the section, Assumption 1
is satisfied for the family of (normalized) Bernoulli distribu-
tions with probability e. We expect the assumption to hold
under greater generality.

We now present our two main results assuming the family
of distributions (7 ).~¢ satisfies Assumption 1.

Theorem 4. Let (7 )eso satisfying Assumption 1. Given a
number v € (0,1) U (1, 00), let (O, snre, Te)e>0 be a family
of triplets such that

) de
lim
e—=0 0 MMSE

= @1

Then, the minimizers of the RS potential function exhibit the all-
or-nothing behavior in the small-e limit depending on whether
r is greater than or less than one:

r e (0,1)
r € (1,00)

= M.(5)—0
= M.(s})— 1.

(22)
(23)
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Combining Theorem 4 with Proposition 2 we obtain the
following Corollary.

Corollary 5 (All-or-nothing MMSE behavior). Let r €
(0,1) U (1,00). For any family of triplets (0¢,snre, Te)eso,
suppose that for any € > 0, (snr.,m.) satisfies the single-
crossing property, T, has finite fourth moment, (7¢)cso
satisfies Assumption 1, and (21) holds. Then it holds that

1, relo,1)
0, re(l,00).
(24)

e—0p—oo

lim lim %E 1B —E[S | Y»X}”Q} = {

where the inner limits are taken as (n = ny,,p,0? = 012,) scale
to infinity with p — 400, n/p — 6. and p/a? — snr..

We next present our second main result.
Theorem 6. Let (7.)eso satisfying Assumption 1. Given a

number r € (0,1) U (1,00), let (0, snr., 7w.) be such that

1)
lim <
=0 0c AMP

=r (25)

Then, the smallest stationary point s"MP exhibits the all-or-

nothing behavior in the small-€ limit depending on whether r
is greater than or less than one:

r € (0,1)
r € (1,00)

— M(sMP) 51
— M.(s2MP) S 0.

(26)
27)

For the result, for T' € N let EAMP,T(Y, X) the output of
the AMP estimator [11, Section II.C] with input data (Y, X)
after T iterations. Combining Theorem 6 with Proposition 3
we obtain the following Corollary on the performance of AMP.

Corollary 7 (All-or-nothing AMP behavior). Letr € (0,1)U
(1,00). For any family of triplets (3, snre, Te)es0, SUppose
that each . has a finite fourth moment, the family (7. )es0
satisfies Assumption 1, and (25) holds. Then it holds that

1 ~ 2
lim lim lim E[Hﬂ—ﬂAMP,T(YaX)H }
€e—>0T—+oo p—o0 P
=10,

where the inner limits are taken as (n = ny, p, o’ = 012)) scale
to infinity with p — 400, n/p — 6. and p/a? — snr..

re0,1)

r € (1,00). 28)

4. APPLICATION: SPARSE BINARY REGRESSION

We now present our main application of our two results to

sparse binary regression, where ;' ~ Bern(e). To this end,
we first consider the case where (3; is i.i.d. drawn from the
following two-point distribution:

Te=(1—€)du, +€bu,, 29)



where ¢, denotes a Dirac distribution with mass at z € R,

and 1y = —/¢/(1 —¢€) and ps = /(1 — €)/e are chosen
such that 7. has zero mean and unit variance. The following
Lemma holds for the family of MMSE functions (M,(s))eso :

Lemma 8. The distribution w. in (29) has entropy H. =
—eloge — (1 — €)log(1 — €) and MMSE function

1

M.(s)=E

e(ls—e) N)
(30)

l—e+e exp(ze(f_g) +

where N ~ N (0,1). Furthermore, the distribution . satisfies
the single-crossing condition [2] for all snr > 0 and

li_r>r(1)H6/(elog1/e):1 31
o s —2elog(1/e)\|
lljl%bglig Mc(s) — Q(W) ’ =0, (32)

where Q(z) = [°(2m) /2 exp(—t?/2) dt.

An immediate implication of the result is that the family
of distributions (7.).~o satisfies Assumption 1 as well as
the conditions of Corollaries 5 and 7. Hence, all-or-nothing
phase transitions hold for the limiting MMSE around 6. mmse
and for the MSE of the AMP around J. amp. Using that
lim._,0 He/(elog1/e) = 1, we can further simplify the phase
transition points given in (5), (6) by observing

. 2elog(1/e)
lim 6, —r ) =1
b Mmse/ (log(l + snr.) (33)
and
lim 55,AMP/(2(1 +snr6)elog(1/e)> 1 (34)
¢—0 snr.

Next, we extend the above results to the sparse binary re-

gression problem of interest, where ﬂii'i&?'Bern(e). We denote
by k = ep the (expected) number of non-zero coordinates of

3. Define
5 _ B—E[5]

P

Then Biiw'we as given in (29). Moreover, define
v Y - XE[f] = w
Vel —¢)’ Vel —e)

Then it follows that Y = X/ + W. Since Wi“&d‘/\f(o, %)

with 0 = 0 /1/€(1 — €), it follows that

snr, = L = L(l — 6)
€ 52 o2 :

(35)
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Hence, according to Corollary 5, (33), (35), we obtain that
the limiting MMSE exhibits an all-or-nothing behavior at

de.mmse = 2¢elog(1/e)/log(1 + €(1 — e)p/o?),

which using £ = ep as ¢ — 0 simplifies with negligible
multiplicative error to

de.mmse = 2(k/p) log(p/k)/ log(1 + k/o?).

Note that this is the exact information-theoretic threshold for
which an all-or-nothing phenomenon has been proven to hold
when lim sup, log k/ log p < 0.5 in [4].

Similarly, according to Corollary 7, (34), and (35), the
limiting MSE of the AMP exhibits an all-or-nothing behavior

at:
2

T
pe(l —¢)
which using £k = ep as ¢ — 0 simplifies with negligible
multiplicative error to

de,AMP = 2(1 + )Elog(1/€)7

Se.amp = 2(k + 0?) log(p/k) /p.

Note that this is the exact computational threshold for a number
of computationally efficient methods in the literature such
as LASSO or Orthogonal Matching Pursuit (see [5, 6] for
references). Our result suggest that the threshold corresponds
to a barrier also for AMP in a strong sense.
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