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ABSTRACT

Probabilistic programming languages offer an intuitive way to
model uncertainty by representing complex probability models
as simple probabilistic programs. Probabilistic programming sys-
tems (PP systems) hide the complexity of inference algorithms
away from the program developer. Unfortunately, if a failure occurs
during the run of a PP system, a developer typically has very little
support in finding the part of the probabilistic program that causes
the failure in the system.

This paper presents Storm, a novel general framework for re-
ducing probabilistic programs. Given a probabilistic program (with
associated data and inference arguments) that causes a failure in
a PP system, Storm finds a smaller version of the program, data,
and arguments that cause the same failure. Storm leverages both
generic code and data transformations from compiler testing and
domain-specific, probabilistic transformations. The paper presents
new transformations that reduce the complexity of statements and
expressions, reduce data size, and simplify inference arguments
(e.g., the number of iterations of the inference algorithm).

We evaluated Storm on 47 programs that caused failures in two
popular probabilistic programming systems, Stan and Pyro. Our
experimental results show Storm’s effectiveness. For Stan, our min-
imized programs have 49% less code, 67% less data, and 96% fewer
iterations. For Pyro, our minimized programs have 58% less code,
96% less data, and 99% fewer iterations. We also show the benefits
of Storm when debugging probabilistic programs.
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1 INTRODUCTION

Probabilistic programming languages offer an intuitive way to
model uncertainty by representing complex probabilistic models
as simple programs [1, 4, 7-9, 13, 16-18, 28, 32, 35, 42, 44, 52, 55].
A key novelty of probabilistic programming is the separation be-
tween the probabilistic modeling and probabilistic inference. An end-
programmer expresses probabilistic models in a high-level language
with constructs for random choice (e.g., sampling from common
distributions), conditioning on data (e.g., observation statements)
and probabilistic queries (e.g., posterior distribution) [19].

A probabilistic programming system (PP system) automates many
intricate details of probabilistic inference, while executing one
of the common inference algorithms, such as Monte-Carlo sam-
pling [22, 39] or Variational inference [29]. A PP system takes
three inputs: 1) a probabilistic program, 2) a set of data points on
which to perform inference, and 3) arguments of the inference al-
gorithm. Typically, PP systems compile the probabilistic program
into an efficient low-level inference procedure, which includes ini-
tializing the underlying inference algorithm, translating of proba-
bilistic programs (models) to an intermediate representation, sim-
plifying the model, compiling to low-level API (e.g., Tensorflow),
and many others.

The numerical and approximate nature of PP systems and imple-
mentation complexity make it hard to ensure their correctness, and
subtle bugs can easily remain unnoticed [20, 38, 47]. Our recent
study [10] showed that over 25% of all bugs in three popular systems
are domain specific, including algorithmic, numerical, boundary
condition, dimensional, and accuracy bugs. The bugs manifest as
wrong results, crashes, infinite loops, or numerical exceptions.

If a failure occurs during the execution of a PP system, the devel-
oper typically has to figure out the source of the problem manually.
This is not an easy task: while probabilistic programs are intuitive
to write, they can be notoriously hard to analyze [26, 38]. Proba-
bilistic programs typically have a small number of lines of code,
but they exercise many functionalities of the underlying PP system.
For instance, an execution of a simple 10-line program in Stan [15],
one of the most popular PP systems, can execute over 6000 lines of
code of Stan implementation.

To be able to reproduce and analyze the failures in PP systems,
the developers of PP system suggest bug reports with self-contained
and minimalistic tests, e.g., in Stan: “the key to a successful bug report
is to provide as much context as possible, ideally in the form of a small
reproducible example” [46]. This requirement is similar to the one
from the standard compilers (e.g., [45]). Minimized programs help
with both debugging (e.g., calculating the reference result) and
speeding up regression testing (by executing the programs faster).
However, coming up with minimal programs requires significant
manual effort through trial-and-error.
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Program reduction has been instrumental in the tasks of com-
piler testing and debugging. For standard compilers, researchers
proposed various methods to reduce the size of bug-revealing pro-
grams such that the reduced program still exposes the bug, but
helps the developer better understand and debug the program ex-
ecution [36, 45, 51, 57]. Our insight is that the same conceptual
approach can apply for debugging PP systems: just like a com-
piler that translates an input program, PP system translates and/or
executes a triple of probabilistic program, data, and inference ar-
guments. However, the existing program reduction approaches
for conventional languages, either operate on textual representa-
tion [57], potentially generating many illegal programs, or use only
syntactic information about the programs [36, 51], but do not lever-
age semantic information; they are also oblivious to the inference
arguments (e.g., the number of Monte-Carlo samples).

Our Work. We present Storm, a novel approach for automatically
reducing probabilistic programs and show its utility in the scenarios
of testing and debugging PP systems. Storm applies various trans-
formations to reduce the probabilistic programs. Unlike existing
approaches for conventional programs, Storm leverages program
analysis and probabilistic reasoning to simplify bug-revealing prob-
abilistic programs. We show the benefits of the domain-specific and
probabilistic information about the programs.

We formulate our problem in the spirit of [51]: Given a probabilis-
tic program P, data d, and inference arguments 6 that have a prop-
erty i (e.g., a PP system execution fails with a particular error mes-
sage), the goal of probabilistic program reduction is to find a smaller
(P’,d’,0’), that has the same property, ¥(P’,d’,0") = ¢(P,d, 0)
(e.g., the PP system execution fails with the same error message).

Storm is a generic framework that uses both syntactic and domain-
specific, semantic information about probabilistic programs to gen-
erate only valid probabilistic programs. We designed Storm to be
language-agnostic: it translates programs from the existing systems
to a common intermediate representation, Storm-IR. We define all
our analyses and transformations on Storm-IR and finally output
the reduced program back to the source language. We present the
translation of two popular languages (Stan [15] and Pyro [4]) with
significantly different syntax and language models.

Storm is a transformation-based framework. It supports both con-
ventional program transformations and novel probabilistic trans-
formations. Novel transformations include data reducer (which
aims to keep specific bug-revealing values in the data set), distribu-
tion simplifier (which replaces complex distributions or parameters
with appropriate constants, expressions, or simpler distributions),
parameter remover (which removes a parameter and replaces its
references with a suitable constant), math-function call remover
(which replaces common mathematical functions with constants),
and inference argument reducer (which finds a minimum number of
samples or iterations of the inference algorithm required to repro-
duce a failure). They augment the basic program transformers, such
as arithmetic simplifier, removers for conditionals, loops, function
calls, and assignments (similar to C-Reduce [45]). Storm’s reduc-
tion algorithm reduces the program size by iteratively applying
both the basic and domain-specific transformations and performing
lightweight analysis on the program’s intermediate representation
(including dependence, interval, type, and data-flow analysis).
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Results. We use the reducer to generate smaller programs that re-
veal failures in two state-of-the-art PP systems: Stan [8, 15, 29], one
of the most mature and frequently-used PP systems, and Pyro [4],
a Python-based deep probabilistic modeling framework from Uber.
We studied three sources of bugs: 1) a probabilistic bug database
we created in previous research [10], which includes test programs
that were already minimized by a human, 2) new bugs discovered
using ProbFuzz [10], and 3) a repository with representative Stan
models that offers larger probabilistic programs [48]. In total, we
analyzed 47 programs (34 from Stan and 13 from Pyro).

Our results show that Storm’s reduction strategies often gener-
ates significantly smaller programs than those provided by the users
or developers. In particular, Storm was able to remove non-trivial
program constructs in 45 programs, reduce the data size in 30 pro-
grams out of 33 programs that have data, and reduce the execution
time of the inference algorithm (e.g., by reducing the number of
Monte-Carlo simulations or Variational inference iterations) in 46
programs. Storm shows a significant improvement in the number
of removed data points and program constructs over the baseline
approach that applies only basic transformations.

Contributions. The paper makes the following contributions:

* We present Storm, which is, to the best of our knowledge, the
first reduction framework for probabilistic programs.

* We introduce a program reduction algorithm that is aware of
probabilistic information and guided by program analysis.

* We introduce domain specific transformations in addition to
basic transformations used for conventional languages.

* We evaluate Storm on existing bug-revealing programs from
popular probabilistic programming systems, Stan and Pyro.

2 EXAMPLE

Figure 1 presents a bug-revealing program in Stan, taken from the
bug issue Stan1610 [49]. We will demonstrate Storm’s ability to
reduce this program while still revealing the same bug in Stan.

2.1 Original Program

The program in Figure 1 represents a variant of Latent Dirichlet
Allocation (LDA) model [5]. In LDA, each document is assumed
to contain a mixture of topics and each topic is assumed to use a
small set of words frequently. Using LDA model, users try to infer
the distribution of words and topics in observed documents. The
program in Figure 1 represents the topic distributions for users and
items instead of documents. It consists of three parts:

e Data block (lines 1-13): It specifies the type and dimension of
the input data which is to be used to condition the probabilistic
model. It contains the dimensions and the names of all constants,
priors, and observed data points.

e Parameters block (lines 14-18): It contains the random variables
whose posterior distribution Stan should infer.

e Model (lines 19-36): The model establishes the relationship be-
tween the observed and unobserved variables. First, it assigns
a prior to all the parameters, which denotes the user’s belief of
the distribution of their values. Here, all the parameters are as-
signed priors from Dirichlet distribution (lines 20-25). Then it
specifies the relation of the variables to the data. It implements
LDA using custom log-density updates (lines 27-33). The built-in
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Dataset:

U=28; I=284; N=2326; K=10; V=17
word = [ (326 float values) 1;

item = [ (326 float values) 1;

user = [ (326 float values) 1;
alpha_user = [ (10 float values) J;
alpha_item = [ (10 float values) J;
beta = [ (17 float values) 1;

Model:

1 data {

2 int K; // num topics
3 int V; // num words
4 int U; // num users
5 int I; // num items
6 int N; // total word instances

7 int word[NJ]; // word n

s int item[N]; // item ID for word n

9 int user[N]; // user ID for word n

10 vector[K] alpha_user; // topic prior concentrations for users
11 vector[K] alpha_item; // topic prior concentrations for items
12 vector[V] beta; // prior probability for seeing word

13}

14 parameters {

15 simplex[K] item_topics[I]; // topic dist for item i

16 simplex[K] user_topics[U]; // topic dist for user u

17 simplex[V] word_topics[K]; // for topic k prob of seeing word v

18 )
19 model {
20 for (i in 1:I)

21 item_topics[i] ~ dirichlet(alpha_item); // prior on item topics

22 for (u in 1:U)

23 user_topics[u] ~ dirichlet(alpha_user); // prior on user topics

24 for (k in 1:K)

25 word_topics[k] ~ dirichlet(beta); // prior
26 // for every word in our corpus

27 for (n in 1:N) {
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Dataset:

K=1; V=2
beta = [ 0.0588235, 0.0588235 1;

Model:

int V;
vector[V] beta;

parameters {

simplex[V] word_topics[K];

3

model {

10 for (k in 1:K)

11 word_topics[k] ~ dirichlet(beta);
12}

1
2
3
4
5}
6
7
8
9

Inference Arguments:

Engine = ADVI; Iters = 125

Figure 2: Example: Reduced Code and Data

Figure 3: Example: Reduction Statistics

Reduction % Ratio
Lines of Code 69% (11/36)
Code Constructs 83% (12/70)
Data Points 98% (41B/4KB)
Algorithm Iters.  87.5% (125/1000)

28 real gammal[K];
: f topi
» {7 for ?very opic Transformation Distribution
30 for (k in 1:K){ Order Spec
31 // topic distribution for this user Program l l Pro‘gram
32 gammalk] <- log(item_topics[item[n], k] + user_topics[user[n], k1) Sl
+ log(word_topics[k, word[nll); Storm
. —
34 increment_log_prob(log_sum_exp(gamma)); // likelihood Reducer {Data D’<D}
36 }
#Samples S #Samples S’ < S

Inference Arguments:
Engine = ADVI; Iters = 1000

Figure 1: Example — Original Code and Data

function increment_log_prob updates explicitly the log density of
the posterior distribution with the value of the inner expression.

Data. In addition to the program, the test case consists of data
points, which give concrete values to all the constants and the vec-
tors (the actual values omitted from Figure 1). For this program, the
number of users U is 28, items I is 84, word instances N is 326, topics
K is 10, unique words V is 17. Overall, the data size is around 4 KB.

Inference. The program runs with Stan’s ADVI (variational) infer-
ence engine [29], which approximates the posterior distribution to
a family of distributions with unknown parameters and converts
the inference problem into an optimization problem. The algorithm
then runs the model and tries to minimize the distance between the

Figure 4: Storm Overview

posterior and the chosen family of distributions for a given number
of iterations. This number is given as the argument (1000).

Bug. This program produces NaN (Not-a-Number) in the output
after 70 iterations when run using ADVI in Stan 2.7.0. The failure
was due to a bug in the inference engine, which does not adapt its
step-size sequence argument correctly, leading to NaN.

2.2 Reduced Program and Data

Figure 2 presents the test case minimized by Storm. The program
now only samples from one Dirichlet distribution (instead of the
previous complicated computation) and hence does not need to
compute the posterior distribution. This program now has only
12 lines of code (compared to 36 in the original) and 12 instead of
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the original 70 program constructs. Table 2 presents the full reduc-
tion statistics. Because the model does not compute the posterior
distributions, the new model does not need any of the user pro-
vided data (word, item, and user), which significantly simplifies
reasoning about its correctness. Our manual inspection shows that
the reduced program still reproduces the same bug as the original
program, despite its much smaller size.

To reduce this program, Storm translates the source code to
the intermediate language Storm-IR, transforms the program, and
outputs the source of the reduced program. The transformations
include basic (e.g., removing statements or expressions) and those
specific to the probabilistic domain (e.g., Math-Function Call Re-
mover, which replaces mathematical functions with appropriate
constant values, and Data Reducer, which reduces data size). Storm
applied basic transformations 17 times and domain-specific trans-
formations 25 times to reduce the program. Eleven of these trans-
formations were distinct. The results shows that Storm effectively
leverages both basic and domain specific transformations.

2.3 Benefits of Program Reduction

Simplified Debugging and Fault-Localization: The reduced pro-
gram immediately points out that the problem with this program

may be caused by some interaction between the Dirichlet distribu-
tion and the inference engine. This is in contrast to the original pro-
gram, where a developer would need to think about various aspects

of the implementation - e.g., does the code correctly represent the

model, how to simulate discrete distributions with log-probabilities

- and the data — e.g., are the values and the parameters in range.

Easier to Derive the Reference Solution: The reduced program
simply samples values from the Dirichlet distribution. Its probability
density function can be easily obtained from a textbook:

T'(betal + beta2)
T(betal) - T(beta2) - xlbem]_1 . xé’em‘?_l

p(x1, x2|betal, beta2) =

By replacing betal and beta2 with values from Figure 2, the
developer can compute the distribution of the program: p(x1, x2) =
0.029 - xl_o'941 . x2_0'941. Then, the developer simply needs to check
that the inference results conform to this probability distribution.

Reduction also helps for programs that do not have a closed-form
solution. A common strategy is to use a different language or an
inference language version and run Monte-Carlo simulation for a
large number of iterations (e.g., over 10000 times) to get a good es-
timate of the distribution. Reduced program takes significantly less
time to run than the original program, e.g., running Stan’s NUTS
engine for 10000 iterations on our reduced example takes 0.26 s,
while running the original example takes 463 s (1781x slower).
Faster Regression Testing: Reducing the computation, data, and
the iteration count directly translate to faster regression testing.
Obtaining the reference solution also helps in creating effective
regression test. Running the regression test for our example takes
0.02 s, while the original program is 214 times slower.

Other Applications of Program Reduction: Since it has the flex-
ible choice of reduction objective i/, Storm can be successfully used
for other scenarios than reproducing bugs. We discuss one such case,
minimizing the program while maintaining coverage in Section 7.
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x € Vars
¢ € ConstsU {—o0, 00}
aop € A{+ - %/}
bop € {=>,.}
Dist € {Normal, Uniform, Beta, ...}
ID € String
Range == <Expr Expr>
Dims == [Exprt]
Type == Int|Float | Type Dims
Decl == x : Type Limits? Dims? | x : [¢*]
Expr == ¢ | x Dims? | Expr aop Expr | Expr bop Expr
| Function | String
Query == posterior(x) | expectation(x)
Function == ID(Expr®)
FunctionDef := def ID ((Type ID)*) { Statement” }
Limits := Range
Statement = x = Expr
| for x € Range; { Statement” }
| observe(Dist(Exprt), x)
| if (Expr) then Statement® else Statement™
| x := Dist(Expr*)
| Function
| Decl
Program := FunctionDef* Statement® Query*

Figure 5: Syntax of Intermediate Representation

3 STORM OVERVIEW

Figure 4 presents the high-level overview of Storm. The inputs to
Storm are 1) a probabilistic program, 2) data, and 3) the arguments
of the inference (e.g., the number of samples). In each step, Storm
checks whether the transformed (reduced) program satisfies the re-
duction property ('), a logical predicate that relates the outputs and
the status of the original and the reduced programs. In this paper, we
mainly consider the property that the reduced program reproduces
the same error status and message as the original program.

3.1 Translators and Storm-IR

Storm translates each program to its intermediate representation,
Storm-IR, on which it applies analysis and transformations. The
translator is responsible for converting the program from the lan-
guage of the existing PP system to the Storm intermediate represen-
tation and converting the reduced program and data from the inter-
mediate representation back to the source language of the PP sys-
tem. We developed translators for Stan and Pyro using Antlr [43].

Figure 5 presents the core syntax of Storm-IR. Storm-IR is an
imperative language with standard constructs like arithmetic oper-
ations, conditionals and loops, and probabilistic constructs like dis-
tributions (Dist) and observe (which conditions the model based on
given data). Each program in Storm-IR has three main components:
user-defined functions (FunctionDef), a set of statements which de-
scribe the probabilistic model, and one or more probabilistic queries
on the model. A query can be either be for the posterior distribution
(posterior) of a parameter in the model or for its expected value (ex-
pectation). The Storm-IR has three kinds of variables: data variables,
parameters, and local variables. The variables are declared as either
primitives or n-dimensional arrays. Optionally, the parameters have
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Algorithm 1: Storm Algorithm

Algorithm 2: Transform Algorithm

Input: Program P;,, Data D;,, #Samples Sjp,
Transformation Order O
Output: Reduced Program P, Data D, #Samples S

procedure MINIMIZE
Changed «— True
P, D, S « P,‘n, Dm, Sin
while Changed do
Changed « False
for T in O do
Preds Dyeds Sreq» C < Transform(T, P, D, S)
if C then
P, D, S < Pred, Dred> Sred
Changed «— True
end if
end for
end while
return P, D, S
end procedure

a Limits construct which specifies the range in which the values of
the parameter must be constrained during inference.

Stan and Pyro have significant differences in both syntax and the
core design. For instance, Stan users need to specify the model in
Stan’s domain-specific language, which clearly separates the data,
parameters, and the model code into different blocks. Pyro programs
are written in Python, which makes it easier to write and compose
different models. Unlike Stan, Pyro requires defining the posterior
distribution for each parameter. Storm-IR is general enough to rep-
resent the core of majority of the example programs included in the
repositories of these languages and allows the translators to handle
the language-specific features discussed above. Our intermediate
language draws inspiration from Probfuzz [10], but improves ex-
pressivity and generality (e.g., it allows arbitrary inter-leavings of
statements like sampling, assignment, observes and loops). This
allows the Storm-IR to represent a richer and more diverse set of
probabilistic programs used across different PP systems.

3.2 Reduction Algorithm

Storm simplifies the structure of the programs by applying trans-
formations and analyses on the intermediate representation. We
describe the transformations we implemented in Section 4.
Helper Analyses. To ensure that the transformed program is syn-
tactically correct, our transformers use several helper analyses for
probabilistic programs. They include Dimensional, Type, Interval
and standard DataFlow analyses (e.g. Def-Use). Dimensional anal-
ysis computes the dimension and type of any given expression.
Interval analysis helps compute the range of values valid for a
given expression. Def-Use analysis finds the uses of a variable in
the model after it is declared. The transformations that simplify dis-
tribution expressions or replace parameters with constants can use
the results of the analysis to make sure that the reduced program
will not fail to run due to the range or dimension mismatches (e.g.,
it prevents setting the negative constant as the variance).

To support these analyses, Storm needs additional (domain-
specific) information about common distributions and mathematical
and probabilistic functions. The information includes the names

Input: Transformation T, Program P;,, Data D;,, #Samples S;,
Output: Reduced Program P, Data D, #Samples S, Changed status C

procedure TRANSFORM
C « False
P, D, S «— Pin, Din, Sin
L « T.getLocations(P, D, S)
i<0
while i < L.length do
P’, D', S’, Modified < T .Transform(P, D, S, L(i))
if Modified then
Reproduced «— Checker(P’, D', S”)
if Reproduced then
P,D,S<P,D,S
C « True
L.remove(i)
i=0
else
i=i+1
end if
end if
end while
return P, D, S, C
end procedure

and ranges of parameters and their support (the ranges of their out-
puts). For instance, the specification of Normal distribution states
that the distribution is continuous and has unconstrained support;
its first parameter (the mean) is an unbounded real and the second
one (the variance) is a positive real.
Main Algorithm. Algorithm 1 presents the reduction algorithm.
It takes the program P, data D, and number of samples or iterations
S (if available). It can optionally take the order of transformations
O which is to be used during reduction process. The algorithm is
iterative fixed point computation, which in each step tries to apply
the transformations and then checks whether the reduced programs
satisfy the reduction property. The variable Changed tracks whether
any transformation was successfully applied during the current iter-
ation. In each iteration, the algorithm tries to reduce the program us-
ing each transformer T according to the pre-specified order O. The
algorithm stops when the iteration cannot apply any reduction.
The Transform algorithm (Algorithm 2) takes as input a trans-
former T, program Pj,, data Dj,, and number of samples S;,. It
finds all candidate locations for the transformation in the program
for transformer T using getLocations function. For transformations
which reduce data, this would return the data items in the program.
For Inference Argument Reducer, this returns the inference parame-
ters to reduce (in this case only Samples S). Next, for each candidate,
the transformer T tries to transform it and check if the reduced pro-
gram still reproduces the same failure as the non-reduced version
using the Checker function. If it succeeds, then the triple of program,
data, and, samples are updated, the candidate is removed from the
list L and i is reset to 0. Otherwise, it moves to the next candidate.
Resetting i to zero allows the transformer to re-check the previous
locations which may now be modifiable after the recent change.
Finally, the algorithm returns the program, data, and samples along
with the indicator of whether any of them were transformed.
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The Checker translates the program in Storm-IR back to the
source code, runs it on the data, and monitors the execution. For
program failures, it is often sufficient to expect the exact exception
strings in output, e.g. “Input vector ... is -nan” or “error: invalid cast
from type ‘stan:math::var’ to type ‘double’”. For infinite loops, we
set a reasonable timeout interval; the transformed program repro-
duces the failure if it still times out (like the original program). The
Checker returns “True” if the execution of the candidate program
still has the property of interest (e.g., the same error message),
or returns “False” if the transformed program does not have this

property.
4 TRANSFORMATIONS

We divide Storm’s transformations into basic — typical structural
reduction transformations that do not require probabilistic domain-
knowledge — and probabilistic - that use the domain-knowledge.
We describe the transformations next, and formally specify them
in the Appendix [50].

4.1 Basic Transformations

Storm implements the common statement-level and expression-
level transformations, which can be found in conventional program
reduction tools, such as C-Reduce [45]. The transformations include
Loop Remover (removes entire loop), Loop Variable Remover (the
loop variable is replaced with a constant), Conditional Remover
(randomly chooses one of the two branches), Function Statement
Remover (removes a function call statement), and Dead Variable
Remover (finds variables and data items which have been assigned
constant values or sampled from distributions but never used).

Storm also has an Arithmetic Simplifier, which reduces arithmetic
expressions by replacing variables with constants, complex expres-
sions with simpler, etc. For instance, it can convert a + b to either a
or b. Since the operands can be arrays or vectors or matrices, Storm
performs type and dimensional analysis of the expression and re-
places the expression with an appropriate constant-valued data
structure. To reduce non-determinism, the arithmetic simplifier
always tries to remove the first operand first. Only if the reduced
program fails to reproduce the failure, it tries to remove the second
operand and checks for failure reproduction again.

4.2 Probabilistic Transformations

Data Reducer. The input data in Storm-IR contains primitives like
integers or floating-point numbers or more complex data structures
like vectors and matrices. In some cases, boundary or special values
in the data may cause run-time failures. Isolating these values in a
smaller data set can ease debugging.

The Data Reducer picks one data item (typically a vector or a ma-
trix) and tries to reduce it, by successively subdividing the number
of values that remain in the data structure. This transformation also
checks that any related data items maintain the same dimensions.
For example, in a linear regression model, which models y = a-x+b,
it is important that the arrays with values for x and y have the same
size, and therefore Storm reduces them in the same way and with
the corresponding data values.

Parameter Remover. The unobserved variables which must be
inferred from the observed data are usually specified as parameters
in Storm-IR. This transformer replaces the use of the parameter
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with a constant value, vector, or matrix. Storm chooses the constant
values randomly, from the set of those within the support of the
prior distribution and ensures that the dimensions are maintained.
Math-Function Call Remover. Stan and Pyro provide inbuilt
mathematical functions (log, exp, abs, etc.) and probability-related
functions (logit, tgamma, gamma_p, etc.). Storm replaces such func-
tion calls with a value in the expected output range of the function.
These kinds of functions require domain knowledge; for example,
the output of gamma_p is always positive. For overloaded functions,
Storm performs type and dimensional analyses on the function argu-
ments to ensure that the expression is valid (such analyses are typi-
cally not done by the conventional program reducing approaches).
Distribution Simplifier. This transformation replaces less-often
used distributions like Laplace, Weibull, etc. with more commonly
used distributions like Normal or Uniform. If the program already
uses the simpler distributions, it tries to reduce the parameters to
standard values. For example, it might reduce Normal(52.15, 10.2)
to Normal(0, 1), a standard normal distribution. These transforma-
tions are useful when a developer wants to understand the reduced
program and manually calculate reference solutions. They can also
help with fault-localization, by pinpointing that the failure is (not)
due to less-commonly used distributions.

Inference Argument Reducer. Stan and Pyro implement two
kinds of Monte-Carlo sampling algorithms: HMC [39] and NUTS [22].
They allow the user to specify the number of iterations to run, which
determines the number of samples to be taken from the posterior
distribution for inference. For variational inference algorithms, like
ADVI [29] in Stan and SVI [27] in Pyro, the iterations determine
the maximum steps the optimization algorithm might use. The In-
ference Argument Reducer searches for the minimum number of
iterations that reproduces the failure. In each round, the Inference
Argument Reducer halves the iterations, starting from the initial
value, and checks whether the failure is reproduced.

Limits Remover. For every data and parameter variable, some
languages (Stan being a prominent example) allow the user to
specify a set of lower and/or upper limits of the parameters. The
limiting helps the sampling algorithm focus on a subset of the input
space and converge faster. But these limits can be ill-specified in
practice. This transformer attempts to remove the limits and checks
if the program still fails. It is analogous to changing the variable
type in conventional programs.

4.3 Transformation Orders

An important component of Algorithm 1 is the transformation
order O, which can affect the quality and speed of reduction on a
given benchmark. We evaluated our algorithm on six orders, which
we briefly outline here and specify them fully in the Appendix [50].

Random order (Rnd) chooses each transformation with uniform
probability without replacement. Fixed order (Fixed) is an order
we manually chose for the experiments based on our experience
and understanding of transformations. Size of transformation order
(Size) applies first the transformations that change more code (e.g.,
Loop Remover and Conditional Remover). Cost of analysis order
(CoA) ranks the transformations such that transformations which
do not require any analyses (e.g., LoopRemover, and FunctionState-
mentRemover) execute before the transformations which require
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one or more analyses techniques (e.g., Arithmetic Simplifier). Basic-
Probabilistic order (B-P) applies first all basic transformations, then
probabilistic ones. Probabilistic-Basic order (P-B) first applies all
probabilistic transformations, than basic ones.

5 METHODOLOGY

This section presents our methodology for collecting and catego-
rizing program that expose bugs in Stan and Pyro.

5.1 Selection of Bugs

Stan. To obtain probabilistic programs that reveal existing bugs for
Stan, we studied the bug reports from the existing bug-database
for probabilistic programming systems [10]. The database contains
138 probabilistic bugs, divided in four categories. We denote each
such bug with the prefix “stan” followed by the issue identifier. We
selected only the bugs with reproducible test cases.

We augment the programs from the bug reports with additional
bug-revealing programs from Stan’s repository of models [48]. We
obtained a set of 367 probabilistic programs from Stan’s public
repository [48]. We ran the programs across the versions of Stan
2.3,25,26,2.6.2,2.7,209,2.10, 2.14, 2.15 and 2.18 (the latest). We
ran each program using three inference algorithms available in
Stan: NUTS [22], HMC [39], and ADVI [29]. We identified those
programs that produce a failure (compile but either crash, produce
numerical errors, or loop infinitely) in one of the earlier versions,
but produce the correct result in the latest version. Those programs
are representative of those that would reveal true bugs in the PP
system in real operation. These programs were considerably larger
than the ones obtained from the bug reports in both code (more
than 90%) and data (more than 100%) on average.

In total, we tested Storm on 23 bugs from Stan issues and 11

programs taken from Stan’s example models repository. The size
of test cases range from 5 to 57 lines of code (excluding blank lines
and comments). We used Cmdstan to run all the programs, except
three that require PyStan. Overall, the programs cover four infer-
ence methods: Sampling (NUTS [22] and HMC [39]), Variational
(ADVI [29]) and Optimization (also known as MAP [41]), and one
simulation method: Fixed Param (FP); additionally, some failures
were due to bugs in the Stan compiler code (stan723), and bugs in
Diagnostic mode (stan1308), which is used to test computations of
gradient and log-probability and flag any issues.
Pyro. For Pyro, we collected bug-revealing programs from two
sources. We obtained 6 bug-revealing programs from [10]. We
named those programs pf1-pf6. We also converted the programs
obtained from Stan’s repository of models [48] into Pyro programs
and ran them using the three recent versions of Pyro, 0.2.0, 0.2.1,
and 0.3.0. We identified 7 programs (dyes, dyes_020, ES, ES_020,
GP2, GP2_020, radon) which run without failures in the current
released version of Pyro (0.3.0), but crash in the older and buggy
versions. The program lines range from 36 to 77. All the programs
were run using Stochastic Variational Inference (SVI) algorithm.

5.2 Bug Classification

Following the characterization from [10], we classified the bugs as:
Crashing Bugs. These bugs cause compilation-time or run-time
failures with error messages in the output, such as “runtime error:
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load of value 3, which is not a valid value for type ‘bool’, “Segmen-
tation fault: 117, “Domain error in arguments” etc. Many of these
bugs are due to the out-of-bounds accesses or wrong dimensions
of the data structures. We reproduced 5 such bugs in this category
for Stan and all 13 Pyro bugs fall in this category.

Numerical Bugs/Infinite Loops. Numerical bugs include special
values like NaNs or Inf's in the output, which usually appear due to
missing support for handling boundary conditions. We reproduced
9 Stan bugs from this category with inputs provided by the bug re-
ports. A special class of numerical bugs are those that cause infinite
loops during inference. We reproduced 2 Stan infinite loop bugs.
Accuracy/Unexpected Output Issues. For the cases, the execu-
tion does not crash but produces some unexpected values. For
example, in one case, the computation of effective sample size of a
parameter for the NUTS engine in Stan was incorrect due to a bug
in the code. We reproduced 5 bugs from this category with inputs
provided by Stan’s bug reports.

Language/Implementation. These bugs appear while translating
the program’s source-code. We replicated 8 such bugs for Stan.
Finally, we also consider 3 general coding bugs.

5.3 Reduction Metrics

To demonstrate the quality of test case minimization, we collect
several metrics during experimentation. For code reduction, we
consider two metrics that characterize the size of the program:

e Lines of code, without empty lines or comments.

e The count of non-terminal language constructs in Stan’s parse
tree (e.g., loops, sampling statements, conditionals, or arithmetic
operations) for the given test case.

We use count of non-terminals since the probabilistic programs
have a high-level of expressiveness, and a single change (smaller
than a line) in the code may make significant impact on the accuracy,
analyzability, or execution time of the program. For the grammar
that we used for Stan, there are 42 such unique constructs. For Pyro,
we use the Python grammar, which has 41 unique constructs.

In this work, we use a metric for code reduction known as Size
Reduction Rate (SRR) defined in [2] as:

Size(to) — Size(tyeq)
Size(ty)
where t, is the original test case, t,.4 is the reduced test case, Size(t)

is the size of the test case using the metrics defined above. To com-
pare data savings DataRed, we use the following metric:

>

Score(to, treq) =

DataSize(t,) — DataSize(t,eq)
DataSize(t,)

where DataSize(t) is number of bytes in the data input for ¢. Finally,

we calculate the ratio of the number of samples/iterations in the

reduced test case to that in the original.

DataRed(to, tyeq) =

6 EVALUATION

We evaluate experimentally the following research questions:

RQ1 How effective is Storm in reducing test cases?

RQ2 How much benefit do probabilistic transformations provide?
RQ3 How much does program reduction speed up inference?
RQ4 How important is the order of transformation in reduction?



ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia Saikat Dutta, Wenxian Zhang, Zixin Huang, and Sasa Misailovic

Table 1: Stan Example-Models Reduced Using Storm 6.1 Test Cases Reduced by Storm
Test SRR LoC  Data Red. Iters. Tables 1, 2, and 3 show the performance of Storm for the bugs in Stan
armall (VI) 44/85 20725 49.9% 3/1000 examples, Stan issues, and Pyro examples, respectively. Column 1
armall_alt (V]) 46/73 2023 49.9% 1/1000 (Test) is the test-case identifier — an issue number or benchmark
dogs_log (VI) 10798~ 6/33 100.0% 1/1000 name for the example-models, and algorithm[NUTS/ HMC/ Varia-
roaches (VI) 11/38 8/18 99-5% 1/1000 tional(VI)/Optimize(Opt)] or mode[Diagnose(Diag)/Fixed-Param(FP)]
roaches_od (VI) 23/74 12/28 99.2% 1/1000 .
roaches od 2 (V) 2374  14/28 64.8% 1/1000 used to run the program. Column 2 (SRR) presents the ratio of the
salm2 (VI) 24/74  16/27 51.1% 1/1000 original number of program constructs to the ones in reduced test
salm2_2 (VI) 1/74 2/27 100.0% 1/1000 cases (Section 5.3). Column 3 (LoC) presents the ratio of original
salm (VI) 38/128  22/47 41.0% 1000/1000 source lines of code to the reduced source lines of code for the
stagnant (VI) 11/76 9/26 98.7% 125/1000 test case. Column 4 (Data Red.) presents the percentage of the
survey (VI) 35/65 28/32 36.4% 1/1000 reduced data points (relative to the original size). The cases which
Avg. Savings 68.37% 49.27% 71.86% 103/1000 did not have any data are marked as NA. Column 5 (Iters) presents
the reduction of the argument (the number of samples for MCMC,
iterations for variational inference) of the approximate inference al-
Table 2: Stan Github-Issues Reduced Using Storm gorithms. For SRR, LoC, and, Data Red., we compute the average
Test SRR LoC  Data Red.  Tters. savings by adding up the savings for each benchmark and dividing
stan240 (NUTS) 3/3 9/9 0.0% 1/1000 by total benchmarks in the set. For Iters, we compute the average
stan499 (NUTS) 12/17  12/14 68.2% 1/1000 of original iterations and reduced iterations separately and report
stan543 (NUTS) 18/32  14/18 74.5% 500/1000 the ratio as savings.
stan674 (NUTS) 13/24 8/10 NA 1/1000 From the data in the three tables, we conclude that Storm was
stan685 (NUTS) 8/13 6/10 NA 1/1000 able to reduce all 47 test cases across all algorithms in at least one
stan723 (NUTS) 23/32 16/19 NA 1/1000 of program constructs, number of lines, data, or the number of
stan1053 (FP) 13/21 8/11 NA 1/10000

samples. Storm was able to reduce over 90% in program size, data,

zziﬁii ggig; 55/ /156 85//153 (;\IO/;% iﬁggg and inference arguments (samples in Monte-Carlo simulation and
stan1200 (Opt) 12721 11/15 99.7% 1/1000 iterations in Variational inference). Out of total 47 programs, 5
stan1241 (NUTS)  19/28  8/13 NA 1/1000 improved in one category, 7 improved in two categories and 29
stan1308 (Diag) ~ 37/196  11/57 100.0% 1/1000 improved in three categories. Tables 1 and 3 show that with an
stan1366 (NUTS)  12/16  6/11 NA 1/1000 exception of salm, all larger probabilistic programs are reduced by
stan1435 (Opt) 5/20 8/13 0.0% 1/1000 Storm in all three categories.

stan1443 (NUTS)  8/13 7/10 NA 1/1000 Coverage. Table 4 presents how many lines of the PP system the
stan1474 (NUTS)  14/16  10/10 NA 15/1000 original and reduced program cover on average (as measured with
ztzzig;g E\I\/III)JTS) iigg 191//1366 giii% 1?/51/(1)280 geov for Stan and coverage.py for Pyro). Column 1 (Benchmark)
stan1974 (NUTS)  5/7 3/6 NA 1/1000 presents the group of benchmarks. Column 2 (Hit) presents the
stan2188 (NUTS)  9/9 6/6 NA 1/1000 average number of lines executed by the original programs. Col-
stan2237 (HMC) 3/63 5/25 100.0% 1/1000 umn 3 (Total) presents the total number of lines in the PP system.
stan2294 (NUTS)  9/9 6/6 NA 1/1000 Column 4 (Cov) presents the average original line coverage for the
stan2311 (NUTS)  4/18 6/16 NA 1/1000 benchmarks. Column 5 (HitR) presents the average number of lines
Avg. Savings 40.89% 32.32% 60.13% 29/1391 executed by the reduced programs. Column 6 (TotalR) presents the

total lines in the PP system. Column 7 (CovR) presents the average
line coverage for the reduced programs.

Table 3: Pyro Example-Models Reduced Using Storm
Table 4: Coverage of Reduced Programs

Test SRR LoC_ DataRed. Iters. Benchmarks Hit Total Cov HitR TotalR CovR
pf1(VD) 138/209  28/37  99.3%  3/4000 Stan Issues 9796 25713 3807% 8996 25713 34.97%
pf_2 (VI) 88/207  23/36 99.3% 1/4000 Stan Examples 10690 25738 41.53% 9844 25738 38.24%
pf_3 (VD) 153/298 ~ 30/46  98.6%  3/4000 Pyro Examples 7272 24790 20.31% 7224 24790 28.92%
pf_4 (VI) 153/285 30/44 92.2% 3/4000

pf5 (V) 126/270 - 27/44 98.8% 62/4000 The results show that 1) the number of lines covered by both the
pf_6 (VI) 153/326 30/50 92.1% 3/4000 iwinal and th d d i sionifi t and 2) th

dyes (VI) 131/331  29/55 96.3% 1/4000 original and the reduced programs is significant an ) the coverage
dyes_020 (V1) 129/330  29/56 96.3% 1/4000 of the reduced programs, despite of their significantly smaller size
ES (VI) 129/250  29/44 95.87% 1/4000 is only slightly lower than the coverage of the original programs.
ES_020 (VI) 129/254 29/44 95.8% 1/4000

GP2 (VI) 131/553  29/77 99.9% 1/4000 6.2 Impact of Probabilistic Transformations
GP2_020 (V) 129/557  29/77 99.9% 1/4000 We next study the impact of the newly proposed probabilistic trans-
radon (VI) 129/439 _ 29/61 100.0% 1/4000 formations. To do so, we compare the impact of Storm when using
Avg. Savings 56.58%  42.04% 97.25% 6/4000

both the probabilistic and basic transformations, to a variant that
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uses only basic transformations. Table 5 presents the summary of
the results. For each group of benchmarks, we compute and ag-
gregate three statistics from Section 6.1. We compared the savings
of that version of Storm to the original (non-reduced) program.
Here, Column 2 (Code) presents savings in code constructs — SRR.
Column 3 (Data) presents savings in data items. Column 4 (Iters)
presents savings in the number of iterations. Note that the basic
transformations cannot not reduce the number of iterations. In all
cases, the savings are represented as percentages.

Table 5: Comparing Storm and Basic Transformations Only

Benchmarks Code Data Iters
Storm Basic Storm Basic Storm Basic
Stan Issues 40% 36% 60% 46% 97% 0%

Stan Examples 68% 61% 71% 47% 89% 0%
Pyro Examples  56% 53% 97% 82% 99% 0%

The results show that probabilistic transformations improve re-
duction of both code and data. The reduction in data with basic
transformations is due to the Dead Variable Remover transformer:
when it is possible to remove some data variables from the model,
corresponding data-sets can also be removed from the data file with-
out any effect on the model. Even then, we notice that in three cases,
probabilistic transformations can further reduce the data-sets.

Probabilistic transformations contributed significantly to the suc-
cess of reduction — more than 60% of the successful transformations
across the three sets of benchmarks were domain-specific trans-
formations. The Storm algorithm accepted 59% of all the domain-
specific transformations, compared to 48% of the basic transforma-
tions across all benchmarks.

The reduction of inference arguments is unique to Storm with
probabilistic transformations. For all the test cases which use sam-
pling algorithms, Storm was able to significantly reduce the number
of samples (to 1 in all cases except stan543 and stan1474). For vari-
ational inference, the iterations were reduced to 1 in 8 cases (out of
12) for Stan and 8 cases (out of 13) for Pyro. This shows that often
the bugs can be revealed quickly by a small number of iterations
and can save debugging time for the developer.

6.3 Speedup of Reduced Programs

If the developers needs to rerun these tests in regression testing,
they can leverage smaller versions of the programs provided by
Storm’s transformations. Table 6 presents the summary of the run-
times (without compilation) of the original and reduced programs,
run with recent versions of Stan (2.16.0) and Pyro (0.2.1). We only
consider the cases where both original and reduced programs pass
the test. Column 2 (TimeO) presents the average time of the origi-
nal program. Column 3 (TimeR) presents the average time of the
reduced program. Column 4 (Speedup) presents the ratio of TimeO
by TimeR. Overall, the speedup when running the reduced tests is
significant, especially for the larger programs with more data (for
Stan and Pyro examples).

Table 6: Execution time reduction

Benchmarks TimeO TimeR Speedup
Stan Issues 1.02s 0.25s 4.1x
Stan Examples 12.63s 0.10s 126.3x

Pyro Examples  106.36s 0.85s 125.1x
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6.4 Impact of Transformation Orders

We evaluated whether the order of transformations in each step
of the algorithm has a significant impact on the overall reduction
of the test cases. We ran Storm on the test cases using six orders
described in Section 4.3.

Table 7 presents the total execution times of the algorithm for
these six orders, on a 12-core machine, using all cores for evalu-
ation. Each time is in the format “minutes:seconds”. In all cases,
Storm converges to the minimal test case, or a test case with very
similar quantitative reduction metrics (which we omitted), even in
unfavorable orderings. Recall that Storm’s algorithm iterates until
reaching a fixed point, and unfavorable ordering will most often
simply take more steps to terminate.

Table 7: Execution Times for Different Orders.

Fixed Rnd Size CoA B-P P-B
Stan Issues 41:24  45:04 53:33  41:32 55:58  44:27
Stan Examples 47:33  43:26  42:15 46:15 46:32 52:28
Pyro Examples 2:25 714 452 146 2:05  2:18

For Stan Issues, Fixed and CoA orders show the best results. For
Stan Examples, Size order is the fastest. We believe the reason is that
these programs are more complex than the Stan issues and have
more control structures like loops and conditions. Hence, using the
transformations which remove the larger blocks early on reduces
the run-time of the programs and thus the reduction algorithm as
well. Finally, for Pyro examples, CoA is the fastest. The time of
algorithm for Pyro is significantly smaller than for Stan because it
interprets the programs, instead of compiling them, like Stan.

7 APPLICATIONS OF STORM

In this section, we highlight two additional scenarios in which
Storm can be applicable.

7.1 Incremental Debugging

A test case can potentially reveal multiple bugs in the system. But
during execution, one failure can hide other bugs. A developer then
has to go through a cycle of fixing a bug and re-running the test
case to find other bugs in the system. Storm can help automate this
cumbersome process.

Consider a simplified program for linear regression in Figure 6.
The program has two data-sets x and y, each of size 10 (lines 2
and 3). In lines 4-6, the parameters w, b, and p, are assigned prior
distributions. In line 7, the linear regression model is defined and
conditioned on the data variables using observe statement. Lines
8-10 contain queries for posterior distribution for each parameter.
The original program fails when run with Pyro 0.1.2 with the error
“Domain error in arguments”, which does not clearly indicate the
cause of the failure. When we run this program with Storm, it is
reduced to the program from Figure 7. The data-set y now has only
1 element and the observe statement has a simple distribution and
data variable y. Now, it is quite easier to figure out that the value in
y (—2.99) is outside the range of support for beta distribution (0, 1).
If we look at the original program, we can observe that the values
in y were outside of the support of lognormal distribution, (0, c0).

Even after this issue is resolved (for instance, by changing log-
normal distribution to normal), the program fails with the same
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N: 10

x: [ 72.97, 34.94, ...]

y: [ —2.99,1.95, 2.77, ..]
w:= exponential(37.47)

1 N:1
2

3

4

5 b:= exponential(—31.49)[N]

6

7

8

9

y: [-2.99]

p:= gamma(1.0,1.0)[N]
observe(beta(1.0, 1.0), y)
posterior(p)

[S ST RN

p:= lognormal(55.43,61.35)[N]
observe(lognormal(w=x+b, p), y)

Figure 7: Minimized Prog. 1

posterior(w) . N3
poster?or(b) 2 b:= exponential(—31.49)[N]
10 posterior(p) 3 posterior(b)

Figure 6: Original Program  Figure 8: Minimized Prog. 2

error. Using Storm again, we reduce the fixed original program
(Figure 6) to the snippet in Figure 8, which has only one parameter
with exponential distribution. The bug here is the negative value
in exponential distribution, which expects a positive value. The
original program had the same issue at Line 5. Storm takes only 74
seconds to find the error-inducing lines in each round.

7.2 Using Coverage as a Criterion

We explore the generality of Storm through a case study where we
change the reduction property () to preserve the line coverage
of the PP system (Stan) under test i.e. the coverage of the reduced
program is the same as the original program. We used Icov to
measure the line coverage after each transformation. We also turned
off transformations that do not always reduce code and might
cause the transformed program to execute a different function (e.g.,
Distribution Simplifier may replace a distribution with another
distribution). Overall, Storm reduced the code constructs by 30.4%
and data by 22.5%.

8 THREATS TO VALIDITY

Internal. Our Storm implementation may contain bugs, some bugs
may have been mis-categorized during our selection and reproduc-
tion, and we may have made wrong conclusions about some mini-
mized programs. To mitigate the risk of implementation bugs, mul-
tiple co-authors conducted a code-review of Storm and test-cases.
External. Storm methodology may not generalize to all PP system.
However, there are three aspects which help mitigate the risk. First,
we present the evaluation on two commonly used languages with
different design, Stan and Pyro. Second, we looked at historical
bugs, which may provide a good guide for the kind of bugs that
may appear in the future. The maturity of Stan and the development
effort in Pyro increase confidence that these bugs are representa-
tive of probabilistic programming in general. Third, our design on
Storm minimizes the dependence on the language — most of the
transformations are generic and can be applied to other languages.

9 RELATED WORK

Test Reduction. C-Reduce [45] reduces test cases for C programs
(often generated using CSmith [56] test generator). C-Reduce uses
source-to-source transformations customized for C-like programs,
but its application to the domain of probabilistic programming is not
straightforward. We also show the importance of domain-specific
(probabilistic) transformations for successful program reduction,
and make a parallel to CSmith and C-Reduce, by showing how
Storm can reduce the programs generated by Probfuzz [10]. Other
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approaches for program reduction include Delta debugging [57],
which is one of the earliest known techniques for test reduction.
It removes parts of the failing test (code or data) until no single
part can be removed without the test passing. Hierarchical Delta
Debugging (HDD) [36] applies DD using the structure of the input.
HDD generates fewer syntactically invalid programs but provides
no guarantee. In contrast to these approaches, Storm produces only
syntactically-correct reduced tests.

Perses [51] is a recent language-agnostic framework for reduc-
ing programs in conventional programming languages (e.g., C and
Java). Like Perses, Storm uses the syntax of the language to guide
the reduction process, applies the transformations on the interme-
diate representation, and generates syntactically valid programs.
Storm strengthens the reduction process using various kinds of
static analyses including dimensional and type analysis. Storm also
uses probabilistic transformations to reduce data and inference
parameters, which improves the overall reduction quality beyond
the reach of general reduction frameworks.

Zhang et al. [58] proposed a technique for test simplification that
is also able to modify portions of a test by replacing expressions
with those already existing in the test. Other approaches [21, 30, 53]
provide domain specific transformations to produce minimal struc-
tured data sets and reduce size of tests. To the best of our knowledge,
we are the first to present domain-specific transformations and min-
imization for the probabilistic programming domain.
Verification and Analysis of Probabilistic Programs. Previous
research proposed various techniques for statically analyzing and
verifying properties of probabilistic programs, e.g., [6, 11, 14, 25,
31, 33, 37], including analyses that aim to help with debugging,
e.g., [23, 38, 40]. In comparison, Storm presents a dynamic analysis
that performs a heuristic search for smaller probabilistic program
that reveal the same bugs.

Program slicing [54] is a standard technique for removing un-
necessary parts of the code. Researchers recently extended slicing
to probabilistic setting [3, 24]. Similarly, refactoring is a general set
of techniques that modify program source code while preserving
the program semantics, yet improve the program’s internal struc-
ture [12, 34]. In contrast, Storm reduces program while ensuring
that only bug manifestation remains, and has the freedom to change
program semantics.

10 CONCLUSION

This paper presented Storm, a novel approach for reducing proba-
bilistic programs. Storm presented both basic program reduction
transformations, driven by program analysis and domain-specific
probabilistic techniques to minimize the size and complexity of
bug-revealing probabilistic programs. We evaluated Storm on 47
bug-revealing programs from two state-of-the-art PP systems, Stan
and Pyro. For Stan, our minimized programs have 49% less code, 67%
less data, and 96% fewer iterations. For Pyro, our minimized pro-
grams have 58% less code, 96% less data, and 99% fewer iterations.
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