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We study the post-Newtonian dynamics of black hole binaries in Einstein-scalar-Gauss-Bonnet
gravity theories. To this aim we build static, spherically symmetric black hole solutions at fourth
order in the Gauss-Bonnet coupling a. We then “skeletonize” these solutions by reducing them to point
particles with scalar field-dependent masses, showing that this procedure amounts to fixing the Wald
entropy of the black holes during their slow inspiral. The cosmological value of the scalar field plays a
crucial role in the dynamics of the binary. We compute the two-body Lagrangian at first post-Newtonian
order and show that no regularization procedure is needed to obtain the Gauss-Bonnet contributions to
the fields, which are finite. We illustrate the power of our approach by Padé-resumming the so-called
“sensitivities,” which measure the coupling of the skeletonized body to the scalar field, for some specific

theories of interest.
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I. INTRODUCTION

The quest for a quantum theory of gravity and obser-
vational puzzles in modern cosmology have led to several
proposals for theories of gravity that differ from general
relativity (GR). By Lovelock’s theorem, these modifica-
tions of GR almost inevitably lead to additional degrees of
freedom, and the simplest and best-studied extensions
involve scalar fields (see, e.g., Ref. [1]).

The recent LIGO/Virgo observations of gravitational
waves finally allow us to test the presence of these
additional degrees of freedom and their effect in the
strong-field gravity regime. Binary black holes (BHs) have
several advantages as probes of strong-field gravity. First of
all, observations of binary BH mergers outnumber those of
other compact binaries involving neutron stars, at least so
far. Furthermore, BHs allow us to perform “cleaner” tests of
gravity than systems involving matter, because we do not
need to make assumptions on the poorly known state of
matter at supranuclear densities.

Unfortunately, the simplicity of BHs in GR applies also
to the structure and dynamics of BHs in modified theories
of gravity: stringent no-hair theorems imply that BH
mergers in many of these theories are observationally
indistinguishable from GR (see Ref. [2] for a review of
no-hair theorems). For example, one such no-hair theorem
implies that static, asymptotically flat BH solutions are the
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same as in GR for a vast majority of scalar-tensor theories
that lead to second-order equations of motion [3].

This no-hair theorem is violated in Einstein-scalar-
Gauss-Bonnet (EsGB) gravity, a theory where a scalar
degree of freedom ¢ couples to the Gauss-Bonnet scalar
REp =R“""R,,,, —4R*R,, + R*. EsGB gravity is excep-
tional in many ways: a coupling of the form f(¢)R2;
allows for nontrivial effects in the strong-field, large-
curvature regime, even in four-dimensional spacetimes.

In fact, the existence of hairy BH solutions in such
theories has been known for a long time. Early studies
focused on Einstein-dilaton-Gauss-Bonnet (EdGB) gravity
[4,5], the low-energy effective action of the bosonic sector
of heterotic string theory [6]. More recently, BH solutions
have been found for more general coupling functions [7].
Even the simplest (shift-symmetric) Gauss-Bonnet theories
[8-10], where f(¢) « ¢, were shown to evade the no-hair
theorems of Ref. [3].

A no-hair theorem for stationary, asymptotically flat BHs
in scalar-Gauss-Bonnet theories for a massless scalar with
no self-interactions holds under the following conditions:
the function f(¢) must have an extremum at some constant
@ =, ie., f'(p) =0, and f"(»)G < 0. When only the
latter condition is violated—e.g., when f(@) « ¢@* [11]—
these theories exhibit spontaneous BH scalarization; i.e.,
they allow for nontrivial scalar field configurations that
reduce to the BHs of GR in the appropriate limit [11,12]. The
stability of these solutions was studied in various recent
works [13-16].

Whenever BHs are endowed with scalar “hair,” BH
binaries produce dipolar radiation in the early inspiral, and
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their merger dynamics is also different from GR [17-25].
These considerations led to analytical and numerical work
on the dynamics of BH binaries in EsGB gravity at lowest
order in the coupling [18,25]. Reference [18] computed the
dipolar energy flux treating the conservative dynamics at
leading (Newtonian) order, and therefore, assuming that the
scalar charges of the binary component are constant.

We improve on that treatment in two ways: (1) We allow
for the fact that the BH masses and scalar “charges” are not
constant: instead, we consistently skeletonize the BHs
following a well-established procedure first introduced
by Eardley in scalar-tensor gravity [26], and recently
generalized to Einstein-Maxwell dilaton theory by one
of us [27,28]. (2) As a consequence of the skeletonization,
we can self-consistently compute higher-order post-
Newtonian (PN) terms in the Lagrangian.

The plan of the paper is as follows: In Sec. II, we find
analytical solutions for hairy black holes valid up to fourth
order in the GB coupling, and we discuss their thermody-
namical properties. In Sec. III, we use Eardley’s “skeleto-
nization” technique to show that the mass is not constant,
and therefore that it is necessary to go beyond Newtonian
order in the conservative dynamics. We also find the
remarkable result that, in the PN regime, a BH can be
uniquely characterized by its Wald entropy. In Sec. IV, we
present the two-body Lagrangian for a generic EsGB
theory of gravity and, as an example, we discuss BH
sensitivities in EAGB. In Sec. V, we conclude by pointing
out possible directions for future work.

Some lengthy technical material is relegated to the
appendixes. Appendix A presents a simple derivation of
the EsGB field equations in arbitrary dimensions that (as far
as we know) does not appear in the published literature.
Appendix B lists some of the lengthier coefficients in the
analytical expansion of the metric and scalar field for EsGB
BHs at fourth order in the GB coupling. Appendix C gives
analytical expressions for the thermodynamical variables
characterizing these BHs. Appendix D contains the deri-
vation of one of our most important results: the two-body
Lagrangian at first post-Newtonian (1PN) order. Along the
way, we find another remarkable result: the Gauss-Bonnet
contributions to the fields are finite, and no regularization
procedure is necessary at 1PN order. In Appendix E, we
study the BH sensitivities in two special cases of EsGB
gravity that were extensively considered in the literature:
theories where the coupling depends quadratically on the
field and shift-symmetric theories.

II. HAIRY BLACK HOLES AND
THERMODYNAMICS

EsGB theories supplement GR with a massless scalar
field coupled to the Gauss-Bonnet Lagrangian density. In
vacuum and in geometrical units (G =c = 1), they are
described by the action

4 —
1= / TN (o 2,00 + af (0)RZ).  (2.1)
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where R is the Ricci scalar, g = det g, denotes the metric
determinant, and the integral of the Gauss-Bonnet scalar
over spacetime [ dPx,/=gR%y is a boundary term in
dimension D <4 (see, e.g., Refs. [29,30]). The coupling
constant @ (which is chosen to be positive without loss of
generality) has dimensions of length squared, and f(¢) is a
dimensionless function defining the theory.

The vacuum field equations follow from the variation of
the action (2.1):

g
Rﬂb = 2aﬂ(pau(p —4a <Pﬂauﬁ - %P(zﬂ> vavﬂfv (2'23')

1

Ly = - 2 af' () Rég. (2.2b)
where V,, denotes the covariant derivative associated with
9w and [1= V#V . The divergenceless quantity P,,,, =
R;wpo' - 2gyb)R(r]v + 2gub)R(7]y + gﬂ[[)g()']bR has the Sym-
metries of the Riemann tensor (see, e.g., Refs. [31,32]),
and P, = Piﬂ - Details of the derivation of Eq. (2.2a) are
given in Appendix A (see also Refs. [4,33] for alternative
formulations of the EsGB field equations).

A. Black holes in generic
Einstein-scalar-Gauss-Bonnet theories

There is an extensive body of work on BHs in EsGB
gravity. When the coupling a between the scalar field and
the Gauss-Bonnet invariant is small, the vacuum field
equations (2.2) can be solved analytically and perturba-
tively around GR. This program was carried out in the
string-inspired EdGB theory with coupling f(¢) = 1¢* to
find static solutions [34-36] and their slowly spinning
counterparts [37-39] up to order O(a’). The same approxi-
mation scheme was used in the “shift-symmetric” theory
f(@) = 2¢ [which is invariant under ¢ — ¢ + constant;
see Eq. (2.1) and below], but only for nonspinning BHs and
up to order O(a?) [8.,9].

The field equations (2.2) were solved numerically
and nonperturbatively also for rapidly spinning BHs
(see, e.g., Refs. [4,5,40]). Theories where f'(¢) = 0 and
f"(@)REg > 0 for some ¢ = py—such as the theories

2

f@) =% (1+ 29 and f(p) = = e, with L € IR—
predict instabilities of GR BHs in favor of other branches
of stable solutions with nontrivial scalar “hair” [7,11,12,
14-16,41,42].

Our first goal is to complement and extend these results
by obtaining analytical, asymptotically flat BH solutions
with (secondary) scalar “hair” at high order in the coupling
a and in an arbitrary EsGB theory (see, e.g., Ref. [2] for a
review of no-hair theorems and the classification of hairy
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BH solutions). Let us focus on static, spherically symmetric
solutions in a Just coordinate system:

ds? — ( )dt2 +Ij(_r2)+B(r) 72 (d92 +sin? 9d¢2),

with ¢ = ¢(r). For a Schwarzschild spacetime with mass
parameter m, we have A = 1-2m/r, B=1, and ¢ = ¢,
where ¢, is an arbitrary constant.

When the coupling constant a is nonzero, we must solve
Eq. (2.2) as a perturbative expansion in the dimensionless
parameter

(2.3)

af' (@)

4m?

such that ¢ — @, = O(€), cf. Eq. (2.2b). The leading-order
EsGB correction to GR is straightforward. The right-
hand side of the Einstein equations (2.2a) vanishes at order
O(e), so the Schwarzschild metric is still the solution,
which sources the scalar field through the Kretschmann
scalar: R%p = 48m?/r® + O(e?). At higher orders, the
calculation proceeds as follows: We substitute the ansatz
(2.3), with

€= <1, (2.4)

A=1- ZTm + ieiAi(r) + O(e), (2.5a)
B=1+ ie"Bi(r) + O(€d), (2.5b)
P
4
9= 0u+)_€pi(r) +0(E), (2.5¢)

together with the Taylor expansion

[0) =Y D 0) 0 - 9u) + OE). (26

into the field equations (2.2) and solve order by order,
ignoring branches with singular horizons. The result is

A1 ) uw 11u4+u5+17u7
T3 T 6 T30 15

+3A; + AL+ O(), (2.7a)
Bel_e 2+2u3+7u4+4us+3u6
3 6 5 5
+ 3By + €*By + O(€), (2.7b)
w?oouwl
(p—(pm+e<u+2+3>
+ @ +Eps+etp +0(ef),  (2.7¢)

with u = 2m/r. For convenience, the EsGB corrections to
the coefficients in A which are proportional to 1/r have
been conveniently reabsorbed in the definition of m. The
quantities A3, B;>3, and ¢;5, depend on m and on
the function f(¢) and its derivatives evaluated at infinity;
ie., (d"f/de")(ps) with n€0,4]. They are rather
lengthy, and their explicit expressions can be found in
Egs. (B1)-(B3) of Appendix B.

The solution above depends on two integration con-
stants: the Arnowitt-Deser-Misner (ADM) mass m—i.e.,
one-half the O(1/r) coefficient of g,, at infinity—and the
asymptotic value ¢, of the scalar field at spatial infinity.

The results above match previous analytical work in the
respective limits, but they also extend it in several ways:

(i) The solution (2.3) with the expansion coefficients
listed in Eq. (2.7) is valid for arbitrary EsGB
coupling functions.

(ii) The solution is given explicitly at order O(e*) in the
Gauss-Bonnet coupling, and in principle it can be
extended to higher orders. As such, it contains
detailed information on the BH’s structure that will
be useful below to characterize the dynamics of BH
binaries (cf. Sec. IV B).

(iii) The solution depends on the asymptotic value ¢, of
the scalar field at infinity, unlike most previous work
on isolated BHs, where ¢, was (and could be) set to
zero for simplicity: see, e.g., Refs. [15,36]. For
binary BHs, ¢, cannot be fixed to zero anymore.
This is one of the key messages of this paper, for
reasons explained in Sec. III below.

B. Black hole thermodynamics

The solution given in Egs. (2.3) and (2.7) can be checked
to have the properties expected of a BH spacetime. First
of all, in Eq. (B4) of Appendix B we show that the
Kretschmann curvature invariant is finite everywhere out-
side the horizon, where the horizon radius ry is trivially
defined as the outermost zero of A(r) in the Just coor-
dinates of Eq. (2.3).

Perhaps more remarkably, the EsGB BH solution sat-
isfies the first law of BH thermodynamics in terms of the
following intensive and extensive parameters.

The BH temperature 7 is

T=", (2.8)

27
where the surface gravity x is defined by &’=
—3(V,&,Vre), . and & =(1,0,0,0) is the timelike Killing
vector associated with stationarity.

The action (2.1) can be written in terms of a Lagrangian
density £ as I = [ d*x,/=gL. The BH entropy S, is then
given by Wald’s formula [43]:

(2.9)

€u€po-
;wpa

S, = —8r / dadqsf
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Here o is the determinant of the induced metric on the
horizon with unit normal vectors n* = (1 /=91 0.0, 0)
and ¥ = (0,1/,/9,,,0,0), and €, = ny,l,). Evaluating the
Wald entropy (2.9) for the action (2.1) yields

Sy = % +darnf(pn); (2.10)

i.e., the total entropy is the sum of the standard Bekenstein
entropy Sy = Ay /4 and a Gauss-Bonnet contribution [44].
Here ¢y = ¢(ry) denotes the value of the scalar field on
the horizon.

Finally, it is well known in scalar-tensor theories that the
scalar field contributes to the global mass M as follows:

M—m+/Dd(pm, (2.11)

where m is the ADM mass defined earlier; see, e.g.,
Refs. [45-48] and references therein. The quantity D is
defined from an asymptotic expansion of the scalar field as
@ = @ +D/r+ O(1/r%), and it is sometimes called the
scalar “charge” of the BH, although ¢ is not a gauge field in
general.

We can now evaluate the temperature 7', entropy Sy, and
“charge” D for our analytical BH solution. Their expres-
sions in terms of the integration constants m and ¢, are
collected in Appendix C, and they can be used to check that
the variation of S,, and M with respect to both m and ¢,
satisfies the following identity, at least at order O(e*):

T6S,, = oM. (2.12)
This first law of BH thermodynamics describes how the
equilibrium configuration of the EsGB BH readjusts when
it interacts with its environment. In particular, in Sec. IV
below, we will investigate the variations of the scalar field
environment ¢, induced by a far-away binary companion.

To summarize, we have solved the vacuum field equa-
tions (2.2), obtained a BH solution at fourth order in the
coupling a, and verified that this solution satisfies a first
law of BH thermodynamics that accounts for the scalar
field environment ¢, of the BH, when the BH entropy is
defined a la Wald. These results are our starting point for an
analytical investigation of the dynamics of BH binaries in a
generic EsGB theory.

III. SKELETONIZATION: REDUCING AN
EINSTEIN-SCALAR-GAUSS-BONNET BLACK
HOLE TO A POINT PARTICLE

We now want to describe the motion of EsGB BHs in
binary systems. To this aim, it is convenient to ‘“‘skeleton-
ize” the BH by adding it as a point source A to the vacuum
action (2.1):

(3.1)

Ipp[g/uﬂ (p’xl/:] = I_/mA((p)dsA'

\/—9wdxidxy, and x/y[s,] is the worldline of

particle A. The mass function m4(¢), which replaces the
constant GR “mass” m,, is a scalar function that depends
on the value of the scalar field at its location x’ (s,), and it
was first introduced by Eardley to account for the coupling
of a star A to its scalar field environment in scalar-tensor
theories [26]. This approach was generalized to ‘“hairy”
BHs in Einstein-Maxwell-dilaton (EMD) theories in
Refs. [27,28] (see also Ref. [49]).

The ansatz (3.1) does not depend on any field gradients,
e.g., 0,¢. Neglecting such terms corresponds to neglecting
finite-size effects (e.g., tidal forces) [50]: cf. Ref. [51] for
recent work on this topic in scalar-tensor theories.

The question we address here is the calculation of the
function m,(¢) for EsGB BHs. Following the techniques
developed in Ref. [27], we impose that the fields generated
by extremizing the action (3.1) match those of the BH built
in the previous section.

Here ds, =

A. The matching conditions

The field equations following from the variation of
Eq. (3.1) are

1
R;w = zaﬂ(pabgo —4a (P;wwﬂ - EgybPa/}> vavﬂf((p)

1
+ 8z (T,’iy - Eg,wT"> , (3.2a)
1 ! 2
Lo = _é_laf ((p)RGB
@) (x —
e / ds, a8 = xasa) gy
de N

where 5(*) (x — y) is the four-dimensional Dirac distribution
and Tﬁy is the distributional stress-energy tensor

W (x = xa(s4)) dd dxy
N ds,dsy’

Let us solve the field equations perturbatively around
a Minkowski metric 7,, and a constant scalar back-
ground ¢. At infinity and at leading order, the Gauss-
Bonnet contributions to the right-hand side of Eq. (3.2)
vanish. In the rest frame of the point source A (i.e., setting
x4, =0) and using harmonic coordinates such that

0,(v/=93") = 0, we find

. 2my (9o 1
g//u/ = '7//”/ + 6;w< A;_ > + O<7__2> 5

Ty = / dsmp (o) (3.3)

(3.4a)
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1dmy 1
- Ool=).
7 do Poo) + (;p_)

At leading order, the large-7 expansion of the metric and
of the scalar field depends on the function my (@), its
derivative m/,(¢,,), and the asymptotic scalar field value
(@« This should be compared with the asymptotic behavior
of the BH spacetime we derived in Sec. II A written in terms
of the same harmonic radial coordinate 7 through the
relation r = 7+ m + O(1/7):

B 2m 1
9w = NMw + 5;11/ <T> + O(ﬁ) ,

D 1
§0_(/’oo+7+(9(3)-
7 F

P = Yoo (3.4b)

(3.5a)

(3.5b)

Therefore, the skeletonized point particle A will match
the fields of an EsGB BH if and only if

my(pe) = m, (3.6a)

m,(9s) = —D. (3.6b)

Indeed, when seen as a boundary condition at infinity,
Eq. (3.5) identifies a unique solution to the vacuum field
equations (2.2). Therefore, a point particle with a scalar-
field-dependent mass m4 () satisfying the matching con-
ditions (3.6) generates fields which reproduce (outside of
the distribution) those of the BH at all orders in a 1/r
expansion. The covariance of Eq. (3.1) ensures that this is
true in any reference frame—that is, independently of the
motion of the BH.

Now, since the scalar hair of EsGB BHs is secondary
(see, e.g., Ref. [2]), D is not an independent integration
constant, and it can be written as a function D(m, ¢);
cf. Eq. (C4). We can replace m with m, (¢, ) in D(m, @)
because of the matching condition (3.6a), and replace the
resulting expression on the right-hand side of the matching
condition (3.6b). This procedure yields the following
differential equation for the function my(¢):

my(@) | . c (op (@)
mA(§0)+2 A((p)+ A(¢) 30fl(§0)

S(73 12511f"(p)* | 12511f"(¢)
()¢ (Z2112AT (0) | 31S5TS037"(0) " (o)
el < 49896000/ (¢)* 4536000/ (¢)?

1434677 () 799607 ()
4158f"(p) 9979201 (¢) )

=0, (3.7)

where €, (@) = af’(¢)/(4ma(@)?), and where we have
dropped the oo subscript for simplicity. We now turn to the

solution of this first-order differential equation, which will
involve a single integration constant y,. As we show below,
this constant is related to the Wald entropy of the BH.

B. A constant-entropy skeletonization

The solution to Eq. (3.7) can be built iteratively and reads

a a2

mAw):uA(l_ gg’)_ 1;%(@
(13 a4

- i2;¢)- ig;¢)-+--->, (3.8)

where 4, is a positive integration constant with dimensions
of mass. The theory-dependent functions F;(¢) depend on
f(@) and its derivatives:

2 73 / 2
Faly) =T BIO  (0y
[l T3f(p)f (@) | 12511f (9)*f" (p)
B =g+ 60 T 4ssa0
(3.9b)
5f(p)t T3f(0) f (p)* | 12534857 (p)*
Falo) ==+ s " 425779200
+_12511f(¢)f%4ﬂ2fw(¢)
193536
227192473 f (9)2f" ()
25546752000
7996071 ()* 1" ()
255467520 (3.9¢)

The mass function m,(p) of an EsGB BH, Eq. (3.8),
is the main result of this section. The information encoded
in the complicated form of the spacetime metric—
cf. Egs. (2.7), (B1), and (2.7c)—is now summarized in a
set of four compact body-independent functions F;(¢),
which will turn out to play an important role in describing
the interaction of the BH with a companion. More
importantly, the expression of m,(¢) shows that a skel-
etonized BH is characterized by a single parameter, p,.

The physical interpretation of this parameter can be
found thus: invert Eq. (3.8) order by order in «, and use the
matching condition (3.6a) to write x4 as a function of m
and ¢,. The result shows that u, is nothing but the BH’s
irreducible mass [52]:

(3.10)

where S, is the BH’s Wald entropy defined earlier and
computed explicitly in Appendix C [cf. Eq. (C3)].
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The reason why the BH’s (Wald) entropy plays such a
central role in the skeletonization is best revealed by
thermodynamics. The variation of the global mass M
defined in Eq. (2.11),

SM = ém + Dég.,, (3.11)

vanishes identically because of the matching conditions
(3.6): 6M = 0. In other words, when we skeletonize a BH,
representing it by a point particle A, we implicitly assume
that it is isolated—i.e., that it exchanges no mass M with its
environment. By the first law (2.12), the BH entropy must
then remain constant: 6S,, = 0. Therefore, it is a suitable
parameter to characterize the BH.

The physical meaning of the “skeletonization” process
can be interpreted as follows. When replaced by a point
particle, a BH is described by a constant (Wald) entropy S,
together with a scalar environment ¢, which cannot be set
to zero; for example, in Sec. IV the value of ¢, will be
determined by a (faraway) companion B. During the
bodies’ slow inspiral, the variation of ¢, forces BH A
to readjust its equilibrium configuration adiabatically—
i.e., at constant values of its Wald entropy S,. On the
contrary, the BH’s ADM mass m and scalar “charge” D are
from now on functions of ¢: cf., Eq. (3.6).

Previous work [27,48] applied a similar skeletonization
procedure to FEinstein-Maxwell-dilaton (EMD) BHs,
characterized by a scalar “hair” along with a U(1) charge.
The EMD mass function m,(¢) was also found to depend
on a single integration constant (the irreducible mass
HEMP = | /S /47); however, in the EMD case, Sg = 1 Ay
is the Bekenstein entropy. This paper hints at a possible
universality of this result, since it holds for theories
whose metric sector differs from the Einstein-Hilbert action,
as long as the Bekenstein entropy is replaced by Wald’s. We
conjecture that this conclusion might apply to any scalar-
tensor theory of gravity.

IV. BLACK HOLE BINARIES

So far, we found analytic solutions for isolated EsGB
BHs and skeletonized the BHs by describing them as point
particles endowed with a scalar field-dependent mass
m4 (@) which encodes information on their structure. We
can now describe a binary BH system by an action
depending on two such mass functions m,(¢) (A =1, 2):

Il (31 = 1= 3 [ mao)dsp, (41

\/ —Gudxydxy.

Starting from the skeleton action above, in Sec. [VA we
present the PN two-body Lagrangian for arbitrary compact
binaries in EsGB theories (relegating the details of the
calculation to Appendix D). In Sec. IV B we use the mass
function my (@) of Eq. (3.8) to better understand the

where we recall that ds, =

dynamics of binaries composed of two “hairy” BHs in a
specific class of EsGB theories: EdGB gravity.

A. The post-Newtonian Lagrangian

The variation of Eq. (4.1) yields the field equations

1
Rﬂb = 2aﬂ(pau(p —4a <Pﬂ(wﬁ - Egﬂvpaﬁ> vavﬂf((p)

1
+ 8z ZA: (Tjjy -5 gW,TA> , (4.2a)
o = Lo R2
p = 40!f (@) GB
dma. 6@ (x —
+dry / ds, a0 = xa(s4) -y oy
A d§0 A\ )

where T4, denotes the distributional stress-energy tensor of
particle A: cf. Eq. (3.3).

In this paper we focus on the conservative dynamics of
compact binaries on bound orbits. When the bodies’
relative orbital velocity v is small and in the weak-field
limit m/r << 1 (where r is the orbital separation radius and
m their mass), the motion can be described in the PN
framework. In Appendix D, we derive the first PN two-
body Lagrangian up to order O(v?) ~ O(m/r) beyond
Newton. We solve the field equations (4.2) perturbatively
around a flat Minkowski metric 7,, with a constant back-
ground scalar field value ¢y. As we shall illustrate below,
@, cannot be set to zero: its value is imposed by the binary’s
cosmological environment.

Adopting the conventions of Damour and Esposito-
Farese [53,54], the mass functions my,(p) and mp(p)
can be expanded by defining

anlp) = L0 43)
palo) = 2412, (44)

so that
ma(@) = my[1 + a} (¢ — @)
1
+5(@3* + A0 = 90)* + Olp = w0)’], (45)

where from now on a “0” superscript means that
the corresponding quantity is evaluated at ¢ = ¢,. The
“sensitivity” o = (m/,/m,)(p,) measures the (relative)
coupling of the skeletonized body A to the scalar field—
see, e.g., Eq. (3.6)—and it will play a key role below.

With these definitions, and working in a harmonic coor-
dinate system such that 0, (,/=g¢**) =0, the PN Lagrangian
reads (reinstating Newton’s constant G for clarity)
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1 1
Lap = —mS — m +§mgvﬁ +§m%v% +
+GABm2m% §
r 2 2
GApmSm)

2r7

where the Gauss-Bonnet contribution reads

ALGB _ af/((ﬂo) sz?ﬂm%
AB r2 r2

x [m§(a% +2a%) + m§(a§ +2a%)].  (4.7)
Here x, denotes the position of body A, r=|x, — xz|,
n = (x4 — xp)/r, and v, = dx,/dt. We also introduce the
combinations

Gap =G(1 +ala)), (4.8a)
aoao
vap=-2—A"B 4.8b
YAB 1+a2a% ( )
o1 Rdy
=__PA% 48
AT+ )’ (4.82)

together with their counterparts that can be obtained by
swapping indices (A <> B).

The two-body Lagrangian (4.6), including the Gauss-
Bonnet contribution (4.7), is one of the main results of this
paper. It describes the first relativistic corrections to the
dynamics of an arbitrary binary system in EsGB theories.
The simplicity of the result is quite striking: L, is the sum
of the ordinary scalar-tensor two-body Lagrangian (see,
e.g., Ref. [53]) plus a term resulting from the complex
coupling to the Gauss-Bonnet scalar, which (as shown in
detail in Appendix D) boils down to adding the simple
correction of Eq. (4.7).

Since ALSE depends on an extra dimensionful coupling
a, it should a priori be considered as a 1PN contribution
to the two-body Lagrangian. However, by rewriting
Eq. (4.7) as

ALGB af' (o) (GM°\? G*mSm},
AB ( G MO)Z r ’,.2

x [mf (@ +20%) + mi(a} +2a3)],  (4.9)

with M° = m$ + m9, we can regard it as a 3PN correction

whenever the “small-a” approximation af’(¢p,) < (GM°)?

holds. This perturbative approximation is commonly used

in the literature, and it was used in the derivation of our BH
solutions (Sec. IT A).

0,,0
GABmAmB 1 1 0

(VA +V5) — l (Vo - Vg) —%(n “Vp) (M- Vg) +7ap(Va — Vp)

BImS (1 +285) +mQ(1 4+ 284)] + ALSE + O(2°),

+ gmgVi + gmBV%

2

(4.6)

The two-body Lagrangian was recently calculated at
3PN order for pure scalar-tensor theories in Refs. [55,56].
Our results extend this Lagrangian to EsGB theories: we
just need to add the contribution coming from Eq. (4.9). At
least in the small-a regime, the results of Ref. [56],
supplemented by the Gauss-Bonnet contribution (4.9),
yield the full EsGB Lagrangian at 3PN order.

In previous analytical calculations of the dynamics of
binary systems in EsSGB gravity [18], the field equations
were sourced by particles with constant masses and
constant scalar “charges,” denoted by m, and g,; see,
e.g., BEgs. (63) and (64) or Eq. (71) of Ref. [18]. This is
equivalent to truncating the expansion (4.5) at linear order.
The work of Ref. [18] describes the conservative dynamics
at leading (Newtonian) order. By endowing the particles
with scalar-field-dependent masses my4(¢), our treatment
differs from theirs in two crucial ways:

(1) We allow for the fact that the masses and
scalar “charges” are not constant, as discussed
below Eq. (3.11).

(2) The skeletonization allows us to deal with higher PN
terms: the f9-dependent contributions in Eq. (4.6)
cannot be captured by the approach of Ref. [18].

The coupling a to the Gauss-Bonnet scalar affects the
structure of the two-body Lagrangian only through the term
(4.9). However, a also crucially affects the masses m4 (¢),
and hence the values of the parameters m$, a9, %, which
appear also in the “ordinary” scalar-tensor part of the
Lagrangian (4.6). In the next section, we will study a4 (@)
for several selected EsGB coupling functions, using the
corresponding BH solutions and their skeletonization
(Sec. III).

B. Black hole sensitivities in a binary system:
The Einstein-dilaton-Gauss-Bonnet example

In Sec. IVA, we derived a PN two-body Lagrangian
which generalizes that of GR through the quantities @, and
p4 defined in Egs. (4.3) and (4.4). We now specialize this
Lagrangian to a binary of EsGB BHs. More precisely, our
goal is to compute the “sensitivity parameter” o8 = a,(¢y)
associated with the BH A, which is characterized by a
constant irreducible mass u, (cf. Sec. III B). The quantities
ag play a central role: once we know ag, we can easily
obtain /33, and quadratic combinations of a3 [G,g, 745, and

fa; cf. Eq. (4.8)] drive all EsGB corrections to GR.
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Taking the logarithmic derivative of my(¢) given in
Eq. (3.8) yields

X

oy = ) = x* Az (o) —x* A3 (o) — x* Ay (90) + O(x°),
(4.10)
where
!
xzaf (2(p0) (4.11)
Ha

is the weak GB coupling of a constant-entropy BH. The
functions A;(¢,) depend on the theory only through the
function f(¢,) and its derivatives £ (¢y):

flpo) | 73" (o)
A _ 4.12
TP T N A
(o) = T3 flwe)* | T3f(¢o)f" (@0)
WP 480 T 2 (00) | 2401 (o)
12511f"(o)? . 125111G) (¢pp)
2419201 (o) 483840 ()’ (4-120)
Ay(po) = @) T3f(00)f" (w0) | 55057791 (¢o)
B (o) 160/ (o) | 266112007 (@)
227192473 " ()3
127733760001 (¢ )?
31557593 1" (90) £ (@0) ~ 73f (o)
11612160001 (¢, ) 1601 (o)
12511 f (o) /" (90)* |, 125111 (90) S (4p0)
806401 () 1612801 (¢o)*
799607 (¢
2554675201 (¢g) (4.12¢)

Moreover, in the following it will be convenient to resum
the Taylor expansion (4.10) in the variable x by using a
diagonal (2,2) Padé approximant (see, e.g., Refs. [57,58]
for discussions of Padé approximants):

a8 puge = P*alal, x]. (4.13)
The Padé resummation, which replaces polynomials with
rational functions, has two important advantages: it can
improve the convergence of the expansion (4.10), and
(perhaps more importantly) it can capture interesting non-
perturbative phenomena, as we clarify below. Using
Egs. (4.10) and (4.13), we shall identify regimes where
the BH binary dynamics significantly departs from GR.

In the remainder of this section, we focus on EdGB
gravity as a prototypical, well-motivated special case of
EsGB theories. To improve readability, we relegate two

other important examples (quadratic and shift-symmetric
theories) to Appendix E.

1. Einstein-dilaton-Gauss-Bonnet theories

Using the conventions of Ref. [4], the “string-inspired”
subclass of EAGB theories is characterized by the expo-
nential coupling function

(4.14)

so that the fundamental action (2.1) is invariant under the
simultaneous redefinitions ¢ — ¢ + Ag and a — ae™?A?,
with Ag an arbitrary constant. Recall that here the
parameter « (with no subscripts) denotes the fundamental
coupling to the GB invariant in the action (2.1).

The scalar coupling function for BH A of Eq. (4.10)
then becomes

o x 133, 35947 , 474404471 S
== 50" “20320" " 266112000° T O
(4.15)
with
20
=2 (4.16)
2y

This sensitivity preserves the symmetry of the fundamental
action, in the sense that it is symmetric under the trans-
formation ¢y — @y + Ag, a = ae™?A?.

The left panel of Fig. 1 shows various approximants of
the series (4.15) truncated at order O(x") as a function of
@o, setting a/ui =0.1. The expansion coefficients in
Eq. (4.15) are all negative, so the series diverges at large
@y, with a slope which increases with the truncation order n.

To accelerate the convergence of our expansion, we
Padé-resum it as in Eq. (4.13). This operation reveals a
remarkable feature: the resummed sensitivity o p g also
shown in the left panel of Fig. 1, has a pole at

Xpole = 2/43‘ (417)

The presence of a pole in the full, nonperturbative
coupling @Y is at first sight surprising. Upon further
consideration, however, this feature is particularly appeal-
ing. While no exact analytical BH solutions are known in
EsGB theories, it is well known that the area Ay of a static
BH and the value ¢y of the scalar field at the horizon must
satisfy the following nonperturbative constraint (see, e.g.,
Ref. [12]):

2402 ' (pn)? < (%)2 (4.18)
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aA,Padeé(®0)

2.0

FIG. 1.

Sensitivity ) = a4 (o) of EdGB BHs as a function of the cosmological scalar field ¢,. The left panel shows various

truncations of the Taylor series (4.15) for a BH with a/ ﬂi = 0.1. The right panel shows the (2,2) Padé resummation ag.Padé of Eq. (4.13)
for three different BHs with a/p% = {1,0.1,0.01}. The Padé resummation improves the convergence of @}, and it predicts the existence

of a pole at xp,. = 0.445 (dashed vertical lines).

When the constraint is violated, the scalar field diverges at
the horizon and the BH becomes a “naked singularity”
(cf. Refs. [4,12], or Ref. [59] for further numerical evi-
dence). In the EAGB subclass of theories studied here, and
for a skeletonized BH characterized by a constantirreducible
mass y,, we can use Egs. (2.10) and (3.10) to write Ay in
terms of u, and ¢y, so the constraint above becomes

aez(pﬂ

2
—_— < .
%5 T 1+6

This nonperturbative bound confirms the conclusion that an
EdGB BH solution with fixed Wald entropy u, must become
singular when the scalar field at the horizon ¢y reaches a
critical value.

Unfortunately, the prediction (4.17) for the numerical
value of the pole cannot be directly compared with the non-
perturbative condition (4.19). Such a comparison would
require us to relate the value @y of the scalar field on the
horizon to the value ¢, of the field at infinity." Tt is still
significant that the Padé resummation predicts the existence of
a critical value for g at which the BH sensitivity o diverges.

Figure 1 highlights the crucial role of the (cosmological)
background scalar field ¢, on the dynamics of an EdGB

(4.19)

'An approximate relation between ¢y and ¢, can be found
from the solution (2.7c¢) for the scalar field and the horizon
location (C1), which are both known in the perturbative limit (i.e.,
for small couplings). Using Eq. (3.8), we can write m, in terms of
Uy Inserting the resulting ¢ (@) in Eq. (4.19) then yields
Xpole = 0.331. Considering that the results of Sec. Il A break
down in the nonperturbative regime, this value is at least in
qualitative agreement with Eq. (4.17). As another indication of
convergence, we checked that the diagonal, (2,2) Padé approx-
imant performs “better” than off-diagonal Padé approximants, in
the sense that the pole location (4.17) predicted by the diagonal
approximant is the closest to the value xp,c = 0.331 that results
from the procedure described here.

BH binary. As ¢, increases, the BH transitions progres-
sively between two “universal” regimes:

(1) A decoupled regime, where the BH is indistinguish-

able from a Schwarzschild BH in GR, since both o9
and f% = da,/dp(p,) (as well as higher-order
derivatives of @}) vanish.
A regime with @} - —oo (and % — —o0), where
the BH is strongly coupled to the scalar field,
inducing large deviations to the GR two-body
Lagrangian through 7,5 and S, /g [cf. Eq. (4.8)].

This “transition” is universal, because the Wald entropy
14 only affects the location of the pole, as shown in the right
panel of Fig. 1; by Eq. (4.17), ¢} = 1In (2xp01ei3 /).

Qualitatively similar conclusions apply to EsGB theories
with different coupling functions. Two interesting cases
(quadratic and shift-symmetric theories) are discussed in
Appendix E.

(i)

V. CONCLUSIONS

The result we presented at the end of the previous section
suggests that EAGB (and more generally, EsGB) theories
must be treated with great care: when ¢, is too large, the
response of the BH to the scalar field diverges and the two-
body problem is not even well defined. Numerical work
and/or higher-order expansions in the coupling seem
necessary to verify this conclusion and to assess the
convergence properties of the Padé resummation.

However, the result seems compatible with hints from
recent numerical work in various quadratic gravity theories.
Simulations of stellar collapse and binary mergers have
been successful in the decoupling limit [25,60-63], but the
extension to the “full” theory presents notable conceptual
and practical difficulties [33,64—68]: for example, there are
open sets of initial data for which the character of the
system of equations changes from hyperbolic to elliptic in a
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compact region of the spacetime. Our work supports the
expectation that quadratic theories should only be studied
and trusted (in an effective field theory sense) in the weak-
coupling regime.

An important limitation of our study is that the analytic
expansion of our BH solutions (and hence their skeletoni-
zation) was performed around a Schwarzschild background.
This rules out, by construction, the scalarized solutions
discussed in the Introduction. An extension of our work
to scalarized solutions is necessary and important for
gravitational-wave phenomenology. Note, however, that
the PN Lagrangian (4.6) is valid for any compact binary
system, including scalarized BHs. Indeed, the bodies’ nature
only affects the values of the coefficients oS and
[Egs. (4.3) and (4.4)] entering the PN Lagrangian.
Therefore, our next step will be to generate numerical
scalarized BH solutions (with nonvanishing ¢.; see
Sec. I A) and to skeletonize them via the matching con-
ditions [Eq. (3.6)].

At least in the small-a regime, the results of Ref. [56],
supplemented by the Gauss-Bonnet contribution computed
here [Eq. (4.9)], yield the full EsGB Lagrangian at 3PN
order. It will be interesting to extend the effective one-body
program to this more general class of theories; see
Refs. [69,70] for similar work in “ordinary” scalar-tensor
gravity, and Refs. [28,49] for related work in EMD theory.

Our work should find application in analytical studies of
dynamical scalarization (see Ref. [71]) and in future studies
of binary dynamics, using either the effective one-body
formalism or numerical relativity.

We wish to conclude by highlighting two technical
results that we consider conceptually important:

(1) At least during the inspiral, the mass function of
skeletonized BHs [Eq. (3.8)] is uniquely character-
ized by their Wald entropy. We conjecture that this
might be true in all theories where the gravity sector
differs from the Einstein-Hilbert Lagrangian. It will
be interesting to test the validity of this conjecture
and formally prove it.

(2) The Gauss-Bonnet contributions to the fields are
finite [Eq. (D14)], and no regularization procedure is
necessary, at least at 1PN order. While further work
is necessary to determine whether this conclusion
extends to higher PN orders, this intriguing result is
yet another hint of the very special nature of EsGB
gravity.
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APPENDIX A: THE EINSTEIN-SCALAR-
GAUSS-BONNET FIELD EQUATIONS IN
ARBITRARY DIMENSION

Let us generalize our vacuum action (2.1) to arbitrary
dimensions:

D —
. / TXNVZI (R 2g00,00,0 + af ())RZy). (A1)

16z

In order to derive the associated Einstein field equations, it
is useful to rewrite the Gauss-Bonnet scalar as [29,30]

R%}B = RHP°P Hvpos (Az)
with
v _ z/ _ 1 pu v PH H Y R
Prpy = R,y = 25 RY + 28 Rl + &, R
ﬂff:“zw (A3)

where 6;1 ¥ denotes the generalized Kronecker symbol,
which is the determinant of the N x N matrix M built from
ordinary Kronecker symbols as M i = 5;/_. The quantity

P, has the symmetries of the Riemann tensor and is
divergenceless: it can be easily shown using the Bianchi
identities that V,P¥,,, = 0.

The variation of the last term of Eq. (A1) with respect to
g" can therefore be written as

5 / Px\/=Gf () R?
- / dPx/=Gf (@) (Hudg" + 2P, 775R" ), (A4)

where

1
HY = 2RV 4, P, %" — —5’;7%%,]3

apy

5" ;:Zﬁg:aj]{ﬂlﬂz s RP3ba s

is the Gauss-Bonnet tensor. Now, using successively
ORV s = 2V[/J(5F’;]D with 8%, :%g’”(vyég,lp#—vpégiy—
V,84,,), integration by parts, and the properties of P,
one finds
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8(g) / dPx\/=gf (9) R

— / /=G (@) Hoy +4P gV VP £ ()5, (AS)

modulo boundary terms ignored here.

The variation of the first two terms in Eq. (Al) is
elementary, and the full Einstein field equations are thus, in
any dimension D,

1
R;u/ - Eg;wR = 28”(p8D§0 - gﬂl/(a{p)z

When D <4, the Gauss-Bonnet tensor H,, vanishes
identically, as is obvious from its expression above in terms
of the rank-five generalized Kronecker symbol. Taking the

trace of Eq. (A6) finally yields Eq. (2.2a).

APPENDIX B: EINSTEIN-SCALAR-GAUSS-
BONNET BLACK HOLES AT ORDER O(e*)

Using the notation fg,’) = (d"f/d¢")(¢s) and recalling
that u = 2m/r, the remaining contributions to the static,
spherically symmetric BH solutions (2.3)-(2.7) to the

—a(f(p)H,, + 4meﬂV“Vﬂ f(@)). (A6)  vacuum field equations (2.2) are
J
2 1383 730 64765 557u® 11897 243u® 66710 43u'°
Ay ="~ — + + + - - - , (Bla)
FO\T 90 36 T 450 T 900 ' 3150 140 945 108
4 <73 362129122 12511f£,2>> 3+<73+1139191f£?2 12511f5,2>> ,
4= ——=- - u — u
45 226800707 22680fL) 18 45360070 9072/
2 2
. <_@ 79939132 12511f00> <@ 1694561f£,§) 138689f£2)>u6
225" 2263000707 113400/ 150 11340007%)% 2268007
+< 2231 1425247f£§> 218069f£> 7+<9979 11507039fm2 288377f§33)u8
450 1587600f£,!,>2 3969001 2520 63504007%%  6350401L)
+<_443_27378403foo 132829f°;> . (8203_169633foo _150041f£§)>u10
280 1905120070)% 2381401 450 170100£* 2721607
+(_@_13558757fm 354643f§,§,)>u11+<_z_16763f5,§)2_ 49378 >u12+<_9908_ sre? 1 >u13
330 187110007%)% 74844070 5 810007L)° 32407 825 ggrl)? 204l
(B1b)
5 Ji% 73u2+73u3 T3ut 1034 413u® 577 253u® 110 (B2a)
—_Jt%® , a
STTA0\30 T 45 T 36 50 225 35 420 sS4
5 (73+362129fg 12511f53,> ) (146 362129foo 12511f5;2)> X
= —| — u u-
! 15 7560072 7560f) 113400707 113407
< +1586827f°o 12511 £o> <169 254393f°o 12511f5;3)> S (847+121219fg)2 16831f53,)> ]
u —\— u
45360075 9072 75 63000707 1260040 450 32400707 162007
( +2691779f°o 21394f£3> (2549 479659foo 25783f53,>> . (11+94471f£)2 18829f53,>> .
u —\\— u
45 793800f°o 19845f£,i 2520 235200foo 235201 45 8505077 27216
<583 35633foo 6079fm> (4504 5089foo 611f£2>> " (1329+205f5§)2 41f£?3> »
u'— u-,
90 68040707 17010£L) 825 " 3712507 5940fL0) 275 712807 1782fY)

(B2b)
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and finally

foo uw ud o ut T’ u®
- 4 4 — B3
P2 = f()60 ST T ) a5 Tael (B3a)

$_(E+12511f§3)2 12511f£3)> (@ 1251172 12511f§3)>u2 (@ 1251122 12511fg>)u3

’ 30 7560fc(x1))2 15120fc(xlj) 60 15120f<(xlj)2 30240f<(x1;) 90 22680]0&1’)2 45360]0&)
<@+12511f5,§>2+12511fg§>)u4+(ﬂ 449722 12511f> (73 28531f°§2_|_1595f‘(3’))u6
120 3024075 604805 50 3024707 756001 180 " 453600707 ' 1814410

+<17+ 13201 722 . 83973 > 7+(57+ 239f£, > (173 122 . o > .
— u u,
10 529200787 21168fL) 40 432007 3456f 135 970407 4867

(B3b)

72 [(143467 227192473]‘5,?2 31557593/ 799607f53)>
Py = !

UL\ 8316 99792000 f 9072000f%)  1995840f%)

| (143467 227192473foo 31557593 £ 799607f£i‘,)> ,
u

16632 199584000£)%  18144000£%) 39916802

+

434551 227192473foo +31557593f§;2) 799607f£i)> ,
u
62370 299376000f%)* 272160007 598752072

+

1020869 227192473foo 3155759375 799607 > .
+ u
166320 399]68000foo 36288000/ 7983360,

+

2126053 | 14761939 2% 370394978 799607 f@) S
u
415800 71280000 U2 64800007 9979200f%
B0SI381 53790013 22 17053103£2 799607

2t 0 o)
2494800 598752000 foo 54432000f  11975040f

<2128363 178679 fm - 146902975 | 633287 O >u7

+

+

582120 4752000712 90720007 1397088073

85573 20000597f°o . 35999071 /%) | 59921 Y >u8
16632 1862784000£%)%  5080320007% 2280960 f2
4017613 3517861727 15156781f%) 4497 > .
748440 104781600057 5715360007 400952
2617977 9691879 2? 157181032 272978 \ |,
4158000 10478160000f00 1905120000 712800f£§)>u
9714977 75537 2? . 1389175 65f% >u11

4573800 47()44800f 85536001 784081
2

+

+

+

+

+

2447 1173 @
. m ! (z))”lz]' (B3c)
3240 46656fm 46656fs  T776f %

104061-12



POST-NEWTONIAN DYNAMICS AND BLACK HOLE ... PHYS. REV. D 100, 104061 (2019)

It is then simple to compute the Kretschmann scalar of the spacetime, with the result (recall that € = af E,i,) /4m?)

wpo 1 [3uf 7 g 334 Tu'® " 138u'?
R R}ll/ﬂo':w T+€ —Uu +2Lt - ) +T +
@) @) @ @ @ @ @
o (_ B3I o e 1rE 34l 17998 10138 sesTrl)
3070 a5 40 200 200 £ 1507 1057

113379 14+1309f55)u15>+€4<< 73 362129foo 12511f£3,>>u7

u -
4270 72f“) 15 75600£L0)> 7560f£l)

3)
629 362129f0° 1251178 ) ( 1139191f00 1251178 )ug
T 37800 )2 T30 s 5040075 10087

L (2023 59519foo 12511f°°) < 23057 276017foo 73889f£§,)> 0
u

< 134470% 5040/ 12000 7200f§,1,>
(5769 1288367f°0 56587f*> +( 16417 6878401f°o 146081f§,§)>u13

+

_|_
25 75600£%°  4725fL) 105 117600£%Y%  11760fL)
77503 | 78844487 1% 77767 f@) .y ( 14417 | 655748 2% 931387 f&?)) s
u — u
840 1411200 ff,},)z 352810 12 4175707 36288
9733 | 7468747 foo 24436 ff,i)) y <1051 356657727 2623 fE;Z)) 7
189000 0% 9450 10 27000707 27070

(4028179 19915782 3983f£3)> 18)} (B4)
u .
3300 4752£07  1188fL)

_|_

+

This expression diverges only at the origin r = 0, showing that our BH solution is regular everywhere outside the
horizon, since r > 0 when ¢ < 1; cf. Eq. (C1).

APPENDIX C: THE THERMODYNAMICAL VARIABLES OF
EINSTEIN-SCALAR-GAUSS-BONNET BLACK HOLES

The solution presented in Sec. Il A and Appendix B can be characterized by the thermodynamic quantltles deﬁned in
Sec. II B. Here, we give their expressions in terms of the integration constants m and ¢, denoting € = «a f 0 / 4m?,

The location of the horizon uy = 2m/ry, the temperature T [Eq. (2.8)], the Wald entropy S,, [as defined in Egs. (2.9)
and (2.10)], and the scalar “charge” D defined below Eq. (2.11) are given by

2
e 73 4<1646 3621291 +12511f£3)

ug=1+—+¢
495 226800747 226807

3 90fg) ) + O(e), (C1)

2) (2)2 (3)
73 12511 f % 4010597 227192473 f 799607 f 5
2 1€ f 4( ? 924731 29607/ > + 0(55)], (C2)

T =8xm {1 +e€
30 18901 138600 166320007 166320fL)

Sy = 4am? [1+€A+ 2

€ (C3)
307 378040

2) (2)2 3)
J1251178) (3189931 | 227192473/3" 799607/ ) N 0(65)]
415800 ' 49806000707 49896071

73,8 /73 1251187 1251148
m el mz + 0

60f % 30 7560f%)°  15120f%

\ (143467 227192473r2% 3155759372 799607 ) e
8316 997920007%% 90720007 199584072/ L)

D:2m[€+€2

+O(e )] (C4)
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APPENDIX D: THE TWO-BODY LAGRANGIAN
AT FIRST POST-NEWTONIAN ORDER

In this appendix, we derive the PN two-body Lagrangian
of EsGB theories [Eq. (4.6)]. For a bound binary system,
we compute the relativistic corrections in the weak-field,
slow-velocity approximation at order O(m/r) ~ O(v?),
where r is the distance separating the bodies and v is their
relative velocity.

Our first goal is to solve the EsGB field equations (4.2)
sourced by two point particles:

1
Rﬂv = zaﬂ(pau(p —4a (Pﬂauﬂ - Egﬂupaﬂ> vaVﬂf((p)

+ Snz ( gm, TA>

(Dla)

(D1b)

where we recall that 7% is the distributional stress-energy
tensor of the skeletonized body A located at xy = (,X,):

80 (x = xa 1) ¥y

W =m .
& = malo) o itts d di
99ap ~ar ~ar

At 1PN order and in Cartesian coordinates, it 1S con-
venient to expand the metric around Minkowski as [72]

(D2)

Joo = —e 2V + O(1°), (D3a)
goi = —4g; + O(v°), (D3b)
gij = (Sij€2U + 0(1)4), (D3C)

where, as we show below, U = O(v?) and g; = O(v?). We

can also expand the scalar field ¢ as
@ =@o+ 89 +O°), (D4)
with 8¢ = O(v?). The masses m, (¢) are expanded around

the value ¢, of the scalar field at infinity, using the
quantities defined in Egs. (4.3) and (4.4):

1
my(p) = mS |1+ aSdp + = (a2 + f3)5¢ + O(1°)|.

5 (
(D5)

Here a “0” subscript indicates that the quantity is
evaluated at ¢ = ¢(y. In a harmonic coordinate system
and at 1PN order, we have 9,(,/—g¢")=0,U+0,9,=0,

W—=_[0,U+0(%), and R = -2Ag,+ O(v°). The

Gauss-Bonnet term contributes to the field equations
through Py, + 5 Pi; = —(9;U) + 6,;AU + O(v*) and
REp = 8[(9,;U)(0,;U) — AUAU] + O(v°), so the field
equations read

3
O,U =4y m} [IJFEVEX_UJFO’X&D 89 (x=x,(1))
A

+daf (o) [ApAU = (9;;9)(9;;U)] + O(2°),

(D6a)

;= —47zZmA1JA (x —x4(2)) + O(2°), (D6b)
U,p= 47zZmAaA [l —%VA U+ <aA ﬂA> (p]

x 83 (x = x4 (1)) +2af (90)[(AU)* = (9;;U)(9;;U)]

+O(v%), (D6¢)

where [, = 50,0, is the flat D’ Alembertian and A =
80,0, is the flat Laplacian.

When the Gauss-Bonnet coupling is switched off, i.e.,
a = 0, the system above reduces to the standard scalar-
tensor field equations at 1IPN. We can now solve these
equations using standard methods (see, e.g., Refs. [53,54]
or Ref. [27]) through the relativistic Green’s function

0,G(x.x') = —4763) (x —=x')8(t — 1), (D7)

which, as we focus here on the conservative sector, is half-
retarded, half-advanced:

L[65(t—1 —|x=x| 6(—1+]|x—x|
G(x,X’) :E |X—X/| + |X—X,|
S(r—1) |x—x|
= o¥(t—1 D8
g s ) (09

All derivatives are understood in a distributional sense.

The new a-driven sources of Egs. (D6a) and (D6c¢) enter
(formally) at the 1PN level. To evaluate them, we must
replace U and ¢ with their leading (OPN) expressions,
yielding equations of the form

1 1 1 1
X —yi| [x—y Yk —yil Yix=yol
(D9)

A]’l12 == A

The solution hj,(x) can be found as follows. When
Y1 # Y2, we can replace the gradients 0; with derivatives
with respect to the source locations y; and y,:
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Ahon— ( ? ? B ? 0? ) 1
2 Gy’iayiaygayg 8y’i(9y§ay{ay§ x—yi[[x-ya|
(D10)

Now, note that A~! commutes with the y’ derivatives, and
recall the well-known result first established by Fock (see,
e.g., Ref. [73]):

|

1

h -
20 = v PR —vP

IX—mI X —y,> + [x =y P|x —y2* —

<|x B Y S

1
A ———— ) =] _ _ —v).
<|x—y1||x_y2|> n(|x —yi|+ X =¥o| +|y1 - ¥2))

(D11)

A rather lengthy but straightforward calculation then
yields

x —yi|* + |x -y,
lyi — ¥2

ly; —

It can be checked that the contribution from the first set
of derivatives in Eq. (D10) vanishes identically: the first
“Dirac squared” term in Eq. (D9) can be ignored.

The case yl = y2 can be inferred from Eq. (D12).

Denoting n; = ‘X y | Land ny, = g i;‘, and taking the limit
€= |y, —y,| = 0, we find

1-3(ng, -0,
hlZ(X): (1112 1311)

2x—y, e
2-9(n,- 15, n,)}
(n12 n1)+ 4(n12 nl) +O(€) (D13)
4x =y

We can finally average out n, over spatial directions using
. i PN
(n2) = 0, (ni,n1y) = §;;/3, and (ny,ni,nt,) = 0:

1
S T
The simplicity of Eq. (D14) is striking: the Gauss-
Bonnet contributions to the fields are finite, and no
regularization procedure (see, e.g., Ref. [74]) is necessary
to solve Eq. (D6) at 1PN order. The generalization of this
remarkable fact to higher PN orders is left to future work.
We can now solve Eq. (D6) to find

(D14)

m 30 m 0.0
U =) ~“H1+5vi=> ~F(1+afa})
A Pa BAa
—4af'(¢o)ZmAmBaAhAB( x)+0(1°),  (Dl5a)
AB
0,
My Uy 5
gi\x) = + O(v°), D15b
0= G o). o1
() = o - Y A%
@ Po S
1 mO ﬂan
i g (o)
+2af"(p0)Y_m§myhas(x) + O(®),  (DI5c)
AB

| 3

_ 5 _ _ 5
|X Y1| |X y1| > (DIZ)

[
where x* = (1, x) and

1 1 1
LI L - —
pn o] 200
1 1 1
KX, 1+§V/2x—5(nA va)?| +5(ny-ay)

with ny = (x4 —x)/|x4 — x| and a, = dv,/dt.

The two-body Lagrangian can now be straightforwardly
obtained a la Droste-Fichtenholz, a technique which, at this
order, is equivalent to computing, e.g., a Fokker Lagrangian
[75]. First, one writes the Lagrangian of, say, body A
considered as a test particle in the fields of B:

ds
Ly=-my ((/’) A

=—mA<¢>¢e-2U+8giv;—ew vi+0(5), (D17)

where U, g;, and ¢ are given by Eq. (D15), setting formally
m% =0 and x = x,. In particular, Eq. (D16) can be
rewritten as

,OLA = % [1 +%(VA Vg) =5 (m-vy)(m-vp)
1d
+§E(n “Va), (D18)

with r = |x4, — Xg| andn = (x, — x)/r. Note that the last
term is a total time derivative that can be ignored in the
Lagrangian (D17).

The final two-body Lagrangian L, is easily inferred
from L,. Indeed, the only Lagrangian that is symmetric
under exchange of the bodies (A <> B), and whose result-
ing equations of motion reduce to those of L, in the test-
mass limit m$ < mY, is
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0 o,V o2, 1 0o mgm% 0.0 Looa b4
LAB:_mA_mB+§mAVA+§mBVB+T(1+aAaB)+§mAVA+§vaB
mOm® [ (v, v V2 4+ V3 n-vy,)(n-v
(3038 o) ) + (B G- el ) - (PR 4 e
_ mymy

57 [ma((1+ aqap)? + fpay®) + mp((1+ ayap)? + fha”)]

! 0,,0
4 SO IR 0 (208 4+ iy +26)] + O(00) D19)

which is straightforwardly rewritten as Eq. (4.6).
This completes our derivation.

APPENDIX E: SENSITIVITIES FOR QUADRATIC COUPLING AND SHIFT-SYMMETRIC THEORIES

In Sec. IV B, we studied BH sensitivities in one of the best motivated subclasses of EsGB theory, namely EAGB gravity.
Here we generalize the analysis to quadratic and shift-symmetric EsGB theories.
1. Quadratic coupling

Let us consider EsGB theories where the coupling function depends only on ¢’>—i.e., is of the form [12]

3.2
e~

227

with 4 > 0. The EsGB action (2.1) is symmetric under ¢ — —¢. The coefficients appearing in the scalar coupling function
ag [cf. Egs. (4.10) and (4.12)] now read

flp)=-

(E1)

A () —120 + 734 _ 734
2 o 4809, 240

(E2a)

A 1103764° ~ 875772 | 30240 - 367924+ 125112 | 1251113
3O T 419202 24192022 40320

(E2b)

~ —798336000 + 14569632001 — 99087120042 + 22719247373
B 1277337600043 ¢}

n —58278528004% + 95788723204 — 36858380761* n (=112307750404* + 92399744447 )¢,
1277337600023 1277337600013

1023843912° ¢}
266112000

A (90)

(E2c)

In the special case 4 = 1, we find

. X (47 73(p0>x2 <3257 5959 +12511¢%>x3

K 4800, | 240 34560 ' 24192002 40320

15007361 5431787 n 497700149¢, ~ 102384391¢} 44 o)
- X x),
1824768000 10644480009, 3193344000 266112000

(E3)
with

. a(fﬂoe_(pg)
Ha o

As expected, under a sign inversion ¢, = —¢, we have o4 — —a3 and f = (da,/dp)(py) — 2, so that the two-body
Lagrangian [Egs. (4.6) and (4.8)] is invariant.
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FIG. 2. Left panel: Parameter space {a/u3, 1} in quadratic EsGB theory. The white area represents the parameter space for which the
bound in Eq. (E4) is satisfied V @y. At the boundary with the shaded area, (E4) has two symmetric roots in the ¢y variable. In the shaded
area, (E4) is violated within two symmetric ¢y intervals. Right panel: The example 4 = 1. The bound (E4) is violated in two symmetric

oy intervals when a/u3 > 3.715.

For EsGB theories with quadratic couplings of the form
(E1), a BH with irreducible mass p4 is regular outside the
horizon if the condition (4.18) is satisfied—i.e., if

ae™ M
2
2p3

(Velonl-3) <1. (4)

For 1 = 1, this condition is satisfied for all ¢y whenever
a/ui < (a/u3). i = 3.715, and then BH A can never reach
the singular configuration, whatever the value of the
background scalar field ¢.

Note that the condition above is not very restrictive,
as the coupling constant a/u? is expected to be small. The
same conclusions apply to the case 1 # 1, as illustrated in
the left panel of Fig. 2. In the white region of the {a/u3, 1}
plane, the inequality (E4) is satisfied for any value ¢y
of the scalar field at the horizon. In the shaded area, the

0.3

inequality (E4) is violated within two symmetric @y
intervals. At the boundary between these two regions,
these intervals reduce to two points.

The right panel focuses on the special case 4 = 1. When
a/pi > (a/u3)e the inequality (E4) is violated when ¢y
takes values in two intervals which are symmetric with
respect to the origin. In the limit a/p% — +oo, these
intervals tend to | — oo, — ﬁé] and [ﬁ +o0], respectively.

Figure 3, which is completely analogous to Fig. 1, shows
o (@) for 1 = 1. The left panel (where we set a/u% =1
for simplicity) shows that the Taylor series converges much
faster than in the dilatonic case and that, unlike the dilatonic
case, the sensitivity [Eq. (E3)] is finite V ¢,. The right
panel shows the Padé-resummed coupling of*% when
A = 1. The Padé approximation suggests that two poles

in af(g,) appear at some critical coupling (a/u3)Fad

FIG. 3.

0.4 T
I
I
i
//’— \
/ “
0.2} e \ 1
C N s
R e
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]
..... - 2_
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-0.2} \ , .
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Scalar coupling a4 (¢g) of BHs in theories with quadratic coupling of the form (E1) with 2 = 1. Left panel: Taylor series

[Eq. (E3)] truncated at order O(x") and its (2,2) Padé resummation a3 p, .. for the special case a/uj = 1. Right panel: a p,(@o) for

three different BHs with a/u3 = {0.5,1,2.17}. When a/u2 becomes larger than the critical value corresponding to (a/u3)

two singularities appear at gt = £0.42.

Padé
crit

=217,

104061-17



FELIX-LOUIS JULIE and EMANUELE BERTI

PHYS. REV. D 100, 104061 (2019)

Padé[2,2]

A, Padé (%)

FIG. 4. Scalar coupling a4 (¢g) of BHs in the shift-symmetric theory [Eq. (E7)]. Left panel: Taylor series [Eq. (E8)] truncated at order
O(x") and its (2,2) Padé resummation af .. for the special case a/u3 = 0.1. Right panel: of . for three different BHs with

a/u} = {1,0.1,0.05}.
such that (a/u3)P3% = 2.17. This value is qualitatively
comparable to the nonperturbative prediction given below
Eq. (E4). A more accurate estimate of (a/u3)P%% using
higher-order expansions in « is an interesting topic for
future work.

Once again, the scalar field value ¢, at infinity plays a
major role. As || increases, the sensitivity |af| also does,
until it reaches an extremum at

1

P = iﬁ + O(x), (E5)
where
W) =Fyr et OW)  (E6)
ZﬂA 2el
and B, (¢f*") = 0. Here e is Euler’s number. In the limit

o] >8], instead, % —0 and B = (day/dp)(p,) — 0,
so the BH is indistinguishable from the Schwarzschild
solution. Finally, the sensitivity “turns off” when ¢, = O:
a4(0) = 0. This is because af is associated with the BH
solutions of Sec. II A, which were derived in the weak
Gauss-Bonnet coupling limit: see Eq. (2.3). When ¢y = 0,
f'(@s) = 0, and the solution reduces to the Schwarzschild
metric. Note that the branch of “spontaneously scalarized”
BH solutions with nonperturbative scalar hair and ¢, = 0
[11,12,42]is not included in our analysis. A numerical calcu-

lation of their sensitivities @ and /39 is left for future work.

2. Shift-symmetric theories
As a third and last example, let us consider shift-
symmetric theories [8,9] with

f(p) =2¢.

The action (2.1) is symmetric under the shift symmetry
@ = @+ Ap, where Ag is a constant. The sensitivity
(4.10) reads

(E7)

0 _X_ P (T3 00\,
a=TyTat (480+2
PRI (P03 4
S s I Ox), E8
(e + %"+ 0 (ES)
with
2
x=2 (E9)
Ha

and it is also invariant under ¢, — @y + Ag, since then
Ui = Sy /4r = 3 + 2aAg: cf. Eq. (2.10).
In Fig. 4, we plot ag as a function of ¢. The left panel
(where we set a/u3 = 0.1 for concreteness) shows that the
series (E8) converges on a narrow interval. When ¢ is
large and positive, &} diverges with a slope which increases
with the truncation order O(x"); when ¢, is large and
negative, o} diverges, but sign(a}) = (—1)" depends on
the truncation order. To improve the convergence properties
of the expansion (E8), we try a diagonal (2,2) Padé
resummation, also shown in the left panel of Fig. 4. The
features of the Padé resummation resemble the dilatonic
case of Sec. IV B:
(i) When ¢y — —oo, the BH decouples from the scalar
field; i.e., aQ — 0 and g% = (dal/d) (@) — 0.

(i1) As @, increases, the BH becomes strongly coupled
to the scalar field: @} - —co and f - —c0 as ¢,
approaches a pole located at

M
a

Once again, ¢, plays a crucial role. The BH’s irreducible
mass u, only affects the location of the pole through
Eq. (E10), as shown in the right panel of Fig. 4. The features

1

2

pole
0

\/1095> | (E10)

30
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highlighted above are again valid within the nonpertur-
bative bound (4.18), which now reads

1 2
ned(G-)

5 (E11)

This equation predicts the existence of a maximum value
for ¢y, which depends linearly on a/ /4%. A numerical
study and higher-order expansions in «, possibly com-
bined with Padé resummation techniques, would be
useful to confirm these predictions.
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