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ABSTRACT

Ten binary black-hole mergers have already been detected during the first two observing runs of
advanced LIGO and Virgo, and many more are expected to be observed in the near future. This opens
the possibility for gravitational-wave astronomy to better constrain the properties of black hole binaries,

not only as single sources, but as a whole astrophysical population. In this paper, we address the
problem of using gravitational-wave measurements to estimate the proportion of merging black holes
produced either via isolated binaries or binaries evolving in young star clusters. To this end, we use a

Bayesian hierarchical modeling approach applied to catalogs of merging binary black holes generated
using state-of-the-art population synthesis and N-body codes. In particular, we show that, although
current advanced LIGO/Virgo observations only mildly constrain the mixing fraction f ∈ [0, 1] between

the two formation channels, we expect to narrow down the fractional errors on f to 10− 20% after a
few hundreds of detections.

Keywords: black hole physics – gravitational waves – Bayesian analysis

1. INTRODUCTION

The first two observing runs of the LIGO/Virgo col-
laboration (LVC) led to the detection of ten binary black
holes (BBHs, Abbott et al. 2016, 2018a) and one binary
neutron star (BNS, Abbott et al. 2017a,b). The next
observing run will significantly boost this sample: several

tens of new BBH detections and few BNS detections are
expected in the coming months. The growing sample of
merging BBHs is expected to provide key information
on their mass, spin and local merger rate (Abbott et al.
2018b).

yann.bouffanais@pd.infn.it

michela.mapelli@unipd.it

One of the main open questions about BBHs concerns
their formation channel(s). Several possible scenarios
have been proposed in the last decades. The isolated
evolution of a massive binary star can lead to the for-
mation of a merging BBH through a common envelope
episode (Bethe & Brown 1998; Belczynski et al. 2002,
2014, 2016a; Dominik et al. 2013; Mennekens & Vanbev-
eren 2014; Spera et al. 2015; Eldridge & Stanway 2016;
Eldridge et al. 2017; Mapelli et al. 2017; Mapelli & Gia-

cobbo 2018; Stevenson et al. 2017b; Giacobbo & Mapelli
2018; Kruckow et al. 2018; Spera et al. 2019; Mapelli
et al. 2019; Eldridge et al. 2019) or via chemically homo-
geneous evolution (Marchant et al. 2016; Mandel & de
Mink 2016).

Alternatively, several dynamical processes can trigger
the formation of a BBH and influence its subsequent evo-
lution to the final merger (see Mapelli 2018 for a recent
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review on the subject). For example, the Kozai-Lidov
dynamical mechanism (Kozai 1962; Lidov 1962) might
significantly affect the formation of eccentric BBHs in
triple stellar systems (e.g. Antonini & Perets 2012; An-
tonini & Rasio 2016; Kimpson et al. 2016; Antonini et al.
2017). Similarly, dynamical exchanges and three- or

multi-body scatterings are expected to lead to the forma-
tion and dynamical hardening of BBHs in dense stellar
systems, such as globular clusters (Portegies Zwart &

McMillan 2000; O’Leary et al. 2006; Sadowski et al. 2008;
Downing et al. 2010, 2011; Rodriguez et al. 2015, 2016a,b;
Rodriguez & Loeb 2018; Askar et al. 2017; Samsing 2018;
Samsing et al. 2018; Fragione & Kocsis 2018), nuclear
star clusters (O’Leary et al. 2009; Antonini & Perets 2012;
Antonini & Rasio 2016; Petrovich & Antonini 2017; Stone
et al. 2017b,a; Rasskazov & Kocsis 2019) and young star
clusters (Banerjee et al. 2010; Mapelli et al. 2013; Ziosi
et al. 2014; Mapelli 2016; Banerjee 2017, 2018; Di Carlo
et al. 2019; Kumamoto et al. 2019). Other formation

mechanisms include black hole (BH) pairing in extreme
gaseous environments (like AGN disks, e.g. McKernan
et al. 2012, 2014, 2018; Bartos et al. 2017; Tagawa &
Umemura 2018). Finally, primordial BHs of non-stellar
origin may form binaries through dynamical processes
(Carr & Hawking 1974; Carr et al. 2016; Sasaki et al.
2016; Bird et al. 2016; Inomata et al. 2017; Inayoshi et al.

2016; Scelfo et al. 2018).
Each formation channel leaves its specific imprint on

the properties of BBHs. In particular, dynamically

formed BBHs are expected to have larger masses than
isolated BBHs (e.g. Di Carlo et al. 2019), because dy-
namical exchanges favour the formation of more massive

binaries (Hills & Fullerton 1980). Several evolutionary
processes in isolated binary systems (tides, mass trans-
fer) tend to align the individual spins with the orbital
angular momentum of the binary, while only supernova

kicks can tilt the spins significantly in isolated binaries
(Kalogera 2000; Gerosa et al. 2013, 2018; O’Shaughnessy
et al. 2017). In contrast, dynamical exchanges are ex-
pected to reset any memory of previous alignments; thus,
dynamically formed BBHs are expected to have isotropi-
cally oriented spins. Finally, dynamically formed BBHs
(especially Kozai-Lidov triggered systems) might develop
larger eccentricities than isolated BBHs. Eccentricities
are larger and easier to measure at the low frequencies
accessible to space-based interferometers such as LISA
(Nishizawa et al. 2016; Breivik et al. 2016; Nishizawa et al.
2017), but in some cases they may be significant even
in the advanced LIGO (aLIGO) and advanced Virgo

(aVirgo) band (e.g. Antonini et al. 2017; Zevin et al.
2019).

Thus, BH masses, spins and eccentricities are key fea-
tures to differentiate between binary formation channels.
To achieve this goal, BBH populations predicted by mod-
els should be contrasted with gravitational-wave (GW)
data, by means of a suitable model-selection framework.
Several methodological approaches can be found in the

literature (Stevenson et al. 2015, 2017a; Gerosa & Berti
2017; Vitale et al. 2017b; Zevin et al. 2017; Talbot &
Thrane 2017, 2018; Taylor & Gerosa 2018; Abbott et al.

2018b; Fishbach et al. 2017; Fishbach et al. 2018; Wysocki
et al. 2018; Roulet & Zaldarriaga 2019; Kimball et al.
2019). For example, Stevenson et al. (2017a) use of a
hierarchical analysis in order to combine multiple GW
observations of BBH spin–orbit misalignments, to give
constraints on the fractions of BBHs forming through
different channels. Similarly, Zevin et al. (2017) apply
a hierarchical Bayesian model to mass measurements
from mock GW observations. They compare populations
obtained with isolated binary evolution and with Monte

Carlo simulations of globular clusters and show that they
can distinguish between the two channels with O(100)
GW observations. Taylor & Gerosa (2018) use banks of
compact-binary population synthesis simulations to train
a Gaussian-process emulator that acts as a prior on ob-
served parameter distributions (e.g. chirp mass, redshift,
rate). Based on the results of the emulator, a hierar-

chical population inference framework allows to extract
information on the underlying astrophysical population.
Alternative approaches consist in model-independent in-
ference based on clustering of source parameters (e.g.
Mandel et al. 2015, 2017; Powell et al. 2019).

Here, we follow a standard Bayesian model-selection

approach (cf. e.g. Sesana et al. 2011; Gair et al. 2011;
Gerosa & Berti 2017), properly including selection ef-
fects (Mandel et al. 2019) and posterior distributions,
exploiting both full aLIGO/aVirgo data and mock sam-

ples for future forecasts. As for the astrophysical models,
we compare BBHs from isolated binary evolution with
dynamically formed BBHs. For the first time, we apply
model selection to dynamically formed BBHs in young
star clusters (Di Carlo et al. 2019). Young star clus-
ters are intriguing dynamical environments for BBHs,
because most massive stars (which are BH progenitors)
form in young star clusters in the nearby Universe (Lada
& Lada 2003; Portegies Zwart et al. 2010). On the other
hand, simulating BBHs in young star clusters has a high
computational cost, because it requires direct N-body
simulations combined with binary population synthesis.
Both isolated binaries and dynamically formed ones are
evolved through the mobse population-synthesis code
(Giacobbo et al. 2018), which includes state-of-the-art
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modelling of stellar winds, supernova prescriptions and
binary evolution.

2. DISTRIBUTIONS OF ASTROPHYSICAL
SOURCES

2.1. Isolated formation channel of BBHs

We simulate isolated BBHs using the binary population-
synthesis code mobse (Mapelli et al. 2017; Giacobbo
et al. 2018). mobse includes single stellar evolution
through polynomial fitting formulas as described in Hur-
ley et al. (2000) and binary evolution processes (mass
transfer, tidal evolution, common envelope, GW decay,
etc.) as described in Hurley et al. (2002). The main
differences between mobse and bse are the following (cf.

Giacobbo & Mapelli 2018 for additional details).
Mass loss by stellar winds of massive hot stars (O- and

B-type stars, luminous blue variables and Wolf-Rayet
stars) is implemented in mobse as Ṁ ∝ Zη (Chen et al.

2015, and references therein), where Z is the stellar
metallicity and

η =


0.85, if Γe < 2/3

2.45− 2.4 Γe if 2/3 ≤ Γe ≤ 1

0.05 if Γe > 1,

(1)

where Γe = L∗/LEdd is the Eddington factor, L∗ is the

current stellar luminosity, and LEdd is the Eddington
luminosity Gräfener et al. (2011). The mass of a compact
object depends on the final mass and core mass of the pro-
genitor star through fitting formulas which describe the
outcome of electron-capture supernovae (see Giacobbo &
Mapelli 2019), core-collapse supernovae (see Fryer et al.
2012) and pair-instability or pulsational pair-instability

supernovae (see Spera & Mapelli 2017). In this paper,
we adopt the delayed model for core collapse supernovae
(see Fryer et al. 2012). These prescriptions enable us to
obtain a BH mass distribution which is consistent with
GW data from the first and second observational runs
of aLIGO and aVirgo (Abbott et al. 2018a,b).

The natal kick of a neutron star is drawn from a
Maxwellian distribution with 1-dimensional root-mean
square σ = 15 and 265 km s−1 for an electron-capture and
a core-collapse supernova, respectively (see Hobbs et al.
2005 and Giacobbo & Mapelli 2019 for more details). The
natal kick of a BH is calculated as vBH = vNS (1− ffb),
where vNS is a random number extracted from the same
Maxwellian distribution as neutron stars born from core-
collapse supernovae, while ffb is the fraction of mass that
falls back to a BH, estimated as in Fryer et al. (2012).

In this paper, we consider a sample of 107 binaries sim-
ulated with mobse with metallicity Z = 0.002 ' Z�/10

(the effect of varying the metallicity will be tackled in a
forthcoming publication).

The primary mass is randomly drawn from a Kroupa
(2001) initial mass function between m1 = 5 M� and 150
M�, while the secondary is randomly drawn from the
mass ratio q

F(q) ∝ q−0.1 with q =
m2

m1
∈ [0.1− 1] . (2)

As suggested by observations (Sana et al. 2012), initial
orbital periods P and eccentricities e are randomly drawn
from

F(P) ∝ (P)−0.55 with P = log10(P/day) ∈ [0.15− 5.5] ,
(3)

F(e) ∝ e−0.42 with 0 ≤ e < 1. (4)

For this paper we adopted common-envelope ejection

efficiency α = 3 , while the envelope concentration λ is
derived by mobse as described by Claeys et al. (2014).

From these population-synthesis simulations we obtain

31879 BBH mergers (hereafter referred to as “isolated
BBHs”) which merge within a Hubble time tH = 14 Gyr.

2.2. Dynamical formation channel of BBHs in young
star clusters

The dynamically formed BBHs were obtained by

means of direct N-body simulations with nbody6++gpu
(Wang et al. 2015) coupled to mobse (Di Carlo et al.
2019). We have, therefore, the very same population-
synthesis recipes in both the isolated binary simulations
and the dynamical simulations.

The initial conditions were obtained with McLus-
ter (Küpper et al. 2011).The distributions of dynamical

BBHs discussed in this paper are obtained from 4000
simulations of young star clusters with fractal initial con-
ditions. We chose to simulate young star clusters because
most stars (and especially massive stars) are thought
to form copiously in these environments (e.g. Lada &
Lada 2003; Portegies Zwart et al. 2010). The assump-
tion of fractal initial conditions mimics the clumpiness
and asymmetry of observed star forming regions (e.g.
Gutermuth et al. 2005). Each star cluster’s mass was
randomly drawn from a distribution dN/dMSC ∝M−2

SC ,
consistent with the observed mass function of young star
clusters in the Milky Way (Lada & Lada 2003). Thus,
our simulated star clusters represent a synthetic young
star-cluster population of Milky Way-like galaxies.

The initial binary fraction in each star cluster is
fbin = 0.4. While observed young star clusters can
have larger values of fbin (up to ∼ 0.7, Sana et al. 2012),
fbin = 0.4 is close to the maximum value considered in
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state-of-the-art simulations, being fbin the bottleneck
of direct N-body simulations. Initial stellar and binary
masses, orbital periods and orbital eccentricities are gen-
erated as described in Sec. 2.1, to guarantee a fair com-
parison. For the same reason, all the simulated star
clusters have stellar metallicity Z = 0.002, the same as

isolated binaries.
Each star cluster feels the tidal field of a Milky Way-

like galaxy and is assumed to be on a circular orbit
with radius similar to the Sun’s orbital radius. Star
clusters are simulated for ∼ 100 Myr, corresponding to
a conservative assumption for the lifetime of a young
star cluster. We refer to Di Carlo et al. (2019) for a
more detailed discussion of our dynamical models and
assumptions.

From these dynamical simulations we obtain 229 BBHs
(hereafter dynamical BBHs) which merge within a Hubble
time tH = 14 Gyr. We stress that dynamical simulations
are computationally more expensive than population-

synthesis runs and our sample of merging BBHs is one of
the largest ever obtained from direct N-body simulations
with realistic binary evolution.

Dynamical BBHs belong to two families. About 47%
of all merging BBHs in the simulated star clusters come
from original binaries (hereafter, original BBHs), i.e.
they form from the evolution of stellar binaries which

were already present in the initial conditions. Such origi-
nal binaries evolve in a star cluster, thus they are affected
by close-by encounters with other stars (which can change
their semi-major axis and eccentricity), but otherwise
behave similarly to BBHs formed in isolation.

The remaining 53% of all merging BBHs in the simu-

lated star clusters form via dynamical exchanges (here-
after, exchanged BBHs). Dynamical exchanges are three-
body encounters between a binary system and a single
object, during which the single object exchanges with

one of the members of the binary system. BHs are
tremendously efficient in acquiring companions through
dynamical exchanges (Ziosi et al. 2014), because they are
more massive than other stars in star clusters: exchanges
favour the formation of more massive binaries (which
are more energetically stable, Hills & Fullerton 1980).
Because of their formation mechanism, exchanged BBHs
are significantly more massive than both isolated BBHs
and original BBHs (cf. Di Carlo et al. 2019).

2.3. Treatment of spins and redshift

2.3.1. Spins

The initial magnitude and direction of BH spins is still
a matter of debate (see e.g. Miller & Miller 2015 for a
review). Overall, the dependence of the spin magnitude

of a BH on the spin magnitude of the progenitor star (or
stellar core) is largely unknown.

As for the direction of the spins, most binary evolution
processes in isolated binaries tend to favour the alignment
of stellar spins with the orbital angular momentum of
the binary. In isolated binaries, supernova kicks are

the leading mechanism to substantially tilt the spin axes
with respect to the orbital plane (Kalogera 2000). In star
clusters, dynamical exchanges tend to reset the memory

of the initial binary spin. Thus, we expect the spins of
exchanged BBHs to be isotropically distributed. The spin
direction of original BBHs in star clusters is expected
to fall somewhere in between because, on the one hand,
these BBHs participate in the dynamical evolution of the
star cluster (thus, dynamical encounters can affect the
initial spin orientation), while on the other hand they
form from the evolution of stellar binaries (thus, binary
evolution processes tend to realign the spins).

Model Rms Orientation BBH sample

LSA 0.1 aligned Isolated BBHs, Original BBHs

LSI 0.1 isotropic Exchanged BBHs

HSA 0.3 aligned Isolated BBHs, Original BBHs

HSI 0.3 isotropic Exchanged BBHs

Table 1. Summary of our spin models. We implement
two prescriptions (L: low; H: high) of the spin magnitude by
varying the root mean square of their Maxwellian distribution,
and two prescriptions for the spin orientations (A: aligned;
I: isotropic). Exchanged BBHs are always assumed to have
isotropic spins (LSI or HSI), while isolated BBHs and original
BBHs are assumed to have aligned spins (LSA or HSA).

Given these considerable uncertainties on both spin
magnitude and direction, we decided not to embed de-
tailed spin models in our population synthesis and dy-
namical simulations. Spins are added to our simulations
in post-processing, assuming simple toy models. Dimen-
sionless spin magnitudes a (defined as a = |J | c/Gm2

BH,
where J is the BH spin, c is the speed of light, G is
the gravitational constant and mBH is the mass of the
BH) are randomly drawn from a Maxwellian distribu-
tion with root mean square equal to 0.1. With this
choice, the median spin is a ∼ 0.15 and the distribution
quickly fades off for a > 0.4. Hereafter, we refer to this
model as “low-spin” (LS). We assume this distribution
for spin magnitudes because the results of the first two
aLIGO/aVirgo runs disfavour distributions with large

spin components aligned (or nearly aligned) with the
orbital angular momentum (Abbott et al. 2018b).
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For comparison, we also consider a second rather ex-
treme case, in which spin magnitudes are drawn from
a Maxwellian distribution with root mean square equal
to 0.3 (we reject spin magnitudes a > 0.998). With this
choice, the median spin is a ∼ 0.46. Hereafter, we refer
to this model as “high-spin” (HS).

Regarding spin orientations, we assume that BH spins
in both isolated BBHs and original BBHs are perfectly
co-aligned with the orbital angular momentum of the

binary (see e.g. Rodriguez et al. 2016c): there are large
uncertainties on the kicks imparted on newly formed
BHs, but recent work (Gerosa et al. 2018) shows that
the fraction of BBHs with negative effective spins is
at most ∼ 20%. Moreover, we neglect the effect of
dynamical perturbations on original BBHs because their
main properties are similar to isolated BBHs: they have
nearly the same chirp mass, mass ratio and eccentricity
distribution (Di Carlo et al. 2019).

Finally, BH spins in exchanged BBHs are randomly

drawn isotropically over a sphere. Our assumptions for
the spin models are summarized in Table 1.

2.3.2. Redshifts

The redshift parameter was not computed self-
consistently in the set of astrophysical simulations gener-
ated for this study, because we only consider a fixed value

for the metallicity, and the stellar metallicity is a crucial
ingredient of redshift evolution (Mapelli et al. 2017).
A self-consistent redshift evolution will be included in
future work (Baibhav et al., in preparation).

Here we opted for excluding redshift information from
our statistical analysis (cf. Sec. 4). However, we still need
to prescribe a redshift probability distribution function

to estimate selection effects. As a simple toy model,
we assume that the redshift is distributed uniformly in
comoving volume and source-frame time, i.e.

p(z) ∝ 1

1 + z

dVc
dz

. (5)

We consider redshifts in the range z ∈ [0, 2] for both
second- and third-generation detectors, postponing more
accurate modelling to future work.

2.4. Catalog distributions

In Figure 1, we present our distributions from both
dynamical (orange) and isolated (blue) catalogs. We plot
distributions corresponding to total mass (Mt), mass
ratio (q) and effective spins for both the LS (χeffL) and
HS (χeffH

) models.
The isolated model allows for BBHs with total mass

in the range Mt ∈ [5, 70]M�. On the other hand, the
dynamical case presents massive BBHs with Mt > 70M�
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Figure 1. Astrophysical population of merging BBHs from
dynamical (orange) and isolated (blue) formation channels as
presented in Section 2. We show distributions of total mass
Mt, mass ratio q and effective spin parameters for low-spin
(χeffL) and high-spin (χeffH) cases.

formed via dynamical interactions (exchanged BBHs).
The dynamical model predicts BBHs with q < 0.2, which
are not present in the isolated BBH catalogs. The physi-

cal reasons for the difference between the maximum mass
of isolated BBHs and dynamical BBHs are throughly
explained in Di Carlo et al. (2019). Here we summarize
the main ingredients. First, BBHs with Mt > 70M�
form even in our isolated binaries, but they are too wide
to merge within a Hubble time (see Giacobbo et al. 2018).
In the dynamical simulations, these massive wide BBHs

have a chance to shrink by dynamical interactions and
to become sufficiently tight to merge within a Hubble
time. Secondly, massive single BHs (with mass � 30
M�) form from collisions between stars (especially if one
of the two colliding stars has already developed a Helium
core). If these massive single BHs are in the field, they
likely remain alone, while if they form in the core of
a star cluster, they are very efficient in acquiring new
companions through exchanges.

By construction, the isolated scenario only contains

binaries with χeff > 0, while dynamically-formed BHs
are found with both positive and negative values for χeff

(with a preference for positive values).

3. STATISTICAL ANALYSIS

3.1. GW data analysis

3.1.1. Detection probability

We estimate selection effects using the semi-analytic
approach of Finn & Chernoff 1993 (cf. also Dominik

et al. 2015; Chen et al. 2017; Taylor & Gerosa 2018).
We associate a detection probability pdet(λ) ∈ [0, 1] to
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any given GW source with parameters λ. A source is
detectable if its signal-to-noise ratio (SNR)

ρ = 4

∫ +∞

0

|h̃(f)|2
Sn(f)

df (6)

exceeds a given threshold ρth, with h̃(f) being the grav-
itational waveform in the frequency domain and Sn(f)
the one-sided noise power spectral density of the detector.
To compute h̃(f), we have used the IMRPhenomD model
(Khan et al. 2016), that is a phenomenological waveform
model describing the inspiral, merger and ringdown of
a non-precessing BBH merger signal. We consider the
noise power spectral density curves corresponding to
both the aLIGO (Abbott et al. (2018)) and the Einstein
Telescope (ET,Abbott et al. (2017)) at their design sen-

sitivity. We implement a single-detector SNR threshold
ρth = 8, which was shown to be a good approximation
of more complex multi-detector analysis based on large

injection campaigns (see Abadie et al. 2010; Abbott et al.
2016; Wysocki et al. 2018 for more details). Both wave-
forms and detector sensitivities were generated using
pycbc (Dal Canton et al. 2014; Usman et al. 2016).

For each binary in our catalogs, we estimate the op-
timal SNR, ρopt, using Eq. (6). This corresponds to
a face-on source located overhead with respect to the

detector. The SNR of a generic source is given by
ρ = ω × ρopt, where ω encapsulates all the dependencies
on sky-location, inclination and polarization angle (Finn

& Chernoff 1993; Finn 1996). A source located in a blind
spot of the detector yields a value of ω = 0, while an
optimally oriented source has ω = 1. The probability of

detecting a source is then expressed as

pdet(λ) =P(ρ ≥ ρthr) (7)

=P(ω ≥ ρthr/ρopt) (8)

= 1− Fω(ρthr/ρopt), (9)

where Fω is the cumulative distribution function of ω.
This function was computed via Monte Carlo meth-
ods as implemented in the python package gwdet
(Gerosa 2019). The function Fω is set explicitly to 1
for ρopt < ρthr, which gives the expected detection prob-

ability pdet(λ) = 0 for events which are too quiet to be
observed.

3.1.2. Measurement errors

The noise contained in the data d of a GW detector re-
sults in errors on the measurement of the parameters λ of
a GW source. From a Bayesian point of view, these errors
are fully described by the posterior distribution p(λ|d).
We make use of posterior distributions for the first 10
GW events publicly released by Abbott et al. (2018a).

We also generate mock observations from our catalogs
to forecast future scenarios with a growing number of
events. In this case, running a full injection campaign to
estimate measurement errors would be computationally
too expensive and out of the scope of this study. For
simplicity, we approximate posterior distributions with

simple Gaussians (Gerosa & Berti 2017; Farr et al. 2017)

p(λi) = N (λ
i
, σi), (10)

where λ
i

is the value for the parameter λi extracted from
our astrophysical models. The standard deviations σi

are calibrated on results from full parameter estimation
pipelines by Ghosh et al. (2016). Among their results,
we selected runs making use of the IMRPhenomB tem-
plate model with aligned spins and a 3-detector network.

As the number of sources in this data set is relatively
sparse (< 103 sources), we implemented the same closest-
neighbour fit presented by Gerosa & Berti (2017) to
estimate the values of σi for any values Mt, q and z. Er-

rors on the spins parameters are not provided by Ghosh
et al. (2016); for simplicity, we assume aLIGO observa-
tion will achieve a precision σχeff

= 0.1 (Abbott et al.

2018a) regardless of the spin models and other source
parameters.1

Measurement errors for ET are obtained by rescaling
the aLIGO results using the SNR

σET = σaLIGO
ρaLIGO

ρET
, (11)

as expected in the large-SNR limit (Poisson & Will 1995).

3.2. Bayesian modeling

3.2.1. Model rates

The general expression for the rate of a given model

with parameters θ can be written as

dN

dλ
(θ) = N(θ)p(λ|θ), (12)

where N(θ) is the total number of sources predicted by
the model and p(λ|θ) is the normalised model distribution
or rate.

From the catalog of sources presented in Section 2.4, we
approximate the normalised rates p using kernel density

estimation (KDE) methods. Gaussian kernels with a
bandwidth parameter of 0.05 on the data set {Mt, q, χeff}
are capable of accurately reproducing the distributions
in Figure 1 for both formation channels and spin models.

1 At the current sensitivity, prior choices also play an important
role (Vitale et al. 2017a).
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3.2.2. Hierarchical inference

Statistical inference is implemented with a standard
Bayesian hiearchical model. Our analysis is based on the
formalism already presented by Loredo (2004), Mandel

et al. (2019) and Taylor & Gerosa (2018) and detailed
in Appendix A. In a nutshell, the posterior distribution
on the model parameters θ marginalized over N(θ) is

p(θ|d) ∝ p(θ)
Ndet∏
k=1

∫
p(λ|θ) p(d|λ)/p(λ) dλ∫
pdet(λ) p(λ|θ) dλ

, (13)

where Ndet is the number of entries in the detection
catalog, p(λ|θ) describes the astrophysical model, p(θ)
is the prior on each astrophysical model, p(d|λ) is the
posterior of an individual GW event, p(λ) is the prior
used in the single-event analysis, and pdet(λ) describes
selection effects.

If the posterior p(λ|θ) is provided in terms of Monte-
Carlo samples λi, as in Abbott et al. (2018a), we can
rewrite Eq. (13) as

p(θ|d) ∝ p(θ)
Ndet∏
k=1

∑
i p(λi|θ)/p(λi)∫
pdet(λ) p(λ|θ) dλ

. (14)

For the case of our mock Gaussian posteriors, Eq. (13)

becomes

p(θ|d) ∝ p(θ)
Ndet∏
k=1

∫
p(λ|θ)N (λk, σk)/p(λ) dλ∫

pdet(λ) p(λ|θ) dλ
. (15)

The denominator β(θ) ≡
∫
pdet(λ) p(λ|θ) dλ does not

depend on the event parameters λ, but only on the
model θ. In practice, we estimate β(θ) by generating
values for (Mt, q) using rejection sampling from our KDE
approximation of the astrophysical rates, and extracting
values for the aligned components of the spins and the
redshift as described in sections 2.3.1 and 2.3.2. As
the dynamical catalog is formed of both exchanged and
originals BBHs, we consider the two sub-populations
separately and combine them in the proportion predicted
by our dynamical simulations.

4. RESULTS

4.1. Model selection: pure dynamical or pure isolated
channel

We first apply the formalism presented in Section 3.2.2
to the case where the astrophysical model is such that
all BBHs are assumed to form only via the isolated or
dynamical channels. In this case, we can estimate what
model best fits a given set of data by computing the odds
ratio,

OAB =
p(A|d)

p(B|d)
, (16)

where A and B either stand for isolated or dynamical
and p is the model posterior distribution derived at the
end of Section 3.2.2. Values OAB � 1 indicate that
model A is strongly favoured by the data, while model
B is preferred for OAB � 1. It is somewhat indicative
to relate values of the odds ratio to σ-levels of Gaussian

measurements:

O =
1

1− erf(σ/
√

2)
, (17)

where erf is the error function.

4.1.1. Mock observations

We want to assess the number of observations Nobs

needed to discrimininate between the two models assum-
ing that one of them is a faithful representation of reality.
To understand how each parameter impacts the analysis,

we run our statistical pipeline assuming we only measure
either {Mt}, {Mt, q} or {Mt, q, χeff}. In practice, this
implies that the integral in Eq. (15) is evaluated on the

selected variables while marginalising over the others.
Regarding the production of mock data, we generated
103 sets of observations for each value of Nobs in order to
produce a statistical estimation on our results. Each of
the mock observations was sampled from the model and
included in the observation set with probability pdet.

In Figure 2, we show values of the odds ratio OAB
where the set of observed events is generated from model
A, so that OAB is expected to increase as Nobs grows.
We present results for observations generated from the
dynamical (orange) and isolated (blue) models both for
aLIGO/aVirgo (left panels) and ET (right panels).

Let us focus first on the top row, where only the to-
tal mass is considered in the analysis. In the case of

aLIGO/aVirgo, the upper limit of the 90% credible in-
terval presents high values O > 1010 even for small Nobs.
This is because the isolated model only predicts merging
BBHs with Mt < 70M�. As a result, any observation
where the entire support of the total mass posterior dis-
tribution is above 70M� can only be described by the
dynamical model.

Another interesting feature is that the lower bound of
the credible interval has values of O > 1010 starting at
Nobs ∼ 40− 50, which is consistent with our models. In
fact, as the number of dynamical BBHs with Mt > 70M�
in our dynamical catalog is equal to 16 (out of 229),
the probability of not observing any massive BBHs in
50 observations generated from the dynamical model is
equal to p = 1.9× 10−3. It is also interesting to see that
the results obtained are similar when observing with ET,

suggesting that the differences in total mass range of our
models is the dominant effect in the analysis.
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In contrast, the evolution of the odds ratio for the
isolated case presents a steady increase of O with Nobs,
as expected. This indicates that, unlike the dynamical
case, there is no strong feature in the total mass spec-
trum of the isolated model that can drive the odds ratio
towards very high values with a few observations. In this

case, measurements with ET improve the analysis:the
median number of observations yielding O = 106 (5σ
level) decreases from 40 with aLIGO down to ∼ 30− 35.

The second row of Figure 2 presents results obtained
when performing the analysis considering both the total
mass and the mass ratio. We observe that including the
mass ratio helps discriminating faster between the two
models for all cases. When observations are generated
from the dynamical model and observed with ET, the
lower bound of the 90% credible interval reaches the 5σ
level for Nobs = 20 while we had a value of Nobs = 40 for
the analysis considering only the total mass. Similarly,
in 90% of the cases we find that only 30 observations

generated from the isolated model and observed by ET
gives values of odds ratio corresponding to a 5σ level (60
observations were needed when considering only Mt) .

Finally, in the last two rows we present results obtained
by simulating measurements with the total mass, the
mass ratio and the effective spin parameter, adopting
either the low-spin (LS, third row) or high-spin (HS,

fourth row) models. When the dynamical model is true,
only a few observations are needed to push the value of
the lower bound of the credible interval towards O > 1010

(similar results were found in Stevenson et al. 2017a).
This results from our assumption for the spin models,
as only the dynamical model has support for χeff < 0,

meaning that observations of negative values give a full
support to the dynamical model. As the errors on the
spins are already relatively low, with σχeff

= 0.1 for
aLIGO/aVirgo (see Section 3.1.2), we do not see much

difference when repeating the analysis with even smaller
error for ET. Finally, when the isolated model is true,
the 5σ level is attained in 90% of the cases only after
only 15 observations for the LS model and 20 for the
HS model. Measurements with ET are slightly better
and bring the number of necessary observations down to
∼ 10− 15 for both models.

4.1.2. LVC observations

We now apply the formalism described in the previous
Section to aLIGO/aVirgo BBH data from the catalog in
Abbott et al. (2018a). We have used both the posterior
and prior samples for each event released by the LVC,

to compute the expression of the posterior in Eq. (14).
In Table 2, we present the values obtained for O and

σ for the favoured model under the same parameter
configurations presented in the last section.

For all simulations, the values of the odds ratio are
O <∼ 104, corresponding to <∼ 4σ and favour a dynamical
origin. If we only take into account the mass parameters,
the analysis done with {Mt, q} gives a value of O = 1.7×
103 (corresponding to 3.4σ) in favour of the dynamical
model. Our isolated model has a hard upper-mass cutoff,
which cannot accommodate the presence of GW170729.

If we discard this event from the observed catalog, the
odds ratio drops to O = 1.6 × 101 when considering
{Mt, q}.

Our results depend strongly on the underlying spin
model. In the LS case, we get O = 39, with slight prefer-
ence for the dynamical model. This conclusion changes
drastically in the HS case, as the value of the odds ratio
is now larger than 1016. This is because in the HS case
the dynamical model has a much wider range of possible
negative values for χeff, extending down to χeff − 0.5

(compared to χeff − 0.2 for LS case). As some of the
events (namely GW1701014, GW170818, GW170823)
have posterior distribution with some support for values
of χeff < −0.25, the HS dynamical model is significantly
favored compared to the HS isolated case. When remov-
ing these events from the analysis, we found that the
odds ratio is reduced by 10 orders of magnitude down to

2.7× 106.

Parameters Favoured model O σ-equivalent

Mt dynamical 42 2.3

Mt,q dynamical 1.7× 103 3.4

Mt,q,χeffL dynamical 39 2.2

Mt,q,χeffH dynamical 4.1× 1016 x

Mt,q [1] dynamical 16 1.9

Mt,q,χeffH [2] dynamical 2.7× 106 5.1

Table 2. Summary of the results obtained when running
Bayesian model selection on the set of 10 BBHs observed by
aLIGO/aVirgo (Abbott et al. 2018a). We run our statisti-
cal analysis varying the set of parameters considered. The
configurations [1] and [2] correspond to cases where we respec-
tively exclude GW170729 and the set of events (GW1701014,
GW170818, GW170823) from the analysis. Among these
models, we prefer a dynamical origin mainly because of the
hard cuts in the mass and spin distributions (cf. section 5).

4.2. Mixture model

In the previous section, we have shown results obtained
when comparing the two models assuming that one of
them is true. While this pointed out interesting features
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Figure 2. Evolution of the odds ratio as a function of the number of simulated observations generated from the dynamical
(orange) and isolated model (blue). The odds ratios are defined such that the posterior of the true model is at the denominator.
Equivalent σ levels are reported with dotted lines. The four rows correspond to analysis done with Mt, q, χeffL and χeffH (from
top to bottom); while the left and right panels are associated to results with aLIGO/aVirgo and ET. For each scenario, the thick
lines are the median values while the surfaces represent the 90% credible regions.
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of our models, it is probably unrealistic to assume that
all merging BBHs only come either from the dynamical
or the isolated channel. In this section, we assume that
the population of merging BBHs comes from a mixture
of the two models parametrised by a “mixing fraction” f

such that

rMM(f) = f riso + (1− f) rdyn, (18)

where rMM(f) are the rates of the mixture model and
riso, rdyn are the rates of the isolated and dynamical
models, respectively. Similarly, the detection efficiency
of the mixed model is also given by

βMM(f) = f βiso + (1− f)βdyn (19)

where βiso, βdyn are the detection efficiencies (cf.
Sec. 3.2.2) for the isolated and dynamical models, re-
spectively.

We want to estimate the posterior distribution of the
mixing fraction f. Once again, we have considered two
different cases with either fiducial or aLIGO/aVirgo data.
In both cases, we have used a Metropolis-Hastings Monte
Carlo algorithm to estimate the posterior distribution.
We find that a Gaussian jump proposal with standard
deviation σ = 0.5 is sufficient to have good results and

convergence when running 106 iterations chains.

4.2.1. Mock observations

We generate mock observations assuming a “true” mix-
ing fraction fT = 0.7. To generate Nobs events from a
mixed model, we first generated Nobs events both for

isolated and dynamical models. For each entry of the
mixed model, we draw a random number ε ∈ U [0, 1]
and associate an event from the pre-processed isolated
(dynamical) set if ε < fT (ε > fT ).

In Figure 3, we report the values of the medians
(square), 90% (straight line) and 99% (dashed line)
credible intervals for a set of mock observations with
Nobs = {10, 100, 500}. The values correspond to the
current number of events (Nobs = 10), an optimistic
prediction for O3 (Nobs = 100) and a high-statistic case
(Nobs = 500). For simplicity, we restrict this study
to the aLIGO/aVirgo detector case. For each set of
observations we perform the analysis with the combi-
nation of parameters {Mt} (orange), {Mt, q} (purple),
{Mt, q, χeffL} (green) and {Mt, q, χeffH} (red).

For any set of parameters, we observe a reduction
of the width of the credible intervals for higher values
of Nobs, as expected. In fact, for Nobs = 10 the 99%
credible interval spans almost the entire range of values
for f, while for Nobs = 500 it is reduced down to 0.2 for
Mt and only ∼ 0.15 when including q and χeff in the
analysis. Another feature shown in Figure 3 is that the

width of the credible interval gets smaller when including
more parameters, which is expected as more parameters
provide more constraints on the model selection analysis.

In conclusion, Figure 3 suggests that already with 100
detections (optimistic scenario for the end of O3), we can
constrain the value of the fractional errors on the mixing

fraction to an interval smaller than 0.5 using {Mt, q}
and is in agreement with previous studies (Vitale et al.
2017b; Stevenson et al. 2017a; Zevin et al. 2017; Talbot &

Thrane 2017). Furthermore, with even higher statistics
of a few hundred detections, the fractional errors on
the mixing fraction will go down to 20%, if we consider
only the mass parameters. The inclusion of the effective
spin parameter reduces this value even further down to
10%. Finally, we have repeated this study for a value of
fT = 0.3, and found similar predictions.

4.2.2. LVC observations

In this section, we describe the results obtained when
applying our mixed model analysis to aLIGO/aVirgo

data (Abbott et al. 2018a). Figure 4 shows the posterior
distributions obtained when doing the analysis using
{Mt} (orange), {Mt, q} (purple), {Mt, q, χeffL

} (green)
and {Mt, q, χeffH

} (red).
First, the two posterior distributions obtained when

using the mass parameters are slightly shifted towards
values of f < 0.5 (pure dynamical scenario) with a median

value of 0.40 and 0.36 for {Mt} and {Mt, q} respectively.
In addition, the upper limit of the 99% credible interval
is equal to 0.94 ({Mt} case) and 0.90 ({Mt, q} case),

hence excluding our pure isolated scenario. As before,
this is due to the fact that some of the detected BBHs
have support for Mt > 70M� while our isolated model
strictly prevents the occurrence of these high masses.

In particular, for GW170729, the lower 90% credible
interval of Mt is equal to 74.2M�. For testing purposes,
we ran an analysis where the total mass of GW170729
was not included (blue curve); in this case, the median
was 0.55 and the upper limit of the 99% credible interval
is much higher, with values of 0.99, hence giving more
support towards the isolated scenario.

Including the effective spin parameter in the analysis
has a significant impact on the posterior distributions.
In the LS model, the distribution of the mixing fraction
is centered towards highers values of f (with a median
of 0.58), favouring the isolated scenario. Once again,
this result is dominated by a single event, GW151226,
that presents an effective spin parameter with a clearly
positive median value χeff = 0.18 that is not well sup-
ported by the dynamical scenario. We re-ran the analysis
for the LS model excluding this event (cyan curve) and
found that the value of the median is reduced down to
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Figure 3. Median (squares), 90% (thick lines) and 99% (dashed lines) credible intervals for the mixing fraction posterior
distribution as a function of the set of parameters used for the analysis. f = 0 (f = 1) corresponds to the pure dynamical
(isolated) model. In all cases, the fiducial data set were generated from a mixed model with mixing fraction fT = 0.7 and with
number of observations Nobs = 10, 100, 500 (from left to right).

a value of 0.48. It is interesting to highlight that while
GW170729 has even higher values of effective spin (me-
dian of χeff = 0.36), this event gives only limited support
to the isolated scenario as the masses are very high (un-
like GW151226). In the HS case, the dynamical scenario
is favoured with a median value for the mixing fraction
equal to 0.27. This can be understood by the fact that

the support for the effective spin parameter in the dy-
namical case extends between −0.6 and 0.7 (see Figure
1), which is the range of all the events currently observed
by aLIGO and aVirgo, while the isolated scenario now
struggles to capture events with negative values of χeff.

In conclusion, our results suggest that O1+O2 LVC
data (Abbott et al. 2018a) exclude a pure isolated sce-
nario as described by our population-synthesis simula-
tions, which however include hard cutoffs on both mass
and spin distributions. It is important to point out that
the width of the posterior distribution is still quite large,
and it is in agreement with the results obtained in the
last section. Moreover, we stress that the models consid-
ered in this paper refer to a single metallicity: at lower
progenitor metallicity even the isolated scenario includes
higher mass BHs (with Mt up to 80− 90 M�, Giacobbo

& Mapelli 2018). Thus, in a follow-up study (Bouffanais
et al., in preparation), we will explore the importance
of metallicity and other important population-synthesis
parameters.

5. DISCUSSION

In this first paper, we have applied a Bayesian model-
selection framework to discriminate BBHs formed in
isolation versus those those formed in young star clusters.
Under the assumption that there is only one “true” for-
mation channel, O1+O2 LVC data prefer the dynamical
formation channel at 3.4σ, if we include in our analysis
only the total mass Mt and mass ratio q. Similarly, if we
adopt a more realistic mixture model, O1+O2 LVC data
(Abbott et al. 2018a) exclude a purely isolated scenario
as described by our population-synthesis simulations. We
stress that this is a very model-dependent statement: our
isolated binary formation model contains hard cutoffs in
both binary masses (Mt < 70M�) and spins (χeff > 0),
which cannot accommodate some of the events, notably
GW170729 and GW151226.

The effect of the mass cutoff is particularly important.
We compared aLIGO data against two models, one with
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Figure 4. Posterior distribution inferred from a 106 MCMC
chain ran on the LVC observations. The legends [1] and
[2] correspond to cases where the events GW170729 and
GW151226 were respectively excluded from the analysis. f =
0 (f = 1) corresponds to the pure dynamical (isolated) model.
The set of parameters considered for the analysis are indicated
in the legend.

a mass cutoff at m1,m2 ∼ 35M� (isolated) and one
without it (dynamical). Our analysis suggests preference
for the model without cutoff. On the other hand, Abbott
et al. (2018b) find strong evidence for an upper mass gap

starting at ∼ 45M�– this constraint being driven by the
lower limit on the largest BH mass in the sample. Cru-
cially, they do not compare data against astrophysical
simulations with a well specified set of assumptions, but
rather fit a generic phenomenological population model.
Going forward, this difference highlights the importance
of accurately modeling tails of the predicted astrophys-

ical distributions, that despite being responsible for a
small number of events, might play a qualitative role in
discriminating among different formation channels.

Several caveats need to be discussed about our mod-
els. Crucially, the simulations considered here assume
a single metallicity Z = 0.1 Z�. Isolated binaries with
lower metallicity (Z <∼ 0.01 Z�) simulated with mobse
end up producing merging BBHs with total mass up
to ∼ 80 − 90 M� (Mapelli et al. 2017; Giacobbo &
Mapelli 2018). Thus, the effect of metallicity is some-
what degenerate with the effect of dynamics. We expect
a pure isolated scenario to be consistent with O1 and O2
data if we include more metal-poor progenitors (down

to Z ∼ 0.0002 = 0.01 Z�).
Moreover, the simulations considered in this paper

investigate only one model for core-collapse supernovae
(from Fryer et al. 2012) and only one model for pair-
instability and pulsational pair-instability supernovae.
Furthermore, we assume a specific model for BH natal
kicks, which are highly uncertain and can crucially impact
the properties of merging systems (e.g. Belczynski et al.

2016b; Mapelli et al. 2017; Barrett et al. 2018; Wysocki
et al. 2018; Gerosa et al. 2018). Even the prescriptions
for common envelope affect the properties of merging
systems significantly (here we consider only one value of
α = 3).

It is worth mentioning here that mobse predicts a

significant difference between the maximum mass of BHs
and the maximum mass of merging BHs in isolated bi-
naries (see e.g. Figure 11 of Giacobbo & Mapelli 2018).

From progenitors with metallicity Z = 0.1 Z� (Z = 0.01
Z�) we form BHs with individual mass up to ∼ 55 M�
(∼ 65 M�), but only BHs with individual mass up to
∼ 35 M� (∼ 45 M�) merge within a Hubble time through
isolated binary evolution. This behaviour is similar to
what found from the independent population-synthesis
code sevn (Spera et al. 2019) and springs from the in-
terplay between stellar radii and common envelope (see
Giacobbo & Mapelli 2018 and Spera et al. 2019 for more
details). Thus, if the progenitor metallicity is Z = 0.1

Z�, merging BBHs from isolated binaries have Mt ≤ 70
M�, while non-merging BBHs from isolated binaries have
Mt ≤ 110 M�.

In contrast, dynamically formed BBHs (especially
BBHs formed by dynamical exchange) might be able
to merge even if their total mass is larger than ∼ 70
M�, because common envelope is not the only way to

shrink their orbits: dynamical exchanges and three-body
encounters also contribute to reducing the binary semi-
major axis and/or increasing the orbital eccentricity.

This is the main reason why Mt is substantially larger
for dynamical BBH mergers than for isolated BBH merg-
ers.

In addition, dynamical BBHs can host BHs which form
from the collision between two or more stellar progenitors
(which is not possible in the case of isolated binaries).
In our models, if a BH forms from the evolution of a

collision product between an evolved star (with a well-
developed Helium or Carbon-Oxygen core) and another
star, it might have a significantly larger mass, because a
collision product can end its life with a larger total (or
core) mass and with a larger envelope-to-core mass ratio
than a single star (see Di Carlo et al. 2019 for additional
details). This further enhances the mass difference be-
tween isolated and dynamical merging BBHs. Moreover,
BHs that form from the collisions of two or more stars
are also allowed (in some rare cases) to have mass in
the pair-instability mass gap, if their final Helium core
is below the threshold for (pulsational) pair instability
but their Hydrogen mass is larger than expected from
single stellar evolution (in our models we impose that the
BH mass is equal to the final progenitor mass, including
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Hydrogen envelope, if there is a direct collapse2). From
Di Carlo et al. (2019) we find that <∼ 2% of all merging
BHs have mass in the pair-instability mass gap.

We also stress that the very edges of the pair-instability
mass gap are not uniquely constrained. The lower bound-
ary of the mass gap can be as low as ∼ 40 M� or as
large as ∼ 65 M�, depending on details of the stellar
evolution model (e.g. with/without rotation, Mapelli et
al. in preparation) and of the pair-instability SN model.

Finally, in the current paper we assume a simplified
evolution of the merger rate with redshift (uniform in
comoving volume and source-frame time). The evolution
with redshift is important (especially for ET) not only
for the merger rate but also for the properties of merging
systems, because of the influence of the cosmic star
formation rate and of the metallicity evolution on BBHs
(e.g. Mapelli et al. 2017; Lamberts et al. 2016). All these
ingredients must be kept in mind when interpreting the
results of our study. Thus, in a follow-up study we will

include different metallicities, a self-consistent redshift
evolution model, and we will consider a larger parameter
space.

Previous papers already addressed the issue of dynam-
ical formation versus isolated formation of BBHs within
a model-selection approach (e.g. Stevenson et al. 2015,
2017a; Vitale et al. 2017b; Zevin et al. 2017). Most

previous studies adopt just simple prescriptions for the
dynamical evolution and do not consider a full set of
dynamical simulations. Zevin et al. (2017) did compare
results of a population-synthesis sample and a set of
dynamical simulations. However, their approach is sig-
nificantly different from ours as we make use of direct

N-body simulations of young star clusters, while they
consider hybrid Monte Carlo simulations of globular clus-
ters. Globular clusters are massive (> 104 M�) old star
clusters (most of them formed around 12 Gyr ago). They

are site of intense dynamical processes: binary hardening
and exchanges in globular clusters are very effective (see
e.g. Wang et al. 2015; Rodriguez et al. 2015; Askar et al.
2017), but nowadays the stellar mass still locked up in
globular clusters is a small fraction of the total stellar
mass (< 1 %, Harris et al. 2013). In contrast, young star
clusters are smaller systems (the systems we consider
here have mass ∼ 103−4 M�) and are mostly short-lived
(< 1 Gyr), but they form continuously through the cos-
mic history and are expected to host the bulk of massive
star formation (Lada & Lada 2003; Weidner & Kroupa
2006; Weidner et al. 2010). Thus, the importance of
dynamics in a single young star cluster is lower than in a

2 This assumption is still matter of debate given the high uncer-
tainties on direct collapse (see e.g. Sukhbold et al. 2016).

single globular cluster, but the cumulative contribution of
young star clusters to the dynamical formation of BBHs
is a key factor (e.g. Di Carlo et al. 2019; Kumamoto
et al. 2019).

From a more technical point of view, globular clus-
ters are spherically symmetric relaxed systems. Hence,

they can be simulated with a fast Monte Carlo approach
(Hénon 1971; Joshi et al. 2000). In contrast, young star
clusters are asymmetric and irregular systems, still on
their way to relaxation (Portegies Zwart et al. 2010).
Hence, we need more computationally expensive direct
N-body simulations to model them realistically. Thus,
our approach and the one followed by Zevin et al. (2017)
are complementary both scientifically and numerically.
To understand the dynamical formation of BBHs, we
need to model both the globular cluster and the young
star cluster environment. The final goal is to have a
model-selection tool to distinguish isolated binary forma-
tion from dynamical formation, able to account for the

many different flavours of dynamical formation (globular
clusters, young star clusters, galactic nuclei and hierar-
chical triples). While we are still far from this goal, our

work provides a new crucial piece of information in this
direction.

6. SUMMARY

The formation channels of BBHs are still an open ques-

tion. Here, we use a Bayesian model-selection framework
and apply it to the isolated binary scenario versus the
dynamical scenario of BBH formation in young star clus-
ters. Young star cluster dynamics might be extremely
important for BBHs, because the vast majority of mas-
sive stars (which are progenitors of BHs) form in young
star clusters and OB associations (see e.g. Lada & Lada

2003; Portegies Zwart et al. 2010). However, only few
studies focus on BBH formation in young star clusters,
because this is a computational challenge (Ziosi et al.
2014; Mapelli 2016; Banerjee 2017, 2018; Kumamoto et al.
2019; Di Carlo et al. 2019). Here, we consider the largest
sample of merging BBHs produced in a set of N-body
simulations of young star clusters (Di Carlo et al. 2019).
For the isolated binaries, we take a sample of > 3× 104

merging BBHs simulated with the population synthesis
code mobse (Giacobbo et al. 2018; Giacobbo & Mapelli
2018). mobse includes state-of-the-art models for stellar
winds and BH formation. The same population-synthesis
algorithm is used also in the N-body simulations, ensur-
ing a fair comparison of the two scenarios (see Section
2).

We analyzed the two scenarios with a Bayesian hier-
archical modeling approach capable of estimating which
models best fit a given set of GW observations (see
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Section 3). We looked at two different cases where we
assumed that the underlying astrophysics is either de-
scribed by a single model, or by a combination of the two
models weighted by a mixing fraction parameter f. In
both analyses, the statistical framework was applied on
the combination of the mass parameters and the effective

spin. The redshift dependence is inevitably entangled
with the metallicity of the sources, which will be explored
extensively elsewhere.

In terms of GW observations, we used both mock data
and LVC observations during O1 and O2 (Abbott et al.
2018a). Our results with mock observations showed that
the distributions of Mt and q already present strong
features that can be used to differentiate between the
two models. In fact, with 500 observations with aLIGO
and aVirgo we could be able to restrict the values of the
mixing fraction to an interval smaller than 0.5. With the
inclusion of the effective spin parameter in the analysis,
we found that this interval becomes even smaller with

values close to 0.15.
Finally, this work is the first one that used the latest

LVC data to perform Bayesian model selection approach
in order to discriminate between BBHs formed via iso-
lated or dynamical binaries Our results showed that the
current set of observations is not able to put a strong
constraint on the mixing fraction of the the two models.

A pure isolated (dynamical) scenario in which all BBH
progenitors have metallicity Z = 0.002, as described
by our simulations, is barely consistent (still consistent)

with LVC data, because of the presence of massive BBHs
such as GW170729. We stress that progenitor metallicity
and dynamics have a somewhat degenerate effect on the
maximum mass of merging BBHs: we expect the pure
isolated scenario will be still consistent with O1+O2
data if we include more metal-poor progenitors (down to

Z ∼ 0.0002). Thus, in a follow-up study, we will apply
our methodology to a range of metallicities for both the
dynamical and isolated scenarios.

Finally, given our estimations obtained with mock ob-
servations, we expect that after about a hundred detec-
tions (optimistic scenario for O3, middle panel of Figure
3), we should already be able to constrain the values of
the mixing fraction in an interval smaller than 0.5.
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APPENDIX

A. HIERARCHICAL INFERENCE

Bayesian hierarchical modeling is a powerful approach that enables to generate predictions on the parameters of
a given model. In this section, we present how we applied this technique in our context by following the formalism
presented in Taylor & Gerosa (2018), Mandel et al. (2019).

Let us consider that data d of a GW detector contain an ensemble of GW signals indexed by k, d = {hk}Nk=1, where
N is the total number of signals. The posterior distribution of the model parameters θ is given by Bayes’ theorem as,

p(θ|{hk}) =
p({hk}|θ) p(θ)

p({hk})
, (A1)

where p({hk}|θ) is the likelihood of the model, p(θ) is the prior on the model parameters and p({hk}) is the evidence
on the data. The likelihood of the model can be expressed in terms of the joint probability distribution over the signal
parameters,

p({hk}|θ) =

∫
{λk}

p({hk}, {λk}|θ)d{λk}, (A2)

where the integration needs to be done over the parameters of all events {λk}. The previous joint distribution can be
split into two contributions,

p({hk}, {λk}|θ) = p({hk}|{λk})× p({λk}|θ), (A3)
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where the left term is the GW events likelihood and the right term is the parametric likelihood of the model. The GW
events likelihood can be computed via Bayes’ theorem as

p({hk}|{λk}) =
p({λk}|{hk}) p({hk})

p({λk})
, (A4)

where p({λk}|{hk}) is the posterior distribution for the combined set of events, p({λk}) is the prior distribution on the
set of observed parameters, and p({hk}) is the evidence on the data.

Now, to derive an expression for the parametric model likelihood in Eq. (A3), let us first assume that all quantities
are binned along the parameters λ. In this case, the set of events parameters {λk} become a set of numbers of events
contained in each bin, {nl}, where l goes from 1 to the total number of bins Nbin. The probability of having a given
distribution of events {nl} is given by a Poisson process,

p({nl}|θ,N(θ)) =

Nbin∏
l=1

rl(θ)
nl × e−rl(θ)

nl!
, (A5)

where N(θ) is the total number of events predicted by the model and rl(θ) is given by

rl(θ) = N(θ)× pl(θ), (A6)

where pl(θ) is the binned version of the rate p(λ|θ).
Now if we take the limit where the bins become infinitely small, we arrive to a point where each bin will either have

nl = 1 or nl = 0 events, which gives the following continuous limit,

p({λk}, N(θ)|θ) =

(
N∏
k=1

p(λk|θ)
)

×N(θ)Ne−N(θ). (A7)

As we are not interested in predicting the total number of events for a model, we marginalise over N(θ) as,

p({λk}|θ) =
∞∑
N=1

p({λk}, N |θ), (A8)

=

(
Ndet∏
k=1

p(λk|θ)
)
×K(N), (A9)

where the quantity K(N) is model-independent, and only a function of the total number of events.
Putting everything together in Eq A2, we find the following expression for the posterior distribution of the model

p(θ|{hk}) = K(N)p(θ)
N∏
k=1

∫
λk

p(λk|hk)p(λk|θ)
p(λk)

. (A10)

There is a final caveat that need to be dealt with in this anlaysis. In fact, while N events are contained in the data,
some of these events will be classified as detectable and the rest as non detectable. As in reality, we only have access
to the Ndet observed events, this induces a selection effect. To take this effect into account, one can show that the
previous posterior distribution needs to be updated as,

p(θ|{hk}) = K(Ndet)p(θ)

Ndet∏
kdet=1

∫
λkdet

p(λkdet |hkdet)p(λkdet |θ)
p(λkdet)β(θ)

, (A11)
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where the subscript “det” stands for detected events and the factor β(θ) is a normalisation factor defining the detection
efficiency of a given model with parameters θ as (Loredo 2004; Mandel et al. 2019),

β(θ) =

∫
ρ[h(λ)]>ρthr

∫
λ

p(h, λ|θ)dhdλ, (A12)

=

∫
ρ[h(λ)]>ρthr

∫
λ

p(h|λ)× p(λ|θ)dhdλ, (A13)

=

∫
λ

pdet(λ)p(λ|θ)dλ. (A14)

where pdet is the detection probability defined in Section 3.1.1. In practice the previous integral is evaluated with
Monte Carlo integration as ∫

λ

pdet(λ)p(λ|θ)dλ ≈ 1

N

N∑
i=1

pdet(λi), (A15)

where λi are samples from p(λ|θ).
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