


2. PROBLEM FORMULATION

Our approach is described in the context of a general latent

space model for networks that includes the degree balanced

SBM as a special case. Let X = (X1, . . . , Xn) be an n × s
matrix of latent variables whose rows are drawn independently

from a distribution P on R
s with mean zero, identity covari-

ance, and bounded support. Conditional on X , the entries

of the adjacency matrix A = (Aij) are drawn independently

according to

Aij ∼ Bern

(

d

n
+

σ

n
XT

i RXj

)

, i < j, (1)

where: d is a positive number that parameterizes the expected

degree of each node in the network; R is a symmetric s × s
matrix that describes how the probably of an edge depends

on the latent variables; and σ =
√

d(n− d)/n is a scaling

factor that ensures that the signal-to-noise ratio is invariant

to the choice of d. The tuple (n, P, d,R) is valid only if

d/n+ (σ/n)xTRx̃ is between zero and one for all x, x̃ in the

support of P .

The assumption that P has zero mean ensures that

the model is degree-balanced in expectation. Specifically,

E [Aij | Xi] = d/n, and thus the expected degree of node

i is independent of Xi. The assumption that P has identity

covariance is without loss of generality since since any linear

transformation of the latent variables Xi can be absorbed into

the model parameter R.

When the support of P is finite this model reduces to

the degreee balanced SBM where each node is assigned to

exactly one of K possible communities, independently with

probability vector p = (p1, . . . , pK). Specifically, we let Xi

be supported on a set of K points {µ1, . . . , µK} in dimension

s = K − 1 satisfying the moments constraints:

K
∑

k=1

pkµk = 0,

K
∑

k=1

pkµkµ
T
k = I. (2)

We leverage a unique specification of P given in [11, Remark

1] as a function of label probabilities p. We note that an alter-

native representation for the labels, used in previous work [5],

is to associate the k-th label with the k-th standard basis vector

in R
K . An explicit mapping between these various representa-

tions is provided in [11].

3. THEORY AND METHODOLGY

In this section, we present a general method for inference in

degree-balanced networks. This method is based on a novel

Gaussian approximation for the spectral embedding of the

adjacency matrix. Recall that the leading eigenvector is cor-

related with the degree of the nodes and thus does not pro-

vide any information about the memberships. Therefore, we

consider the spectral embedding of the normalized adjacency

matrix A− (d/n)11T . The projection of this matrix onto the

space of rank-s matrices can be expressed as V ΛV T where

Λ = diag(λ1, . . . , λs) contains the largest eigenvalues (in

magnitude), in decreasing order, and V = (V1, . . . , Vn)
T is

an n × s matrix with orthonormal columns corresponding

to the eigenvectors. We note that the representation of the

eigenvectors is not unique.

3.1. Gaussian Approximation of Eigenvectors

In the context of community detection, the basic principle

underlying spectral clustering is that the rows of the leading

eigenvectors are correlated with the latent variables. Applying

standard clustering techniques, such as k-means, directly on

the points V1, . . . , Vn ∈ R
s provides a partition of the nodes

in the network and can be used to estimate community mem-

berships. More generally, a principled approach to inference

is to formulate a joint model for the eigenvectors and the latent

parameters. This applies in the general latent space model as

well as in the specialized case of community detection where

the parameter space is finite. This paper builds upon recent

work [6, 7, 11], which provides both theoretical and empirical

support for the use of GMMs.

To describe our approach, we introduce the scaled eigen-

vectors Y1, . . . , Yn ∈ R
s according to

Yi =
√
n diag(r1, . . . , rs)Vi, (3)

where r1 ≥ r2 ≥ . . . rs are the eigenvaues of R. The results

in Athreya et al. [6, Theorem 4.8] can be used to characterize

the asymptotic distribution of Yi in the vanishing-noise regime

where P is fixed while the model parameters (n, d,R) scale

to infinity. Adapted to the setting of this paper, this result

suggests the following approximation:

UYi ∼ N
(

RXi, Σ̃(Xi)
)

, (4)

where U is an orthogonal matrix that aligns the eigenvectors

with the latent variables and the covariance is given by

Σ̃(x) = EX0∼P

[

ν(x,X0)X0X
T
0

]

(5)

ν(x, x̃) = 1 +

(

n− 2d

nσ

)

xTRx̃− 1

n

(

xTRx̃
)2

. (6)

The matrix U depends on the eigenspace of R as well as the

particular choice of eigenvectors used in the eigendecomposi-

toin of A. In the proposed method described below, this matrix

is estimated from the data using maximum likelihood.

It is important to emphasize that the approximation in (4)

is adapted from the vanishing-noise regime where the eigen-

values of R scale with n. As a consequence, some important

aspects of the moderate to high noise regimes are not captured.

In particular, it is well known that an eigenvector is uninfor-

mative about latent structure unless its associated eigenvalue

exceeds a threshold.
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We propose a Gaussian approximation for the scaled eigen-

vectors Yi that incorporates both truncation and shrinkage ef-

fects. Let R̄ and R be the symmetric s×s matrices obtained by

applying the mappings r 7→ max(|r|, 1) and r 7→ min(|r|, 1),
respectively, to the eigenvalues of R. Our approximation is

given by

UYi ∼ N
(

(R̄2 − I)1/2Xi,Σ(Xi)
)

, (7)

where U is an orthogonal matrix and the covariance is

Σ(x) = (I−R̄−2)−1/2Σ̃(x)(I−R̄−2)−1/2 + R̄−1R2R̄−1.
(8)

The term (R̄2 − I)1/2 provides the truncation and shrinkage

to the eigenvalues of R. Note that any direction corresponding

to an eigenvalue of magnitude less than one does not provide

any information about Xi.

Our approximation follows from a leave-one-out argument

combined with asymptotic properties of spiked Wigner matri-

ces [13]. The full derivation is omitted due to space constraints.

Proposition 1. The matrices Σ(x) and Σ̃(x) satisfy

Σ(x) = Σ̃(x) +O(λ−2

min
(R)) (9)

Σ(x) = R2 +O(σ−1 + n−1) (10)

Σ̂(x) = R2 +O(σ−1 + n−1). (11)

Proof Sketch. These results follow straightforwardly from the

assumption that P has bounded support and the fact that

ν(x, x̃) = 1 +O(σ−1 + n−1).

Proposition 1 shows that as R increases, the approximation

in (7) converges to the vanishing-noise approximation given in

(4). Theorem 1 also shows that if either d or n−d increase with

n, then the covariance does not depend on Xi, and is given by

R2. Interestingly, this result establishes a connection between

the analysis of spectral methods and the information-theoretic

analysis of dense networks given in [11], which also involves

a GMM with common covariance across the mixtures.

3.2. Proposed Method

Let P0(x, z) be the distribution of the pair (X0, Z0) where

X0 ∼ P and Z0 is conditionally Gaussian:

Z0 ∼ N
(

(R̄2 − I)X0,Σ(X0)
)

, (12)

and Σ(x) is defined by (8). Our method has three components:

1. (Spectral embedding) Let V be the eigenvectors of the

rank-s projection of the normalized adjaceny matrix

A− (d/n)11T and let Y1, . . . , Yn be given by (3).

2. (Alignment via maximum likelihood) Let U∗ be a solu-

tion to the optimization problem

max
U

n
∏

i=1

P0(UYi), (13)

where the maximum is over all orthogonal matrices U
and P0(z) is the marginal of P0(x, z) with respect to x.

For an SBM, this is the marginal over a GMM.

3. (Classification) For i = 1, . . . , n output the the posterior

P0(x | z) evaluated on the rotated data z = (U∗Yi). For

an SBM, the posterior is represented by the probability

vector p̂i = (p̂i1, . . . , p̂iK).

Besides the eigenvalue decomposition, the potentially com-

putationally challenging step in our method is the optimization

with respect to an orthogonal matrix. For convenience, this op-

timization can be carried out over a restricted set of orthogonal

matrices belonging to the set {U : U diag(r1, . . . , rs)U
T =

R}. In the simulations that follow, we obtain an approximate

solution by searching over a set of representative orthogonal

matrices.

4. EXPERIMENTAL RESULTS

In this section, we study the behavior of the degree-balanced

SBM, parameterized by (n, p, d,R) from Section 2.

4.1. Numerical Simulations

We generate a network of n = 5000 nodes and K = 3 commu-

nities with probability vector p = (0.1, 0.3, 0.6). The support

of P is defined according to [11, Remark 1], which yields

µ1 =

(

3
0

)

, µ2 =

( −1/3

2
√
5/3

)

, µ2 =

( −1/3

−
√
5/3

)

.

The adjacency matrix is generated according to (1) with aver-

age degree d = 15 and

R = U diag(r1, r2)U
T , U =

1√
2

(

1 1
1 −1

)

.

We compare four different methods:

• (GMM) The method described in Section 3.2.

• (Low-Noise GMM) This is the version of the method

described in Section 3.2 where P0(x, z) corresponds to

the low-noise approximation in (4).

• (Uninformed GMM) This method fits a GMM to the

the rows of the eigenvectors associated with the K − 1
largest eigenvalues (in magnitude) of A− (d/n)11T ,

• (K-Means) This method is applied to the same selected

eigenvectors as the uniformed GMM.
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Fig. 2. Misclustering rate across varying regimes. Each point

is the average misclustering rate over 100 independent net-

works. Methods are given by: GMM:  , Low-Noise GMM:

�, Uninformed GMM: �, K-Means: N.

We study the regimes where (r̃1, r̃2) ∈ {1, 1.1, 1.2} ×
{1, . . . , 2.6} and (r1, r2) = sort(r̃1, r̃2). Performance is

assessed using the misclustering rate. For the GMM meth-

ods, we use the maximum a postiori estimate of the of the

community memberships. Following the usual convention in

the literature, this metric optimized over permutations of the

estimated labels, to mitigate the effects of label switching.

Figure 2 shows the misclustering rate across the different

regimes. Each point in the Figure is the average misclustering

rate over 100 networks generated for each set of parameters.

As r1 and r2 increase, we see an improvement across all meth-

ods. When the eigenvalues of R are close to one, there is

almost no correlation between the eigenvectors of the adja-

cency matrix and the community structure and so all methods

perform poorly. Two interesting phenomena can be observed

int he Figure: first, the relative advantage of our proposed

approach to other approaches appears to increase as the larger

eigenvalue of R grows (when r2 = 2.5 we have a nearly 50%

improvement over the next competing method). Second, as the

eigenvalues of R grow, the performance of K-Means improves

and surpases that of the uninformed GMM.

4.2. Real-World Data Analysis

In this section, we apply our method to an email network from

a large European research institution [14, 15]. In these data,

an undirected edge exists if one person sent another person

at least one email. Only communication between individuals

within the institution is considered and each person belongs

to one of 42 known departments/communities. The number of

communities is reduced to 3 such that 2 of the communities

correspond to nodes in the two largest departments and the

third community is made up of all other nodes. The average

degree per community for this example is around 30 and thus

approximately degree balanced.

We provide two types of analysis for this data: one based

on oracle model parameters and one based on estimated ones.

Consider that an oracle provides us with the true values of

R and p (which we can compute based on our ground truth

community information). Based on this, the misclustering rate

of our approach is 0.2. In practice one rarely has access to

true R and p values, we also estimate an R̂ and p̂ based on a

10% sample from the true communities. Using the estimated

values of p and R we apply the method of Section 3 and

achieve a misclustering rate of 0.3 where we have accounted

for using 10% of the data to learn the model parameters. This

compares favorably to the performance of K-means which

achieve misclustering rates of 0.368.

5. CONCLUSION

In this paper we propose a Gaussian Mixture Model repre-

sentation of a projection of the adjacency matrix that can be

leveraged for community detection in the non-vanishing noise

regime. In contrast to prior work, we use a model for the joint

distribution between the eigenvectors and the latent commu-

nity structure that includes truncation and shrinkage effects.

We demonstrate empirically that this novel representation is

able to improve on the performance of community detection

in moderate to high noise regimes.

For future directions, it would be interesting to see if these

empirical results can be proven rigorously and extended to

regularized spectral methods based on the graph Laplacian [16]

or other data-driven techniques [17]. This method can be

extended to the settings of multiple observed networks on the

same set of units [18].
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