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Abstract

Inverted solubility–melting a crystal by cooling–is observed in a handful of pro-

teins, such as carbomonoxy hemoglobin and γD-crystallin. In human γD-crystallin,

the phenomenon is associated with the mutation of the 23rd residue, a proline, to a

threonine, serine or valine. One proposed microscopic mechanism entails an increase

in surface hydrophobicity upon mutagenesis. Recent crystal structures of a double

mutant that includes the P23T mutation allow for a more careful investigation of this

proposal. Here, we first measure the surface hydrophobicity of various mutant struc-

tures of γD-crystallin and discern no notable increase in hydrophobicity upon mutating

the 23rd residue. We then investigate the solubility inversion regime with a schematic

patchy particle model that includes one of three variants of temperature-dependent

patch energies: two of the hydrophobic effect, and one of a more generic nature. We

conclude that while solubility inversion due to the hydrophobic effect may be possi-

ble, microscopic evidence to support it in γD-crystallin is weak. More generally, we

find that solubility inversion requires a fine balance between patch strengths and their

temperature-dependent component, which may explain why inverted solubility is not

commonly observed in proteins. We also find that the temperature-dependent interac-

tion has only a negligible impact on liquid-liquid phase boundaries of γD-crystallin, in

line with previous experimental observations.

1 Introduction

Proteins can self-organize into a rich variety of superstructures,1 such as crystals,2 virus cap-

sids,3 disease-forming aggregates,4 and biomaterials.5 A key challenge is understanding how

microscopic features of solvated proteins can give rise to such complex structures, and even-

tually to design systems that reliably assemble as such.5–10 In this context, coarse-grained

models are especially valuable, because they help both pinpoint and abstract the microscopic

features that can reproduce the experimentally observed behavior. (Because simulating pro-

tein self-assembly typically requires hundreds to thousands of protein copies, which are them-
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selves comprised of thousands of atoms, such models are also a computational necessity.11–13)

For example, even relatively simple models of short-ranged,14,15 anisotropic pair interactions

largely recapitulate the phase behavior of globular proteins.1,16,17 Understanding the assem-

bly of some systems, however, requires coarse-grained models with a richer set of features,

such as shape anisotropy for viral capsid and amyloid fiber-forming proteins.1,3 Capturing

certain aspects of protein crystallization, which is key to protein structure determination by

diffraction methods,18 can also require enriched patchy particle models.2

Proteins that exhibit atypical solution behaviors provide essential tests of our understand-

ing of the physico-chemical processes that underlie their assembly. One such phenomenon is

the decrease of protein solubility with increasing temperature, i.e., inverted crystal solubility,

which is observed in a few proteins, such as some single mutants of γD-crystallin,19,20 and

the wild type carbomonoxy-hemoglobin C.21 (The temperature invariant solubility of apofer-

ritin is a limit case.22) Thermodynamically, inverted solubility suggests that as temperature

increases, the Gibbs free energy of crystallization decreases, and hence that the crystal be-

comes increasingly more stable than the fluid. The phenomenon is often attributed to a large

and positive entropy gain upon crystallization. Crystal formation is then possible even if

the enthalpy of crystallization is non-negative.21,23,24 Because the solute contribution to the

change in entropy is typically negative, the solvent contribution is traditionally considered

to be the key microscopic determinant of the phenomenon.21,23,24

The association of inverted solubility in proteins with the hydrophobic effect also comes

from our understanding of the aqueous solvation of hydrocarbons, which presents an anal-

ogous anomaly.25 The minimal Muller-Lee-Graziano (MLG) model for this effect considers

water as being in one of four states: disordered shell (ds), ordered shell (os), disordered

bulk (db), and ordered bulk (ob).26,27 It was used by Shiryayev et al. to estimate the phase

diagram of model globular proteins with isotropic interactions assumed to be driven exclu-

sively by hydrophobic interactions.23 Although the resulting phase behavior does present an

inverted solubility regime, it is unclear whether this feature would persist for more realistic
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protein models, with a complex surface mosaic of hydrophilic and hydrophobic interactions.

In other words, while the hydrophobic scenario for solubility inversion in proteins is ther-

modynamically sound, microscopic evidence for it remains limited. The generality of the

underlying physical arguments is also seemingly incompatible with the relatively rare occur-

rence of inverted solubility in experiments.

Here, we examine this microscopic scenario in the context of a double mutant (R36S+P23T)

of the human γD-crystallin, which forms two competing crystals: a normal solubility struc-

ture (DBN, PDB28 ID: 6ETA) and an inverted solubility structure (DBI, PDB ID: 6ETC).29,30

The solubility inversion is here most likely associated with the mutation in the 23rd residue

because the single mutants P23T, P23S, and P23V also exhibit inverted solubility,31 albeit

without generating diffraction quality crystals. In earlier work, we have parameterized a

patchy model for the R36S+P23T mutant and obtained a solubility inversion regime by

completely deactivating the patch containing the 23rd residue at low temperatures.30 Inter-

estingly, the DBI crystal does not present any obvious structural feature that could explain

this effect, other than the formation of a hydrogen bond through the 23rd residue. Here, we

critically evaluate three different temperature-dependent interaction potentials: the generic

model we previously considered, and two that explicitly model the hydrophobic scenario.

We use these models to test the hydrophobic scenario as well as the robustness of the in-

verted solubility regime with respect to model parameters. We thus attempt to elucidate

why inverted solubility is not more commonly observed. We further explore the relationship

between the liquid-liquid critical point and the solubility curve, which has been experimen-

tally studied for some of these systems.31 The plan for the rest of this paper is as follows. We

first survey γD-crystallin crystal structures available in literature to determine whether an

increase in surface hydrophobicity can be discerned upon introducing the solubility inverting

mutations (Sec. 2). We then introduce a patchy protein model for these proteins (Sec. 3.1)

along with the different temperature-dependent patch models (Sec. 3.2), and the methods

used to determine solubility lines (Sec. 3.3). Sections 4.1 and 4.2 provide a detailed analysis
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of these patchy models, and we conclude with proposals for further discerning experiments

in Sec. 5.

2 Experimental Context for Hydrophobicity

As a first consideration of the reasonableness of the hydrophobicity scenario, we evaluate the

surface hydrophobicity of various human γD-crystallin crystal structures. Were the P23T

mutation to consistently increase surface hydrophobicity, one would infer the existence of

strong evidence for the decrease in protein solubility upon mutagenesis to be driven by the

hydrophobic effect. By studying the relative binding propensity of two dyes known to bind

hydrophobic surfaces, Pande et al. indeed have previously inferred that P23T, P23S, and

P23V mutants of human γD-crystallin do present a higher surface hydrophobicity than the

wild type (WT) protein.20 Here, in order to test the robustness and microscopic validity of

this interpretation, we consider different scales that quantify hydrophobicity at the amino

acid level. More specifically, we compute an average hydrophobicity of solvent-exposed

residues32 weighted by their solvent accessible surface area (SASA),33 for five different scales:

the grand average of hydropathy (GRAVY),34 as well as the scales of Wimley and White

(ww),35 Hessa et al. (hh),36 Moon and Fleming (mf),37 and Zhao and London (also known

as transmembrane tendency, tt).38 Each of these scales assigns a hydrophobicity index to

each residue type; all but hh and mf assign positive values to hydrophobic residues.

We compute hydrophobicity for three sets, S, of amino acids: (i) the entire protein

surface, (ii) the surface of its N-terminus, i.e., the first 82 residues (including the solubility

inverting 23rd residue), and (iii) the surface residues in the DBI contact that includes the

23rd residue (Patch 4 as per Sec. 3).30 The hydrophobicity, Hζ , for a given scale ζ is then

obtained as
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Hζ =

∑
i∈S

fζ(i)A(i)∑
i∈S

A(i)
, (1)

where fζ(i) is the hydrophobicity index for residue i, and A(i) is its SASA. We specifically

consider: WT (PDB ID: 1HK039), the P23T single mutant (PDB ID: 4JGF40), the R36S

single mutant (PDB ID: 2G9841), the R58H single mutant (PDB ID: 1H4A39), DBI (PDB ID:

6ETC30), and DBN (PDB ID: 6ETA30). Of these, only WT, R36S, and R58H do not have

a mutation at the 23rd residue. Note that missing residues are completed using Modeller42

within Chimera,43 and all crystal water molecules are removed prior to running this analysis.

In order to estimate the error on these measured hydrophobicities, 100 configurations per

crystal structure are created by perturbing particle coordinates by a random number selected

from a Gaussian distribution with a standard deviation corresponding to the coordinate error

specified in the PDB file. Two assumptions are made in estimating these error bars. First,

the coordinate error reported in the PDB entry is assumed to be distributed uniformly and

isotropically across all protein atoms. In reality, certain domains or residues in proteins are

more mobile and thus harder to resolve by X-ray diffraction than others, but finer, residue-

level information is not available. This assumption thus overestimates the error in more

localized parts of the protein and underestimates the error in more mobile parts. Second,

the refined structures do not precisely capture the actual protein structure, as suggested

by Rfree values ranging from 0.174 to as high as 0.284, hence possibly creating artificial

hydrophobicity differences between different mutants, or, conversely, underestimating them.

The resulting hydrophobicity estimates are shown in Fig. 1. All measurements suggest

that the entire protein, the N-terminus, and Patch 4 are overall hydrophilic, which is con-

sistent with the fact that the protein is soluble in water. A more careful comparison is

thus needed in order to determine whether certain substructures are more hydrophobic than

others. We first compare the DBN and DBI structures, which are obtained from the same
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double mutant, R36S+P23T, and which are structurally very similar.30 As expected, nearly

all measurements for DBN and DBI overlap within their 95% confidence intervals. The only

exceptions are the hydrophobicities of Patch 4 measured by the GRAVY and mf scales. The

latter likely results from mf uniquely classifying prolines as hydrophobic. This discrepancy

could then amplify the minute difference in surface exposure of Patch 4 prolines between

DBI and DBN. A similar argument could be made about GRAVY, as tyrosine is considered

to be the most hydrophilic residue on the GRAVY scale.

Overall, the N-terminus is the most hydrophobic region in nearly all scales and for all

structures. However, other observations are not consistent across scales. In particular, a

number of nonmonotonicities can be observed. For instance, Patch 4 is more hydrophobic in

DBI than in WT for the GRAVY, hh, and mf scales, but the ww and tt scales present no

discernible difference. Similarly, Patch 4 is more hydrophobic in R36S than in WT for the

mf scale, but the reverse is true for hh. These discrepancies reflect the different ordering

of residues on different scales. For instance, GRAVY, which is calculated from experimental

measurements of transfer free energies from water to water vapor, tends to assign aromatic

side chains lower hydrophobicities than the other four scales, which instead consider the

tendency of residues to transfer from bulk water to a lipid bilayer, a measurement prone to

higher experimental uncertainty.35

Interestingly, the N-terminus of the P23T mutant is the least hydrophobic structure for

the GRAVY and mf scales. This trend, however, disappears when only Patch 4 residues are

considered. Patch 4, which controls solubility inversion, is actually less hydrophobic than

the overall N-terminus or the entire protein, except on the mf scale. Only for this last scale

is Patch 4 clearly more hydrophobic. A similar inconsistency is observed for Patch 4 of DBI,

which is more hydrophobic than the other proteins for GRAVY and mf, but for these two

scales P23T and DBN are not discernibly more hydrophobic than the structures without the

mutation in the 23rd residue.

In summary, in none of the hydrophobicity scales do the structures with the (solubility-
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inverting) P23T mutation have a statistically and consistently higher hydrophobicity than

those without. P23T mutations even result in lower hydrophobicity estimates on some scales.

While these results are subject to errors from the crystal structure accuracy, as well as the

imperfections of the hydrophobicity scales themselves, a microscopic change to the protein

surface that could putatively underlie the inversion of solubility nonetheless remains elusive.

Because hydrophobicity scales are but an indirect measure of protein-water interactions (and

thus of protein-protein interactions), however, other, more detailed approaches could be more

revealing.
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Figure 1: Hydrophobicity estimates for different crystal structures of single and double
mutants of human γD-crystallin. Proteins to the left of the black vertical line exhibit normal
solubility, and those to the right exhibit inverted solubility. Error bars denote 95% confidence
intervals. Lines connecting the points are but a guide to the eye. Note the flipped scales for
the hh and mf scales, in which lower values denote higher hydrophobicity, by contrast to
the other scales. Structures with the P23T mutation do not systematically present a higher
hydrophobicity, which is inconsistent with the hydrophobicity scenario.
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3 Theory and Computational Details

Because a clear enhancement of hydrophobicity cannot be detected directly in mutants with

inverted solubility, we next consider the thermodynamics of patchy models that incorporate

various temperature-dependent patch energies. A schematic model of the double mutant of

human γD-crystallin was previously studied in Ref. 30, and is here first modified to consider

the hydrophobic scenario and then perturbed to evaluate the robustness of its inverted

solubility regime.

3.1 Patchy Model

The schematic model consists of hard particles with attractive patches

u(rij,Ωi,Ωj) = uHS(rij) +
n∑
a,b

uab(rij,Ωi,Ωj), (2)

where rij is the distance between particles i and j, Ω denotes the particle orientation, and

uHS(rij) is the hard sphere potential for particles of diameter σ. The sum runs over all patch

pairs, with n the total number of patches. The second contribution, uab, is further broken

down into radial and orientational parts

uab = vab(rij)fab(Ωi,Ωj). (3)

The radial part, vab, is a square-well interaction

vab(rij) =

 −εab(T ), σ < rij < λa + λb

0, otherwise
, (4)
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with interaction ranges λa and λb of patches a and b, respectively, and with either constant

or temperature-dependent patch energy −εab(T ). The orientational part

fab =

 1, θa,ij ≤ δa and θb,ij ≤ δb

0, otherwise
×

 1, ψij ∈ [ϕab −∆ϕab, ϕab + ∆ϕab]

0, otherwise
(5)

contains two contributions. The first ensures that the relative particle orientation enables

them to interact with δa and δb the angular width for patches a and b, respectively (Fig. 2a).

The second limits the range ϕab±∆ϕab of dihedral angles ψij allowed for each pair (Fig. 2b),

with θa,ij the angle between the vector defining the location of patch a and the vector that

connects the centers of particles i and j, and θb,ij similarly for patch b.

Figure 2: For two patches to interact, the relative particle orientation should satisfy the
following. (a) The angle between the vector joining particles i and j, rij, and the patch
vectors êα and êβ should be less than δα and δβ, respectively. (b) The dihedral angle between
two particles, which is defined as the angle between two planes defined by the vectors (zi, rij)
and (zj,−rij), should be within the range ϕab±∆ϕab. The reference vector z is chosen such
that its orientation relative to the patches is identical for all particles.

This model is parameterized such that each patch corresponds to a crystal contact in
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either the DBI or DBN crystal structure. This choice assumes that these surface patches

are most chemically relevant for crystal formation, which is reasonable for such a small

protein and is consistent with earlier studies of protein crystallization.44,45 We then obtain

five patches for DBI – labeled with Arabic numerals – and five patches for DBN – labeled

with Roman numerals. Because Patch 4 of DBI contains the 23rd residue, which is associated

with the inverted solubility regime, this patch is taken to be temperature dependent (see

Sec. 3.2); other patches are assigned a constant energy. Patch energies and interaction

ranges were previously extracted from all-atom molecular dynamics simulations, 46 using

umbrella sampling.47 The resulting patchy particle model is sketched in Fig. 3, and the

geometry details are given in the Supporting Information (Sec. S2). Note that the resulting

effective single-component system model coarse-grains the role of solvent and ions in the

crystallization cocktail. In what follows, unless otherwise specified, energies are reported

in units of kBTref , where Tref = 277K is the temperature at which DBN was crystallized

experimentally, and distances are reported in units of the particle diameter σ, which here is

taken to be 2.54 nm.

It is important to highlight that this protocol presents a number of limitations, including

inaccuracies of the protein force field48 and of the water model,49 as well as the crudeness

of representing potentials of mean force as square well interactions and proteins as spheres.

In addition, determining the potential of mean force for each crystal contact is a compu-

tationally challenging task, and the sampling of each umbrella window might incompletely

explore some of the protein conformational changes, such as loop motion.50 On the whole,

this approach likely yields estimates of protein-protein interactions that are at best within

10 to 50% of the association free energy. The associated phase diagram should therefore at

least yield qualitatively, albeit not quantitatively, correct predictions.
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Figure 3: Front and back views of the patchy particle model. Blue and green patches
are derived from DBI, and red patches from DBN. Patch 4 (green) contains the mutation
associated with solubility inversion.

3.2 Inverted Solubility Models

In order to represent the microscopic origin of the inverted solubility, we consider three

models for the temperature-dependence of the Patch 4 interaction energy: the MLG model,

the Wentzel-Gunton model, and the temperature-(de)activated patchy model. Note that the

parameters explicitly defined in these models are discussed in this section, while the free

parameters are left for Sec. 4.1

MLG model– In this model, each of four water states is assigned a (relative) degeneracy,

q, and an energy E. Degeneracies are ordered qds > qdb > qob > qos. The last inequality

follows from the hydration shell allowing the formation of only hydrogen bonds between

water molecules and not to the hydrophobic solute. The higher degeneracy of the disordered

shell compared to the disordered bulk follows from the additional orientational constraints in

the former compared to the latter. Because only relative information about the degeneracies

is needed, the estimates proposed in Ref. 51 here suffice: qob = 1.5, qdb = 30, qos = 1, and

qds = 48. Meanwhile, the energies are ordered Eds > Edb > Eob > Eos. The ordered shell is

expected to have a lower energy than the ordered bulk state, because hydrogen bonds that

form via tangentially oriented water molecules tend to be stronger than radially oriented ones;

the disordered shell is expected to have a higher energy than the disordered bulk because

replacing the solute with water molecules slightly increases the number of hydrogen bonds.

Because energy values used by Ref. 25 are on an arbitrary scale, which is incompatible with

the specific energy scale of our patchy model, we here use the values reported by Silverstein
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et al. for the Mercedes-Benz model of water.51,52 Posing that the energy of the ordered bulk is

about one hydrogen bond, Eob = −5.82 kBTref ,
53 the other three states have: Edb = −1.69

kBTref , Eos = −5.90 kBTref , and Eds = −0.56 kBTref . The energy and entropy per water

molecule in the shell and are then given as23

Es =
Eos + Edse

−β(Eds−Eos)

1 + e−β(Eds−Eos)
(6)

Eb =
Eob + Edbe

−β(Edb−Eob)

1 + e−β(Edb−Eob)
(7)

and

ss/kB = log
(qos + qdse

−β(Eds−Eos)

1 + e−β(Eds−Eos)

)
(8)

sb/kB = log
(qob + qdbe

−β(Edb−Eob)

1 + e−β(Edb−Eob)

)
. (9)

The change in energy and entropy upon moving one water molecule from the bulk to the

solvation shell of the protein are then simply εw = Es −Eb and ∆sw = ss − sb, respectively.

With this formulation the energy of Patch 4 is given by

ε′4 = ε4 + nw∆ε(β) (10)

where we have defined ∆ε(β) = 2(εw − ∆sw/β), and nw is the number of water molecules

in the solvation shell around contact i. Note that because patch parameters are measured

at βref = 1, parameters need to be tuned such that ε′4(β = 1) = ε4, and hence ε′4 =

(ε4−∆ε(1)nw) + ∆ε(β)nw. Note also that the temperature scale for the MLG model cannot

be changed arbitrarily by changing βref , because its parameters already set the range of

temperatures within which the hydrophobic effect changes the free energy of crystallization.

Wentzel-Gunton Model– Wentzel and Gunton proposed a simplified version of the MLG
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model in order to consider the phase behavior of particles with anisotropic interactions using

Wertheim’s theory.24,54–56 This simple model assigns a linear temperature dependence for

the patch energies

−ε′4 = −ε4 − 2εw +
2

β
∆sw, (11)

where −εw and −∆sw are free parameters that account for the change in energy and in

entropy, respectively, due to the displacement of water upon contact association. Patch

energies should equal those of the original model at βref , where the model was parameter-

ized. This choice here suffices to set the overall temperature scale, because εw and ∆sw are

arbitrary. Fixing εw, such that ε′4(β = βref) = ε4, thus results in ε′4 = ε4 + 2∆sw( 1
βref
− 1

β
).

Temperature-(de)activated Patchy Model– de Las Heras and de Gama57 proposed a model

for patch (de)activation with temperature inspired by DNA-grafted colloids, which lose their

attractive patches above the DNA melting temperature,58 Although this model does not

correspond to a specific microscopic scenario in proteins, it can nevertheless be construed

as a simple and elegant way to (de)activate a patch. The temperature dependence of the

interaction is then

ε′4(T ) =
ε4

2

[
1 + tanh

(
T − Ta

τ

)]
, (12)

where Ta is the deactivation temperature, τ controls the sharpness of that deactivation. For

this model, Patch 4 is deactivated below Ta.

3.3 Crystal Solubility Determination

Solubility lines are determined by first calculating the fluid and crystal chemical potentials,

and then identifying the coexistence points at the intersection of these curves at fixed tem-

14



perature and pressure. For both DBI and DBN, experimental solubilities correspond to

protein volume fractions of φ = 10−3 or lower.29

At such low densities simple local Monte Carlo (or molecular dynamics) sampling of

the fluid phase is computationally inefficient, because transport is relatively slow. While

this problem can be alleviated with advanced sampling methods such as aggregation vol-

ume bias Monte Carlo59 and event chain Monte Carlo,60 we here instead estimate the fluid

properties from the second virial coefficient, B2, which is calculated as in Ref. 61 (see SI

Sec. S362). Because the patch energies are high, B2 can become very large and negative

at low temperatures, but the protein density remains sufficiently low for |B2ρ| � 1 in the

regime of interest. In order to confirm that the third virial coefficient, B3, can safely be

neglected, we bound its value by noting that triply-bonded triplets of particles cannot form.

The dominant contribution to B3 thus comes from doubly-bonded triplets and scales as B2
2 ,

hence |B3|ρ2 . |B2|2ρ2 � 1 in the regime of interest. Its contribution to the fluid chemi-

cal potential, µf , is therefore negligible, and so are higher-order corrections, thus justifying

this theoretical expediency. The fluid equation of state and chemical potential can then be

written as

βp

ρ
= 1 + B2ρ, (13)

βµf = βµid + 2B2ρ = log Λ3ρ+ 2B2ρ, (14)

where βµid = log Λ3ρ is the chemical potential of the ideal gas, and the thermal de Broglie

wavelength Λ is set to unity, without loss of generality. With this formulation, we have
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ρ =
−1 +

√
1 + 4B2βp

2B2

. (15)

Note that by thermodynamical stability, βµf must decrease with decreasing pressure, and

our estimate is consistent in this respect. If B2 is positive, ∂βµf/∂ρ is also positive; if B2 is

negative, ∂βµf/∂ρ > 0 for ρ < −B2/2, which is always true.

The crystal free energy at a given pressure and temperature is calculated using numerical

simulations (see SI Sec. S3) with the Frenkel-Ladd method,63 which involves thermodynam-

ically integrating from an Einstein crystal. From this reference free energy, thermodynamic

integration along an isobar provides the crystal chemical potential, µx, at different temper-

atures,

βµx(β, p) = β0µx(β0, p) +

β∫
β0

〈H(β′)〉
N

dβ′ +

β∫
β0

β′
〈dU/dβ ′〉

N
dβ′, (16)

where 〈H〉 = p〈V 〉+ 〈U〉 is the enthalpy and 〈·〉 denotes thermal averaging. Because of the

highly constrained geometry of the patchy models, both crystals are almost incompressible.

As a result, 〈V 〉 is essentially independent of temperature. To high accuracy, we can thus

write

β∫
β0

〈H(β′)〉
N

dβ′ ≈ 1

N

β∫
β0

〈U(β′)〉
N

dβ′ +
p

ρ
(β − β0), (17)

and at sufficiently low pressures the second term on the right hand side is also negligible.

We further approximate that all the crystal bonds are active, and hence 〈U(β)〉 ≈ U0(β),

where U0(β) is the ground state energy, and 〈dU/dβ〉 ≈ dU0/dβ. While this last approx-
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imation is generally quite good, it is overly crude in the patch deactivation regime, where

the patch energy decreases rapidly around βa, and vanishes when temperature is reduced

further. As a result, 〈dU/dβ〉 � dU0/dβ, which can result in a significant correction to βµx

(see Fig. 4a). In the Wentzel-Gunton model, the patch similarly becomes non-attractive

for β > βref , and upon further lowering the temperature, it eventually becomes repulsive.

The topology of the DBI crystal then changes and the energy of the crystal once again be-

comes temperature-independent, which leads to a bending of the evolution of the chemical

potential with temperature (Fig. 4b). In both cases, however, the DBI solubility curve is

unaffected, because these changes occur in a region where DBI is metastable with respect to

DBN. Taking 〈dU/dβ〉 ≈ dU0/dβ is thus reasonable for our purposes.
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Figure 4: Calculated βµx using thermodynamic integration starting from β = 0.3. The
simulation data (black) fully matches the individual Einstein crystal simulations (red data
points). Estimates of βµx (blue) become significantly flawed at low temperatures, but be-
cause this regime is beyond the triple point, βtp (dashed line), the DBI solubility line is
unaffected. (a) Patch 4 is deactivated below Ta, with τ = 0.05, and (b) Patch 4 energy
follows the Wentzel-Gunton model with ∆sw = −50.

Under these two approximations, the crystal chemical potential for the MLG model can

be written as

βµx(β, p) ≈ β0µx(β0, p) +
p

ρ
(β − β0) + ξ(β), (18)
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where

ξ(β) =

β∫
β0

[
− εtot + ∆ε(1)nw − 2nwεw + 2nw(

d∆sw

dβ′
− β′dεw

dβ′
)
]
dβ′ (19)

= (∆ε(1)nw − εtot)(β − β0)− 2nw

β∫
β0

εwdβ
′ + 2nw∆sw

∣∣∣β
β0
− 2nw

(
βεw

∣∣∣β
β0

)
+ 2nw

β∫
β0

εwdβ
′

(20)

= (∆ε(1)nw − εtot)(β − β0) + 2nw

[
(∆sw(β)−∆sw(β0))− (βεw(β)− β0εw(β0))

]
, (21)

and where −εtot = −
5∑
i=1

εi is the temperature independent portion of the crystal ground

state energy per particle, i.e., U0/N = −εtot − nw∆ε(β), for the MLG model. We thus have

βµx

dβ
≈ (∆ε(1)nw − εtot) + 2nw

[d∆sw

dβ
− εw − β

dεw

dβ

]
, (22)

which has a minimum when

Γ(β) ≡ d∆sw

dβ
− εw − β

dεw

dβ
=
εtot

2nw

− ∆ε(1)

2
. (23)

As noted above, βµf decreases with decreasing pressure, and because by thermodynamic

stability so does ρ, an inverted solubility regime is only obtained when the slope of βµx with

respect to β is positive. For Γ(β) > εtot/(2nw)−∆ε(1)/2, the slope of βµx is positive, hence

inverted solubility is observed.

For the Wentzel-Gunton model, the change in βµx with temperature can be similarly

estimated. We can write the energy per particle in the crystal as
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U0(β)/N = −εtot − 2∆sw

( 1

βref

− 1

β

)
. (24)

and hence, following Eq. (16),

βµx(β, p) = βµx(β0, p) +
(
− εtot −

2∆sw

βref

− p

ρ

)(
β − β0

)
. (25)

The slope of βµx with respect to β is positive when −εtot − p/ρ > 2∆sw/βref , thus resulting

in an inverted solubility regime.

Writing βµx in a compact form for the temperature-(de)activated patchy model is not

possible –the associated integrals need to be evaluated numerically, but the phenomenology

is similar. Solubility is inverted in the region where βµx has a positive slope, i.e., around Ta,

as can be seen in Fig. 4a.

If patch energies are modified by either randomly perturbing them or by scaling them by

a constant factor, the free energy of the altered model can be estimated from the original

model, assuming that the crystal free energy can be expressed as

βA′ = βA− βU0/N + βU ′0/N, (26)

where A′ is the Helmholtz free energy and U ′0 is the ground state crystal energy for the altered

model. This treatment amounts to neglecting the change in crystal entropy upon weakening

or strengthening the patches, which is but a small contribution in this temperature regime.

We separately verify that the crystal remains stable at the temperatures of interest.

Put together, various approximations described above allow for the expedited consider-

ation of coexistence points that constitute the solubility curves by generating βµf and βµx

19



curves as functions of temperature and pressure.

4 Results and Discussion

4.1 Inverted Solubility from Hydrophobicity Models

In order for the microscopic hydrophobicity models described in Sec. 3.2 to give rise to

solubility inversion, a sufficiently large number of water molecules must be involved. In

this section we first consider physical bounds on that number, and then consider how the

corresponding crystal solubility lines are affected.

4.1.1 Effect of Parameters on Solubility Lines

The key free parameter in hydrophobicity models is the number of water molecules, nw,

solvating the hydrophobic patch. We first estimate the number of water molecules potentially

available around Patch 4 by calculating the SASA for the participating residues30 and then

computing

nw = A4ρw

4.5Å∫
3Å

gC(r)dr, (27)

where A4 is the solvent accessible surface area of Patch 4, ρw = 3.3× 10−2Å
−3

is the number

density of bulk water at room temperature, and gC(r) is the radial distribution function of

water around carbon atoms determined in Ref. 49. This estimate thus assumes that (i) the

solvent has a radius of 1.4Å (the SASA definition), (ii) the average van der Waals radii of

protein heavy atoms is ∼ 1.6Å, and (iii) the first solvation shell ends with the first peak of

g(r) at 4.5Å. We also assume that the measured surface is flat, which is here but a small

correction. If we further assume that all residues contributing to Patch 4 are hydrophobic,

then nw = 133−140 for all six protein structures. However, because Patch 4 contains only a
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handful of hydrophobic residues a more realistic estimate should use a smaller A4. Taking a

residue as hydrophobic if it is labeled as such in any of the hydrophobicity scales considered

in Sec. 2 gives instead nw = 43 − 48. Because the hydrophobic residues within Patch 4 are

not contiguous, the solvating water molecules are affected by the presence of hydrophilic

surface residues nearby. This estimate for nw should thus be treated as an upper bound.

We also consider the number of water molecules needed for Patch 4 to have its measured

bonding strength. In particular, if we attribute the entire Patch 4 energy to the change in

free energy upon moving solvating water molecules to the bulk, then the MLG model gives

ε4 = nw∆ε(1), and thus nw ≈ 23. Because multiple hydrogen bonds also contribute to the

patch energy, however, this number should also be treated as an upper bound.
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Figure 5: The minimum of ξ(β), and hence of βµx, is obtained by the intersection of nw

values (black lines) with Γ(β) (the blue curve) as given in Eq. (23). The inset shows the
corresponding ξ(β), i.e. the temperature-dependent part of βµx for various nw using model
parameters reported by Silverstein et al. Here, nw = 30 is insufficient to invert solubility,
but n∗w ≥ 71 is.

We can now contrast these bounds with the minimum number of water molecules, n∗w,

that need to be displaced to invert solubility. For the MLG model, we use Eq. (23) and

the sum of DBI patch energies, εtot = 60, to estimate n∗w; it must be such that ξ(βmin)

is a minimum, i.e., Γ(β) > εtot/(2nw) − ∆ε(1)/nw. In other words, solubility is inverted if

β > βmin. The numerical solution in Fig. 5 shows that n∗w & 71, and the corresponding change

in ξ(β) is given in the inset. It should be noted, however, that n∗w depends strongly on the
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MLG model parameters. For the multiplicities proposed by Shiryayev et al., for instance,

inverted solubility is possible with a mere n∗w ≈ 18. This second choice of degeneracies,

however, seems unphysical;25 taking qob = 10 and qos = 1, indeed suggests that the ordered

bulk degeneracy is an order of magnitude larger than that of the ordered shell. We thus

expect n∗w & 71 to be a physically more reasonable estimate.

That said, however, because εtot = 60 results in room temperature solubilities that are

orders of magnitude lower than experimental observations, and in light of the various sources

error in patch energy determination (Sec. 3.1), Ref. 30 proposed to halve patch energies in

order to reduce the discrepancies. For εtot = 30, n∗w ∼ 35 (Fig. 6), which is less than

the 40 or so water molecules solvating hydrophobic residues in Patch 4, but more than the

energy-based estimate.

In light of the many estimates involved in the above analysis, the hydrophobic effect as a

cause of inverted solubility, although weakly supported, cannot be eliminated outright. Even

if the hydrophobicity model parameters are kept constant, a possible resolution could be for

Patch 4 to be stronger than estimated and the other patches weaker. The hydrophobicity

scenario, however, does severely constrain the patch model parameters. It should further be

noted that the P23T mutation is not associated with a systematic change in A4 (and thus

nw), which suggests that a conformational change in the solvating water molecules should

accompany the mutation.

4.1.2 Solubility Lines for Models of Hydrophobicity

In Sec. 4.1.1 we determined that the hydrophobicity scenario for inverting solubility requires

a fine balance between the protein-protein patch energies, the size of the hydrophobic patch,

and the number of water molecules solvating it. While this rare confluence of factors could

explain why inverted solubility is not common among proteins, it is natural to wonder

whether the presence of weak hydrophobic patches, which are ubiquitous in proteins, affects

solubility lines without engendering a regime of inverted solubility. In this section, we study
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Figure 6: Solubility lines corresponding to different values of nw for ε′tot = 30, for which
n∗w ≥ 35.

the Wentzel-Gunton model in order to explore this possibility.
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Figure 7: Larger magnitudes of ∆sw invert solubility, whereas ∆sw = −15 results in solubility
that only weakly depends on temperature, and ∆sw = −10 (light blue) results in normal
solubility. Note that, for the latter case, even though the solubility is not inverted, the
solubility line is markedly altered compared to the ∆sw = 0 case (dark blue).

The solubility lines for the Wentzel-Gunton model in Fig. 7 are specifically obtained for

βref = 0.5, to match the experimental solubility as in Ref. 30, but our observations are

qualitatively independent of this choice. Setting ∆sw = −10, which is here akin to nw ≈ 20

(assuming that the temperature-dependent energy in the MLG model scales as nw), results

in normal solubility, but the steepness of the solubility curve changes markedly compared
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to ∆sw = 0. Setting ∆sw = −15 (nw ≈ 30) results in the DBI solubility being almost

independent of temperature and in DBN being more stable than DBI at T < Ttp ≈ 1.7.

Further reducing ∆sw gives rise to an inverted solubility regime. The solubility curve then

flattens below T ≈ 2 and φtp moves to higher packing fractions. These observations thus

emphasize that the presence of an inverted solubility regime is the limit case of a continuum

of how hydrophobicity impacts the solubility line.

4.2 Solubility Lines for Temperature Deactivated Patches

Absent definitive microscopic evidence for the hydrophobic effect, we finally consider a

generic model for patch deactivation. The temperature-deactivated patchy model, which

was used to successfully capture the inverted solubility of DBI,30 stabilizes the crystal with

increasing temperature without referring to any specific microscopic mechanism. In this sec-

tion, we first discuss the physical constraints on the model parameters and then consider how

solubility lines change with model parameters, paying particular attention to the robustness

of the inverted solubility regime. We also estimate the binodal and the critical temperature,

which have been experimentally determined for certain human γD-crystallin mutants.31

4.2.1 Parameter Estimates

Despite the absence of an explicit microscopic interpretation for the (de)activation model,

one can still place some reasonably solid physical constraints its tuning parameters. First,

the (de)activation temperature Ta must lie in the vicinity of the triple point, and thus

Ta ≈ Ttp. For our model, the choice Ta = 1.9 ensures that the deactivation of Patch 4 makes

DBI metastable with respect to DBN for T < Ttp. Second, τ , which sets the temperature

range over which (de)activation takes place, ought to capture the degree of cooperativity

of the underlying microscopic process. It cannot be arbitrarily small, as it would be at a

thermodynamic phase transition, because a macroscopic number of components would then

need to be involved. It also cannot be arbitrarily large, because the inverted solubility
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regime then vanishes. For reference, recall that denaturing a protein takes place over a few

degrees, and any smaller scale rearrangement that involves tens to hundreds of atoms should

spread over at least & 10K. We thus here consider a temperature range of ∼ 10K, which

corresponds to setting τ = 0.05.

We first investigate how varying patch energies impacts the phase diagram, keeping

Ta = 1.9 and τ = 0.05 constant. As previously reported,30 the resulting phase diagram

(Fig. 8a) exhibits a re-entrance regime bounded by the DBI solubility line, as well as a triple

point between the fluid and the two crystal forms. The solubility lines that result from

perturbing the patch energies by 5% and 10% shift to substantially lower or higher densities,

but the existence of an inverted solubility regime is robust. As expected, the errors inherent

to the overall parameterization of the model are therefore qualitatively benign.
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Figure 8: (a) Average solubility lines for perturbed parameters. Dashed lines denote 95%
confidence intervals. DBI solubility line for 10% error (black) and 5% error (red), as well as
DBN solubility line for 10% error (green) and 5% error (blue) are shown. Higher error levels
increase the uncertainty in φtp, as well as the minimum solubility observed for DBI, but
inverted solubility is maintained. (b) The effect of changing the energy of the temperature-
deactivated patch, such that ε′4 = fε4. (c) The effect of changing ε4 but keeping the total
patch energies of DBI constant.

We then investigate the robustness of the results with respect to the relative strength

of the temperature-deactivated fourth patch, ε4. This question is of interest for two main

reasons: (i) the strength and robustness of solubility inversion depend sensitively on the

strength of that patch; and (ii) the ordering of the single mutant solubilities directly correlates

with their respective Patch 4 energies.

The impact of multiplying ε4 by f ∈ {0.9, 1.0, 1.5}, while keeping the other patch pa-
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rameters constant is shown in Fig. 8b. Increasing the strength of Patch 4 systematically

decreases the solubility of DBI and lowers φtp. Interestingly, the decrease in solubility with

increasing f is consistent with the experimental observations for the single mutants, P23T,

P23S, and P23V.31 Because a stronger Patch 4 decreases the DBI solubility (R36S+P23T

double mutant), assuming that the difference between crystals arises due to Patch 4 only, we

speculate that if two other double mutants, R36S+P23S and R36S+R23V, were crystallized

with similar crystal contacts, then their inverted solubility would order similarly.

The impact of changing the energy of the temperature-dependent patch while keeping

the total energy of DBI patches constant, i.e., εtot = f1ε4 + f2(ε1 + ε2 + ε3 + ε5) as shown

in Fig. 8c. (Because the second patch corresponds to a shared contact between DBI and

DBN, the DBN solubility is then also slightly perturbed.) Here again, the inverted solubility

regime vanishes upon markedly reducing the strength of Patch 4. The difference with the

first case is that DBN is now metastable with respect to DBI within the probed temperature

range, while DBI becomes metastable with respect to DBN otherwise. For f1 = 0.4, DBN is

still metastable with respect to DBI, but inverted solubility is observed only over a narrow

range of density.
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Figure 9: (a) As τ is increased, the DBI solubility line becomes less flat, and eventually
inverted solubility is lost (e.g. τ = 0.35). (b) Manipulating the sum of DBI patch energies
and τ , one can obtain a temperature range over which the solubility is almost temperature-
independent.
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We also investigate the robustness of the phenomenology with respect to changes in

τ . Decreasing τ corresponds to a faster temperature (de)activation of the patch, which

flattens the inverted solubility region and results in Ttp → Ta as τ → 0 (Fig. 9a). φtp

similarly gets pushed to higher packing fractions, suggesting that a protein solution prepared

very near Ta could reach remarkably high concentrations compared to solutions prepared at

surrounding temperatures. However, as argued above, very small values of τ are physically

unreasonable. Conversely, increasing τ weakens this transition and eventually eliminates

the inverted solubility regime. Interestingly, a specific choice of τ , with a minor tweak to

patch energies (τ = 0.28, ε′i = 1.1εi), gives rise to a nearly vertical solubility curve (Fig. 9b),

similar to the temperature-independent solubility of apoferritin.21

4.2.2 Estimation of the Critical Temperature

Although various theoretical results suggest that a closed-loop binodal with multiple crit-

ical points is possible upon introducing temperature-dependent binding energies,23,24,57 no

experimental evidence of such a binodal has been found for any human γD-crystallin mu-

tant. In addition, experiments find that the P23V mutation, which also inverts solubility,

has a binodal that is indistinguishable from that of the wild type.31 Here we use Wertheim’s

perturbation theory,54,55 which provides quantitatively good estimates of the binodals in

patchy models to explore this question (see SI Sec. S464). In order to determine whether our

model is consistent with these observations, we estimate the liquid-liquid binodal and the

associated critical temperature, Tc.

Choosing τ = 0.05 and Ta = 1.9, as above, results in a typical binodal with a single

critical point at Tc = 1.85 (Fig. 10). Hence, without altering patch energies, our model does

not give rise to a closed-loop binodal (Fig. 10), consistently with experiments.31 In order

to determine how far our model is from exhibiting a closed-loop binodal, we systematically

increase the energy of Patch 4. Only when ε4 more than doubles does a closed-loop binodal

appear. (See Fig. 10). This perturbation, however, falls far outside of the error estimates of
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Ta = 1.9), there is no closed-loop binodal. Only if ε4 > 36, here ε4 = 40 is shown (red), are
multiple critical points and a closed-loop binodal obtained.

the patch energies, which further supports the qualitative robustness of our model prediction.

5 Conclusion

In this article, we have attempted to rationalize the inverted solubility of certain mutants of

γD-crystallin based on microscopic models of protein-protein interactions and their temper-

ature dependence. We have paid particular attention to the putative role of hydrophobicity.

Estimating surface hydrophobicity using different scales did not reveal the presence of any

pertinent surface feature, but microscopic models of hydrophobicity suggest that the number

of available surrounding water molecules might suffice. Although our analysis falls short of

conclusively determining whether hydrophobicity plays a determining role or not in this pro-

tein, this scenario nonetheless seems a bit far fetched due to the lack of structural evidence,

as well as the thermodynamic constraints on the patch energies for such a hydrophobic sce-

nario to occur. (By the same token, however, this analysis provides an explanation as to

why inverted solubility is far less common than proteins with hydrophobic patches on their

surface.) A more conclusive determination would require for the water structure around the
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region of interest to be more specifically probed. Because standard water models are insuffi-

ciently sensitive to this feature,49 simulations with more sophisticated water models,65–68 and

neutron diffraction or hydrogen-deuterium exchange experiments might be more productive

avenues. For the former, however, extensive testing, including comparison with experimental

structures, of the ability of these water models in capturing protein-water interactions would

first be needed.

Even though the microscopic origin of inverted solubility in human γD-crystallin still

remains somewhat elusive, additional insight from the crystallization of other double mu-

tants, such as R36S+P23V and R36S+P23S, might be helpful in identifying generic features

that might have eluded the analysis thus far. Repeating the above structural and thermo-

dynamical for these mutants could help tease out more subtle features that might be at

play.
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