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Abstract

We present a monolithic incremental Lagrangian framework based on meshfree methods, the Hot Optimal Transportation
Meshfree (HOTM) method, for a robust and efficient solution of the dynamic response of materials under extreme thermo-
mechanical conditions, possibly involving extremely large deformation, phase transition and multiphase mixing. The HOTM
method combines the Optimal Transportation Meshfree (OTM) method and the variational thermomechanical constitutive
updates. The variational structure of a dynamic system with general internal dissipative mechanisms is discretized in time
by applying the Optimal Transportation theory, while material points and nodes are introduced for the spatial discretization.
A phase-aware constitutive model is developed to describe the history-dependent material behavior in various phases due
to melting, vaporization and solidification. The fully discretized conservation equations of linear momentum and energy are
solved simultaneously using an operator splitting algorithm to predict the deformation, temperature and internal variables of
the computational domain. The convergence property of the meshfree solution of the energy conservation equation is studied
in a three-dimensional transient heat conduction problem by comparing to the analytical solutions. Accuracy of the HOTM
method is also assessed in the example of upsetting a metallic billet up to a compression ratio of 95% under various external
heating and cooling strategies. The scope and robustness of the HOTM method are demonstrated in the application of the laser
cladding technology.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

Extreme dynamic thermomechanical conditions are commonly experienced by materials in a wide range
of industrial applications, such as manufacturing, new energy technologies, defense and national security. In
particular, increasing interest in strongly coupled thermomechanical problems is driven by the recent rapid advances
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in materials fabrication by additive manufacturing(AM) processes. These processes usually involve extremely
large deformations, large temperature gradient and high heating/cooling rates, highly nonlinear inelastic material
responses, and phase transition, such as melting, vaporization and solidification. Thus, high fidelity predictions of
the dynamic response of materials under extreme thermomechanical coupling conditions have arisen as one of the
major challenges in computational mechanics.

There are various thermomechanical coupling models for the phase change problem in welding simulations [1,2].
Similar numerical approaches can also be found in the studies of residual stresses in the casting process [3,4].
Furthermore, numerical simulations play a significant role in the fundamental understanding of emerging additive
manufacturing technologies. Detailed reviews can be found for instance in [5,6] and [7]. Nevertheless, grid-based
Lagrangian approaches, for example, total or updated Lagrangian Finite Element method, suffer from challenges
in dealing with large deformation unconstrained flows of the type encountered during manufacturing processes due
to mesh entanglement. These difficulties are compounded in problems with phase transition and multiphase mixing
arising from applications such as additive manufacturing, casting, high speed forming and high rate machining
[8—13]. Traditional Eulerian framework, including Eulerian Finite Element method, Finite Difference and Finite
Volume methods, for the description of unconstrained flows becomes awkward when the flow involves variable
multiphase domains, free-surface boundary conditions, dynamic contact as well as history-dependent thermomechan-
ical material behavior [14,15]. Another conventional approach uses the Arbitrary Lagrangian—Eulerian formulation
(ALE) [15-17], which combines the advantages of both Lagrangian and Eulerian methods. However, the ALE
method is limited for large localized deformation in unconstrained multiphase flows, and remeshing and remapping
of state variables are still necessary for such scenarios.

Alternatively, meshfree methods with Lagrangian kernels furnish effective means of addressing the challenges
of mesh tangling and distortion when dealing with large deformations, since they do not require a mesh. A variety
of meshfree methods can be found in the literature, including Smoothed Particle Hydrodynamics (SPH) [18-20],
Discrete Element Method (DEM) [21,22], Finite Pointset Method (FPM) [23,24], Element Free Galerkin Method
(EFGM) [25,26], Reproducing Kernel Particle Method (RKPM) [27-30], Meshless Local Petrov—Galerkin Method
(MLPG) [31,32], Particle Finite Element Method (PFEM) [33], Material Point Method (MPM) [34-36] and more
(see the recent review in [37]). Among the meshfree methods, the Optimal Transportation Meshfree (OTM) method
proposed by Li and Ortiz in [38] provides a robust and efficient solution to predict the thermomechanical response
of materials under extreme dynamic conditions, especially in adiabatic circumstances [39—-42]. Recently, researchers
have studied the capability of the meshfree methods to model severe material flows combining with phase transition
and multiphase mixing induced by high cooling and heating rates. For instance, a DEM framework is developed
by Ganeriwala and Zohdi to simulate a single laser track of the selective laser melting (SLM) process [43]. SPH
simulations of the SLM process of metallic particles were presented in [44] to investigate the influence of laser power
on the melt pool dimensions and thermodynamics. Fiirstenau et al. [45] developed an SPH framework based on the
GPU implementation of DualSPHysics for SLM powder-scale simulations to quantify the melt pool characteristics
as a function of processing parameters. Wessels et al. presented a computational framework to model the thermo-
mechanical process with phase change in additive manufacturing technologies based on the OTM method and
virtual work principle [46,47]. However, the mathematical formulation for strong non-equilibrium thermomechanical
coupling problems involving inelasticity and general internal dissipation mechanisms, such as plasticity, has not been
fully demonstrated in a meshfree framework.

The OTM method is constructed through an integration of optimal transportation theory [48] with Local
Maximum Entropy (LME) meshfree interpolation [49] and material point sampling method [34]. The optimal
transportation theory results in a geometrically exact time discretization of the action with conservative properties
of the mass and linear momentum, thus bypassing the need for solving a costly Poisson equation for the pressure
and eliminating the mass conservation errors that afflict Eulerian formulations. With the introduction of the LME
shape function, a weak Kronecker-delta property is satisfied on the boundary, which enables the direct imposition
of essential boundary conditions. In addition, the dynamic reconnection of material points and nodes requires no
remapping of history variables but overcomes the challenges of mesh entanglement and distortion. Foca et al. studied
the influence of the location as well as the ratio between the material points and nodes in the dynamic connection on
the accuracy of the OTM method [50]. In case of an under integration scheme employed to distribute the material
points and nodes, Weissenfels and Wriggers proposed a stabilized OTM method to alleviate the spurious mode in
the computations [51]. The combination of these features ensures enhanced stability and robustness of the OTM
method in the simulations of large deformations and fluid interacting with highly flexible structures [52].
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On the other hand, a variational formulation for general coupled thermomechanical problems in dissipative
materials under quasistatic loading conditions is presented by Yang et al. [53] and further developed by Stainier
et al. [54-56]. The authors show that there exists a potential function such that both the conservation of energy
and balance of linear momentum, boundary and initial conditions and even the evolutions of internal variables are
obtained as the Euler—Lagrange equations of its first variation. This variational approach presents many attractive
features, such as unicity, convergence and stability of the formulations for the strong coupling of thermomechanical
boundary value problems, including finite elastoplastic deformation, non-Newtonian viscosity, rate sensitivity,
arbitrary flow and hardening rule, as well as heat conduction. Although inertia effects are not the main focus of this
variational principle, it gives encouraging results for general dissipative systems when coupled with LME shape
functions [50].

In this paper, we aim to develop a monolithic Lagrangian meshfree computational scheme, the Hot Optimal
Transportation Meshfree (HOTM) method, for a dynamic system under extreme thermomechanical conditions in-
volving extremely large deformations and dynamic phase transition. Following the local thermodynamic model [56],
we construct a phase-aware constitutive relation to describe the dynamic response of materials including finite
deformation, viscoelastoplastic behavior with strain hardening, thermal softening and rate sensitivity, general
equation of state and dissipation mechanisms covering the solid, liquid and gas phases. We then extend the
variational formulation of the strongly coupled thermomechanical problem by including the inertia effects. The
proposed variational structure of a dynamic dissipative system can be rewritten in an incremental form with the aid
of the incremental effective energy density and the Optimal Transportation theory for the time discretization of the
kinetic energy. The stationarity conditions of the variational principle yield the semi-discrete energy conservation
and balance of linear momentum equations. By introducing the material point integration scheme and using the LME
shape functions to interpolate the materials local state at the material points from the neighboring nodal degrees
of freedom, we can derive the fully discrete mechanical and thermal balance equations in a meshfree solution. To
this end, an operator splitting algorithm is employed to solve the fully discrete balance equations and compute
the evolution of the deformation, temperature and internal variables simultaneously. In specific, the mechanical
balance equations are solved explicitly, while the thermal equilibrium equations solved by an implicit method using
Newton—Raphson iterations. By leveraging on the monolithic meshfree solution of the conservation equations and
the powerful theories in the calculus of variations, the proposed HOTM method effectively addresses some of the
drawbacks in the current state-of-the-art algorithms for strongly coupled thermomechanical problems, such as loose
coupling, convergence issues, and instabilities.

Finally, we demonstrate the accuracy and convergence property of the HOTM method in the example of three-
dimensional transient heat transfer problem with analytical solutions. Validation of the proposed computational
framework is performed by directly comparing the predicted results by the HOTM method to the data presented by
Simo et al. [8] in the application of upsetting a metallic billet under various thermomechanical boundary conditions.
The robustness and versatility of the HOTM method are further illustrated in the study of the correlation between the
processing parameters and cladding formation in the laser cladding technology. Application of the HOTM method
in other additive manufacturing technologies can be found in [57] as well.

2. General framework

This section presents the construction of the Hot Optimal Transportation Meshfree (HOTM) method, including
the variational formulation of a dynamic thermomechanical dissipative system and the meshfree discretization
scheme. We extend the general modeling framework for thermomechanical coupling problems proposed by
Stainier [56] to account for the phase transition, such as melting, vaporization, and solidification. The variational
formulation with inertia effects is then developed and discretized within the Optimal Transportation Meshfree (OTM)
framework. The fully discretized governing equations are solved by the explicit—implicit method to predict the
evolution of the deformation, local state variables and temperature distribution in the computational domain.

2.1. Phase-aware constitutive models
Consider a general thermomechanical process undergone by a continuous body of reference configuration

2y C N3. The motion of the body is described by the deformation mapping ¢ : 2 x [f, tr] — N3, where
[70, t7] is the time interval elapsed during the motion. Material points in the reference configuration are denoted by
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X € (2 mapping to points x = @(X, t) in the deformed configuration {2, = @({2, t). The mechanical state of the
material system is defined by the deformation gradient F as

F(X,1)=Vop(X,1) inf x [to, 1], (1)
where V|, denotes the partial derivatives of the motion with respect to the reference configuration. In addition, the

variables describing the thermal state are the temperature T : {2 x [y, 1] — R and a vector G taking the form:

1
=—=VoT. 2
G 7 Vo 2

A local-state approach is introduced to describe the thermomechanical process with general dissipation mech-
anisms. In specific, we postulate the existence of a Helmholtz free energy density (per unit undeformed volume)
A(F,T, Z) given by

A(F, T, Z):igf{U(F, N,Z)—- TN}, 3)
where Z is a set of internal variables for the local state of the material, and U and N are the internal energy density
and the entropy density, respectively. We shall denote the first Piola—Kirchhoff stress tensor by P and the forces

conjugated to internal variables by Y. The total stress tensor and the driving forces of the internal variables are
assumed to follow the additive decomposition as

P = P¢+ P, (4)
Y =Y°+Y% ®)

where P¢ and P are the equilibrium and viscous part of the stress, and Y¢ and Y¢ are the equilibrium and
dissipative part of the driving forces, respectively. By Coleman’s relations, we obtain

A
N = _a_(Fa T’ Z)9 (6)
aT
dA
P°=_—(F,T,Z 7
BF( T, 2), (N
A
ve =201, 2) ®
0Z

In order to determine the evolution of the internal variables, we further assume the existence of a viscous
dissipation pseudo-potential qb*(F ; F,T,Z), a kinetic dissipation pseudo-potential w*(Z; F,T,Z) and a heat
dissipation potential x(G; F, T, Z) [58,59], which leads to the definition of the viscous stress tensor, the dissipative
part of the driving force of the internal variables and the heat conduction induced heat flux, ¢, as

It .

PBZ—F,F,T,Z 9
8F( ) &)
Yt .

Y¢{=-""—(Z,F,T,7), 10
az( ) (10)

and
- 6. F.1.2) an
q_BG I A O N

respectively. Note that the internal variables should not produce any work. Thus we have

Y Z=X°+Y").-Z=0 forVZ, (12)
which yields

Y¢=-y4 (13)

Finally, the local total dissipation pseudo-potential denoted by A, can be decomposed additively into three parts
as

AF,Z,G,F,Z,T)=¢"+y* — x. (14)
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As a result, the total stresses and driving forces for the internal variables follow in the form

P= aA(F T,Z)+ M(F Z,G) (15)
_8F 9 9 aF b 9 9

Y = aA(FTZ)—i—aA(FZG)—O (16)
Tz az T

Given the Helmholtz free energy density and the total dissipation pseudopotential, the constitutive models
presented above in Eqgs. (15) and (16) are general enough to describe materials dynamic behavior under arbitrary
thermomechanical boundary conditions. However, in response to the extreme dynamic thermomechanical coupling
conditions, materials usually experience extremely large deformations and high temperature variations, which often
results in highly nonlinear inelastic behavior and phase change, such as melting, vaporization, and solidification.
Based on the local thermodynamic models, we construct a specific form for the constitutive relation of materials
(e.g., metals) possibly involving finite-deformation, an arbitrary equation of state, thermo-elasticity and thermo-
viscoplasticity, multiphase transition and mixing, and allowing to study the partition of plastic work in stored
and dissipated energy in a systematic fashion. To this end, we follow the multiplicative elastic—plastic kinematics
suggested by Lee [60] and further developed by many others to decompose the deformation gradient as

F = FF?, (17)

where F° and F? are the elastic and plastic deformation, respectively. We then introduce a scalar internal variable,
€”, to measure the cumulated plastic strain in a macroscopic plasticity model of the von Mises type. The plastic
flow rule for von Mises plasticity can be stated as

L? = F'Fr' =érm, (18)
where the direction tensor M is a symmetric tensor such that the normalization conditions and isochoricity of plastic
flow are satisfied, i.e.,

3
M-M= 3 and fr[M]=0. (19)

In materials such as metals, the elastic response and the specific heat are ostensibly independent of the internal
processes and the Helmholtz free energy density decomposes additively as

A=W, T)+ WO (FFP~', T) + WP(FP,&”, T) + Wh(T), (20)

where J = det F is the Jacobian, W¢v? and W€’ determine the volumetric and deviatoric thermoelastic response
of the material upon unloading, whereas W7 represents the stored energy due to the plastic working of the material
and W" describes the heat storage capacity. The forms of WV, We4¢’ and W” depend on the specific material
models. For instance, at extreme dynamic events, the elastic deviatoric response of the material is assumed to be
quadratic in the elastic logarithmic strains, with isotropic elastic coefficients depending on temperature and vanishing
beyond the melting temperature:

We,dev(Fprl’ T) — /'L(Ja T)ee, dev : ee, dev (21)

where 1 is the shear modulus of the material and &> %" represents the deviatoric elastic strain tensor in linearized
kinematics by using the logarithmic mapping from finite to linearized kinematics [61,62], i.e.,

1
e =2 log(J ~SFTFe), 22)

The volumetric material response in the high pressure and temperature regime is governed by an Equation of State
(EoS). In our numerical analyses, we use the SESAME EoS database [63] to compute pressure and free energy
as a function of temperature and volumetric deformation in all the solid, liquid and gas phases. Additionally, the
commonly used isotropic hardening model assumes a power-law form for the plastic work dependent solely on €7,

n+l

_ noy(T)eP er\
WP(FP,&é?,T) = X0 (g , 23
(FF, €. T) n+1 ( + Eé’) 23)



6 H. Wang, H. Liao, Z. Fan et al. / Computer Methods in Applied Mechanics and Engineering 364 (2020) 112958

where E{)’ is the reference effective plastic strain and n > 1 is the hardening exponent. o, is the initial yield stress
as a function of temperature given by

o (1—ﬂ)l T <T,
o,(T) = 0 Tn—To . " (24)
0 otherwise

where Ty, T,,, 0p and [ are the reference and melting temperature, the initial quasistatic yield stress at the absolute
zero temperature and the softening exponent, respectively. Note that there is no back-stress due to kinematic
hardening in this model, the plastic work vanishes and the plastic strains have been relaxed once the local
temperature reaches the melting temperature. Consequently, as the material point melts or vaporizes, the local
Helmbholtz free energy density automatically changes to be of the simple form

A=W, T+ WD), (25)

which represents the response of the liquid or gas phase as long as an appropriate EoS is employed. The heat capacity
part of the free energy is generally a concave function of temperature. For example, the classical expression of W"
can be stated as

WhT) = C(T) <T — Ty — T log ;) , (26)
0

where C(T) is the temperature-dependent specific heat capacity coefficient per unit undeformed volume. To
account for the phase transition, we assume there is a temperature window (also called the mushy zone), T €
(T, — AT, T, + AT] where T, is the phase change temperature, within which the material changes from one phase
to the other gradually. A phase transition function introduced to describe the smooth transition between two phases
is of the form

(T) 1[1+ f(T_T”ﬂ 27)
o(T) == er ,
2 V20
and its derivative with respect to temperature can be stated as
do 1 (T —T,)*
— = =P 28
AT ~ V2ro CXP[ 202 (28)

where o is the standard deviation of the transition zone interval. Furthermore, we employ the apparent heat capacity
method to take into consideration the effect of the latent heat by increasing the heat capacity of the material in the
temperature window [64]. Thus, the heat capacity is stated as a function of temperature and phase transition function
as
do
dr’
where L denotes the latent heat during the phase transition, Cppase; and Cphasez are the heat capacity coefficient of
phase 1 and 2, respectively.

Therefore, the Helmholtz free energy density concerning multiphase transition is of the form

AF,Z,T)=W"J,T)+ u(J, T)e> * : g%«

noo(T)e! ( gp)”# ( T> (30)
+ — 1+ +C(M\T—-Tp—Tlog—|.

n+1 % Ty

On the other hand, the viscous dissipation potential for weakly compressible Newtonian fluid can be stated as a
function of the rate of deformation tensor d as

¢* — 77(T)Jddev . ddev’ (31)
d= sym(FF’l), (32)

c(T) = Cphasel(1 —a(T)) + CphaseZO((T) + poL (29

where 7 is the temperature-dependent shear viscous coefficient, and d*" the deviatoric part of d. The viscous stress
can also be derived from the viscous potential
P’ = 09"

F Jo'FT, (33)
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where

oV = 2n(T)d* (34)
is the viscous part of the Cauchy stress tensor. Thus, the first Piola—Kirchhoff stress tensor can be obtained as

P =J(p(J, DI +2u(T)e® * +20(T)d*") F~". (35)

where the pressure is computed from the EoS, p(J, T) = dW® *°!/3J. Meanwhile, the heat generated by viscous
dissipation takes the form

D’ =P':F. (36)

int

We further assume power-law rate-sensitivity. The corresponding dual kinetic potential is

. 1. L
mo,(T)el ePN fer\ "
m+1 € €
where m > 1 is the rate-sensitivity exponent, €” and éé’ are the effective plastic strain rate and a reference plastic
strain rate, respectively. The thermodynamic force conjugate to the internal variable, €7, is given by

OWe 4V 9WP ayr

Y=Y'4Yi= ——— — =0,.—6 38
" ser " aer T ¢ (38)
where
IW® dev
G=(FT——): M (39
oF¢
is the effective von-Mises stress and
1
AL 1+ 9 ' T 0 T T et l (40)
O, = — < = O - oy —
dep der 0 & 74 T, —To

is the flow stress with strain hardening, rate-sensitivity and thermal softening. The heat generation due to the plastic
dissipation can be estimated as [56]

Df =vyler. (41)
Finally, the dissipation due to heat conduction is assumed to follow the Fourier potential [65]
1
X(G; F.Z,T) = Sk(DT G, (42)
and the Fourier heat flux is
d
g =% — 1 (1YTG = —k(T)VT 43)
G
where
K(T) = Kpha.vel(l - OZ(T)) - KphaSe2Ol(T) (44)

is the heat conductivity coefficient as a function of temperature through the phase transition function (7).
To summarize, the total dissipation potential of a thermoviscoplastic material at finite deformation involving
phase transition is defined as

. 1, . ot
- (T)e? EPNT fer\ " 1
AR, &0, G) = n(rygase : ae + M D (1 + 6—%) S| -7 (45)
m—+1 € eg 2

While the specific constitutive model assumes Newtonian viscosity and isotropic hardening laws, it is readily
extensible to describe more complex internal dissipation mechanisms by introducing dedicated models for each term
in Eq. (14), such as non-Newtonian viscosity, kinematic hardening and non-Fourier heat conduction laws. However,
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the particular choices of the constitutive models in the decomposed Helmholtz free energy and dissipation potential
lead to minor changes in the following numerical scheme.

2.2. Governing equations

The motion, deformation, temperature field and local state of a material system can be determined by solving
the conservation and balance laws in the Lagrangian configuration. Based on the local thermomechanical model,
the governing equations in the reference configuration include:
the conservation of mass

(0o @(X,1)J = po, (46)
the conservation of linear momentum,
)00¢ = V()P + ,0()B, (47)

the conservation of angular momentum,

PFT = FPT, (48)
and the conservation of energy,

TN=P' :F+Y" Z—-V.-q+p0, (49)

where p is the density in the reference configuration, B is the body force per unit mass, and Q is the distributed heat
source density per unit mass. Meanwhile, by introducing the dissipation potential A due to the internal processes
and heat conduction, the second law of thermodynamics is satisfied automatically.

Besides the governing equations, the material system should also obey the boundary conditions in the Lagrangian
form, i.e.

oX,t)=¢(X,t) onl, X [ty,t] (50)
P-N=T on I x [to, 1] (51
T(X,t1)=T(X,1) on Iy x |1, 1] (52)
h=q-N on I, x [to, 1] (53)

where N is the outward normal direction, @, T, T and h are the applied displacement, traction, temperature and
outward heat flux on the boundaries, respectively. The boundary of domain (2 is defined as 92y = I,UIl}, = I'7UI,,
where I is the Neumann boundary, I, the Dirichlet boundary, I'r the temperature boundary, and I, is the heat
flux boundary.

2.3. Variational formulation
Based on the local thermomechanical model and the governing equations, we will extend the variational

framework proposed by Yang [53] by including the inertial terms. To this end, the variational formulation describes
the energy rate of the material system in general thermomechanical process is defined as

Ol¢p, T, Z] = (1'<+V'v)dV—/ ,ooB~(,'odV—/ T ¢dA
2 T_QU ] F,T (54)
+ / poQ(t)log —dV — / h(t)log —dA,
2% Ty r, Ty
and the effective energy density WV takes the form
. . . T . T.
W=A+NT+ A(—=F,—Z,G)

.o T, T,
=A+NT +¢(GF)+ V7 (52) - x(G),
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where K is the kinetic energy density. The state function O(F,T,Z) = oU/dN is derived from the internal
energy, which can be treated as the internal temperature field, while 7 is the external temperature field. In thermal
equilibrium conditions, @ = T [53].

This variational formulation is suitable for general dissipative thermomechanical coupling problems including
finite elastic and plastic deformation, rate-dependency, arbitrary flow and hardening rules. The linear momentum
and energy conservation equations can be obtained as the Euler—Lagrangian equations of the functional @. Thus, the
solutions {@, T, Z} of the rate problem can be obtained from the stationarity conditions of the variational principle,
such that

inf sup inf &[@, T, Z] (56)
¢ T Z

2.4. Time discretization

The time-dependent variational framework in Eq. (54) can be reduced to a sequence of incremental problems
characterized by an optimization principle. For a given time increment [#,, t,4+1], if the state variables {¢,,, T,,, Z,}
at time #, are known, the approximation of state variables {@,,q, 7,41, Zp4+1} at time #,,; may be obtained
through minimization of the incremental energy, which is defined as the minimum of all admissible paths joining
{‘an Tnv Zn} to {‘pn+1’ Tn+l’ Zn+1}’ ie.

In+1 .
Pul@nr. Tort. Zusa] = inf / Pl@, T, Z]dr. (57)
In

paths

Following the variational constitutive update in [53], the incremental effective energy density from #, to 7,4
takes the form

T,o1 AF
il — Wa = (a1 — 12)9" ( .

T, At

) — x(Guy) + x(Gy)

+ inf {Nn(Tn-H —T)+AWF i1, Zig1, Thg1) (58)

Zyt1

* Tn-H AZ
—A(F,,Z,,T,) + (tys1 — t)¥ =)

where we assume the state variables @, , Ty41, Zy41 are independent. It is noteworthy that the incremental
functional &, does not involve the gradient of the internal variables Z, ;. As a result, the internal variables can
be solved by taking extrema of related terms in the incremental variational potential. The effective energy density
reduces to

W*((P,H.p Tn+l) = W(‘pn+1’ Tn+h Z;kH_]) (59)
where
Z:+1 - arg me {Nn(Tn-H - Tn) + An+l - An + (tn+1 - tn)w*} (60)
n+1

Note that with the complex temperature dependence of ¢* and ¥*, special precautions must be taken in
approximating the time integral. Consistent incremental approximation of dissipation can be found in [55].

A number of approaches for time discretization of the kinetic energy is presented in [66]. In this work, the
Optimal Transportation Theory is introduced as a specific time discretization scheme for the kinetic energy within
the incremental framework [38]. Thus, the exact minimum of the incremental kinetic energy in time interval [z, f,+1]
can be expressed as the Wasserstein distance between the initial and final mass densities [48], i.e.,

In+1
Gy ow o) = nf s =10 [ [ ploPavan) ©1)
paths ' o8
where the Wasserstein distance is defined as

@3 (py prer) = inf /Q IT() — P pa(r)dV (©2)
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and T is any admissible map transporting p, to p,4;. Considering the backward Euler approximation for the time
discretization of all the other terms in Eq. (54), the semi-discretized incremental variational formulation may be
obtained as

1dj (,On,,On )
I[‘pn+1a n+1]_ ) LA A s / ( n+1 n)dV

- / puBosr - AgdV — / 11 - ApdA ©63)
2 It

T, - T,
+f PO log T“Ath—/ By log T“ArdA.
n n n

Iq

Taking variations of Z,, and applying the local thermodynamic models (6)—(11), (36) and (41), one has

2,0n (pn—>n+l(x) - X (P;—ll—"l(x) -r
8T, 80,.) = == 09, 1dV
< 1) /Q At ( At * At as
/ (Pn+l + Pn+1) (SFVH'ldV (64)

—/ p,,B,M.(SgoanV—/ T,i1-80,,,dV,
I

n t

and

N, — N, . 8T,
(6Z,, 8Ty 41) =At {/ |:—+15Tn+1 + Py Fan *

At " T,
., 0T
+YZ+] : Zn+1 TL - qn+1 : 8Gn+1] dV (65)
n
8T, - 4T,
+/ O gy _/ v mgal
2 Tht r, Tht
where the minimizer of the incremental action is given in terms of McCann’s displacement interpolation [67],
th41 — 1 t—1,
P, )= "—xt ———, (), (66)
i1 — Iy i1 — Iy
and
x)—Xx
pr, ) = Pronl D X (67)
Int1 — Iy
Enforcing stationarity, i.e., 6Z, = O, yields the semi-discretized linear momentum conservation and energy

conservation equations in the time interval [t,,#,+1] as well as the Neumann boundary conditions. Then, the
evolution of the deformation and temperature field is identified with the sequence of extrema of the reduced
incremental potential:

inf sup Z,[@, 41, Ths1l. (68)

Pn+1 Tn+l
2.5. Spatial discretization

Next, we proceed to the spatial discretization of the computational domain for the numerical approximation of
the variations of the incremental potential. The space )V of admissible thermo-mechanical configurations at time ¢
is given by

={p: 2 — % | ¢ =) on I, Vop € GL(3, 9);

- 69
T:00— R |T=T(®) on I'r}. (69)
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A standard Ritz—Galerkin approach is considered to construct the admissible subspace V" on a given spatial
discretization 7" with N number of nodes as an approximation to V

N
V=" 2 x 1o, 1] > W | 9"(X, 1) = D xu()NL(X);
“~ (70)
T" . 2 x [to, t] = KT | TMX, 1) = Z T,()N.(X)},
a=1

where x, = ¢(X,, t) and T, = T(X,, t) are the current coordinates and temperatures of a node a in the node set
Moy ={X,,a=1,..., N}, N, is the shape function associated with node x, at time 7. The discrete deformation
and temperature gradient are approximated as
N
F'X, 1) =) x4(t) ® VoNu(X) (1)

a=1

>t To(t)VoNp(X)
>zt TaNL(X)

In order to account for large deformations in materials under extreme thermomechanical conditions, the Local
Maximum Entropy (LME) approximation scheme is employed to construct the shape functions for displacement and
temperature fields [49]. The LME shape functions provide a variety of advantages for the meshfree approximation
of functions, such as automatic satisfaction of the zero- and first-order consistency, non-negativity, weak Kronecker-
Delta property, and robust and efficient solution scheme, etc [68]. Within the incremental formulation, the
configuration mapping ¢,_,,,; from time #, to ¢, and the current temperature can be obtained as

G'(X,t)=—

(72)

Xp+1 = (pn_>n+1(xn) = qu,n+lNa(xn)’ (73)
acA
To1(0) =Y Tunp1Nalxn), (74)
acA

where x, 41 and T, 4 are the coordinates and temperature of node x, at time f,;, respectively. A is an index
set for nodes in Ny(x,) = {xs0, € M, |l X» — Xgn [|< han}, ie., a set of nodes whose support of the shape
function covers the location x,, or the neighborhood of a point x at time #,. LME approximants have a Gaussian
decay that is modulated by a non-dimensional parameter y, which controls the effective support of the resulting
shape functions as h, = h./—10g(8y)y,, where h is the nodal spacing and §, is a cutoff-tolerance below which
the shape functions are considered to vanish. Note that the neighborhood Ny (x,) is redefined on-the-fly during the
computation in the deformed configuration at time f, based on the current support size h, , of node x, and the
shape functions N,(x,) must be recalculated as the neighborhood varies. For an isotropic support, the support size
can be updated according to the local volumetric deformation of the node, for instance, h, , = h, o&/detF, ,.

To fully discretize the variations of the incremental actions, we begin by approximating the usual Lebesgue
measure L of the volume at 7, by discrete measures of the form

M
Lh = vpnd(x —xp) (75)
p=1

concentrated at material points x, ,, each of which is assigned a discrete volume v, , at time f,. The position,
temperature, deformation and temperature gradient of the material point at time #,,, are approximated by

Xpn+l = Z xa,n+lNa(xp,11)a (76)
acAp

Tp,n+1 = Z Tu,n-‘rINa(xp,n)v (77)
acAp

Fp,n-‘rl = Z [xu,n-H &® VNa(xp,n)] ] Fp,nv (78)

aeAp
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ZaeAp Ta,n+1VNa(xp,n)
ZaeAp Ta,’H’lNa(xp,n)

where A, is the index set for nodes belonging to the neighborhood of x , ,. Variations of the incremental potential
7, in the approximation subspace V), are now taken with respect to the nodal unknowns at time #,,;. Applying the
discrete measures to Egs. (64) and (65), and enforcing stationarity conditions yield the fully discrete mechanical
and thermal balance equations

Gp,n+l - - (79)

fﬁ;,lfzﬂ - fof,H =Mant194n+1> (80)
ant1 = Qa1 =0, (81)

where
Mg i1 = Z mpNa(xp,n) (82)

xp,nENH(xa,n)
denotes the lumped mass from the material points to the node x, at 1,

2 Xan+1 — Xan Xan — Xa,n—1

) (83)

7 o+l =
“n Iny1 — In—1 In41 — In Iy —th—1

is a central difference approximation of the nodal acceleration. In the balance equations, the internal nodal force is
defined as

foZJA = Z [Pe(Fp,tl+l) + Pu(Fp,nJrl)] ° VNa(xp,n)vp,na (84)
PENH(Xa,n)
f Zx,’, 41 denotes the external nodal force due to body forces and applied traction
Z:V,ijq = Z Iop,n Bp,n+1Na(xp,n)Up,n + Z Tq,n+1Na(xq,;1)Aq,nv (85)
PENp (Xa,n) qelt(xq,n)

the internal and external nodal heat are given by

ZZH = Z Up.n {(Np,n - Np,nJrl)Na(xp,n)

PENH(Xa,n)

v, . N,(x ,n)
+[P (Fp.n+1) : AFp,n +Yd(Zp,n+l) : Azp,n] T—[?
p.n
2 Ty [VNGE p) + G N )]
Tp,n+1q p.n+1) aXpn pon+1Na (X p p ) (86)
ex - Na(xg,n)
antl = Z Athg s T T Agn
q,n+1
quq(xa,n)
Na(X p.n)
- Z Atpp,nQp,n+lT—pvp,ns
PeN (¥a.n) Pt

respectively, where Ng(x, ) is the support of the LME shape function at node x, at time #,. In the calculations, a
dynamic search algorithm based on the deformation-dependent geometrical information is essential to reconstruct the
dynamic connectivity between the material points and nodes, which enables the computation framework to deal with
problems involving large deformations. A schematic demonstration of the spatial discretization and reconstruction
of the connectivity between the material points and nodes is shown in Fig. 1.

The solution techniques for the system of balance equations (80) and (81) can be categorized into two groups of
time-stepping algorithms, i.e., simultaneous and split algorithms. In the simultaneous algorithms, mechanical and
thermal balance equations are solved simultaneously either by an explicit or implicit method using the same time
step. However, a fully explicit simultaneous method faces stability issues, and the well-known Courant—Friedrichs—
Lewy (CFL) conditions restrict the time step size to be less than the transit time of a sound wave traveling through
the smallest discretization. Nevertheless, the time scale for heat transfer can be much larger than the one required for
the wave propagation in solids and fluids. Alternatively, a fully implicit method involves a very expensive calculation
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Fig. 1. Schematic of the HOTM approximation scheme.

of the tangent of the mechanical forces (a fourth-order tensor), which is further exacerbated in large scale three-
dimensional simulations of materials with complex constitutive relations under extreme thermomechanical coupling
conditions. Split algorithms take advantage of an operator split to decouple the solution procedure: mechanical
balance equations and thermal balance equations are solved sequentially. In this work, an isothermal split algorithm
is employed in which the mechanical balance equations at time #,,; are solved at a constant temperature obtained
at time t,, while the thermal balance equations at time #,,; are solved at the fixed deformed configuration (2, ;.
Based on the temporal discretization of the potential, the mechanical balance equations (80) can be solved explicitly,
while the thermal balance equations (81) solved by an implicit method. Specifically, the Newton—Raphson iterations
are performed to find the solution of Egs. (81). The proposed solution technique also falls into the framework of
explicit-implicit methods. Table 1 outlines the general structure of the Hot Optimal Transportation Meshfree (OTM)
method. Note that the time step for the two solvers can be different. In our numerical tests, we assume that the
time step for thermal solver is an integral multiple of the time step for the mechanical solver.

3. Numerical results

3.1. Verification of the meshfree thermal solver: three-dimensional transient heat conduction problem

In this section, the accuracy and convergence of the meshfree solution of the thermal balance equations (81)
are studied in a three-dimensional nonlinear transient heat conduction problem presented by Amar [69]. The
performance of the meshfree mechanical solver can be found in the verification and validation tests of the OTM
method [39]. Consider a cube with homogeneous material properties, whose center is at the origin and length is
L, is embedded in gas with a constant temperature of 7,. Perfect gas convective boundary conditions are applied
to all six faces, while the heat transfer coefficients are only the same on opposing surfaces. The problem can be
stated as the following

CL —V.-(kVT)=0

kVT -n =H(T, —T)forx =—L/2and x = L/2
kVT -t = H(T, —T)fory=—L/2and y = L/2
kVT -n = H(T, — T)for z=—L/2and z = L/2

where the material parameters are listed in Table 2.

The analytical solution of Egs. (87) can be obtained by combining the one-dimensional solution of the transient
heat conduction equation with convective heat transfer boundary conditions [70]. The exact solution of the
one-dimensional problem in x-direction presented by Arpaci in 1966 [71] is given by

o.(x. )= LED-T 3 (L> exp(—v2ar/L?) cos(vpx/L), (88)

Ty — T, v, + sin v, cos v,

87)

[e¢]

n=1
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Table 1
The isothermal split algorithm.

Algorithm

Step 1:  Set n = 0. Initialize nodal coordinates x, ,, material point position x ,, volume v, ,, density p, ,, and neighborhood
Ny (xp,n). Compute the shape function N,(xp ) and derivatives VN,(x ), and the deformation gradient F(x, ,). Compute
the lumped mass mg ,, linear momenta I, , and nodal force f,,
Step 2:  Update nodal coordinates:
Xan+l = Xan + (trH—l - tn)mlzl,(la,n + %fa‘n)
Step 3:  Compute the deformation gradient:
Fp‘n—>n+l = Xa,n+1 ® VNa(xp‘n)
Fp,n+l = Fp,n%nJrl o Fp,n
Step 4:  Find the internal variables Z, | implicitly

Step 5:  Update the nodal forces, linear momenta and lumped mass:
int ext

fa,n+| = Jan+1 a,n+1
l(z,n+1 = la,n + %(fa‘n+1 - fa‘n)(lll-%—l - tn)
Mg n+1 = ZpENH(xa‘”)mPNH(xP.")‘
Step 6:  If thermal solver is activated, find T, ,:
(i) Set k =0, Ta(,kn)+1 = T,.» and tolerance € < 1
(ii) Compute Ry, = Q') — 0%,
(i) If RN | >

® a0\ e
_ ant
calculate AT, | = <m> Ry nt1

T;knt—ll) = Ta(,kn)+1 + ATa(,kr?H
set k <— k+ 1, go to (ii)
Else Tyni1 =T 0,
Step 7:  Update the material point coordinates, neighborhood and volume:
Xpn+l = ZaENH(xpy,,)xtl»ﬂJrlNﬂ(xp.Vl)’
Nu(xXpn+1) = {xan+1 st 1 Xane1 — Xpns1ll < hantt1}s
Up.n+l = det(Fp,n%nJrl)vp,n-
Step 8:  Recompute shape functions N,(x, ,+1) and derivatives VN, (X 1) from the updated neighborhood Ny (x p n41).
Step 9:  Reset n =n+ 1. Go to Step 2 until the maximum number of iteration.

Table 2
Cube convection problem parameters.
To = 300 K
T, = 1300 K
L=0.01m
C=4x10°J/m’
k=10 W/m K

a=x/C=25x10"% m?/s
H, = 1500 W/m? K

Hy = 1000 W/m*> K

H, =500 W/m?> K

where the values of v, can be obtained by solving the equation
v, sinv, = Bicosv, and v, >0, (89)

and the Biot number Bi is defined as

H.L
Bi = —.
k

Likewise, the solutions 6y in the y-direction and 6, in z-direction follow the same expression. Thus, the analytical
solution of the three dimensional problem can be written as
Tx,t)—T,
Ty — T,

(90)

= 6,0,0.. 1)
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Fig. 2. Simulation solution at 25 s for cube convection problem.

Table 3
Mesh parameters.
Number of degrees of freedom Number of material points Number of elements on each edge
Coarse 1711 8359 10
Medium 10814 57780 20
Fine 74 653 421867 40
Very fine 596240 3368 680 80

Note that the above solution is valid only when x > 0, y > 0, and z > 0. Considering that the solution is symmetric
across the xy—, xz— and yz— planes, the temperature field in the entire domain can be derived.

The problem is solved by the HOTM method assuming fixed configuration or no deformation. The computational
domain is discretized by a tetrahedron mesh. We take the nodes of the mesh as the HOTM nodes and barycenters
of the tetrahedra as the HOTM material points. The connectivity of the mesh is employed to build the initial
neighborhood of the material points. Four tetrahedron meshes with the number of elements and degrees of freedom
listed in Table 3 are tested. Fig. 2 shows the simulation result for the cube exposed in the gas for 25 s.

In the convergence tests, the normalized L2 error of the temperature field is collected, i.e.,

T — T|2dV
L, = fﬂ”_—” (92)
Jo IT|2dV

where T is the temperature at the nodes and 7 is the analytical solution calculated at each node based on Eq. (91).
Fig. 3 shows the performance of the meshfree solver for the thermal balance equations. With the largest error
less than 2 x 107> from the coarsest mesh, the numerical solutions show a second order convergence rate as the
discretization size decreases.

3.2. Upsetting of a billet

This example is concerned with the application of the HOTM method for predicting materials dynamic behavior
under extreme thermomechanical loading conditions arising from a typical forming process of metals. During the
forming process, a metallic billet experiences a compression by a rigid piston, which usually results in a compression
ratio beyond 65%. The extremely large deformation in the material causes a self-heating primarily induced by the
plastic dissipation. Fig. 4 shows the initial experimental configuration and the predicted plastic strain distribution
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Fig. 3. Performance of the cube convection problem.
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Fig. 4. Upsetting of a billet: The initial geometry and the plastic strain distribution at compression 65%.

in the deformed billet at the compression ratio of 65%. The complexity of the deformation mechanism is further
compounded in case external heating or cooling strategies are applied to the surfaces of the billet. The accuracy and
effectiveness of the HOTM method to address challenges in the simulation of extremely large deformation, strongly
coupled thermomechanical response with general internal dissipation mechanisms are testified in the applications
of cold, hot and adiabatic forming processes.

Simo et al. [8] conducted two-dimensional Finite Element analysis of upsetting a billet using the thermome-
chanical model of J, plastic flow theory with thermal softening. The billet was compressed by 64% in their
tests which results in a temperature increase of 175 K at the center of the billet. The computational results
presented in [8] may provide a benchmark test for comparing to the HOTM predictions of materials dynamic
behavior under thermomechanical coupling conditions. Moreover, we extend the simulation by increasing the
compression ratio beyond 90% in three dimensions under various thermal boundary conditions, which can postulate
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Table 4

Material properties in the thermo-visco-plastic model.
Density p (kg/m?) 2.7 x 10°
Young’s modulus E (Pa) 70 x 10°
Poisson’s ratio u 0.33
Initial yield stress oy (Pa) 2.0 x 108
Reference plastic strain eg 1.0 x 1074
Reference plastic strain rate é(f 100000
Rate sensitivity exponent m 0.001
Hardening exponent n 0.01
Reference temperature 7y (K) 298
Melting temperature 7, (K) 925
Heat capacity C, (J/(m® K)) 2.42 x 10°
Thermal softening exponent / 1.0

a scenario challenging to be solved by Lagrangian or Eulerian grid-based methods. In our tests, a cylindrical billet
in the diameter of 10 mm and height of 20 mm is modeled by 39,568 material points and 38,684 degrees of
freedom. The thermo-visco-plastic constitutive model presented in Section 2.1 is employed to describe the strong
thermomechanical behavior of the material, where the material properties are listed in Table 4.

We consider two cases for the upsetting process with and without external heating mechanisms, namely, cold
and hot compression. In both cases, a rigid piston compresses the billet at a constant velocity on the top surface
with the non-slip condition to achieve the prescribed compression ratio, while the bottom surface is fixed. Fig. 5
shows the evolution of the temperature distribution at material points and the deformed configuration during the cold
compression process, in which the billet has an initial temperature of 293 K and is isolated from the environment.
The heat generated by the internal dissipation elevates the local temperature and is transferred to the entire cylinder
through conduction. As the compression ratio increases to 91%, a significantly high plastic strain is developed in
the body as shown in Fig. 6 and most of the material flow in the radial direction due to the constraint on the top
and bottom surfaces. While the temperature continues to rise, the maximum temperature change is reached at the
center of the cylinder by 400 K due to the highly localized plastic deformation.

Fig. 7 presents the simulation result of the hot compression process, where a fixed temperature of 498 K is
applied to the top, and bottom surfaces and the cylindrical surface is isolated. At the beginning of the process, the
billet is heated up and softened by the prescribed surface temperature. The heat transfer from the top/bottom surfaces
towards the center and heat generation from the plastic dissipation by compression contribute to the evolution of
the temperature field simultaneously. As the piston moves down, the temperature at the central part of the cylinder
increases rapidly due to the localized plastic deformation. When the local temperature goes beyond 498 K, the heat
flux flows from the center back to the boundary to rebalance the thermal field. In contrast to the cold compression
test, the temperature raises gradually from the center to the boundary in the hot compression case. It is interesting
that the maximum temperature increase found at the boundary at a compression ratio of 95% is 310 K, which is
lower than the temperature jump in the cold compression test. At the end of the simulation, the height of the billet
is only 5% of its original height as shown in Fig. 7, and the temperature is almost constant along the thickness
direction. The extremely large deformation and strongly coupled thermomechanical response are noteworthy in the
simulations.

Furthermore, the evolution of the temperature field at the center of the billet is recorded in both cases, as shown
in Fig. 8. The temperature increases slowly during the cold compression comparing to the hot compression case, in
which the inward heat flux from the boundary dominates the temperature change at the beginning of the process.
However, the temperature raises drastically to 700 K as the material deforms intensively in the cold compression,
while the temperature reaches a dynamic equilibrium around 510 K from compression ratio 40% to 95% during hot
compression. The evolution of temperature predicted by the HOTM method in the cold compression case agrees
very well with the results reported in Simo et al. [8]. The discrepancy may be a result of the difference in the form
of the material model and constants.
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Fig. 5. HOTM simulation results of the cold compression case: evolution of the temperature field and deformed configuration at compression
ratio 25%, 50%, 75% and 91%, with a maximum temperature increase of 400 K.
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Fig. 6. HOTM simulation results of cold compression case: evolution of the plastic deformation in the billet at compression ratio 25%,
50%, 75% and 91% at the material points.

3.3. Application of the HOTM method for the laser cladding technology

Laser cladding technology has been widely applied in surface coating, rapid manufacturing and parts repair, in
which a powder nozzle feeds a powdery additive into the laser zone to create a metal clad on the substrate [72].
Under the radiation of laser, the powder particles melt as they travel in air towards the substrate, while the substrate is
partially irradiated to form a shallow melt pool on the surface. Since drops of liquid material merge into the substrate
melt pool, the molten powder particles and the substrate fuse together nicely. When the substrate moves away from
the laser zone, the melt pool solidifies to create a non-porous and metallurgically bonded layer. Fig. 9 shows the
schematic representation of the laser cladding process. There is no doubt that this process involves strongly coupled
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Fig. 7. HOTM simulation results of the hot compression case: evolution of the temperature field and deformed configuration at compression
ratio 25%, 50%, 75% and 95%, with a maximum temperature increase of 310 K.
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Fig. 8. The evolution of temperature at the center of the billet during compression.
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Fig. 9. (a) Schematic representation of the laser cladding process.
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Fig. 10. The initial configuration of the powder particles and the substrate in the HOTM simulation of laser cladding process: (a) triangulation
representation of the geometry; (b) meshfree representation with material points and nodes.

multi-physics phenomena, including heat conduction, convection and radiation heat transfer, dynamic contact, free-
surface and surface tension, phase transition and fluid—structure interaction [5,6]. The simulation of such problems by
Eulerian methods and grid-based Lagrangian methods is extremely challenging. In our last example, we demonstrate
the robustness and efficiency of the HOTM method in simulating the strongly coupled thermomechanical problem
during the laser cladding process.

Fig. 10 depicts the initial configuration of the powder particles and the substrate in a triangulation and meshfree
representation, respectively. For simplicity, two beams of powder particles are simulated instead of tapered full-ring
of powder. There are 200 particles explicitly modeled in our simulations, each of which is discretized by more than
500 material points placed at the barycenters of the initial tetrahedral elements and 720 degrees of freedom. The
radii of the particles are ranged from 10 um to 30 um with a Gaussian distribution centered at 20 um obtained from
experimental statistics. The substrate with the dimension of 1600 um x 1000 um x 900 um is modeled by 67,200
material points and 61,836 degrees of freedom adaptively. The spherical particles strike the substrate obliquely at an
initial speed of V,,, which travels at a constant speed V; in the y-direction. The laser beam is modeled as a moving
heat flux subjected to the surface of particles and the substrate. Various models to describe the energy distribution
of heat source exist in the literature. Detailed reviews can be found in [7]. In our simulations, the Gaussian form
of

- AP
h =2—=exp
Tr

_4@—%®f+@—%@Y>

72

(93)
if (¢ = () + (v = () < r?

is employed to describe the heat flux where A is the absorptivity of the material, P is the laser power, x. and y. are

the coordinates of the laser center, and r is the radius of the laser beam. The heat flux of the laser power is applied

to nodes on the surface of particles and the substrate dynamically. We introduce a simple algorithm to find the set

of heat flux nodes. In specific, we first decompose the space into a number of equally spaced columns parallel to
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the direction of the laser ray, N L, based on a user-defined spacing factor §. A set of surface nodes, S, is formed
by selecting the surface node with the maximum component in the direction of N, within each column. Thus, the
set of heat flux nodes is defined as

M={x,x,€S, and || x,—x.|<r, and N(x,)- N <0}, (94)

where N (x,) is the current normal direction of node x,. Reflection of the laser ray from the surfaces is not taken
into account in our definition, since the particles travel very fast in air and only a sparse distribution of powder is
considered in this example. A more comprehensive solution to find the heat flux nodes and determine the local laser
power can be obtained by using the ray tracing algorithm [73]. It can be seen from Eq. (93) that only nodes in the
radius of r are irradiated by the laser beam, and other parts of the computational domain are heated up through heat
conduction. In addition, convective heat conduction is applied to all the free surface nodes following the simple
form

h = k(T — Tony), 95)

where k. and T, are the convective heat conduction coefficient and environment temperature, respectively. Within
the Lagrangian framework, nodes on the free surfaces in the reference configuration remain as surface nodes unless
they are in contact with neighboring surface nodes. We further assume there is no new surface nodes generated for
receiving the heat flux during the laser cladding process since we do not allow fracture or separation in this study.
Considering a nodal integration scheme for the surface integrals, the external thermal driving forces due to the heat
flux are obtained as

h
t a,n+1
an+1 = At T Agn- 96)
a,n+1
Meanwhile, the effect of surface tension is taken into account as a traction boundary condition, which follows
the conventional form [74]

T(T) = —o(T)k N, 97)

where o (T) is the temperature-dependent surface tension coefficient, ¥ and N are the surface curvature and normal
direction, respectively. A nodal integration on the free surface gives the external mechanical nodal forces due to
the surface tension as

Z),C;,Jr[ = Ta,n+1Aa,nv (98)
where TMH is the nodal traction, and the weight A, , can be interpreted as the surface area of I tributary to node
x,. The surface area and normal direction of a free surface node x, in the current configuration is determined by
the Piola transformation incrementally,

A 1 A
Aa.n+1Na,n+1 = Jn—>n+1Fn_>n+1Aa,nNa.na (99)

where J,,4+1 and F,_,,;; are the incremental Jacobian and deformation gradient from ¢, to t,,;, respectively.
The current curvature «, ,+; of a surface node x, is determined by extending the approximation scheme proposed
in [75]. In our calculations, a search algorithm is employed to find the neighboring surface nodes of x,, i.e., Sp4+1 =
{xp 1 € I',st. |Xp 41 —Xgnt+1| < d}, where I' is the free surface of the melted material. Thus, the normal
curvature at x, with respect to individual neighboring nodes in S, can be calculated as

(x[,n+1 - xa,n+1) . (Ni,n+1 - Na,nJrl)

” Xin+l — Xa,n+1 ”2

Kintl = — where x; € S,41. (100)
The principal curvatures, k| and «, at node x,, are then approximated by using the least square method from the set
of individual curvatures {k; ,+1} [75]. Finally, the current curvature is obtained as k, 41 = k1 + k7. This algorithm
applied in a meshfree manner is validated using the examples proposed in [75]. The validation results show that
the accuracy of the calculated curvature improves as the number of neighboring surface nodes are involved in the
approximation.

The material of the particles and the substrate is Stainless Steel S390 and modeled by the constitutive equations
(30) and (45). In specific, we ignore the plastic deformation as the particles in solid phase and consider weak
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Table 5
Material parameters of stainless steel S390 used in the test cases.
Density pg Melting Boiling Latent heat Latent heat Convective heat Surface tension
(kg/m3) temperature temperature melting vaporization conduction coefficient coefficient
Tn (K) T, (K) Ly (kl/kg) Ly (KI/kg) ke (W/K m?) o (N/m)
7800 1700 3000 247 6090 50 1.887

compressibility in the fluid phase, which indicates a thermo-visco-elastic response of the material. The bulk modulus
K(T), shear modulus w(7T), viscosity coefficient n(7"), heat conductivity coefficient «(7") and specific heat capacity
C(T) are all temperature dependent functions and calibrated by fitting to experimental data, as shown in Figs. 11
and 12. The rest of the important material properties are listed in Table 5.

Key processing parameters, such as laser power, laser radius, particle and substrate travel velocity play an
important role in the melt pool thermodynamics. They further determine the performance of the cladding. In our
tests, we fix the laser power and radius but vary the feeding angle of powder and the travel speed of the substrate.
Four test cases were performed based on the HOTM method to investigate the influence of the process parameters
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Fig. 13. Snapshots of the predicted deformed configuration and temperature distribution in the powder particles and the substrate at
Vs =0.1 m/s.

Table 6

Processing parameters in the simulation of laser cladding technology.
Laser power Laser radius Laser center Powder feeding Absorptivity in Absorptivity in
P (W) r (um) (Xc, Ye) (um) speed V), (m/s) solid phase A liquid phase A
1500 200 (=200, 0) 0.3 0.1 0.2

on the dimensions of the meltpool and cladding, including thickness, length and width. The processing parameters
are summarized in Table 6. The travel speed of the substrate, Vj, is chosen from the range of 0.1 m/s to 0.8 m/s.

Fig. 13 shows the time evolution of the deformed configuration and temperature distribution in the particles and
the substrate during the laser cladding process at V; = 0.1 m/s. With the aid of the direct numerical simulation
based on the HOTM method, a detailed description of the temperature, phase and shape evolution of the particles
and the substrate is obtained. As the particles travel in air and enter the range of the laser, their temperature rises
up. Since the particles in air are discrete without contacting to each other, the laser power is all converted to their
internal energy, which heats up the particles quickly beyond the melting temperature. When the local temperature
at a material point reaches the melting temperature, the material point transits to fluid phase. If the laser power is
intensive, the entire particle may melt after the heat transfers from the heat flux boundary to the interior, otherwise it
remains as a solid or partially melted. While the heat contained in the particles transfers to the environment through
convection, the longer the particles are radiated by the laser beam the higher is their temperature as indicated by the
temperature distribution in the powder beam. Since the powder beam is fed to the substrate at an angle, some of the
particles outside of the range of the laser beam remain as solid until they are in contact with the hot particles and the
substrate. However, due to low body forces, before the particles strike the substrate, they remain the spherical shape
even though turning into the liquid phase. Meanwhile, the laser beam penetrates the powder region and continuously
input energy to the substrate. As demonstrated in Fig. 14, a shallow meltpool forms on the surface of the substrate.
When the melted particles impact the surface of the substrate, they spread out and merge into the meltpool to create
a coating layer. Subjected to the impact forces, the substrate material in the meltpool is compressed. Due to the
slow travel speed of the substrate, the powder material piles up and pushes the molten substrate material to form a
bump on the surface. As a consequence, the roughness of the coated surface increases. The formation mechanism
of the cladding and thermomechanical responses of the material are made clear in the cross-section snapshots of
the domain in Fig. 15. it is worth mentioning that the mixing of the melted particles and the substrate as well as
the interaction between the melt pool and unmelted or partially melted particles are well captured in the HOTM
simulations. On the other hand, the heat transfer among particles and between particles and the substrate caused by
the dynamic contact is a natural outcome of the thermomechanical coupling meshfree method, which challenges
Eulerian methods greatly.



24 H. Wang, H. Liao, Z. Fan et al. / Computer Methods in Applied Mechanics and Engineering 364 (2020) 112958

Temperature (K)
29e+02 600 800 1000 1200 1400 1.7e+03

| ——

(a) t = 0.5ms

Fig. 14. Cross-section of the predicted meltpool on the substrate as it travels at Vy = 0.1 m/s.

(a)t = 0.5ms .' E ! (b) t = 1.5ms

SR

(c)t =2ms S e (d)t =3ms
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Fig. 16. Snapshots of the predicted deformed configuration and temperature distribution in the powder particles and the substrate at
Vs =0.4 m/s.

As we increase the travel speed of the substrate to V; = 0.4 m/s in Fig. 16, there is less energy absorbed by
the substrate from the laser beam, such that the temperature in the substrate is lower than the one in the test of
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Fig. 17. Snapshots of the cladding process at Vi = 0.4 m/s predicted by the HOTM method where the substrate is in dark gray and the
powder material in light grey.

Vs = 0.1 m/s. The increased relative speed also gives rise to extensive deformation of the liquid particles which can
flow on the substrate more easily. It can be observed in the cross section of the meltpool in Fig. 17 that the coating
layer on the substrate becomes thinner and more flat comparing to the one with a slower travel speed. Overall,
this process involves large deformation, transient heat transfer, phase transition, free surface boundary conditions,
dynamic contact and fluid—structure interaction, which further relies on the processing parameters. Note that only
the first couple of milliseconds of the impact process is studied in these simulations. The inertia effects, deformation
of the liquid particles as well as the fusion of droplets and the melt pool are the dominant responses of the domain.
Besides, the variation of temperature on the surface of the melt pool near the contact region is not significant
within this short period of impact, as shown in Figs. 13 and 16. Thus, the tangential surface gradient of the surface
tension is neglected in Eq. (97). As a result, the Marangoni effect induced by the gradient of surface tension is not
noticeable in our simulations. The influence of the substrate travel speed on the cladding thickness calculated in
the HOTM simulations is plot in Fig. 18. The correlation between the axial feed velocity and the layer thickness
predicted by the HOTM simulations is consistent with the experimental observations in [76]. The direct numerical
simulation of the laser cladding process at the powder scale exhibits the full range of the HOTM method in dealing
with unconstrained material flows under extreme thermomechanical coupling conditions.

4. Conclusion

We have developed a monolithic Lagrangian meshfree method, the Hot Optimal Transportation Meshfree
(HOTM) method, for the high fidelity prediction of the dynamic responses of materials under extreme thermo-
mechanical coupling conditions, possibly involving extremely large deformation, phase transition and multiphase
mixing in three-dimensions. The HOTM method combines the Optimal Transportation Meshfree (OTM) method
and the variational thermomechanical constitutive updates. By introducing the optimal transportation theory for the
time discretization and material point sampling as the spatial discretization scheme, we obtained the full discrete
mechanical and thermal balance equations in a meshfree manner from the stationarity condition of the variational
formulation of a dynamic thermomechanical system. The operator splitting algorithm is employed to solve the
system of balance equations in a staggered fashion. In specific, at each time increment, the mechanical balance
equations are solved explicitly, while a fully implicit solution using the Newton—Raphson iterations is employed for
the thermal balance equations. Consequently, the deformation, temperature, and internal state variables are obtained
simultaneously for a strongly coupled thermomechanical system with general dissipation mechanisms, arbitrary
three-dimensional geometry, and boundary conditions. Moreover, in response to the extreme thermomechanical
conditions, materials usually experience finite deformations and high temperature variations, which often results in
highly nonlinear inelastic behavior and phase change, such as melting, vaporization, and solidification. Based on
the local thermodynamic models, we constructed a specific form for the thermoviscoplastic behavior of materials,
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Fig. 18. The cladding thickness as a function of the travel speed of the substrate calculated in the HOTM simulations.

such as metals, covering the solid, liquid and gas phases, and allowing to study the partition of plastic work in
stored and dissipated energy systematically. The convergence property of the HOTM method is studied in a three-
dimensional transient heat transfer problem. The accuracy of the HOTM method is depicted in the test of a cylinder
under compression and thermal boundary conditions by a direct comparison of the predicted temperature change to
the simulation results presented in Simo et al. [8]. Finally, the robustness and scope of the HOTM method in the
modeling of materials under extreme thermomechanical conditions are demonstrated in the application of the laser
cladding technology of metals.

Nevertheless, we have introduced some thermodynamic inconsistency in the constitutive relation for the material
during phase transition. Notably, the inclusion of the latent heat using the apparent heat capacity method violates the
relationship between heat capacity and the Helmholtz free energy density. On the other hand, material properties
exhibit nonlinear dependence on the temperature as observed in experimental measurements. The effects of the
variation of material properties due to the temperature change during phase transition are not explicitly accounted
for in the thermal balance equations. Also, the introduction of a phase transition strain in the kinematics may
enable a better description of the stress change for the material in the mushy zone. Finally, in our last example
of the HOTM simulation of laser cladding processes, the calculation of surface properties, such as the curvature
and surface traction, including surface tension and recoil pressure, in a meshfree framework needs to be further
studied. As has been commonly recognized, the Marangoni effect induced by the gradient of surface tension is one
of the most critical responses of the melt pool. High fidelity prediction of the Marangoni convection necessitates
an accurate calculation of the local temperature-dependent surface tension forces as well as their tangential surface
gradient. It may be an excellent alternative to track the interface and compute the surface properties using a color
function [44,74].
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