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1. Introduction 

ABSTRACT 

The human brain is a network system in which brain regions , as network nodes, con-
stantly interact with each other. The directional effect exerted by one brain component 
on another is referred to as directional connectivity. Since the brain is also a continuous 
time dynamic system, it is natural to use ordinary differential equations (ODEs ) to model 
directional connections among brain regions. The authors propose a high-d imensional 
ODE model to explore directional connectivity among many small brain regions recorded 
by intracranial EEG (iEEG ). The new ODE model, motivated by the physical mechanism 
of the damped harmonic oscillator, is effective for approximating neural oscillation, a 
rhythmic or repetitive neura l activity involved in many important brain functions. To 
produce scientifically meaningful network results, a cluster structure is assumed for the 
ODE model parameters that quantify directional connectivity among regions. The cluster 
structure is in line with the functiona l specialization of the human brain; the brain 
areas specialized in the same funct ion tend to be in the same cluster. Two Bayesian 
methods are developed to estimate the model parameters of the proposed ODE model 
and to identify clusters of strongly connected brain regions. The proposed ODE model 
and Bayesian method are applied to iEEG data collected from a patient w ith med ically 
intractable epi lepsy and used to examine the patient's brain networks before the seizure 
onset. 

© 2019 Elsevier B.V. All rights reserved. 

The human brain is a network system, where brain regions, as network nodes, constantly interact with each other. The 
directional effect exerted by one brain region over another is referred to as directional connectivity and corresponds to 
a network edge in the brain network. Identifying con nected brain regions and mapping the human brain network help 
us understand the mechanism of the brain as well as its normal and abnormal functions. In this article, we model the 
directional connectivity of the human brain and identify connected brain regions using intracranial electrocorticography 
(iEEG ) data, multivariate time series measurements of ma ny regions ' neuronal activities. 

iEEG uses mu ltiple electrodes placed on the exposed surface of the human brain (inside the skull) to record neuronal 
activities of many sma ll brain regions. Fig. 1(a ) shows the placement of iEEG electrodes on the exposed brain of an epileptic 
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Fig. 1. (a) Spatial place ment of a subdural grid and several strip electrodes on the patient's left hemisphere. The acronyms IF, SF. ST, AD, MD, PD, 
and G stand for inferior frontal, superior fronta l, superior temporal, anterior depth, medial depth, posterior depth, and grid electrodes. The strips 
in black and white are depth electrodes used to record activity from deeper brain structures close to the hippocampus. (b) Illustration of a short 
segment of two iEEG time series of two regions. 

patient under study. The acronyms IF. SF, ST, AD, MD, PD. and G stand for inferior frontal, superior frontal, superior 
temporal, anterior depth, medial depth, posterior depth, and grid electrodes. Fig. l (b) illustrates two iEEG time series 
recorded in two regions, respectively. iEEG data have two unique properties. First. each iEEG electrode directly records 
the neuronal electrical activity in one small region (about 10 mm in diameter) at a millisecond scale. As such, iEEG data 
have high spatial and temporal resolutions. Second, iEEG produces highly re liable and reproducible measurements of brain 
activity with a strong signal-to-noise ratio (SNR. Cervenka et al., 2013). As such, iEEG data are ideal for examining the 
brain network. 

The human brain is also a continuous-time dynamic system, in which each brain region 's activity depends on other 
regions' activities. It is biophysically natural to use ordinary differential equations (ODEs ) to describe the dynamic 
mechanism of the brain and use model parameters to quantify directional connectivity among brain regions. The most 
popular ODE model for the brain's directional connectivity is the dynamic causal modeling (DCM, Daunizeau et al., 2011 ; 
David and Friston, 2003 ; David et al. , 2006; Kiebel et al., 2006; Friston et al. , 2003), which characterizes directional 
connectivity among only a few large regions ( usually no more than 5) based on functiona l magnetic resonance imaging 
(fMRI ) and EEG data. The formulation of the DCM is highly complex and reli es on the prior knowledge of the existence 
and directionality of the connections among the regions under study. Since iEEG typically records neuronal activities of 
more than 50 small regions, among which the relationship is unknown, it is difficult to scale the DCM to iEEG data in 
terms of both computation and model building. 

We develop a new high-dimensional ODE model for iEEG data to characterize directional connectivity among many 
regions (more than 50 at least). The new model has two advantages. First, the new model, as an extension of a 
biophysical model ca ll ed damped harmonic oscillator (OHO, Serway and Jewett, 2003 ), characterizes the brain regions' 
oscillatory activity- periodic or rhythmic up-and-down tempora l behavior of the neuronal activity. The oscillation is an 
important feature of any time series data measuring the neural activity of local areas of the brain (Fell and Axmacher, 
2011 ; Fries, 2005 ; Schnitzler and Gross, 2005 ). Fig. l (b) shows two brain regions' oscillatory activity recorded by iEEG. 
Second, to address the difficu lty in specifying the complex interactive relationship among many regions, we use a linear 
approximation to model the complex mechanism of the high-dimensional brain system, an idea similar to the linear 
regression. As such, the new model combines the strengths of statistical modeling and scientific modeling: The model 
captures the major oscillatory feature of the brain through extending a physica l oscillatory system to the high-dimension 
brain system and uses a statistical model formulation to provide the model flexibility. We refer to the new model as the 
oscillatory dynamic directional model (ODOM) (details of the model construction are provided in Section 2 ). 

As a high-dimensional ODE model, the ODOM contains many free parameters for quantifying direct ional connectivity 
among many regions recorded by iEEG. We use a prior knowledge of brain networks to increase estimation efficiency of 
ODOM parameters. Specifically, we impose a cluster structure, also called the modularity, on the ODOM parameters. The 
cluster structure, consisting of several functiona lly independent subnetworks of lower dimensions, provides an intuitive 
interpretation of functiona l specialization of brain regions in different modules/clusters. Moreover, the cluster structure 
has been widely reported in the literature on brain networks (Milo et al., 2002 , 2004; Newman, 2006; Sporns, 2011 ), 
and has attracted much attention in researching the brain's functional organization. As such, the proposed model leads 
to scientifica lly meaningful network results. We refer to the ODOM with the cluster structure as the modular ODOM 
(MODDM ). 
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The MODDM, like many other statistical models, is an approximation of the complex system under study, and thus, 
has a discrepancy from the underlying true mechanism of the brain. As the model uncertainty quantification is natural 
within the Bayesian framework, we develop Bayesian methods to estimate the model parameters of the MODDM while 
accounting for the discrepancy between the MODDM and the underlying true brain system. The quantification of the 
ODE model discrepancy has rarely been addressed in the literature. As such, this paper not only addresses a pressing 
need for statistical modeling of the biophysical mechanism of the brain but also introduces a new approach to inferring 
high-dimensional ODE models w ith many free parameters. 

The rest of the manuscript is organized as follows. Section 2 introduces the MODDM. ln Section 3, we present two 
Bayesian hierarchical methods to estimate the MODDM based on basis representation of brain regions ' state functions 
and a Markov chain Monte Carlo (MCMC ) algorithm to make posterior inference. We present simulation studies of the 
proposed Bayesian method in comparison with existing network methods in Section 4, and apply the MODDM to analyze 
a real iEEG study in Section 5. Section 6 discusses analysis results and future research directions. 

2. ODE models for iEEG data 

Let y(t) = (y 1(t ), ... , Yd(t ))' be the observed iEEG measurements of d regions at time t and x(t ) = (x1(t ), ... , xd(t ))' be 
the neuronal state fu nctions of the d brain regions at time t. Since each iEEG electrode directly records one brain region's 
neuronal electrical activity, we assume the following observation model that links observed data y(t ) to the underlying 
states x(t ): 

y(t ) = x(t ) + f (t ), (1) 

where f(t ) = (f 1(t ), . . . , Ed( t ))' is a d-dimensional vector of measurement errors with mean zeros. The observed data, 
y(t ), are measured at discrete time points t = 1, 2, .. . , T. 

Since brain regions interact w ith each other through neuron firing, the model for the brain's directional activity is 
constructed at the regions' neuronal level, i.e. , for x(t ). Existing high-dimensional ODE models for a dynamic system with 
many interactive components, including the first-order linear or bilinear ODEs (Zhang et al.. 2015, 2017 ) and several other 
first-order OD Es (Chen and Wu, 2008 ; Lu et al. , 2011 ; Wu et al. , 2014a,b), do not accommodate oscillatory activity of the 
system. To address this limitation, we propose to use the damped harmonic oscillator (OHO, Serway and Jewett, 2003 ), a 
one-dimensional oscillatory physical system, to build our model for x(t ). 

2.1. Oscillatory dynamic directional model (ODOM) 

The OHO is a one-dimensional second-order ODE given by 

d2z(t ) = F(t ) + A z(t ) + G dz(t ) 
dt2 dt ' 

where z(t ) is the state or the spatial location of a one-dimensional system (called oscillator) at time t, and the parameters 
A and G determine the oscillator's oscillation amplitude and period (see Chapter 2 in Fitzpatrick, 2013, for detailed 
explanation). Simple one-dimensional oscillatory systems described by the OHO include a spring/mass system and 
pendulum. Fig. 2(a) shows temporal activities of three DHOs with F(t ) = 0 and different combines of parameters A 
and G, which lead to different frequencies of the time series. 

Because of its physical implication, the OHO has been used extensively in biophysics (Schuster, 1983) and neuro-
science (Daunizeau et al. , 2011 ; David and Friston, 2003 ; David et al. , 2006; Friston et al. , 2003 ; Kiebel et al. , 2006) to 
describe dynamic systems with oscillatory mechanisms. However, the OHO in these applications is for describing specific 
systems, but difficult to apply to other systems. 

We extend the one-dimensional OHO to the high-dimensional brain system consisting of many interactive brain 
regions. Specifically, we model d brain regions under study as a set of interactive oscillators - each corresponding to 
one region - influenced by the effect exerted by others. For region i, 

d2x;(t ) dx;( t) 
--2- = f ;(x(t)) + A;; X; (t ) + G; --, 

dt dt 
(2) 

where f;(x(t)) is the directional effect exerted by other regions on region i, and parameters A;; and G; determine region 
i's oscillation amplitude and period. 

The functions F;(x(t )), i = 1, ... , d, represent the directional connectivity among d regions and are difficult to specify 
due to the limited understanding of the brain's biophysical mechanism. To address this issue and also to reduce the model 
complexity, we use a first-order Taylor expansion, I:,f1; Au· xj( t) + D;, to approximate the complex function F;(x(t )), which 
leads to the following model: 

d 
d2x;(t ) L dx;(t ) 
--2- = D; + Au. xj( t ) + A;;. x;(t) + G; --, 

dt dt 
(3) 

# i 
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Fig. 2. Simulated time series. 

where D; is the intercept in the first order Taylor approximation of f;(x(t)) and Au represents the directional effect exerted 
by Xj (t ) on x;(t ). 

The model formulation (3) brings three benefits in practice. First, the second-order ODEs have a physical foundation 
and are suitable for characterizing the brain's oscillatory activity. Second, this simple form provides a flexible way to 
model directional connectivity among different brain regions, because each model parameter A;i denotes the directional 
effect exerted by region J on region i. Third, the linear form facilitates fast computation for high-dimensional data with a 
large d. 

The state model (3 ) together with the observation model ( 1) is referred to as the oscillatory dynamic directional model 
(ODOM ). Model parameters A = {Au, i = 1, ... , d, j = 1, ... , d), G = {G; , i = 1, ... , d), and D = {D; , i = 1, ... , d) are 
unknown and to be estimated based on the observed time series y(t), t = 1, ... , T. 

Note that the ODOM is not an extension of the first-order ODE model to second-order ones despite their mathematical 
similarity. Second-order ODEs have several different formulations. For example, a comprehensive second-order linear 
ODE model should include all possible first-order derivatives, ~, j = 1, ... , d. We do not include those terms because 
the ensuing model no longer has a direct physical interpretation. In short, the formulation of the ODOM stems from its 
integration of statistical modeling and scientific modeling rather than first-order linear ODEs. 

Under the ODOM, inference about directional connectivity among the d regions is equivalent to estimating parameters 
A, and mapping the brain's directional network is equivalent to identifying statistically significant nonzero Aus. Note that 
because the two directional effects between each pair of regions i and j are characterized by two separate parameters, 
Au and Aj;, the proposed method indeed produces separate estimates of the directional effects in two directions. As such, 
the total number of parameters for quantifying directional connections among d regions is d2 . This is different from many 
association studies (Kramer et al. , 2008, 2010, 2012; Mormann et al., 2005 ; Netoff and Schiff, 2002 ; Schiff et al. , 2005 ; 
Schindler et al. , 2010, 2008, 2007 ; Wendling et al. , 1996; Wu and Cotman, 1998) in which only one parameter is used to 
characterize the association relationship, i.e., functional connectivity, between each pair of regions. 

2.2. Modular oscillatory dynamic directional model for sparse brain networks 

For a high-dimensional brain system with a large d, estimates of many ODOM parameters can be unstable and 
have large variances. To improve estimation efficiency of the ODOM, we assume that many parameters Aus are zero. 
A motivation for sparsity lies in the established idea that directional connections are energy consuming (Anderson, 2005 ; 
Foldiak and Young, 1995 ; Olshausen and Field, 2004), and biological systems tend to minimize energy consuming activ-
ities (Bullmore and Sporns, 2009; Micheloyannis, 2012). Among different sparse network structures, we are particularly 
interested in the cluster structure, which consists of several functionally independent clusters. Connections among regions 
in the same cluster are dense. The cluster structure has been widely reported in the literature on brain networks (Milo 
et al. , 2002, 2004; Newman, 2006; Sporns, 2011 ). 

To characterize the cluster structure, we introduce cluster labels m = {m 1, m2 , ... , md), which take integer values from 
1 to d, to denote the clusters of the d brain regions. As such, the brain network can have at most d clusters, each consisting 
of one region only. We use indicators Yus, which take values 1 or 0, to distinguish significant directional connectivity from 
zero one. We propose the following ODE model, as an extension of the ODOM (3), for the sparse brain network in the 
cluster structure: 

d2x;(t ) ~ dx;(t) 
~ = ~ 8(m; , mj )·Y;j· Au·Xj( t )+ D; +G; dt ' (4) 

j = I 

where the delta function 8( m;, mi) equals 1 if m; = mi and O otherwise. Model (4) implies that a directional effect from 
region j onto region i is nonzero, if and only if the two regions fall into the same module and the associated indicator Yii 
is nonzero. 
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Model (4) w ith the observation model (1) is referred to as the modular oscillatory dynamic directional model (MODDM). 
To illustrate the MODDM, we generated x(t ) from a dynamic system with two clusters. The regions in the same cluster are 
all pairwise connected. Fig. 2(b) shows x(t )s of three regions in one cluster and Fig. 2(c) shows x(t )s in the other cluster. 
The MODDM produces oscillatory state functions. 

3. Bayesian estimation methods for MODDM 

Under the MODDM, the focus is on identifying clusters and selecting network edges corresponding to nonzero Yu s. We 
develop two Bayesian methods to estimate these parameters. 

Two types of approaches are proposed for estimating ODE models in the literature: discretization methods which 
numerically fit x(t ) based on the assumed ODE model (Bard, 1974; Biegler et al., 1986; Campbell, 2007 ; Cao et al., 2012 ; 
Gelman et al., 1996; Girolami, 2008 ; Hemker, 1972; Huang et al., 2006 ; Huang and Wu, 2006; Li et al. , 2005 ; Matteij 
and Molenaar, 2002 ; Xue et al. , 2010) and basis-function-expansion approaches which represent x( t ) with functional 
bases (Bhaumik and Ghosal , 2014; Brunel, 2008; Deuflhard and Bornemann, 2000; Payton et al. , 2006 ; Qi and Zhao, 2010 ; 
Ramsay and Silverman, 2005 ; Ramsay et al. , 2007 ; Varah, 1982). We take the latte r approach as it accounts for the model 
error, as expla ined in detail below. 

The authors (Ramsay et al. , 2007 ) used third-order B-spline bases to represent the state functions that follow first-order 
ODE models. In this article, since the second-order derivatives of x(t ) are smooth, we represent state functions x(t ) with 
fifth-order B-spline basis functions, b(t ) = (b1(t ), ... , bi(t ))', defined on an equally spaced partition {t1 = 1, t2 , ... , tq = 
T) (where L = q + 5 - 2) of the interva l r1 , T]: 

X;(t ) = ;:;; b(t ), (5) 

where ij; = (ry; 1, ••• , TJ;il' is the vector of the basis coefficients of x; ( t ). 
As in Ramsay (2006), we chose the number of basis functions L comparable to the number of data points T for enough 

flexibility to fit functiona l curves. We have tried three different numbers of L: L = rn. L = rr / 21, and L = [T / 3] and found 
that the three numbers lead to similar fitted x(t) and similar accuracy in selecting connected regions by the proposed 
approach. Following Ruppert (2002 ), we used the generalized cross-validation to determine Land got L = [T / 31-

We assume the data measurement error E;( t ) in ( 1) independent and identically distributed with a normal distribution 
with mean zero and unknown variance a 2 . As such, 

Y;( t ) ~ N(x;(t ), a;2). (6) 

We show in the simulation study that because of the strong SNR of the data, the proposed method is robust to violations 
of the model assumptions for E;( t ). Next, we assign to basis coefficients a prior, also a prior distribution for x( t ). 

Model for basis coefficients/state functions. Let 71 = (ij;, i = 1, . .. , d), y = {Yu, i , j = 1, ... , d) and 8 = {A, D, GJ. 
Further, denote all the MODDM parameters by 8 1 = {A, D, G, m, y) . We propose a model for basis coefficients 71 that is 
conditional on 8 1 through the MODDM model-fitting errors: 

{ ~R (71 81 ) } p(71l81 , r )cx exp - ~ ' 2~ , 
i= I 1 

(7) 

w here r = ( r 1 , • •. , rd )' are positive hyperparameters. R;( 71 , 8 1) is the model-fitting error for region i's state function with 
the form 

2 r (d2x;(t) d dx;( t ) ) R;(71 , 81 ) = lo dt2 - L 8( 111 ;, mj) · Yu· Au. xj(t) - D; - G; . dt dt. 
J= I 

In the above equation, all state functions and their derivatives are represented by basis functions: x;(t ) = ;:;; b(t), 
dx;(t )/dt = ;:;; b(1l( t ), and d2x;(t) / dt2 = ;:;; b(2l( t). 

The distribution (7) for 71, with a form of the exponential of the negative model-fitting errors, has an intuitive 
explanation. The hyperparameters r;s are the variances of the model-fitting errors for different regions' temporal activities. 
The probability (7) provides a generating model for the basis coefficients 71 and the state functions x(t ) based on the given 
MODDM. The probabi lity allows for the deviation of the state functions from the MODDM. Moreover, the formulation of 
the distribution (7), equivalent to a normal distribution for 71, as explained below, leads to normal posterior conditional 
distributions of model parameters 8 = {A, D , G}, which are easy to simulate. 

With the linear basis representation for x(t ) in (5), I:f=t R;( 71 , 8 1 )/(2r;) given 8 1 and r is quadratic of 71: 

d L R;(71 , 81 )/(2r; ) = 71' ne, ,r 71 - 2A~/ ,T 71 + S e, ,r , (8) 
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where n 8 , ,,, Ae, ,,, and B e, ,, are a dL x dL matrix, a dL x 1 vector, and a scalar, respectively, and their formulas depending 
on 8 1 and r are provided in Appendix. Thus, the probability model (7) is a multivariate normal distribution 

1J J81 , T ~ MN(n 8;,, Ae1,,, 0 8'. ., ). 
This means that the state fu nctions fo llow a Gaussian process centered at the MODDM with va riabi li ty controlled by r. 

Prior specification for MODDM parameters. We propose the following joint prior for 8 1 = {A, D, G, m, y}, simi lar to 
the prior used for ODE model parameters by Zhang et al. (2017 ): 

p( E>, lr ) ex det(l28 , ,, 1- 'f' , exp B IA~,,, n;.;,,Ae, ,, - Zs,,, I J · exp !-µ ,t, O( m;, m,) J (9 ) 

d d d 

-p;ijYij ·( 1 -Pol- Lj Yij . TI </> (Au). TI </> (S) . TI </> (D;) 
i,j = l l;o i= l l;o i= l l;o 

where </)(-) is the standard normal density, !;0 is a large constant to give an almost flat prior for A, G, and D, µ, is a 
nonnegative constant and p0 is a given prior probability. We let µ, = 0 to give a non-informative prior for the cluster 
structure and let p0 = 0.9 to impose the prior belief that within-module connections are dense. We have tried different 
values for Po and found that setting Po = 0.9 produced the highest true positive rate in selecting network edges. This is 
because a large value of p0 effectively reflects the prior information that the connections within clusters are dense and 
faci litate the cluster identification, whi le smaller p0 leads to lower selection accuracy. 

Prior for variances of model fitting errors. A commonly used non-informative prior for va riance parameters r (Gelman 
et al. , 2014) is p(r ) ex TI1=1 1/ r;. However, this prior leads to an improper posterior. Thus, we propose the following prior 
for r, which is close to the non-informative prior yet leads to a proper posterior: 

d 1 3 

p(r ) ex Tic; )2 . 
i= l I 

(10) 

Joint posterior distribution. Let Y = {y(t ), t = 1, ... , T) and er= {erf , ... , erJ}. The model (6 ) together with priors in 
(7), (9) and ( 10) defines a hierarchical Bayesian model for the MODDM. The joint posterior distribution is 

p(8 1, r , 1/ , er JY) ex p(YJq, er )· p(er ) · p(q J8 1, r ) · p(8 1Jr ) · p(r ), 

where p(er ) ex Tif=1 1/ er?, is a uninformative prior for er;2. 

3.1. The second Bayesian method 

(11 ) 

Standard approaches simulate from the posterior distribution p(8 1, r , 1/ , er JY) and estimate the state functions x(t ) and 
ODE parameters jointly within the Bayesian framework (Zhang et al. , 2017 ). However, in the problem under study, we 
focus on the posterior inference of parameters 8 1 only, while 1/ contributes to most parameters in the Bayesian model 
(11 ). ln addition, since iEEG data are smooth with a strong SNR (Cervenka et al. , 2013), estimated x;( t)s by a nonparametric 
smoothing method (Ramsay, 2006) are similar to those from the Bayesian model ( 11 ). Considering this, we propose to 
first fit x(t ) based on the observed data Y, and use a Bayesian method to estimate MODDM parameters based on the fitted 
x(t), i.e., the estimated 1J . We elaborate the details in the fo llowing. 

We first estimate 1/ by minimiz ing 

where x;(t ) is given by (5), x)2 l( t ) = ;;; b(2 l(t), and the smoothing penalty parameter >.. is chosen by the generalized 
cross-validation (Hardie, 1990). 

Next, we treat estimated 1/ as the observed data with the likelihood (7). As such, (7 ), (9 ) and (10) define the second 
hierarchical Bayesian model for the MODDM, and the ensuing joint posterior distribution of 8 1 is 

(12 ) 

We refer to the Bayesian model with the posterior (11 ) as the full Bayesian method, and the model with the posterior 
(12) as the Bayesian smoothing method hereafter. 




















