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ABSTRACT

Community detection tasks have received a lot of attention
across statistics, machine learning, and information theory
with work concentrating on providing theoretical guarantees
for different methodological approaches to the stochastic block
model. Recent work on community detection has focused on
modeling the spectral embedding of a network using Gaussian
mixture models (GMMs) in scaling regimes where the abil-
ity to detect community memberships improves with the size
of the network. However, these regimes are not very realis-
tic. This paper provides tractable methodology motivated by
new theoretical results for networks with non-vanishing noise.
We present a procedure for community detection using novel
GMMs that incorporate truncation and shrinkage effects. We
provide empirical validation of this new representation as well
as experimental results using a large email dataset.

Index Terms— community detection, network analysis

1. INTRODUCTION

Network data are of paramount importance across many mod-
ern scientific fields [1-4]. One of the most common tasks in
network analysis is the search for community structure among
units in the network. Much of the statistical [5-7] and infor-
mation theoretical [8-11] work on community detection is
based on analyzing the performance of different algorithms in
recovering communities from data generated from the stochas-
tic block model (SBM) [12]. In this probabilistic network
model, the probability of an edge between individuals ¢ and
j is governed exclusively by the community memberships,
X = (Xy,...,X,), of the nodes. The complete network
can then be represented by its adjacency matrix, A, where
A;; = Aj; = 1if there is an edge between node ¢ and node j
and 0 otherwise. In this setting, the task of community detec-
tion is to recover the community labels X given the adjacency
matrix A and possible side information.

A large body of work has considered spectral clustering
methods for community detection with early work focusing
on the behavior of clustering nodes via k-means [5] and more
recent work focusing on Gaussian mixture models (GMMs) [6,
7]. Much of this work is derived under scaling regimes where
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Fig. 1. Aligned eigenvectors from graphs generated from
four different SBMs. The models in the top row have two
eigenvalues of R that greater than one while the bottom row
only has one eigenvalue greater than one. In the left column R
is diagonal, while in the right column there is a rotation by an
orthogonal matrix. Each A and ellipse are based on the mean
and covariance of GMM components from Section 3.

the ability to detect community memberships improves with
the size of the graph. We call this the vanishing-noise regime.

In this paper we focus on the degree-balanced SBM in
which each community has the same expected average degree
d. In Section 2 we provide a formal problem formulation that
describes how all the relevant information can be captured
by in a (K — 1) dimensional embedding of the eigenvectors
of the adjacency matrix. We then develop a novel GMM
representation for mid- to high-noise regimes that is able to
appropriately quantify the uncertainty about the labels of the
individual nodes. In Figure 1 we display our proposed eigen-
vector embedding and the mean and covariance matrices we
derive in Section 3 for our GMM across models with both high-
(lower row of plots) and low-noise (upper row of plots) levels.
Section 4 provides an empirical validation of our method and
a comparison to other state-of-the-art algorithms.
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2. PROBLEM FORMULATION

Our approach is described in the context of a general latent
space model for networks that includes the degree balanced
SBM as a special case. Let X = (Xy,...,X,,)beann X s
matrix of latent variables whose rows are drawn independently
from a distribution P on R® with mean zero, identity covari-
ance, and bounded support. Conditional on X, the entries
of the adjacency matrix A = (A;;) are drawn independently
according to

d
A;; ~ Bern < + JX;‘FRXJ') 1< M
n n

where: d is a positive number that parameterizes the expected
degree of each node in the network; R is a symmetric s X s
matrix that describes how the probably of an edge depends
on the latent variables; and ¢ = /d(n — d)/n is a scaling
factor that ensures that the signal-to-noise ratio is invariant
to the choice of d. The tuple (n, P,d, R) is valid only if
d/n + (o/n)xT RZ is between zero and one for all z, % in the
support of P.

The assumption that P has zero mean ensures that
the model is degree-balanced in expectation. Specifically,
E[A;; | Xi] = d/n, and thus the expected degree of node
¢ is independent of X;. The assumption that P has identity
covariance is without loss of generality since since any linear
transformation of the latent variables X; can be absorbed into
the model parameter R.

When the support of P is finite this model reduces to
the degreee balanced SBM where each node is assigned to
exactly one of K possible communities, independently with
probability vector p = (p1,...,px). Specifically, we let X;
be supported on a set of K points {1, ..., ik } in dimension
s = K — 1 satisfying the moments constraints:

K
> ki =0,
k=1

We leverage a unique specification of P given in [11, Remark
1] as a function of label probabilities p. We note that an alter-
native representation for the labels, used in previous work [5],
is to associate the k-th label with the k-th standard basis vector
in R%. An explicit mapping between these various representa-
tions is provided in [11].

K

> prppi = 1. 2
k=1

3. THEORY AND METHODOLGY

In this section, we present a general method for inference in
degree-balanced networks. This method is based on a novel
Gaussian approximation for the spectral embedding of the
adjacency matrix. Recall that the leading eigenvector is cor-
related with the degree of the nodes and thus does not pro-
vide any information about the memberships. Therefore, we
consider the spectral embedding of the normalized adjacency
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matrix A — (d/n)11T. The projection of this matrix onto the
space of rank-s matrices can be expressed as VAV where
A = diag(A1,...,As) contains the largest eigenvalues (in
magnitude), in decreasing order, and V = (V4,...,V;,)7 is
an n X s matrix with orthonormal columns corresponding
to the eigenvectors. We note that the representation of the
eigenvectors is not unique.

3.1. Gaussian Approximation of Eigenvectors

In the context of community detection, the basic principle
underlying spectral clustering is that the rows of the leading
eigenvectors are correlated with the latent variables. Applying
standard clustering techniques, such as k-means, directly on
the points V7, ..., V,, € R® provides a partition of the nodes
in the network and can be used to estimate community mem-
berships. More generally, a principled approach to inference
is to formulate a joint model for the eigenvectors and the latent
parameters. This applies in the general latent space model as
well as in the specialized case of community detection where
the parameter space is finite. This paper builds upon recent
work [6,7, 11], which provides both theoretical and empirical
support for the use of GMMs.

To describe our approach, we introduce the scaled eigen-
vectors Y7,...,Y, € R? according to

Y, = /ndiag(ri,...,rs)Vi, 3

where r; > ro > ...r, are the eigenvaues of K. The results
in Athreya et al. [6, Theorem 4.8] can be used to characterize
the asymptotic distribution of Y; in the vanishing-noise regime
where P is fixed while the model parameters (n, d, R) scale
to infinity. Adapted to the setting of this paper, this result
suggests the following approximation:

UY; ~ N (RXi, i(Xi)) : )

where U is an orthogonal matrix that aligns the eigenvectors
with the latent variables and the covariance is given by

S(@) = Exonp [v(z, Xo)XoXq | )
v(z,7) =1+ (”;02d> +TR7 — % (z"R%)*.  (6)

The matrix U depends on the eigenspace of R as well as the
particular choice of eigenvectors used in the eigendecomposi-
toin of A. In the proposed method described below, this matrix
is estimated from the data using maximum likelihood.

It is important to emphasize that the approximation in (4)
is adapted from the vanishing-noise regime where the eigen-
values of R scale with n. As a consequence, some important
aspects of the moderate to high noise regimes are not captured.
In particular, it is well known that an eigenvector is uninfor-
mative about latent structure unless its associated eigenvalue
exceeds a threshold.



We propose a Gaussian approximation for the scaled eigen-
vectors Y; that incorporates both truncation and shrinkage ef-
fects. Let R and R be the symmetric s x s matrices obtained by
applying the mappings r — max(|r|,1) and r — min(|r|, 1),
respectively, to the eigenvalues of R. Our approximation is
given by

UYi~ N (R = D'2X2(X0), )
where U is an orthogonal matrix and the covariance is

S(z) = (I-R7*)7V2E(@)(I-R*) V2 + RTIRPR™.
@®)

The term (R? — I)'/2 provides the truncation and shrinkage
to the eigenvalues of R. Note that any direction corresponding
to an eigenvalue of magnitude less than one does not provide
any information about X;.

Our approximation follows from a leave-one-out argument
combined with asymptotic properties of spiked Wigner matri-
ces [13]. The full derivation is omitted due to space constraints.

Proposition 1. The matrices ¥(x) and () satisfy

2(z) = B(x) + ONL5L(R)) ©)
Y()=R*+0(c 1 +nh) (10)
S(x)=R*4+ 0> +n7h). an

Proof Sketch. These results follow straightforwardly from the
assumption that P has bounded support and the fact that
v(r,Z) =1+0(c ! +n1h). O

Proposition 1 shows that as R increases, the approximation
in (7) converges to the vanishing-noise approximation given in
(4). Theorem 1 also shows that if either d or n—d increase with
n, then the covariance does not depend on X;, and is given by
R?. Interestingly, this result establishes a connection between
the analysis of spectral methods and the information-theoretic
analysis of dense networks given in [11], which also involves
a GMM with common covariance across the mixtures.

3.2. Proposed Method

Let Py(x, z) be the distribution of the pair (Xg, Zy) where
Xo ~ P and Zj is conditionally Gaussian:

Zo ~ N (R = 1) X0, %(X0)) (12)
and 3(x) is defined by (8). Our method has three components:

1. (Spectral embedding) Let V' be the eigenvectors of the
rank-s projection of the normalized adjaceny matrix
A —(d/n)117 and let Y7, .. .,Y,, be given by (3).
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2. (Alignment via maximum likelihood) Let U* be a solu-
tion to the optimization problem

mUaXHPO(UYi),

=1

13)

where the maximum is over all orthogonal matrices U
and Py (z) is the marginal of Py(x, z) with respect to x.
For an SBM, this is the marginal over a GMM.

3. (Classification) For¢ = 1, ..., n output the the posterior
Py(x | z) evaluated on the rotated data = = (U*Y;). For
an SBM, the posterior is represented by the probability
vector ﬁz = (}31‘1, A ,ﬁiK).

Besides the eigenvalue decomposition, the potentially com-
putationally challenging step in our method is the optimization
with respect to an orthogonal matrix. For convenience, this op-
timization can be carried out over a restricted set of orthogonal
matrices belonging to the set {U : U diag(ry,...,75)UT =
R}. In the simulations that follow, we obtain an approximate
solution by searching over a set of representative orthogonal
matrices.

4. EXPERIMENTAL RESULTS

In this section, we study the behavior of the degree-balanced
SBM, parameterized by (n, p, d, R) from Section 2.

4.1. Numerical Simulations

We generate a network of n = 5000 nodes and K = 3 commu-
nities with probability vector p = (0.1, 0.3, 0.6). The support
of P is defined according to [11, Remark 1], which yields

0 o) - ()

The adjacency matrix is generated according to (1) with aver-

age degree d = 15 and
1
2\ —1)

e (GMM) The method described in Section 3.2.

R = U diag(ry,m2)U7T, U=

We compare four different methods:

e (Low-Noise GMM) This is the version of the method
described in Section 3.2 where Py(z, z) corresponds to
the low-noise approximation in (4).

e (Uninformed GMM) This method fits a GMM to the
the rows of the eigenvectors associated with the K — 1
largest eigenvalues (in magnitude) of A — (d/n)117,

e (K -Means) This method is applied to the same selected
eigenvectors as the uniformed GMM.
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Fig. 2. Misclustering rate across varying regimes. Each point
is the average misclustering rate over 100 independent net-
works. Methods are given by: GMM: @, Low-Noise GMM:
M, Uninformed GMM: ¢, K-Means: A.

We study the regimes where (71,72) € {1,1.1,1.2} x
{1,...,2.6} and (ry,72) = sort(r1,72). Performance is
assessed using the misclustering rate. For the GMM meth-
ods, we use the maximum a postiori estimate of the of the
community memberships. Following the usual convention in
the literature, this metric optimized over permutations of the
estimated labels, to mitigate the effects of label switching.

Figure 2 shows the misclustering rate across the different
regimes. Each point in the Figure is the average misclustering
rate over 100 networks generated for each set of parameters.
As r1 and 79 increase, we see an improvement across all meth-
ods. When the eigenvalues of R are close to one, there is
almost no correlation between the eigenvectors of the adja-
cency matrix and the community structure and so all methods
perform poorly. Two interesting phenomena can be observed
int he Figure: first, the relative advantage of our proposed
approach to other approaches appears to increase as the larger
eigenvalue of R grows (when r, = 2.5 we have a nearly 50%
improvement over the next competing method). Second, as the
eigenvalues of R grow, the performance of K -Means improves
and surpases that of the uninformed GMM.

4.2, Real-World Data Analysis

In this section, we apply our method to an email network from
a large European research institution [14, 15]. In these data,
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an undirected edge exists if one person sent another person
at least one email. Only communication between individuals
within the institution is considered and each person belongs
to one of 42 known departments/communities. The number of
communities is reduced to 3 such that 2 of the communities
correspond to nodes in the two largest departments and the
third community is made up of all other nodes. The average
degree per community for this example is around 30 and thus
approximately degree balanced.

We provide two types of analysis for this data: one based
on oracle model parameters and one based on estimated ones.
Consider that an oracle provides us with the true values of
R and p (which we can compute based on our ground truth
community information). Based on this, the misclustering rate
of our approach is 0.2. In practice one rarely has access to
true R and p values, we also estimate an R and pbased on a
10% sample from the true communities. Using the estimated
values of p and R we apply the method of Section 3 and
achieve a misclustering rate of 0.3 where we have accounted
for using 10% of the data to learn the model parameters. This
compares favorably to the performance of K-means which
achieve misclustering rates of 0.368.

5. CONCLUSION

In this paper we propose a Gaussian Mixture Model repre-
sentation of a projection of the adjacency matrix that can be
leveraged for community detection in the non-vanishing noise
regime. In contrast to prior work, we use a model for the joint
distribution between the eigenvectors and the latent commu-
nity structure that includes truncation and shrinkage effects.
We demonstrate empirically that this novel representation is
able to improve on the performance of community detection
in moderate to high noise regimes.

For future directions, it would be interesting to see if these
empirical results can be proven rigorously and extended to
regularized spectral methods based on the graph Laplacian [16]
or other data-driven techniques [17]. This method can be
extended to the settings of multiple observed networks on the
same set of units [18].
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