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ABSTRACT
Multiparty collaborative problem solving–an increas-
ingly important context in the 21st century workforce–
suffers from a degradation of social and behavioral sig-
nals when attempted remotely, resulting in suboptimal
outcomes. We investigate teams’ multidimensional pat-
terns of visual attention during a collaborative problem-
solving task with an eye for leveraging insights to im-
prove collaborative interfaces. Fifty-seven novices (form-
ing 19 triads) engaged in a challenging programming
task (Minecraft Hour of Code) using videoconferenc-
ing software with screen sharing. To discover patterns
of individual-level gaze-UI coupling (coordination of a
teammate’s attention with respect to changes in the user
interface) and team-level gaze-UI regularity (dynamics
of teams’ collective attention in context with changes in
the user interface), we applied cross- and multidimen-
sional recurrence quantification analyses, respectively.
Individuals’ eye gaze was significantly coupled with
the ongoing screen activity whereas teams displayed
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significant patterns of gaze regularity, suggesting repet-
itive patterns in teams’ attention. These measures pre-
dicted expert-coded collaborative processes of construct-
ing shared knowledge and negotiation and coordination
(but not maintaining team function) and correlated with
task score (r = .425). They also predicted individually as-
sessed subjective perceptions of team performance and
the collaboration process, but not individual’s learning
or team’s task scores. We discuss implications of our find-
ings for the design of intelligent collaborative interfaces.
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1 INTRODUCTION
"Look here!"—"Where? In the Minecraft?"—"No, here.
In the code! Can you see it?"—"No!" Referencing objects
and regions on a shared screen during remote collabora-
tions can be frustrating. Some teams, however, perform
surprisingly well under the constraints of the virtual
environment. Here, we test what gaze-UI coupling and
regularity–the alignment and collective patterns of team-
mates attentional focus in conjunction with changes in
a user interface–reveal about the collaboration process
and outcomes.

Effective collaboration relies on communication skills,
which underlie and support mutual sharing of concepts,
checking assumptions, calibrating intentions, and mon-
itoring progress. Collaboration in computer-mediated
settings, however, changes communication processes
and generated and transmitted signals compared to face-
to-face scenarios [50]. Thus, collaborators have to alter
their style of communication to compensate for the lower
quality social and behavioral signals. Here, we study pat-
terns of visual attention when small groups engage in
collaborative problem solving in a computer-mediated
context and their relationship to quality of collaboration
and its outcomes.

Motivation
Good interpersonal and communication skills are crucial
in digital environments, particularly those that require
collaborative problem solving [1]. Groups can outper-
form an individual in problem-solving tasks, but more
often than not demonstrate “process loss“ by failing to
live up to their potential [21, 26, 51]. One type of process
loss—coordination loss [18, 36, 58]—occurs when key
socio-affective-cognitive (SAC) processes, such as con-
versation grounding, turn taking, emotion co-regulation,
and joint attention, which contribute to overall collabo-
ration quality [3, 15, 20, 26, 27, 32] are disrupted. Further,
SAC processes are often muted during remote collabo-
rations [2, 48], and current computer-supported coop-
erative work (CSCW) or cooperative learning (CSCL)
environments rarely provide supports for them.

In terms of visual attention, which is the focus of this
work, previous research demonstrates that coupling of
an individual’s attention with others is indicative of how
he or she follows the conversation, interaction, and their
intentions (e.g., [50]). However, most of the work has
been done in the context of dyads engaged in a conver-
sation [23, 42, 46]. Furthermore, a significant portion of
research focuses on the extent to which dyadic eye gaze is
aligned when individuals are attending to the same stim-
uli [23, 42, 43]. However, this work does not recognize

that tasks often require team members to adopt different
roles and attend to different features of the task in or-
der to promote performance. As a result, we know little
about multiparty visual attention, how it emerges over
the course of an interaction, and how it influences the
quality of collaboration. Accordingly, we extend prior
work on dyadic gaze alignment by investigating collec-
tive patterns of gaze in context with the activity on a
shared screen during computer-mediated collaborative
problem solving.

The landscape drastically changes when small groups
are considered. Decades of research on small group in-
teractions has concluded that fundamentally different
phenomena emerge when one goes beyond dyads be-
cause “dyads are not groups“ [33]. Dyads are largely
limited with respect to the team dynamics they can af-
ford, whereas complexity rapidly scales up when teams
expand. While dyads afford three interacting units (two
individuals and one pair), triads involve multiple and
more complex interacting units (three individuals, three
dyads, and one triad), thus increasing demands on group
coordination. In addition, a range of interesting dynam-
ics arise when triadic eye gaze is coupled with the inter-
action context, as in this paper. In that case, the analysis
considers four simultaneous multivariate signals (eye
gaze of three team members (A,B,C) and changes to the
user interface (I)), resulting in 11 possible interacting
components (AB, AC, BC, AI, BI, CI, ABC, ABI, ACI, BCI,
ABCI). In this work, we investigate gaze-UI coupling (AI,
BI, CI) and gaze-UI regularity (ABCI).

Research questions and novelty
To understand these complex collaborative interactions,
we model visual attention as a nonlinear and interlocked
process with spontaneously emerging spatio-temporal
patterns situated within the unfolding interaction. Using
cross- and multidimensional- recurrence quantification
analyses (CRQA and MdRQA, respectively), we investi-
gate whether groups exhibit systematic patterns during
collaborative problem solving and whether these pat-
terns predict collaborative processes and outcomes.

Our work is novel by providing a computational as-
sessment of complex computer-mediated collaboration
from the lens of triadic visual attention. Our approach is
grounded in the theory that teams can self-organize into
interpersonal synergies [11, 17], which allows interact-
ing individuals to function as a single unit, reducing the
number of degrees of freedom (dimensional compres-
sion) and allowing individual components to rapidly
react to changes in others (reciprocal compensation) [44].

Our main research question centers on how group-
level gaze-UI regularity, defined as the dynamics of teams’



collective attention aligned with changes in the UI, pre-
dicts collaborative problem-solving processes and out-
comes after accounting for individual-level gaze cou-
pling with the UI and other covariates (e.g. verbosity).
Specifically, we expand on previous research investigat-
ing visual attention during collaborative tasks in three
key ways. We are the first to establish a measure of
triadic visual attention in computer-mediated collab-
orative problem solving. Second, combining two dis-
tinct variants of RQA, we quantify spatial-temporal pat-
terns between intra-individual’s gaze and UI changes
(individual-level gaze-UI coupling via CRQA) and inter-
individuals’ gaze along with UI changes (group-level
gaze-UI regularity via MdRQA). Third, we show that our
RQA measures of predict measures of collaboration qual-
ity in terms of objective (i.e., task scores and expert-coded
measures of effective collaborative problem solving) and
subjective assessments of the quality of the collaboration
and its outcome.

Our results indicate that not only do teams align eye
gaze with the changing environment and produce regu-
lar group-level patterns of gaze, the extent to which they
do so positively predicts collaboration quality and out-
comes. Thus, patterns of visual attention within teams
aligned with a UI might be a key instrumental variable
to consider in next-generation intelligent user interfaces
that aim to improve collaborative outcomes by monitor-
ing the unfolding collaborative process and dynamically
intervening as needed.

2 BACKGROUND
Visual attention in collaborative interaction
Research examining eye gaze during collaborative tasks
often focuses on joint attention, or the alignment between
partners’ locus of attention. Joint attention underlies suc-
cessful communication [3] and is crucial for active en-
gagement and participation in conversation [24, 41]. Con-
versely, the lack of joint attention has been linked to mis-
understandings [7]. Indeed, attending to the same areas
of interest promotes collaborative flow and mutual un-
derstanding [26] and has been associated with improved
problem solving and higher learning gains [40].

To foster joint attention during computer-mediated
tasks, researchers have experimented with gaze visu-
alizations and real-time sharing of gaze between two
remote partners in a number of domains, including re-
mote pair programming [5, 13, 24], collaboratively solv-
ing puzzles [14], collaborative learning of neuroscience
concepts [46], and visual search tasks [6, 35, 60]. In these
studies, the gaze of one team member is shown to their
partner in near-real time. Gaze sharing allows for implicit

referencing without the need of verbal cues, improving
awareness of partner’s locus of interest [60], action coor-
dination [13], and mutual understanding of stimuli [46].

Thus far, research on visual attention has mainly been
restricted to studies on dyadic gaze synchrony and on
how joint visual attention is associated with performance
[23, 42, 43]. It is unclear how findings will generalize to
small groups of three or more and whether going be-
yond gaze alignment to collective patterns of gaze will
provide new information about the collaborative pro-
cess and outcomes. Here, we adopt a dynamical systems
framework and associated analytic techniques to under-
stand visual attention during triadic problem solving in
a computer-mediated setting.

Dynamical systems to analyze human interactions
Dynamical systems frameworks view human interac-
tion as a continuous and mutually adaptive process
[8, 19, 29, 45]. Synergies are one type of nonlinear dy-
namical system that occur when interacting components
function as a single unit. A synergy arises as the sys-
tem’s degrees of freedom become loosely coupled and
mutually constrain each other. Thereby, the shared set
of possibilities gets temporarily reduced and allows for
more stable and regular behavior [44, 50]. In addition, syn-
ergies adaptively re-organize to create novel or irregular
behaviors in order to meet shifting task demands.

From the perspective of synergies, effective collabo-
ration is supported by team members’ ability to coor-
dinate and coregulate one another. Coordination refers
to the functional organization of interacting parts and
processes that give rise to spatial and temporal order [25].
Relatedly, coregulation refers to the process by which
responses of one component change based on those of
another component. Coordination and coregulation give
rise to emergent patterns of behavior that are not re-
ducible to the activity of its individual components, such
that the whole is greater than the sum of its parts. In
the context of teamwork, coordination and coregulation
may occur across multiple interacting channels in order
to promote task performance [38, 53]. Here, we focus on
one interacting channel-pattern of eye gaze as an index
into visual attention, and employ an analytic method
from dynamical systems theory, called RQA, to uncover
synergistic patterns at the team-level.

Recurrence in joint attention
Recurrence Quantification Analysis (RQA) is a nonlinear
time series analytic technique for studying dynamic pat-
terns over time [30] and can be used to capture activity
common to synergies, including adaptive shifts between
regular and irregular patterns of behavior. Contrary to



traditional linear approaches to time series analysis, RQA
relaxes requirements of signal linearity and stationar-
ity, which are limits of many (but not all) traditional
time series analysis techniques [49]. Cross-RQA (CRQA)
is one type of RQA that quantifies coupling between
dyadic signals, or the extent to which two signals con-
verge on the same state across time. Multidimensional-
RQA (MdRQA) is another and more recent extension of
RQA [56, 57] that can accommodate numerous signals
which may be from different individuals and/or modali-
ties. Unlike CRQA, MdRQA captures the extent to which
collective organization of the system exhibits regular or
irregular patterns of behavior, where regularity refers to
periods during which the multidimensional system revis-
its a particular state, though the individual signals may
not match one another. In the context of team eye gaze,
a stable state may correspond to Participant A monitor-
ing changes in the code while Participant B focusing on
another portion of the screen where they view the anima-
tion that results from the code. Thus, CRQA can be con-
sidered a measure of coupling between two time series,
while MdRQA is a measure of system-level regularity.

While MdRQA is a novel analytic tool, CRQA has been
used to investigate joint attention, or mutual gaze cou-
pling, between speaker and listener [43], pair program-
mers [23], and medical experts and novices [55]. CRQA
measures have been shown to be indicative of various
interaction outcomes. Gaze coupling between program-
mers, for example, has been associated with better divi-
sion of labor, mutual participation, and strategy agree-
ment [23]. This study also found that gaze coupling was
highest during moments of verbal references, suggesting
that verbal interaction was associated with a focusing of
eye gaze toward particular aspects of the task. Further-
more, [42, 43] found that coupling between speaker and
the listener was predictive of listener’s comprehension.

Despite showing promise in predicting and assessing
various aspects of collaboration quality, prior research
utilizing CRQA has been limited to analyzing the joint
attention between dyads. However, measures of joint
attention neglect the fact that team members may need
to focus on different features of the task environment.
This may be evident in systematic group-level patterns
of eye gaze that may not include attending to the same
area of interest at the same time. To our knowledge, we
present the first study of the dynamics of team’s visual
attention aligned with changes in the user interface (UI)
and its influence on collaboration quality.

3 DATA SOURCE: HOUROFCODE
We used data collected as part of a larger project on col-
laborative problem solving [52]. In this work, teams of

students used a video-conferencing tool to collabora-
tively solve a challenging task in a Minecraft themed
Hour of Code1. The interface uses a visual programming
language where each code chunk is represented as a
syntactically correct interlocking blocks available in the
block library (Figure 1b). The participants were tasked
with building a brick building in the Minecraft world
(Figure 1a) using the code blocks (Figure 1c).

Participants
Participants were 111 undergraduates from a medium-
sized private Midwestern university. Participants were
74.8% Caucasian, 9.9% Hispanic/Latino, 8.1% Asian,
0.9% Black, 0.9% American Indian/Native Alaskan, 2.7%
other, and 2.7% did not report ethnicity. The average age
was 19.4 years and 63.1% of the participants were female.
Participants were compensated with course credit.

Participants were assigned to 37 teams of three. The
only inclusion criterion was no previous experience with
computer programming and none of the participants
were excluded on this basis.

Experimental task and procedure
Participants were randomly assigned to one of three
computer-enabled rooms in a lab. Each computer was
equipped with a webcam and microphone for video con-
ferencing with screen-sharing through Zoom2. Partici-
pants’ eye movements were recorded with the EyeTribe
eye-tracker, with binocular sampling at 30Hz, mounted
on a tripod below the screen. The screen content was also
recorded using Zoom’s built in features.

Upon arrival in the lab, participants completed in-
dividual surveys gathering basic demographic data as
well as self-reported standardized test score (ACT/SAT),
which strongly correlate with actual test scores [10]. Then,
participants were randomly assigned to their task roles.
One team member controlled the group’s interaction
with the environment. The other two team members
viewed the controller’s screen via screen sharing and
actively provided suggestions throughout the collabora-
tion. In order to learn basic programming principles and
familiarize them with the Minecraft environment, teams
completed five lessons and watched three accompanying
videos within the first 20 minutes.

After completing the introductory tasks, participants
individually (i.e., screen sharing was turned off) rated
their level of satisfaction with their team’s "performance

1https://code.org/minecraft
2https://zoom.us

https://code.org/minecraft
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Figure 1: Virtual environment of Minecraft Hour of Code. Areas of Interest (AOI) (with overlap) refer to areas of Minecraft
animation (blue), Code (green), and teammates (magenta).

at completing the lessons", how well their team "commu-
nicated with each other", how well their team "cooper-
ated to complete the lessons", and how "agreeable my
teammates are" using a scale ranging from very dissat-
isfied (1) to very satisfied (6).

Teams then collaborated on the main task where they
had 20 minutes to build a four by four brick building
with the following constraints: use at least one if state-
ment; use at least one repeat loop; build at least three
bricks over water; and use 15 blocks of code or less.

After completing this challenging task, participants
individually rated their subjective assessments of their
team’s performance, communication, cooperation, and
agreeableness using the same items and scales as above.
Then, participants individually completed a ten-item
multiple-choice test to assess their conceptual knowl-
edge of coding concepts. Finally, participants rated the
extent to which they knew each of their teammates (prior
to the study) on a scale of 1 (not at all) to 5 (very well).

Measures
We analyzed a number of personal, interpersonal, sub-
jective, and objective aspects of the collaborative process
and its outcomes. The following measures of interest
were obtained for the challenging task and not for the
introductory tasks.

Expert-coded measures. We obtained expert codings
of each participant’s collaborative problem-solving com-
petencies characterized by construction of shared knowl-
edge, negotiation and coordination, and maintaining
team function. These three facets were derived from
a theoretically-grounded and empirically-validated model
of collaborative problem-solving competencies [53].

Construction of shared knowledge is defined as team
members expressing their ideas and working to under-
stand others’ ideas. Negotiation and coordination per-
tains to teams discussing and arriving at a solution and
then executing it. Maintaining team function is related
to sustaining productive dynamics. Each of these facets
has subfacets which in turn have a set of behavioral in-
dicators. For example, constructing shared knowledge
is composed of two subfacets: 1) shares understanding
of problems and solutions and 2) establishes common
ground. Proposing a specific solution is one positive in-
dicator of the first subfacet, whereas a team member
interrupting or talking over others is a negative indicator
of the second subfacet.

We used a thin slicing approach from [34, 37]. Specif-
ically, each 20-minute video of the challenging program-
ming task was split into four five-minute windows. Within
each five-minute window, we selected a random 90-
second interval for coding, where a coder counted the
occurrence frequency of each indicator per participant.
Thus, 360 seconds (30%) of each video was coded.



Through iterative processes of coding and discussion,
three coders reached an agreement of 0.92 (Spearman
correlation) on a random sample of three videos. The re-
liability was obtained by first computing indicator-level
reliability across the three pairs of coders and then aver-
aging across indicators. Then, the three coders divided
the videos among themselves and individually coded
their assigned videos.

We aggregated the indicator-level codes across the
four 90s segments to obtain participant-level facet scores.
We first z-scored the frequency counts by coder to ac-
count for variation among the coders. The z-scores were
averaged across segments within each participant for a
participant-level score. Then, we z-scored each indicator
across all participants in order combine indicators to com-
pute sub-facet scores. We multiplied negative indicators
by -1, averaged indicator scores within each subfacet,
and then averaged subfacet scores to the appropriate
facet.

Objective Measures. Two independent raters scored
each team’s solution on the five challenge criteria, with
each criterion being worth one point. Task scores could
range from 0 to 5 (M = 2.86, SD = 1.06). The two raters
reconciled any disagreements via discussion. We also
averaged the 10 individual post-test items to obtain a
measure for individual learning (M = 43%, SD = 15.7).

Subjective Measures. Participants’ self-reports of their
teams’ performance was taken as their subjective mea-
sure of collaboration outcomes. We averaged each par-
ticipant’s self-reports of communication, cooperation,
and agreeableness because ratings were highly corre-
lated (Cronbach’s alpha = .89), thereby obtaining a single
measure of their subjective perceptions of their team’s
collaboration process.

Verbosity. We used the IBM Watson Speech to Text
service3 to generate transcriptions of each participant’s
audio recordings. We summed all the words in the tran-
script to obtain a participant-level measure of verbosity.

Data preprocessing
We focus on eye gaze behavior in relation to interac-
tion on the screen. We processed the eye gaze data as
follows. First, the raw gaze points were categorically
assigned to one of the following four areas of interest
(AOIs): Minecraft animation, Code, Partners and Out
of bounds (Figure 1). We chose to work with raw gaze
points rather than fixations as this resulted in lower data
loss. To compensate for potential eye-tracker calibra-
tion errors, we enlarged AOIs by a 100px safety margin
around the screen and by a 50px margin between the

3https://www.ibm.com/watson/services/speech-to-text

AOIs, as illustrated in Figure 1. Gaze points in the safety
margin were assigned to both areas. Figure 2 illustrates
gaze distribution to the designed areas, where we note
that majority of eye gaze was on the Code and then on
the Minecraft area. The area with the live view of team-
mates was only sporadically visited, probably because
of its small size. Interestingly, proportions of eye gaze to-
wards the AOIs were quantitatively similarly distributed
across roles. Next, the stream of assigned AOIs was seg-
mented into 1-second time windows and each segment
was assigned to the majority AOI.
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Figure 2: Distribution of raw gaze points across participants
and their roles. Participant A controlled the environment.

Because the task was hosted by a third party web-
site, activity log-files were not available. Therefore, we
processed screen videos to obtain a measure of activity
on the screen. Specifically, we used a validated motion
estimation algorithm [58] to compute the proportion of
pixels that changed for each AOI and aggregated the data
in one-second time windows. Thus, each team was repre-
sented by three (one for each team member) time series
of gaze AOIs (Minecraft, Code, Partners, Out-of-bounds)
and one time series of screen AOI changes (Minecraft,
Code, Partners).

Finally, we removed AOI data points associated with
missing data caused by the eye tracker failing to register
gaze to ensure that RQAs were grounded in the same
data sources. We decided to only include participants
with at least 75% non-missing raw data (57 participants
across 19 complete triads). Data loss was expected due to
the low-cost sensor with no chin rest, which was impor-
tant for ecological validity. We aimed to avoid spurious
results due to missing data; therefore, whenever one of
the partner’s time series was missing an AOI value, the
corresponding AOI values of the other two partners were

https://www.ibm.com/watson/services/speech-to-text


removed. Across teams, the rate of cleaned sequences
ranged from 8.9% to 66.5% (M = 41.9%, SD = 16.8). We
included missing data proportions as covariates in the
models and this had no statistically significant influence
on reported results.

4 RECURRENCEQUANTIFICATIONANALYSIS
Recurrence Quantification Analyses unveil the tempo-
ral organization of time series by identifying recurrent
patterns, or repeated values, that occur over time [30].
Auto-Recurrence Quantification Analysis (ARQA) is lim-
ited to examining patterned behavior of a single signal
(i.e. time series of a single participant), Cross-Recurrence
Quantification Analysis (CRQA) identifies patterns of
coupling between two signals (e.g., a participant and
activity on the screen in our case), and Multidimensional
Recurrence Quantification Analysis (MdRQA) can re-
veal collective patterns of regularity across multiple data
streams—in our case, three participants’ AOIs and screen
activity AOIs.

CRQA andMdRQA in principle
CRQA can identify the degree to which two time-series
trajectories are in a similar state for one time point at a
particular time lag, as well as uncover longer repetitive
patterns across a series of co-occurring sequential points.
In this way, various information about interaction pat-
terns can be quantified by determining how often two
time series co-visit one another [9].

We use CRQA to examine coupling between each par-
ticipant’s eye gaze and changes in screen activity. This
serves as a baseline coupling measure since it is inde-
pendent of the other teammate’s eye gaze. In addition,
we utilize MdRQA, an extension of RQA for multiple
time series (i.e., > 2) [57], to assess repeated patterns of
team-members’ visual attention in context with screen
activity (4 time series). Unlike CRQA where recurrent
points correspond to matching values between two time
series, recurrent points in MdRQA represent collective
states across time series where the individual time se-
ries might not be in alignment with one another but the
overall configuration of the system is repeated (e.g., a
stable configuration might include system A being “on“
and system B being “off“). Thus, we utilize MdRQA to
measure group-level gaze regularity.

For CRQA, the two time series are first transformed
into a distance matrix representing the pairwise Euclidean
distances between elements of each series. The axes of
the resulting distance matrix correspond to the two time-
series, such that each cell in the distance matrix is the
distance between time points from time series x and y at
a particular time lag. For MdRQA, the distance matrix

reflects the Euclidean distances between elements within
each time series at different time lags. In other words, the
data is treated as a multidimensional times and the ma-
trix represent distance between multidimensional time
series elements at various time lags [57]. Figure 3 illus-
trates an example how a color-coded MdRQA recurrence
plot is created from gaze-UI time series.

In both CRQA and MdRQA, the diagonal of the ma-
trix is the line of identity (LOI), or the distance between
elements of time series that occur at the same time point.
Diagonal lines parallel to the LOI represent points that
occur at a particular time lag, with lines further from the
LOI representing greater time lags between x and y time
points. Because MdRQA compares each time series to
itself across various lags , the LOI (lag 0) is always 0 and
is excluded from analyses.

Finally, for both CRQA and MdRQA, a radius is ap-
plied in order to transform the distance matrix into a re-
currence matrix. The radius defines whether two points
are sufficiently similar to one another enough to consti-
tute a "match". If the distance in a given cell of the dis-
tance matrix is less than the radius, the cell is identified as
a recurrent point and is assigned a value of 1 in the recur-
rence matrix. Distances between x and y time points that
are equal to or exceed the radius are assigned a value of 0.

CRQA andMdRQAmeasures
A variety of measures are used to quantify patterns in a
recurrence matrix [42, 56]. Since the measures are highly
correlated, we focus on two here. Recurrence rate (RR) is
the percentage of recurrent points in the recurrence ma-
trix points [40, 54]. We use CRQA recurrence rate to index
the degree of coupling between individual participants’
eye gaze and the UI activity, and we use MdRQA recur-
rence rate to index group-level gaze regularity among
triads and the UI.

Entropy of diagonal line lengths (ENTR) is calculated
based on the distribution of diagonal lines on the recur-
rence matrix where two or more sequential diagonal
points are considered to form a “line.“ These lines cor-
respond to periods of time where the system repeats se-
quences of activity and longer lines correspond to longer
sequences. Entropy is an index of complexity where de-
terministic systems yield less complex dynamics and
have lower levels of entropy, such that the trajectory of a
system is more predictable [39]. On the other hand, less
deterministic systems have greater entropy, as they are
more disordered and exhibit greater complexity [28].

RQA parameters and analysis
Both CRQA and MdRQA were set with default parame-
ters for categorical input [9, 49]: delay = 1, radius= 0.0001,
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colored points illustrate when the focus of all participants is both recurrent and aligned in the same AOI, either for the Code
(green) or Minecraft animation (blue). Points in black illustrate to other AOI combinations is recurrence but not aligned gaze.

embedding = 1, norm = 0 (Euclidean distance). Data pre-
processing was performed in Python using Pandas [31].
The RQA measures were computed using R packages
’crqa’ [9] and ’mdrqa’ [56]. Further analyses were con-
ducted using R packages ’lme4’ [4], ’car’ [16], and ’gg-
plot2’ [59].

5 RESULTS
We examined the predictive value of gaze synchrony on
the three expert-coded collaboration quality measures
(construction of shared knowledge, negotiation coordi-
nation, and maintaining team function), subjective (per-
ceptions of team performance and collaboration), and
objective (post-test scores and task score) outcomes.

Gaze-UI coupling and regularity versus baseline
We first compared observed CRQA measures to the av-
erage of five baselines. Each baseline was created by
randomly shuffling the observed gaze time series while
keeping the series of screen activity unchanged, before
submitting the shuffled time series to CRQA. The aver-
age recurrence rate and entropy across the repetitions
was used as baselines [56]. This baseline method is bene-
ficial because shuffling maintains the distributional char-
acteristics of the original time series while breaking the
temporal dependencies [12].

Overall observed vs. chance recurrence are expected
to be identical since every recurrent point will reoccur
with every other point, just not systematically. Although

the total number of recurrent points in the plot will be
the same, the points should not be systematically pat-
terned in the shuffled baseline, which the entropy mea-
sure should detect. Accordingly, we conducted paired-
samples t-tests to compare observed vs. baseline entropy
and found higher entropy of diagonal line lengths for
the observed (M = 1.47, SD = 0.20) vs. the baseline (M =
1.00, SD = 0.17) time series, t(72) = 23.55, p < .001.

Baseline MdRQA was computed from gaze AOIs of
all three participants and the screen activity AOIs so that
concurrent values remained together but the temporal
order was shuffled. Similarly to the CRQA baseline, over-
all recurrence rate of the baseline MdRQA will be same
to the observed MdRQA. However, entropy of diagonal
line lengths of observed behavior (M = 0.95, SD = 0.19)
were significantly higher than the shuffled baseline (M
= 0.32, SD = 0.07); t(18) = 17.80; p < 0.001.

Figure 4 illustrates diagonal recurrence rates (i.e., the
percentage of recurrence points on a particular diagonal)
from MdRQA recurrence matrices in comparison to shuf-
fled baselines for 10 lags (i.e., 10 lines parallel to the diag-
onal). While baseline diagonal recurrence rates fluctuate
between 0.05 and 0.1, observed diagonal recurrences
shows a systematic pattern that are lowest at the farthest
lag of 10 seconds, but gradually increase for smaller lags,
until they peak around the line of identity. Thus, team
gaze in the context of screen activity exhibits greater
regularity during relatively short 1-2 second time lags.
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Figure 4: MdRQA diagonal recurrence rate with positive
time lags in observed gaze-UI regularity (red) against
randomized baseline (blue). Error bars illustrate 95%
confidence intervals.

Gaze-UI coupling and regularity
as a predictor of collaboration quality and outcomes
We examined the predictive value of gaze-UI coupling
and regularity on the three expert-coded collaboration
quality measures (construction of shared knowledge, ne-
gotiation/coordination, and maintaining team function)
and on subjective (perceptions of team performance and
collaboration) and objective (post-test scores and task
score) outcomes.

Participant-levelanalyses. We used linear mixed-effect mod-
els to predict each of the outcome variables (except for
task scores, which is a team level variable) with team as a
random intercept, a participant-level CRQA measure as
a level 1 (participant-level predictor), and a team-level
MdRQA measure as a level 2 (group-level) predictor.
This is the recommended analytic technique due to inher-
ent nesting in our design where participants are nested
within teams [4]. We included recurrence rate and diag-
onal line length entropy in separate models. However,
we included CRQA and MdRQA versions of each in the
same model to ascertain the incremental predictive va-
lidity of team-level regularity (e.g., MdRQA recurrence
rate) after accounting for participant-level coupling (e.g.,
CRQA recurrence rate).

We also included a number of covariates to account
for confounding factors. These were: whether the par-
ticipant was the one who controlled the interface (1 or
0), ACT/SAT scores(to control for scholastic aptitude),
whether the participant was familiar with his or her other
team members (1 or 0), total words spoken by the par-
ticipant (to control for verbosity), and the percentage

of valid data (to control for biases associated with eye-
tracking quality).

We found that after controlling for covariates (see Ta-
bles 1 and 2), CRQA recurrence rate significantly pre-
dicted student’s construction of shared knowledge skills
(B = 0.050, p = 0.011), and MdRQA recurrence rate pre-
dicted significantly student’s negotiation and coordina-
tion skills (B = 0.042, p = 0.016). Entropy of diagonal line
lengths from CRQA was also predictive of negotiation
and coordination (B = 0.509, p = .065).

Whereas neither CRQA nor MdRQA recurrence rate
predicted the subjective and objective outcomes, CRQA
entropy was a negative predictor of subjective evalua-
tions of team collaboration (B = -1.742, p = 0.053). Impor-
tantly, both CRQA entropy (B = -2.054, p = 0.035) and
MdRQA entropy (B = 1.991, p = 0.082) predicted subjec-
tive perceptions of team performance, but in opposite
directions.

In addition to gaze-UI regularity, we were interested
in UI-team-synchrony, which we computed based on
whether eye gaze of all three teammates aligned and also
corresponded to the active UI AOI (gaze-UI synchrony)
vs. when eye gaze of all teammates aligned but did not
correspond to the active UI AOI (gaze-only synchrony).
We filtered the MdRQA matrices based on these two cri-
teria and computed RQA metrics on the filtered matrices.
We found that MdRQA recurrence rate was positively
correlated with both gaze-UI synchrony (r = 0.650, p=
0.003) as well with gaze-only synchrony (r = 0.748, p <
0.001). Thus, between 43% to 55% of the variance in gaze-
UI regularity can be accounted by gaze-UI and gaze-only,
synchrony respectively.

Next, we re-ran the regression models with recurrence
rates corresponding to the two synchrony measures in
lieu of gaze-UI regularity. We found that both measures
positively predicted negotiation and coordination simi-
larly to regularity (recurrence rate of gaze-UI synchrony:
B = 0.050, p = 0.084; recurrence rate of gaze-only syn-
chrony: B = 0.042, p = 0.050), essentially replicating the
finding with regularity. In addition, recurrence rate of
gaze-only synchrony predicted perceptions of perfor-
mance (B = 0.152, p = 0.077). Gaze-UI and gaze-only
synchrony-based entropy of diagonal line lengths did
not predict any of outcomes.

Team-level outcome analyses (Task score). We also examined
the relationship between team-level gaze-UI regularity
and team outcome measures-namely task score. For this
analysis, we averaged each individual’s CRQA measures
per triad to obtain team-level averages. MdRQA mea-
sures and task score were assessed per team and are



Table 1: Subject-level LME: Recurrence rate

Dependent variable:

Post-test Perception of Perception of Constructing Negotiation Maintaining

team team shared Coordination team

performance collaboration knowledge function

CRQA RR 0.007 (0.055) −0.050 (0.051) 0.041 (0.045) 0.050∗∗ (0.019) 0.003 (0.014) −0.003 (0.021)
MdRQA RR −0.020 (0.073) 0.088 (0.072) 0.007 (0.074) 0.005 (0.024) 0.042∗∗ (0.017)−0.006 (0.025)
Covariates:
ACT −0.119 (0.171) −0.194 (0.144) −0.084 (0.118) −0.057 (0.069) 0.025 (0.047) 0.043 (0.075)
Controller −0.212 (0.276) 0.350 (0.228) 0.033 (0.184) 0.361∗∗∗ (0.115) −0.065 (0.078) 0.103 (0.128)
Familiarity −0.169 (0.492) 0.009 (0.493) −0.153 (0.515) 0.114 (0.157) 0.032 (0.115) −0.178 (0.165)
Data validity 0.950 (1.105) 0.722 (1.112) −0.329 (1.168) −0.205 (0.348) 0.326 (0.256) 0.331 (0.366)
Verbosity 0.289∗ (0.158) −0.219∗ (0.133) 0.123 (0.108) 0.191∗∗∗ (0.064) 0.107∗∗ (0.044) 0.115 (0.070)
Constant −0.220 (1.351) −0.254 (1.296) −0.951 (1.266) −1.269∗∗∗ (0.450) −0.574∗ (0.326) −0.012 (0.478)

Note: n=57 ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Subject-level LME: Entropy of diagonal line lengths

Dependent variable:

Post-test Perception of Perception of Constructing Negotiation Maintaining

team team shared Coordination team

performance collaboration knowledge function

CRQA ENTR 0.417 (1.041) −2.045∗∗ (0.971) −1.742∗ (0.903) 0.257 (0.373) 0.509∗ (0.276) −0.251 (0.367)
MdRQA ENTR −0.192 (1.175) 1.991∗ (1.146) 1.217 (1.114) 0.238 (0.402) −0.024 (0.309) 0.034 (0.391)
Covariates:
ACT −0.104 (0.167) −0.248∗ (0.135) −0.068 (0.113) −0.028 (0.071) 0.025 (0.045) 0.036 (0.073)
Controller −0.208 (0.274) 0.341 (0.219) −0.007 (0.181) 0.343∗∗∗ (0.121) −0.067 (0.075) 0.105 (0.127)
Familiarity −0.158 (0.490) −0.131 (0.484) −0.094 (0.478) 0.119 (0.166) −0.041 (0.129) −0.158 (0.161)
Data validity 0.972 (1.082) 0.526 (1.062) −0.216 (1.044) −0.365 (0.370) 0.020 (0.285) 0.416 (0.361)
Verbosity 0.281∗ (0.148) −0.180 (0.119) 0.085 (0.099) 0.156∗∗ (0.064) 0.117∗∗∗ (0.040) 0.111∗ (0.066)
Constant −0.680 (1.290) 0.538 (1.248) 1.354 (1.206) −0.614 (0.446) −0.703∗∗ (0.340) 0.156 (0.436)

Note:n=57 ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

reported as original values. We used a Pearson correla-
tion rather than a multiple regression framework due to
the small number of teams (n = 19). Our main finding
was that MdRQA entropy of diagonal line lengths was
positively correlated with task scores (r = 0.425, p = .069).
Although the correlation was marginally significant at
the .05 level, this can be attributed to the small sample
size; a correlation of 0.456 would be significant with our
sample [22]. CRQA entropy (r = 0.025, p = 0.918), CRQA
recurrence rate (r = -0.055, p = 0.822), and MdRQA recur-
rence rate (r = 0.125, p = 0.608) were not correlated with
task score.

Visualizing recurrence plots.
Lastly, we demonstrate how MdRQA recurrence plots
can be used to provide a qualitative overview of teams’
gaze-UI dynamics. Enhanced recurrence plots illustrate
not only the overall distribution of recurrent points but

also color-coded recurrent points associated with gaze-
UI synchrony on a particular AOI. Red and yellow re-
gions illustrate moments when all participants were fully
and partially (triad-only) aligned with the AOI, respec-
tively, while the black regions highlight moments when a
team exhibited other collective gaze patterns-UI patterns.
For a comparison, we selected two teams, which scored
high (score = 0.498) vs. low (score = -0.314) on the experts’
assessments of negotiation and coordination. The team,
which effectively negotiated solutions and coordinated
their execution (5a), also exhibited higher gaze-UI reg-
ularity and full gaze-UI synchrony in the Code area. The
team with the lower skill of negotiation/coordination
exhibited a lower number of recurrent points and also
fewer points associated with full synchrony, mainly in
the area of the Minecraft animation.
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Figure 5: Example multidimensional recurrence plots of
two teams, which scored high and low in negotiation and
coordination. Red points represent moments of gaze-UI
synchrony when all three participant’s gaze and activity in
the UI align, and yellow points represent gaze synchrony
when gaze of all three participants is aligned but different
from the active UI region. Black points indicate regular
recurrent patterns without full synchrony.

6 DISCUSSION
We investigated systematicity in patterns of triadic visual
attention towards ongoing interaction on a shared screen
during collaborative problem solving and assessed whe-
ther these patterns were predictive of collaboration qual-
ity, subjective outcomes, individual learning and team’s
task performance. Using a dynamic systems framework
and associated analytic tools of recurrence quantification
analysis, we quantified not only how a team member in-
dividually coupled his or her attention with UI changes

but also repeated patterns in the triad’s attention in con-
text with UI changes. We confirmed that participant-
level gaze was significantly coupled with screen activity
changes, suggesting they were attending to the task. Im-
portantly, team-level recurrence measures significantly
differed from randomly shuffled baselines, providing
evidence of systematicity in team-attention dynamics.
We also found that a bit over half the variance in team-UI
gaze regularity was explained by gaze-synchrony, indi-
cating that there are patterns in visual attention dynam-
ics that go beyond mere synchrony, which has been the
focus of much previous work [23, 46, 47]. Taken together,
this suggests that a teammate’s eye gaze exhibit signif-
icant patterns of coupling with the UI as well as other
teammates along with and the triadic gaze-UI system
shows patterns of regularity.

But does the degree of coupling and regularity matter
or is it merely incidental? Previous research on dyadic
interaction has presented correlational evidence on joint
attention and interpersonal coordination during dyadic
interactions. Our results go beyond findings on dyads
and provide more detailed insights on multiparty col-
laboration. We found that team-level patterns of gaze-UI
regularity underlie different collaboration qualities and
outcomes beyond participant-level gaze-UI coupling.
Specifically, we found that the coupling (via recurrence
rates) between participant’s eye gaze and the ongoing
screen activity was a positive predictor of constructing
shared knowledge. This is an intuitive finding because
attending to screen activity is necessary for providing
suggestions that contribute to a problem solution. In con-
trast, gaze-UI regularity at the team level was a positive
predictor of negotiation and coordination, suggesting
that teams who exhibited more consistent patterns in
gaze-UI dynamics were more effective on this compo-
nent. Gaze-only synchrony, a component of gaze-UI reg-
ularity, also predicted negotiation/coordination suggest-
ing that to effectively negotiate solutions and coordinate
execution, teams must be on the same page in terms of
their momentary attention with each other and should
show some consistency in gaze dynamics. This measure
also predicted perceptions of task performance, confirm-
ing prior dyadic studies on joint attention.

Conversely, increased entropy of participants’ gaze-
UI coupling was associated with elevated negotiation
and coordination skills. In this context, diagonal lines
correspond to consecutive gaze-UI couplings and their
lengths describes duration of the coupling sequence (e.g.,
“Code-Code → Minecraft-Minecraft → Code-Code“ has
length of 3 seconds). Increased gaze-UI coupling via
entropy of diagonal line lengths suggests that the ele-
vated negotiation and coordination promoted coupling



sequences of diverse durations. Interestingly, this mea-
sure was negatively associated with his or her percep-
tions of team performance and of the collaboration. It
is possible that frequent and diverse gaze-UI coupling
sequences caused participants discomfort, and, in turn,
concluded that their collaboration was less smooth, and
the performance of the team was subpar.

At the team-level, conversely, entropy of gaze-UI reg-
ularity positively predicted perceptions of team perfor-
mance. This is not necessarily a contradicting finding
since team-level gaze-UI regularity does not require an
exact match of participants’ attention to the UI unlike
participant-level gaze coupling. Instead it indexes more
variability in the lengths of recurrent gaze-UI sequences,
which is an indicator of novel behavior. This measure
also correlated with task-scores, further confirming the
benefits of novelty.

Finally, neither participant-level gaze-UI coupling nor
team-level gaze-UI regularity were significantly predic-
tive of individuals’ learning or teams’ task scores. Thus,
despite visual attention being a key component in col-
laboration, it only partially revealed complex cognitive
processes in collaborative problem solving, at least with
respect to the measures considered here.

Applications
The present findings suggest that measures of teams’ vi-
sual attention can provide important information about
the collaborative process, which may complement ob-
jective task scores. These measures may illustrate the
"why" and "how" of team interaction since they provide
indices of attention and coordination, which index mul-
tiple process and outcome measures. In addition to the
quantitative findings encoded in recurrence measures,
color-coded recurrence plots offer global insights on col-
laboration during team tasks, which can be used for
qualitative assessments of the interaction.

From the perspective of next-generation collaborative
user interfaces, dynamics of visual attention in multi-
party collaboration present pervasive low-level indica-
tors, suitable for intelligent interventions. Real-time in-
terventions, such as short-term gaze alignment, are par-
ticularly critical during remote collaborations with im-
poverished social signals. Gaze awareness together with
coupling and regularity measures can be leveraged to
reinforce team efforts and improve outcomes.

Limitations & FutureWork
Like all studies, ours has limitations. First, the use of
low-cost eye-trackers together with unrestricted range
of participants’ body and head movements introduced
errors in the recorded data. We carefully inspected and

rejected the most erroneous cases and analyzed the re-
maining eye gaze with respect to rather large areas of
interest to compensate for this limitation. Next, the low-
cost sensor often failed to register participants’ eye gaze,
which resulted in gaps in the eye-tracking time series.
Because leaving such gaps in the eye gaze time series
could form spurious recurrent points and artificially in-
crease recurrence rates, we removed time points when
one or more team members did not have valid data. Al-
though we controlled for the proportion of the valid data
in the models, this is not a substitute for obtaining higher-
quality data. Relatedly, although the original data source
consisted of 111 participants in 37 teams, eye-tracking
data of 19 teams had sufficient quality to be included in
our analyses. The reduced number of teams restricted
the types of statistical modeling that could be done at
the team-level. Thus replication with larger samples and
higher quality gaze tracking is warranted, especially in
more real-world settings. Finally, we analyzed global
measures of gaze-UI-coupling and regularity by com-
puting measures across the entire interaction, In future
research, we will investigate other variants of RQAs suit-
able for real-time assessments and interventions, such as
windowed RQAs, which only consider local recurrence
by focusing on time lags around the line of identity [47].

7 CONCLUSION
Computer-mediated collaborative problem solving is a
highly complex form of interaction where the transmis-
sion of certain social, affective, and cognitive states may
be impaired in remote settings, reducing mutual under-
standing between teammates. We investigated triadic
computer-mediated collaboration of novice program-
mers engaged in a collaborative problem solving task.
Using measures from a dynamical systems framework,
we found that dynamics of visual attention of individual
teammates and of the team as a whole assessed in context
with UI activity predicted several key variables associ-
ated with the collaboration process and its outcomes.
The next step is to leverage these findings to develop
intelligent collaborative user interfaces that monitor the
unfolding collaboration and launching interventions to
improve the collaborative process and outcomes.
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