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Abstract

A new germanate garnet compound, CeoCaMgxGe;O12, was synthesized via flux crystal growth.
Truncated spherical, reddish-orange single crystals with a typical size of 0.1-0.3 mm were grown out
of a BaCl,—CaCl> melt. The single crystals were characterized by single-crystal X-ray diffraction
analysis, which revealed that it adopted a cubic garnet-type structure with a = 12.5487(3) A in the
space group /a—3d. Its composition is best described as 438,C3012, where Ce/Ca, Mg, and Ge occupied
the 4, B, and C sites, respectively. A UV—vis—NIR absorption spectroscopy measurement on the
germanate garnet revealed a clear absorption edge corresponding to a band gap of 2.21 eV (A = 561
nm). First-principle calculations indicated that the valence band maximum was composed of Ce 4f
bands, whereas the conduction band minimum mainly consisted of Ce 5d bands. These findings explain
the observed absorption edge through the Ce 4 — 5d absorption. Photoluminescence emission spectra
exhibited a very broad peak centered at 600 nm, corresponding to transition from the lowest energy d
level to the 4f1evels.
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1 Introduction

The garnet structure, having the general chemical formula {4}3[B]2(C)3012, has been widely studied
as a host material for various optical applications, such as laser amplifiers, color converters,
scintillators, and cathode ray phosphors [1]. In particular, the Ce**-doped Y3AlsO1, garnet phosphor
(YAG:Ce) is one of the most interesting materials in terms of practical application as a blue-to-yellow
converter in white-emitting diodes. Although YAG:Ce exhibits good thermal and chemical stability
and high luminescence efficiency, improvements to the low thermal quenching temperature and cool
correlated color temperature remain significant issues [2] [3] [4]. In principle, the 5d—4f emission bands
in Ce**-doped phosphors are strongly influenced by the host lattice through crystal field splitting of the
5d levels of the Ce*" ion. In the garnet host, there are three types of cation sites: the {4} site with 8-
fold dodecahedral coordination, the [B] site with 6-fold octahedral coordination, and the (C) site with
4-fold tetrahedral coordination (Figure 1). The 4 site is typically occupied by rare-earth (RE) ions such
as La*", Gd*', or Lu**, as well as by Y*", and by alkaline earth ions such as Ca?*. The B site is occupied
by smaller ions that prefer octahedral coordination environments, such as Mg>* Mn**, Fe**, S¢**, Al*",
or Zr**, while the C site accommodates ions that take on tetrahedral coordination, including AI**, Ga**,
Si**, or Ge*" ions. The dodecahedral site, which the trivalent Ce*" ion prefers to occupy, connects to
the adjacent 4, B, and C sites through common oxygen atoms via corner and edge sharing. Thus, the
crystal field impinging on the Ce" ions is created not only by the 4 site cations but also the B and C
site cations [5, 6] [7]. Owing to the wide range of cations that can be accommodated by the garnet
structure, new compositions of garnet phosphors that compensate for the above-mentioned

shortcomings of YAG:Ce have been successfully synthesized.

When considering the crystal chemistry of the garnet family, the ability of the cation sites, especially
the A site, to accommodate different elements, is an important factor [8]. A large number of garnet
compounds have been previously reported [1, 9-11] but the variety of RE ions in the 4 site is typically
limited to RE = Gd-Lu and Y, all smaller than the desirable Eu*" cation, because incorporation of larger
cation causes markedly unfavorable lattice distortions around the dodecahedral sites. To the best of our
knowledge, only very few garnet compositions that include early RE ions larger than Gd** have been
synthesized (via various techniques such as the sol-gel method and hydrothermal reaction), and
include: EusAlsO12 [12], REsTe;Li3012 (RE = Pr—Eu) [13], RE3W:Li3012 (RE = Pr, Nd) [13] (Kasper,
1969), RE;FesO12 (RE = Pr—Eu) [14] [15] [16] [17], LasSc2Ga3O12 [18], RE3GasO12 (RE = Pr-Eu) [19]
[20], LisLa3Zr2012 213, and LisLasSboO12 [22]. It is notable that even among these, achieving a garnet
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composition with Ce** fully occupying the A4 site is challenging; however, Ce** doping as high as 56

at.% with respect to Y** has been achieved in YFesO1» via the glycothermal process.[23]

In this study, we report the flux crystal growth of the new metastable germanate oxide
{CexCa}[Mg]2(Ge)3012, which crystalizes in the garnet structure in the space group la—3d with a =
12.5487(3) A. The garnet phase was synthesized via the flux crystal growth method where truncated
spherical, reddish-orange single crystals were obtained from a BaCl,—CaCl, melt. High-temperature
solid state reactions failed to yield the target phase, even as a polycrystalline powder, suggesting that
the phase is metastable. Herein we discuss the crystal structure, electronic structure, and optical

properties of Ce2CaMgxGesO1a.
2 Experimental

2.1 Crystal Growth

Single crystals of Ce2CaMgxGeszO12 were grown via the flux method using a eutectic BaCl,—CaCl»
mixture[24]. For Ce,CaMg>Ge3O12, a magnesia crucible was loaded with 1 mmol CeO> (Aldrich, 4N),
1 mmol of GeO; (Rare Metallic, 4N), 1 mmol of S (High Purity Materials, 4N), 3.1 mmol of BaCl,
(Rare Metallic, 3N), and 3.1 mmol of CaCl, (Rare Metallic, 3N). The top of the tube was closed with
a magnesia cap, and the tube was sealed inside a silica tube under vacuum. As described later, the
magnesia tube was found to act as a magnesium source. The starting materials were heated in a box
furnace to 900 °C at 150 °C/h, held for 25 h, cooled to 500 °C at 5 °C/h, and then allowed to cool
naturally to room temperature. The products were washed in distilled water, aided by sonication, before
the reddish-orange transparent truncated spherical crystals of Ce.CaMgxGeszO12, together with
colorless transparent crystals of CeOCl, were collected via vacuum filtration. The typical dimensions
of the single crystals of the garnet compound were 0.3 x 0.3 x 0.3 mm? (Figure 2). The structure of

Ce2CaMgaGesO12 was determined by single-crystal X-ray diffraction.

2.2 Single crystal structure determination

X-ray intensity data from an orange polyhedron were collected at 301(2) K using a Bruker D8 QUEST
diffractometer equipped with a PHOTON 100 CMOS area detector and an Incoatec microfocus source
(Mo Ko radiation, L = 0.71073 A) [25]. The data collection covered 100% of the reciprocal space to
20max = 75.2°, with an average reflection redundancy of 35.3 and Rixx = 0.064 after absorption

correction. The raw area detector data frames were reduced and corrected for absorption effects using
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the SAINT+ and SADABS programs [26] [25]. Final unit cell parameters were determined by least-
squares refinement of 3812 reflections taken from the data set. An initial structural model was obtained
with SHELXT [27]. Subsequent difference Fourier calculations and full-matrix least-squares

refinement against F2 were performed with SHELXL-2018 using the ShelXle interface [28].

2.3 Solid state synthesis

The synthesis of polycrystalline powder samples of Ce2CaMgaGes;O12 was attempted using CeOz,
CaCO; (or Ca0O), MgO, and GeO: in a stoichiometric ratio. The mixture was ground intimately,
pelletized, and heated in a flowing N> or H» (20%)—Ar (80%) mixed gas atmosphere or in an evacuated

sealed tube using a tubular furnace at temperatures ranging from 900 to 1500 °C.

2.4 XRD, UV-vis, PL, EPL, and magnetic measurements

Single crystals of Ce.CaMg>Ge3O12 were crushed with an agate mortar and pestle to obtain fine
powders used for obtaining synchrotron X-ray powder diffraction (SXRD) patterns, UV—vis diffuse
reflectance spectra, and photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The
products obtained via solid state reactions were examined at room temperature by powder XRD
analysis using a Rigaku MiniFlex X-ray diffractometer (Cu Ka radiation) in the 2 @ range of 5-65° with
a step size of 0.04°. SXRD measurement was performed at room temperature using a one-dimensional
detector installed on BL15XU, NIMS beamline at SPring-8 in Japan. The synchrotron radiation X-rays
were monochromatized to a wavelength of 0.65298 A. The Ce.CaMg>Ge;O12 powder sample was
loaded into a 0.1-mm diameter glass capillary. The diffraction data were recorded in 0.003° increments
over the range 2—60° and analyzed by Rietveld refinement using the program RIETAN-FP [29].
Diffuse reflectivity measurements were performed at room temperature using a Shimadzu UV-2600
spectrophotometer equipped with an ISR-2600Plus integration sphere. The diffuse reflectance data
were internally converted to absorbance by the instrument using the Kubelka—Munk function. The PLE
and emission spectra were recorded using a fluorescence spectrophotometer (Hitachi F-7000). The
magnetic susceptibility of Ce2CaMg>Ge3O12 was measured using a SQUID magnetometer (Quantum
Design, MPMS-XL). The crushed single crystals were measured at an applied magnetic field (H) of 1
kOe in the range of 10-300 K under both zero-field-cooled (ZFC) and field-cooled (FC) conditions.

2.5 First-principles calculations

This is a provisional file, not the final typeset article
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First-principles total energy calculations of Ce>CaMgxGeszO12 were performed using the projector
augmented wave method[30][31] as implemented in the Vienna Ab-initio Simulation Package (VASP)
[32] [33] [34]. In the present study, the cut-off energy for the plane wave basis was 550 eV. The
exchange-correlation interaction potentials of electrons were handled within a framework of the
generalized gradient approximation (GGA) of with the PBEsol type[35]. The configurations of the
valence electrons of Ce, Ca, Mg, Ge and O were 5s? 5p% 41! 5d" 652, 35% 3p® 452, 2p% 352, 3d'° 45* 4p°
and 2s? 2p*, respectively. Spin-polarized calculations were carried out. For Ce ions, the effect of the
strong correlation interaction of the 4f orbital was treated based on the GGA+U method. [36] The value
of U was set to be 5.4 eV in this study. [37] [38] Structure optimization calculations were carried out

until the residual forces were less than 0.02 eV/A.
3 Results and Discussion

3.1 Crystal growth and structure determination

After washing the products inside the magnesia tube with water to remove the solidified flux, we
found that reddish-orange single crystals had grown on the inner wall of the tube (Figure 2) alongside
with a plate-like pale-purple crystalline CeOCI byproduct. The EDS analysis of the reddish-orange
crystals revealed the presence of Ce, Ca, Mg, and Ge in approximate atomic ratios of 1.9:1.0:2.1:2.6.
The origin of the magnesium is the magnesia tube that, apparently, was slightly dissolved by the flux
during the reaction. Single-crystal X-ray diffraction analysis revealed that the product crystallized in
the cubic system with a = 12.5479(4) A. The space group Ia—3d (space group no. 230) was uniquely
determined by the pattern of systematic absences in the intensity data and confirmed by structure
solution. The product exhibits a garnet-type structure, wherein the asymmetric unit consists of one
mixed Ce/Ca atomic site (Cel/Cal, site 24c¢), one Ge site (Gel, 24d), one Mg site (Mgl, 16a,), and
one O site (O1, 96/). The composition of site 24c was determined by trial refinements of several
models incorporating cationic elements determined by EDS to be present in the crystals (i.e., only
Ce, Ca, Mg, and Ge). Modeling the site with mixed Ce/Ca occupancy resulted in the most reasonable
model and is consistent with their similar ionic radii (rce>™ = 1.143 A, rc® = 0.97 A) [39] and their
observed bond distances to O (2.427(4) and 2.547(4) A, respectively). To maintain overall charge
balance, the Ce and Ca occupancies were fixed at 2/3 Ce and 1/3 Ca. Trial refinements with Ce and
Ca occupancies constrained to sum to 1.0 but otherwise free to vary, refined closely to these values,
supporting the decision to fix the occupancies at 2/3 Ce and 1/3 Ca. All atoms were refined with

anisotropic displacement parameters. The final refined chemical composition was Ce2CaMg>GesO12,
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which is consistent with the result of the EDS analysis. The Rin; and wR> converged to reasonable
values of 3.83 and 5.51%, respectively. The goodness-of-fit value was 1.29. The incorporation of
Ce(III) ions into the structure was consistent with the reddish-orange sample color. Details of the
structure refinement are listed in Table 1. Atomic coordinates and atomic displacement parameters
are listed in Tables 2 and S1, respectively. Selected bond distances and bond angles are compiled in

Table 3.

Figure 3 shows the room-temperature synchrotron X-ray diffraction pattern collected from a powder
sample obtained by grinding hand-picked single crystals. The model determined by the SCXRD
analysis was used for the Rietveld refinement. The calculated pattern well reproduced the observed
pattern as the fitting converged smoothly with reasonable reliability factors, Rwp = 5.37, R = 3.45,
and Rr = 2.92. The final refined crystallographic data, including the atomic coordinates and isotropic
displacement parameters are listed in Table S2. The results are consistent with the results obtained

from the SCXRD analysis.

3.2 Solid state reaction

Synthesis of a polycrystalline sample of Ce;CaMg>GesO12 was attempted by solid-state reactions
using a stoichiometric mixture of CeO,, CaCOs; (or CaO), MgO, and GeO». The reactions were
carried out under vacuum, with mixed H2(20%)-Ar(80%) gas or N> gas atmospheres at temperatures
between 900 and 1300 °C. Unfortunately, none of the reaction conditions we examined yielded the
target phase; but a substantial amount of unreacted CeO, always remained in the products (see Figure
S1). A garnet structure was obtained as a minor phase at 1300 °C in the N> gas atmosphere; however,
the lattice parameter of the garnet phase was smaller by 0.5% compared with that for
Ce2CaMgrGesO12 and the product was dark grayish-green. Therefore, if Ce atoms were incorporated
into the lattice, the garnet phase obtained by solid state reaction should have a lower Ce concentration
than that of Ce2CaMgxGe3O12. Further heating at the same temperature after regrinding and
pelletizing resulted in a partial decomposition of the garnet phase and an increase in the amount of

Ce0O3, suggesting that the garnet phase was metastable under these reaction conditions.

3.3 Stability of the garnet structure

As described earlier, the garnet structure can accommodate a wide range of elements in the three
different cation sites, but the underlying stability of the garnet structure, including its tolerance for

RE ions, is not yet well understood. Our present germanate garnet exhibited an unusual occupancy of

This is a provisional file, not the final typeset article
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two-thirds of the 4 sites by Ce*" ions, a Ce** concentration substantially higher than the 56 at.%
Ce**-doping concentration found in Yi.«Ce.FesO12 (x = 1.7).[23] Very recently, Song et al. have
formulated the tolerance factor (1) of the garnet structure,[40] which is analogous to the Goldschmidt
tolerance factor describing the relationship of the chemical compositions and structural stability in

perovskites. [41] The 1 of the garnet structure is expressed as

3J(r3+r0)2+§(rA+ro)2
T= (Eq. 1)

2(rc+ro)

where r4, 73, rc, and ro represent the ionic radii of the 4, B, C site cations and O*” ion, respectively.
The tolerance factor calculated for more than 100 garnet compounds falls within the range of 0.75 to
1.33. For the formula RE3B>C3012. (RE = La—Lu, Y; B = C= Fe, Al, Ga), the t values systematically
increase toward unity with decreasing size of the RE ions, e.g., 0.76 to 0.93 from La to Lu for
RE3Al5012 and 0.89 to 1.02 for RE3FesO12). [40] This is consistent with the general trend observed
for their structural stability when containing RE ions. The formula RE2CaMg>Ge3O12 (RE = La—Lu,
Y), including hypothetical compositions, exhibits a similar size dependence of the tolerance factor,
but the t values range from 1.06 for La, through 1.07 for Ce, to 1.15 for Lu. The stabilization of
Ce2CaMg2GesO12 with a t value close to unity seems to be compatible with the geometric
requirements for the garnet structure. However, a favorable tolerance factor does not assure the
success of the target phase formation via chemical synthesis. In fact, the solid-state reactions we
examined to obtain Ce2CaMg>Ges3O12 were not successful. At present, the reason for the large
amount of Ce ions incorporated into the garnet lattice is unclear; however, it is likely that the molten
salts used in this study play a crucial role in stabilizing the phase under the flux reaction conditions.
From the PXRD data of the products obtained by solid state reactions, it is apparent that CeO> was
not fully consumed in the reactions, indicating its low reactivity and slow atomic diffusion even at
high temperatures. In the flux reaction, the BaCl,—CacCl: salt likely dissolves CeO2 powder at a
relatively low temperature, where the fact that the starting materials are now in solution is expected
to decrease considerably the activation energy for reaction between the starting materials and thus
yield the target garnet phase. We surmise that the Ca-Cl melt at high temperatures under vacuum acts
as a reducing agent for Ce ions, likely forming Clo. The formation of Ce*" in the halide melt favors
the stabilization of Ce2CaMg2Ge3O12 as well as of the byproduct CeOCl. Sulfur, which was a starting

material for the flux reaction, was not found to significantly contribute to either the reduction of Ce
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ions nor to the formation of Ce2CaMg2GesO12. Performing the flux crystal growth in the absence of

sulfur results in the same mixed product formation.

3.4 Optical and magnetic properties

Figure 4(a) shows the UV—vis absorption spectrum collected for Ce;CaMg>Ge3O12, exhibiting a clear
absorption edge at around 560 nm. An extrapolation of the linear portion of the absorption curve to
the x-axis indicates an optical band gap of E; = 2.22 eV. This steep increase in the absorption is
followed by two broad sub-bands centered at 458 and 305 nm, also observed in the UV—vis
absorption curves of YAG:Ce. These two absorption peaks can be assigned to the optical transitions
from the Ce 4f ground state to the lowest and second-lowest excited states of the Ce 5d orbitals (5d1
and 5da, respectively). [2] A third weak peak at around 250 nm is probably due to defects or
impurities. The lowest absorption is in the blue spectral region, which results in the reddish orange
color of the garnet compound. The photoluminescence emission (PE) and excitation (PLE) spectra of
CexCaMgrGesO12 are shown in Figure 4(b). The PE spectrum excited at 519 nm contains a broad
band centered around 600 nm, which could be assigned to the transition from the 5d; level to the two
4f levels split by spin-orbit coupling into *Fs/» and 2F72. The maximum value of the emission band for
Ce2CaMgrGesO12 is red-shifted compared to that of Y2Mg3Ges012:Ce(2%) [42] but comparable to
that for Gd2Mg3Ges;012:Ce(2%) [43].

Figure 5 shows the temperature evolution of the magnetic susceptibility y (= M/H) measured in a
magnetic field H = 1 kOe. Both the ZFC and FC data increase smoothly with decreasing temperature,
indicative of a paramagnetic state persisting down to low temperatures. No hysteresis was observed
in the temperature range between 10 and 300 K. Fitting x(7) to the Curie-Weiss law yields C =
1.407(4) (emu K/mol) and 8= -59.9(9) K, where C and & stand for the Curie and Weiss constants,
respectively. The C value is somewhat smaller than the theoretical value expected from two mol Ce**
ions with 2Fs,, per formula unit. The negative 8 value suggests that Ce** ions are
antiferromagnetically coupled to each other. The absence of a long-range magnetic order is probably

due to a random distribution of Ce and Ca atoms on the 24c site

3.5 Theoretical calculations

From the experimental crystal structure analysis of Ce2CaMg>Ge3O12, Ce and Ca ions are found to
occupy the 4 site of the 438,C3012 garnet structure. In first principles calculations using structure

models under periodic boundary conditions, mixed occupancy of atomic sites cannot be directly
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computed. Therefore, we initially determined the preferred distribution of Ce and Ca ions on the 4
site with a ratio of 2:1 in a fixed size model having the garnet structure. We chose a primitive unit
cell of the garnet structure as a base model. Structure models having symmetrically non-equivalent
configurations of Ce and Ca ions were constructed. In total, 20 independent configurations of Ce and
Ca ions on the 4-site were found from the base model using the CLUPAN code. [44] The mesh size
of k-point sampling was 3 x 3 x 3 in the Brillouin zone of the input structure models. We compared

the total energies of these models obtained by structure optimization calculations.

From the series of total energy calculations of Ce2CaMg>Ge;O12 models, the most stable
configuration that was found is shown in Figure 6. We analyzed the electronic structures of this
model. Figure 7 shows total density of states (tDOS) and projected partial density of states (pDOS) of
each constituent element. In Figure 7, the energy level of a valence band top is set to be 0 eV on the
horizontal axes. Positive and negative values on the vertical axes indicate the DOS of up-spin and
down-spin, respectively. The tDOS values show that the calculated band gap is about 2.2 eV, which
is in a good agreement with the value estimated from the UV—vis absorption spectrum. It can be
clearly seen that very sharp spikes of the DOS exist at the topmost energy levels of the occupied
states. Such sharp DOS peaks indicate strong localization states of the electron orbitals. From the
pDOS values, we can see that these peaks originate from the occupied 4f orbital of the Ce** ions. The
DOS near the conduction band bottom seems to be mainly composed of an unoccupied 5d orbital of

Ce’" ions and a 4s orbital of the Ge*" ions.
4 Conclusion

We have successfully synthesized a new metastable germanate garnet, Ce2CaMgxGe3O12, using a
flux crystal growth method. Reddish-orange single crystals were grown in a reactive MgO tube;
however, the polycrystalline sample could not be prepared via a solid state reaction. Flux reactions
are clearly useful for extending the garnet family to compositions that include the early lanthanide
metals, especially those larger than Gd, which are been less explored. The PL intensity was so weak
that it could not be confirmed visually; this is probably due to Ce**-concentration quenching effects
or photoionization involving a charge transfer between Ce** and Ge**.[45, 46] Work to synthesize La
or RE (< Ce*")-doped Ce,CaMgrGesOi2 and the substitution of Si for Ge, which would enhance PL

properties, is ongoing.
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293  Figure 1. (a) Crystal structure of the garnet compound 43B>C3012 and (b) the local coordination
294  environment around the metal cations. In Ce;CaMg>GesO12, Ce/Ca, Mg, and Ge atoms occupy the A,
295 B, and C sites, respectively.
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298  Figure 2. Photographs of single crystals of Ce;CaMg>Ge3O12 grown on the inner wall of a MgO
299  crucible.
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Figure 3. Observed (crosses), calculated (upper solid line), and difference (lower solid line) plots
obtained from the Rietveld analysis of the room temperature synchrotron X-ray powder diffraction
data collected using ground single crystals of Ce2CaMg>Ge3O12. Vertical lines represent expected
Bragg peak positions.
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Figure 4. (a) UV—vis absorption spectrum, and (b) photoluminescence emission (Aex = 519 nm) and
excitation (Aem = 600 nm) spectra for Ce2CaMg>GesO12, collected at room temperature.

.. .. . 12
This is a provisional file, not the final typeset article



311

312
313

314

315
316

317

025 T T T T T
3
0.20 - 1) i
2 | 3
S [ @
G015k = - .
= s s S
-5 I ,,m&\*“‘wﬂ
E § i . ‘ )
% 0.10 |° 100 _ 200 300
o
= E Ce,CaMg,Ge;0;5 |
0.05 H=1kOe
- FC
R T e ety 2
ool ... PR s et e e i b e S e
0 50 100 150 200 250 300
T(K)

Running Title

Figure 5. Magnetic susceptibility of Ce2CaMg>GesO12, measured in a magnetic field of 1 kOe. The

inset shows its inverse x vs 7T plot. The red solid line is the fit to the Curie-Weiss law.

Figure 6. Most stable configurations of Ce2CaMg>Ge3O12 found by a series of first principles

calculations in the present study. Search conditions are described in the main text.
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Figure 7. Total and projected partial density of states calculated from the model shown in Fig.6. The
energy level of a valence band top is set to be 0 eV on the horizontal axes. Positive and negative
values of the vertical axes indicate the DOS of up-spin and down-spin, respectively. Blue, red, green,
and purple lines indicate the s, p, d, and f orbitals of each element, respectively.
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326

Table 1. Results of structural refinement of Ce2CaMgxGe;O12 using single-crystal

Running Title

XRD data

Space group Ila-3d

Crystal system Cubic

a(A) 12.5487(3)
V(A3 1976.04(14)
VA 8

Density (g/cm?) 5.235
Temperature (K) 301(2)
Hrange (°) 3.978-37.590
4 (mmt) 18.765
Crystal dimensions (mm?) 0.080x0.050x0.030
Collected reflections 17162
Unique reflections 445

Rint 0.0645

GOF 1.286

Ri(F) for Fo? > 26(F0?) 0.0383
Rw(Fo?) 0.0551
APras! A pmin (e/A3) 0.931/-1.069
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327

Table 2. Atomic coordinates and equivalent isotropic displacement parameters Ueq for
Ce2CaMgxGesO12 obtained from the structure refinement using single-crystal XRD

data
Atom Site X y z g¢ Ueq
(A?x10?)
Cel 24c 1/8 0 1/4 0.667 0.737(15)
Cal 24c 1/8 0 1/4 0.333 0.737
Mgl 16a 0 0 0 1 0.75(5)
Gel 24d 3/8 0 1/4 1 0.0660(18)
01 96h 0.0948(2) | 0.1976(3) | 0.2852(3) 1 0.68(5)

328  “grepresents site occupancy.

329
Table 3. Selected interatomic distances and bond angles of Ce2CaMgxGe;O12 at 301
K

Bond distance (A) Bond angle (deg)

Ce/Ca—Ox4 2.427(4) Ce/Ca—O-Mg 97.48(12)
Ce/Ca—Ox4 2.547(4) Ce/Ca-O-Mg 101.26(15)
Mg-Ox6 2.102(3) Ce/Ca —-O-Gex2 95.60(13)
Ge-Ox4 1.766(3) Ce/Ca—O—Ce/Cax2 101.13(14)
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