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ABSTRACT
Probabilistic programming languages offer an intuitive way to

model uncertainty by representing complex probability models

as simple probabilistic programs. Probabilistic programming sys-

tems (PP systems) hide the complexity of inference algorithms

away from the program developer. Unfortunately, if a failure occurs

during the run of a PP system, a developer typically has very little

support in finding the part of the probabilistic program that causes

the failure in the system.

This paper presents Storm, a novel general framework for re-

ducing probabilistic programs. Given a probabilistic program (with

associated data and inference arguments) that causes a failure in

a PP system, Storm finds a smaller version of the program, data,

and arguments that cause the same failure. Storm leverages both

generic code and data transformations from compiler testing and

domain-specific, probabilistic transformations. The paper presents

new transformations that reduce the complexity of statements and

expressions, reduce data size, and simplify inference arguments

(e.g., the number of iterations of the inference algorithm).

We evaluated Storm on 47 programs that caused failures in two

popular probabilistic programming systems, Stan and Pyro. Our

experimental results show Storm’s effectiveness. For Stan, our min-

imized programs have 49% less code, 67% less data, and 96% fewer

iterations. For Pyro, our minimized programs have 58% less code,

96% less data, and 99% fewer iterations. We also show the benefits

of Storm when debugging probabilistic programs.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Probabilistic programming languages offer an intuitive way to

model uncertainty by representing complex probabilistic models

as simple programs [1, 4, 7–9, 13, 16–18, 28, 32, 35, 42, 44, 52, 55].

A key novelty of probabilistic programming is the separation be-

tween the probabilistic modeling and probabilistic inference. An end-

programmer expresses probabilistic models in a high-level language
with constructs for random choice (e.g., sampling from common

distributions), conditioning on data (e.g., observation statements)

and probabilistic queries (e.g., posterior distribution) [19].

A probabilistic programming system (PP system) automates many

intricate details of probabilistic inference, while executing one

of the common inference algorithms, such as Monte-Carlo sam-

pling [22, 39] or Variational inference [29]. A PP system takes

three inputs: 1) a probabilistic program, 2) a set of data points on

which to perform inference, and 3) arguments of the inference al-

gorithm. Typically, PP systems compile the probabilistic program

into an efficient low-level inference procedure, which includes ini-

tializing the underlying inference algorithm, translating of proba-

bilistic programs (models) to an intermediate representation, sim-

plifying the model, compiling to low-level API (e.g., Tensorflow),

and many others.

The numerical and approximate nature of PP systems and imple-

mentation complexity make it hard to ensure their correctness, and

subtle bugs can easily remain unnoticed [20, 38, 47]. Our recent

study [10] showed that over 25% of all bugs in three popular systems

are domain specific, including algorithmic, numerical, boundary

condition, dimensional, and accuracy bugs. The bugs manifest as

wrong results, crashes, infinite loops, or numerical exceptions.

If a failure occurs during the execution of a PP system, the devel-

oper typically has to figure out the source of the problem manually.

This is not an easy task: while probabilistic programs are intuitive

to write, they can be notoriously hard to analyze [26, 38]. Proba-

bilistic programs typically have a small number of lines of code,

but they exercise many functionalities of the underlying PP system.

For instance, an execution of a simple 10-line program in Stan [15],

one of the most popular PP systems, can execute over 6000 lines of

code of Stan implementation.

To be able to reproduce and analyze the failures in PP systems,

the developers of PP system suggest bug reports with self-contained

andminimalistic tests, e.g., in Stan: “the key to a successful bug report
is to provide as much context as possible, ideally in the form of a small
reproducible example” [46]. This requirement is similar to the one

from the standard compilers (e.g., [45]). Minimized programs help

with both debugging (e.g., calculating the reference result) and

speeding up regression testing (by executing the programs faster).

However, coming up with minimal programs requires significant

manual effort through trial-and-error.

https://doi.org/10.1145/3338906.3338972
https://doi.org/10.1145/3338906.3338972
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Program reduction has been instrumental in the tasks of com-

piler testing and debugging. For standard compilers, researchers

proposed various methods to reduce the size of bug-revealing pro-

grams such that the reduced program still exposes the bug, but

helps the developer better understand and debug the program ex-

ecution [36, 45, 51, 57]. Our insight is that the same conceptual

approach can apply for debugging PP systems: just like a com-

piler that translates an input program, PP system translates and/or

executes a triple of probabilistic program, data, and inference ar-

guments. However, the existing program reduction approaches

for conventional languages, either operate on textual representa-

tion [57], potentially generating many illegal programs, or use only

syntactic information about the programs [36, 51], but do not lever-

age semantic information; they are also oblivious to the inference

arguments (e.g., the number of Monte-Carlo samples).

Our Work. We present Storm, a novel approach for automatically

reducing probabilistic programs and show its utility in the scenarios

of testing and debugging PP systems. Storm applies various trans-

formations to reduce the probabilistic programs. Unlike existing

approaches for conventional programs, Storm leverages program

analysis and probabilistic reasoning to simplify bug-revealing prob-

abilistic programs. We show the benefits of the domain-specific and

probabilistic information about the programs.

We formulate our problem in the spirit of [51]: Given a probabilis-

tic program P , data d , and inference arguments θ that have a prop-

ertyψ (e.g., a PP system execution fails with a particular error mes-

sage), the goal of probabilistic program reduction is to find a smaller

(P ′,d ′,θ ′), that has the same property, ψ (P ′,d ′,θ ′) = ψ (P ,d,θ )
(e.g., the PP system execution fails with the same error message).

Storm is a generic framework that uses both syntactic and domain-

specific, semantic information about probabilistic programs to gen-

erate only valid probabilistic programs. We designed Storm to be

language-agnostic: it translates programs from the existing systems

to a common intermediate representation, Storm-IR. We define all

our analyses and transformations on Storm-IR and finally output

the reduced program back to the source language. We present the

translation of two popular languages (Stan [15] and Pyro [4]) with

significantly different syntax and language models.

Storm is a transformation-based framework. It supports both con-

ventional program transformations and novel probabilistic trans-

formations. Novel transformations include data reducer (which

aims to keep specific bug-revealing values in the data set), distribu-
tion simplifier (which replaces complex distributions or parameters

with appropriate constants, expressions, or simpler distributions),

parameter remover (which removes a parameter and replaces its

references with a suitable constant), math-function call remover
(which replaces common mathematical functions with constants),

and inference argument reducer (which finds a minimum number of

samples or iterations of the inference algorithm required to repro-

duce a failure). They augment the basic program transformers, such

as arithmetic simplifier, removers for conditionals, loops, function

calls, and assignments (similar to C-Reduce [45]). Storm’s reduc-

tion algorithm reduces the program size by iteratively applying

both the basic and domain-specific transformations and performing

lightweight analysis on the program’s intermediate representation

(including dependence, interval, type, and data-flow analysis).

Results. We use the reducer to generate smaller programs that re-

veal failures in two state-of-the-art PP systems: Stan [8, 15, 29], one

of the most mature and frequently-used PP systems, and Pyro [4],

a Python-based deep probabilistic modeling framework from Uber.

We studied three sources of bugs: 1) a probabilistic bug database

we created in previous research [10], which includes test programs

that were already minimized by a human, 2) new bugs discovered

using ProbFuzz [10], and 3) a repository with representative Stan

models that offers larger probabilistic programs [48]. In total, we

analyzed 47 programs (34 from Stan and 13 from Pyro).

Our results show that Storm’s reduction strategies often gener-

ates significantly smaller programs than those provided by the users

or developers. In particular, Storm was able to remove non-trivial

program constructs in 45 programs, reduce the data size in 30 pro-

grams out of 33 programs that have data, and reduce the execution

time of the inference algorithm (e.g., by reducing the number of

Monte-Carlo simulations or Variational inference iterations) in 46

programs. Storm shows a significant improvement in the number

of removed data points and program constructs over the baseline

approach that applies only basic transformations.

Contributions. The paper makes the following contributions:

⋆ We present Storm, which is, to the best of our knowledge, the

first reduction framework for probabilistic programs.

⋆ We introduce a program reduction algorithm that is aware of

probabilistic information and guided by program analysis.

⋆ We introduce domain specific transformations in addition to

basic transformations used for conventional languages.

⋆ We evaluate Storm on existing bug-revealing programs from

popular probabilistic programming systems, Stan and Pyro.

2 EXAMPLE
Figure 1 presents a bug-revealing program in Stan, taken from the

bug issue Stan1610 [49]. We will demonstrate Storm’s ability to

reduce this program while still revealing the same bug in Stan.

2.1 Original Program
The program in Figure 1 represents a variant of Latent Dirichlet

Allocation (LDA) model [5]. In LDA, each document is assumed

to contain a mixture of topics and each topic is assumed to use a

small set of words frequently. Using LDA model, users try to infer

the distribution of words and topics in observed documents. The

program in Figure 1 represents the topic distributions for users and

items instead of documents. It consists of three parts:

• Data block (lines 1-13): It specifies the type and dimension of

the input data which is to be used to condition the probabilistic

model. It contains the dimensions and the names of all constants,

priors, and observed data points.

• Parameters block (lines 14-18): It contains the random variables

whose posterior distribution Stan should infer.

• Model (lines 19-36): The model establishes the relationship be-

tween the observed and unobserved variables. First, it assigns

a prior to all the parameters, which denotes the user’s belief of

the distribution of their values. Here, all the parameters are as-

signed priors from Dirichlet distribution (lines 20-25). Then it

specifies the relation of the variables to the data. It implements

LDA using custom log-density updates (lines 27-33). The built-in



Storm: Program Reduction for Probabilistic Programming Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Dataset:
U = 28; I = 84; N = 326; K = 10; V = 17

word = [ (326 float values) ];

item = [ (326 float values) ];

user = [ (326 float values) ];

alpha_user = [ (10 float values) ];

alpha_item = [ (10 float values) ];

beta = [ (17 float values) ];

Model:
1 data {

2 int K; // num topics

3 int V; // num words

4 int U; // num users

5 int I; // num items

6 int N; // total word instances

7 int word[N]; // word n

8 int item[N]; // item ID for word n

9 int user[N]; // user ID for word n

10 vector[K] alpha_user; // topic prior concentrations for users

11 vector[K] alpha_item; // topic prior concentrations for items

12 vector[V] beta; // prior probability for seeing word

13 }

14 parameters {

15 simplex[K] item_topics[I]; // topic dist for item i

16 simplex[K] user_topics[U]; // topic dist for user u

17 simplex[V] word_topics[K]; // for topic k prob of seeing word v

18 }

19 model {

20 for (i in 1:I)

21 item_topics[i] ~ dirichlet(alpha_item); // prior on item topics

22 for (u in 1:U)

23 user_topics[u] ~ dirichlet(alpha_user); // prior on user topics

24 for (k in 1:K)

25 word_topics[k] ~ dirichlet(beta); // prior

26 // for every word in our corpus

27 for (n in 1:N) {

28 real gamma[K];

29 // for every topic

30 for (k in 1:K){

31 // topic distribution for this user

32 gamma[k] <- log(item_topics[item[n], k] + user_topics[user[n], k])

+ log(word_topics[k, word[n]]);

33 }

34 increment_log_prob(log_sum_exp(gamma)); // likelihood

35 }

36 }

Inference Arguments:
Engine = ADVI; Iters = 1000

Figure 1: Example – Original Code and Data

Dataset:

K = 1; V = 2

beta = [ 0.0588235, 0.0588235 ];

Model:

1 data {

2 int K;

3 int V;

4 vector[V] beta;

5 }

6 parameters {

7 simplex[V] word_topics[K];

8 }

9 model {

10 for (k in 1:K)

11 word_topics[k] ~ dirichlet(beta);

12 }

Inference Arguments:

Engine = ADVI; Iters = 125

Figure 2: Example: Reduced Code and Data

Figure 3: Example: Reduction Statistics
Reduction % Ratio

Lines of Code 69% (11 / 36)

Code Constructs 83% (12 / 70)

Data Points 98% (41 B/4 KB)

Algorithm Iters. 87.5% (125 / 1000)

Figure 4: Storm Overview

function increment_log_prob updates explicitly the log density of

the posterior distribution with the value of the inner expression.

Data. In addition to the program, the test case consists of data

points, which give concrete values to all the constants and the vec-

tors (the actual values omitted from Figure 1). For this program, the

number of users U is 28, items I is 84, word instances N is 326, topics
K is 10, unique words V is 17. Overall, the data size is around 4 KB.

Inference. The program runs with Stan’s ADVI (variational) infer-

ence engine [29], which approximates the posterior distribution to

a family of distributions with unknown parameters and converts

the inference problem into an optimization problem. The algorithm

then runs the model and tries to minimize the distance between the

posterior and the chosen family of distributions for a given number

of iterations. This number is given as the argument (1000).

Bug. This program produces NaN (Not-a-Number) in the output

after 70 iterations when run using ADVI in Stan 2.7.0. The failure

was due to a bug in the inference engine, which does not adapt its

step-size sequence argument correctly, leading to NaN.

2.2 Reduced Program and Data
Figure 2 presents the test case minimized by Storm. The program

now only samples from one Dirichlet distribution (instead of the

previous complicated computation) and hence does not need to

compute the posterior distribution. This program now has only

12 lines of code (compared to 36 in the original) and 12 instead of
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the original 70 program constructs. Table 2 presents the full reduc-

tion statistics. Because the model does not compute the posterior

distributions, the new model does not need any of the user pro-

vided data (word, item, and user), which significantly simplifies

reasoning about its correctness. Our manual inspection shows that

the reduced program still reproduces the same bug as the original

program, despite its much smaller size.

To reduce this program, Storm translates the source code to

the intermediate language Storm-IR, transforms the program, and

outputs the source of the reduced program. The transformations

include basic (e.g., removing statements or expressions) and those

specific to the probabilistic domain (e.g., Math-Function Call Re-

mover, which replaces mathematical functions with appropriate

constant values, and Data Reducer, which reduces data size). Storm

applied basic transformations 17 times and domain-specific trans-

formations 25 times to reduce the program. Eleven of these trans-

formations were distinct. The results shows that Storm effectively

leverages both basic and domain specific transformations.

2.3 Benefits of Program Reduction
SimplifiedDebugging and Fault-Localization:The reduced pro-
gram immediately points out that the problem with this program

may be caused by some interaction between the Dirichlet distribu-

tion and the inference engine. This is in contrast to the original pro-

gram, where a developer would need to think about various aspects

of the implementation – e.g., does the code correctly represent the

model, how to simulate discrete distributions with log-probabilities

– and the data – e.g., are the values and the parameters in range.

Easier to Derive the Reference Solution: The reduced program
simply samples values from the Dirichlet distribution. Its probability

density function can be easily obtained from a textbook:

p(x1,x2 |beta1, beta2) =
Γ(beta1 + beta2)

Γ(beta1) · Γ(beta2) · xbeta1−1
1

· xbeta2−1
2

By replacing beta1 and beta2 with values from Figure 2, the

developer can compute the distribution of the program: p(x1,x2) =
0.029 · x−0.941

1
· x−0.941

2
. Then, the developer simply needs to check

that the inference results conform to this probability distribution.

Reduction also helps for programs that do not have a closed-form

solution. A common strategy is to use a different language or an

inference language version and run Monte-Carlo simulation for a

large number of iterations (e.g., over 10000 times) to get a good es-

timate of the distribution. Reduced program takes significantly less

time to run than the original program, e.g., running Stan’s NUTS

engine for 10000 iterations on our reduced example takes 0.26 s,

while running the original example takes 463 s (1781x slower).

Faster Regression Testing: Reducing the computation, data, and

the iteration count directly translate to faster regression testing.

Obtaining the reference solution also helps in creating effective

regression test. Running the regression test for our example takes

0.02 s, while the original program is 214 times slower.

OtherApplications of ProgramReduction: Since it has the flex-
ible choice of reduction objectiveψ , Storm can be successfully used

for other scenarios than reproducing bugs.We discuss one such case,

minimizing the program while maintaining coverage in Section 7.

x ∈ Vars
c ∈ Consts ∪ {−∞, ∞}

aop ∈ {+, −, ∗, /, }̂

bop ∈ {=, >, ...}

Dist ∈ {Normal, Uniform, Beta, ...}

ID ∈ String

Range ::= <Expr ,Expr>

Dims ::= [ Expr+ ]

Type ::= Int | Float | Type Dims

Decl ::= x : Type Limits? Dims? | x : [c+]
Expr ::= c | x Dims? | Expr aop Expr | Expr bop Expr

| Function | String
Query ::= posterior(x ) | expectation(x )

Function ::= ID(Expr
∗
)

FunctionDef ::= def ID ((Type ID)
∗
) { Statement

∗
}

Limits ::= Range

Statement ::= x = Expr

| for x ∈ Range; { Statement
∗
}

| observe(Dist (Expr+), x )
| if (Expr) then Statement

∗ else Statement
∗

| x := Dist (Expr+)
| Function

| Decl

Program ::= FunctionDef
∗
Statement

∗
Query

∗

Figure 5: Syntax of Intermediate Representation

3 STORM OVERVIEW
Figure 4 presents the high-level overview of Storm. The inputs to

Storm are 1) a probabilistic program, 2) data, and 3) the arguments

of the inference (e.g., the number of samples). In each step, Storm

checks whether the transformed (reduced) program satisfies the re-
duction property (ψ ), a logical predicate that relates the outputs and
the status of the original and the reduced programs. In this paper, we

mainly consider the property that the reduced program reproduces

the same error status and message as the original program.

3.1 Translators and Storm-IR
Storm translates each program to its intermediate representation,

Storm-IR, on which it applies analysis and transformations. The

translator is responsible for converting the program from the lan-

guage of the existing PP system to the Storm intermediate represen-

tation and converting the reduced program and data from the inter-

mediate representation back to the source language of the PP sys-

tem. We developed translators for Stan and Pyro using Antlr [43].

Figure 5 presents the core syntax of Storm-IR. Storm-IR is an

imperative language with standard constructs like arithmetic oper-

ations, conditionals and loops, and probabilistic constructs like dis-

tributions (Dist) and observe (which conditions the model based on

given data). Each program in Storm-IR has three main components:

user-defined functions (FunctionDef ), a set of statements which de-

scribe the probabilistic model, and one or more probabilistic queries

on the model. A query can be either be for the posterior distribution

(posterior) of a parameter in the model or for its expected value (ex-
pectation). The Storm-IR has three kinds of variables: data variables,

parameters, and local variables. The variables are declared as either

primitives or n-dimensional arrays. Optionally, the parameters have
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Algorithm 1: Storm Algorithm

Input: Program Pin, Data Din, #Samples Sin,
Transformation Order O
Output: Reduced Program P , Data D , #Samples S
procedure Minimize

Changed← True
P, D, S ← Pin, Din, Sin
while Changed do

Changed← False
for T in O do

Pred, Dred, Sred, C ← Transform(T , P, D, S )
if C then

P, D, S ← Pred, Dred, Sred
Changed← True

end if
end for

end while
return P, D, S
end procedure

a Limits construct which specifies the range in which the values of

the parameter must be constrained during inference.

Stan and Pyro have significant differences in both syntax and the

core design. For instance, Stan users need to specify the model in

Stan’s domain-specific language, which clearly separates the data,

parameters, and themodel code into different blocks. Pyro programs

are written in Python, which makes it easier to write and compose

different models. Unlike Stan, Pyro requires defining the posterior

distribution for each parameter. Storm-IR is general enough to rep-

resent the core of majority of the example programs included in the

repositories of these languages and allows the translators to handle

the language-specific features discussed above. Our intermediate

language draws inspiration from Probfuzz [10], but improves ex-

pressivity and generality (e.g., it allows arbitrary inter-leavings of

statements like sampling, assignment, observes and loops). This

allows the Storm-IR to represent a richer and more diverse set of

probabilistic programs used across different PP systems.

3.2 Reduction Algorithm
Storm simplifies the structure of the programs by applying trans-

formations and analyses on the intermediate representation. We

describe the transformations we implemented in Section 4.

Helper Analyses. To ensure that the transformed program is syn-

tactically correct, our transformers use several helper analyses for

probabilistic programs. They include Dimensional, Type, Interval

and standard DataFlow analyses (e.g. Def-Use). Dimensional anal-

ysis computes the dimension and type of any given expression.

Interval analysis helps compute the range of values valid for a

given expression. Def-Use analysis finds the uses of a variable in

the model after it is declared. The transformations that simplify dis-

tribution expressions or replace parameters with constants can use

the results of the analysis to make sure that the reduced program

will not fail to run due to the range or dimension mismatches (e.g.,

it prevents setting the negative constant as the variance).

To support these analyses, Storm needs additional (domain-

specific) information about common distributions andmathematical

and probabilistic functions. The information includes the names

Algorithm 2: Transform Algorithm

Input: Transformation T , Program Pin, Data Din, #Samples Sin
Output: Reduced Program P , Data D , #Samples S , Changed status C
procedure Transform

C← False
P, D, S ← Pin, Din, Sin
L ← T .getLocations(P, D, S )
i ← 0

while i < L.length do
P ′, D′, S ′, Modified← T .Transform(P, D, S, L(i))
if Modified then

Reproduced← Checker(P ′, D′, S ′)
if Reproduced then

P, D, S ← P ′, D′, S ′

C ← True
L.remove(i)
i = 0

else
i = i + 1

end if
end if

end while
return P, D, S, C
end procedure

and ranges of parameters and their support (the ranges of their out-

puts). For instance, the specification of Normal distribution states

that the distribution is continuous and has unconstrained support;

its first parameter (the mean) is an unbounded real and the second

one (the variance) is a positive real.

Main Algorithm. Algorithm 1 presents the reduction algorithm.

It takes the program P , data D, and number of samples or iterations

S (if available). It can optionally take the order of transformations

O which is to be used during reduction process. The algorithm is

iterative fixed point computation, which in each step tries to apply

the transformations and then checks whether the reduced programs

satisfy the reduction property. The variable Changed tracks whether
any transformation was successfully applied during the current iter-

ation. In each iteration, the algorithm tries to reduce the program us-

ing each transformer T according to the pre-specified order O . The

algorithm stops when the iteration cannot apply any reduction.

The Transform algorithm (Algorithm 2) takes as input a trans-

former T , program Pin, data Din, and number of samples Sin. It
finds all candidate locations for the transformation in the program

for transformer T using getLocations function. For transformations

which reduce data, this would return the data items in the program.

For Inference Argument Reducer, this returns the inference parame-

ters to reduce (in this case only Samples S). Next, for each candidate,
the transformerT tries to transform it and check if the reduced pro-

gram still reproduces the same failure as the non-reduced version

using the Checker function. If it succeeds, then the triple of program,

data, and, samples are updated, the candidate is removed from the

list L and i is reset to 0. Otherwise, it moves to the next candidate.

Resetting i to zero allows the transformer to re-check the previous

locations which may now be modifiable after the recent change.

Finally, the algorithm returns the program, data, and samples along

with the indicator of whether any of them were transformed.
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The Checker translates the program in Storm-IR back to the

source code, runs it on the data, and monitors the execution. For

program failures, it is often sufficient to expect the exact exception
strings in output, e.g. “Input vector ... is -nan” or “error: invalid cast
from type ‘stan::math::var’ to type ‘double’”. For infinite loops, we
set a reasonable timeout interval; the transformed program repro-

duces the failure if it still times out (like the original program). The

Checker returns “True” if the execution of the candidate program

still has the property of interest (e.g., the same error message),

or returns “False” if the transformed program does not have this

property.

4 TRANSFORMATIONS
We divide Storm’s transformations into basic – typical structural

reduction transformations that do not require probabilistic domain-

knowledge – and probabilistic – that use the domain-knowledge.

We describe the transformations next, and formally specify them

in the Appendix [50].

4.1 Basic Transformations
Storm implements the common statement-level and expression-

level transformations, which can be found in conventional program

reduction tools, such as C-Reduce [45]. The transformations include

Loop Remover (removes entire loop), Loop Variable Remover (the
loop variable is replaced with a constant), Conditional Remover
(randomly chooses one of the two branches), Function Statement
Remover (removes a function call statement), and Dead Variable
Remover (finds variables and data items which have been assigned

constant values or sampled from distributions but never used).

Storm also has anArithmetic Simplifier, which reduces arithmetic

expressions by replacing variables with constants, complex expres-

sions with simpler, etc. For instance, it can convert a +b to either a
or b. Since the operands can be arrays or vectors or matrices, Storm

performs type and dimensional analysis of the expression and re-

places the expression with an appropriate constant-valued data

structure. To reduce non-determinism, the arithmetic simplifier

always tries to remove the first operand first. Only if the reduced

program fails to reproduce the failure, it tries to remove the second

operand and checks for failure reproduction again.

4.2 Probabilistic Transformations
Data Reducer. The input data in Storm-IR contains primitives like

integers or floating-point numbers or more complex data structures

like vectors and matrices. In some cases, boundary or special values

in the data may cause run-time failures. Isolating these values in a

smaller data set can ease debugging.

The Data Reducer picks one data item (typically a vector or a ma-

trix) and tries to reduce it, by successively subdividing the number

of values that remain in the data structure. This transformation also

checks that any related data items maintain the same dimensions.

For example, in a linear regression model, which modelsy = a ·x+b,
it is important that the arrays with values for x andy have the same

size, and therefore Storm reduces them in the same way and with

the corresponding data values.

Parameter Remover. The unobserved variables which must be

inferred from the observed data are usually specified as parameters

in Storm-IR. This transformer replaces the use of the parameter

with a constant value, vector, or matrix. Storm chooses the constant

values randomly, from the set of those within the support of the

prior distribution and ensures that the dimensions are maintained.

Math-Function Call Remover. Stan and Pyro provide inbuilt

mathematical functions (loд, exp, abs , etc.) and probability-related

functions (loдit , tдamma, дamma_p, etc.). Storm replaces such func-

tion calls with a value in the expected output range of the function.

These kinds of functions require domain knowledge; for example,

the output ofдamma_p is always positive. For overloaded functions,
Storm performs type and dimensional analyses on the function argu-

ments to ensure that the expression is valid (such analyses are typi-

cally not done by the conventional program reducing approaches).

Distribution Simplifier. This transformation replaces less-often

used distributions like Laplace,Weibull, etc. with more commonly

used distributions like Normal or Uniform. If the program already

uses the simpler distributions, it tries to reduce the parameters to

standard values. For example, it might reduce Normal(52.15, 10.2)
to Normal(0, 1), a standard normal distribution. These transforma-

tions are useful when a developer wants to understand the reduced

program and manually calculate reference solutions. They can also

help with fault-localization, by pinpointing that the failure is (not)

due to less-commonly used distributions.

Inference Argument Reducer. Stan and Pyro implement two

kinds ofMonte-Carlo sampling algorithms: HMC [39] andNUTS [22].

They allow the user to specify the number of iterations to run, which

determines the number of samples to be taken from the posterior

distribution for inference. For variational inference algorithms, like

ADVI [29] in Stan and SVI [27] in Pyro, the iterations determine

the maximum steps the optimization algorithm might use. The In-

ference Argument Reducer searches for the minimum number of

iterations that reproduces the failure. In each round, the Inference

Argument Reducer halves the iterations, starting from the initial

value, and checks whether the failure is reproduced.

Limits Remover. For every data and parameter variable, some

languages (Stan being a prominent example) allow the user to

specify a set of lower and/or upper limits of the parameters. The

limiting helps the sampling algorithm focus on a subset of the input

space and converge faster. But these limits can be ill-specified in

practice. This transformer attempts to remove the limits and checks

if the program still fails. It is analogous to changing the variable

type in conventional programs.

4.3 Transformation Orders
An important component of Algorithm 1 is the transformation

order O , which can affect the quality and speed of reduction on a

given benchmark. We evaluated our algorithm on six orders, which

we briefly outline here and specify them fully in the Appendix [50].

Random order (Rnd) chooses each transformation with uniform

probability without replacement. Fixed order (Fixed) is an order

we manually chose for the experiments based on our experience

and understanding of transformations. Size of transformation order

(Size) applies first the transformations that change more code (e.g.,

Loop Remover and Conditional Remover). Cost of analysis order
(CoA) ranks the transformations such that transformations which

do not require any analyses (e.g., LoopRemover, and FunctionState-
mentRemover) execute before the transformations which require
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one or more analyses techniques (e.g., Arithmetic Simplifier). Basic-
Probabilistic order (B-P) applies first all basic transformations, then

probabilistic ones. Probabilistic-Basic order (P-B) first applies all
probabilistic transformations, than basic ones.

5 METHODOLOGY
This section presents our methodology for collecting and catego-

rizing program that expose bugs in Stan and Pyro.

5.1 Selection of Bugs
Stan. To obtain probabilistic programs that reveal existing bugs for

Stan, we studied the bug reports from the existing bug-database

for probabilistic programming systems [10]. The database contains

138 probabilistic bugs, divided in four categories. We denote each

such bug with the prefix “stan” followed by the issue identifier. We

selected only the bugs with reproducible test cases.

We augment the programs from the bug reports with additional

bug-revealing programs from Stan’s repository of models [48]. We

obtained a set of 367 probabilistic programs from Stan’s public

repository [48]. We ran the programs across the versions of Stan

2.3, 2.5, 2.6, 2.6.2, 2.7, 2.9, 2.10, 2.14, 2.15 and 2.18 (the latest). We

ran each program using three inference algorithms available in

Stan: NUTS [22], HMC [39], and ADVI [29]. We identified those

programs that produce a failure (compile but either crash, produce

numerical errors, or loop infinitely) in one of the earlier versions,

but produce the correct result in the latest version. Those programs

are representative of those that would reveal true bugs in the PP

system in real operation. These programs were considerably larger

than the ones obtained from the bug reports in both code (more

than 90%) and data (more than 100%) on average.

In total, we tested Storm on 23 bugs from Stan issues and 11

programs taken from Stan’s example models repository. The size

of test cases range from 5 to 57 lines of code (excluding blank lines

and comments). We used Cmdstan to run all the programs, except

three that require PyStan. Overall, the programs cover four infer-

ence methods: Sampling (NUTS [22] and HMC [39]), Variational

(ADVI [29]) and Optimization (also known as MAP [41]), and one

simulation method: Fixed Param (FP); additionally, some failures

were due to bugs in the Stan compiler code (stan723), and bugs in

Diagnostic mode (stan1308), which is used to test computations of

gradient and log-probability and flag any issues.

Pyro. For Pyro, we collected bug-revealing programs from two

sources. We obtained 6 bug-revealing programs from [10]. We

named those programs pf1-pf6. We also converted the programs

obtained from Stan’s repository of models [48] into Pyro programs

and ran them using the three recent versions of Pyro, 0.2.0, 0.2.1,

and 0.3.0. We identified 7 programs (dyes, dyes_020, ES, ES_020,

GP2, GP2_020, radon) which run without failures in the current

released version of Pyro (0.3.0), but crash in the older and buggy

versions. The program lines range from 36 to 77. All the programs

were run using Stochastic Variational Inference (SVI) algorithm.

5.2 Bug Classification
Following the characterization from [10], we classified the bugs as:

Crashing Bugs. These bugs cause compilation-time or run-time

failures with error messages in the output, such as “runtime error:

load of value 3, which is not a valid value for type ‘bool’”, “Segmen-
tation fault: 11”, “Domain error in arguments” etc. Many of these

bugs are due to the out-of-bounds accesses or wrong dimensions

of the data structures. We reproduced 5 such bugs in this category

for Stan and all 13 Pyro bugs fall in this category.

Numerical Bugs/Infinite Loops. Numerical bugs include special

values like NaNs or Infs in the output, which usually appear due to

missing support for handling boundary conditions. We reproduced

9 Stan bugs from this category with inputs provided by the bug re-

ports. A special class of numerical bugs are those that cause infinite

loops during inference. We reproduced 2 Stan infinite loop bugs.

Accuracy/Unexpected Output Issues. For the cases, the execu-
tion does not crash but produces some unexpected values. For

example, in one case, the computation of effective sample size of a

parameter for the NUTS engine in Stan was incorrect due to a bug

in the code. We reproduced 5 bugs from this category with inputs

provided by Stan’s bug reports.

Language/Implementation. These bugs appear while translating
the program’s source-code. We replicated 8 such bugs for Stan.

Finally, we also consider 3 general coding bugs.

5.3 Reduction Metrics
To demonstrate the quality of test case minimization, we collect

several metrics during experimentation. For code reduction, we

consider two metrics that characterize the size of the program:

• Lines of code, without empty lines or comments.

• The count of non-terminal language constructs in Stan’s parse

tree (e.g., loops, sampling statements, conditionals, or arithmetic

operations) for the given test case.

We use count of non-terminals since the probabilistic programs

have a high-level of expressiveness, and a single change (smaller

than a line) in the codemaymake significant impact on the accuracy,

analyzability, or execution time of the program. For the grammar

that we used for Stan, there are 42 such unique constructs. For Pyro,

we use the Python grammar, which has 41 unique constructs.

In this work, we use a metric for code reduction known as Size
Reduction Rate (SRR) defined in [2] as:

Score(to , tred) =
Size(to ) − Size(tred)

Size(to )
,

where to is the original test case, tred is the reduced test case, Size(t)
is the size of the test case using the metrics defined above. To com-

pare data savings DataRed , we use the following metric:

DataRed(to , tred) =
DataSize(to ) − DataSize(tred)

DataSize(to )

whereDataSize(t) is number of bytes in the data input for t . Finally,
we calculate the ratio of the number of samples/iterations in the

reduced test case to that in the original.

6 EVALUATION
We evaluate experimentally the following research questions:

RQ1 How effective is Storm in reducing test cases?

RQ2 How much benefit do probabilistic transformations provide?

RQ3 How much does program reduction speed up inference?

RQ4 How important is the order of transformation in reduction?
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Table 1: Stan Example-Models Reduced Using Storm

Test SRR LoC Data Red. Iters.
arma11 (VI) 44/85 20/25 49.9% 3/1000

arma11_alt (VI) 46/73 20/23 49.9% 1/1000

dogs_log (VI) 10/98 6/33 100.0% 1/1000

roaches (VI) 11/38 8/18 99.5% 1/1000

roaches_od (VI) 23/74 12/28 99.2% 1/1000

roaches_od_2 (VI) 23/74 14/28 64.8% 1/1000

salm2 (VI) 24/74 16/27 51.1% 1/1000

salm2_2 (VI) 1/74 2/27 100.0% 1/1000

salm (VI) 38/128 22/47 41.0% 1000/1000

stagnant (VI) 11/76 9/26 98.7% 125/1000

survey (VI) 35/65 28/32 36.4% 1/1000

Avg. Savings 68.37% 49.27% 71.86% 103/1000

Table 2: Stan Github-Issues Reduced Using Storm

Test SRR LoC Data Red. Iters.
stan240 (NUTS) 8/8 9/9 0.0% 1/1000

stan499 (NUTS) 12/17 12/14 68.2% 1/1000

stan543 (NUTS) 18/32 14/18 74.5% 500/1000

stan674 (NUTS) 13/24 8/10 NA 1/1000

stan685 (NUTS) 8/13 6/10 NA 1/1000

stan723 (NUTS) 23/32 16/19 NA 1/1000

stan1053 (FP) 13/21 8/11 NA 1/10000

stan1121 (NUTS) 5/16 8/13 0.0% 1/1000

stan1194 (NUTS) 5/5 5/5 NA 1/1000

stan1200 (Opt) 12/21 11/15 99.7% 1/1000

stan1241 (NUTS) 19/28 8/13 NA 1/1000

stan1308 (Diag) 37/196 11/57 100.0% 1/1000

stan1366 (NUTS) 12/16 6/11 NA 1/1000

stan1435 (Opt) 5/20 8/13 0.0% 1/1000

stan1443 (NUTS) 8/13 7/10 NA 1/1000

stan1474 (NUTS) 14/16 10/10 NA 15/1000

stan1610 (VI) 12/70 11/36 98.8% 125/1000

stan1789 (NUTS) 10/23 9/16 NA 1/1000

stan1974 (NUTS) 5/7 3/6 NA 1/1000

stan2188 (NUTS) 9/9 6/6 NA 1/1000

stan2237 (HMC) 3/63 5/25 100.0% 1/1000

stan2294 (NUTS) 9/9 6/6 NA 1/1000

stan2311 (NUTS) 4/18 6/16 NA 1/1000

Avg. Savings 40.89% 32.32% 60.13% 29/1391

Table 3: Pyro Example-Models Reduced Using Storm

Test SRR LoC Data Red. Iters.
pf_1 (VI) 138/209 28/37 99.3% 3/4000

pf_2 (VI) 88/207 23/36 99.3% 1/4000

pf_3 (VI) 153/298 30/46 98.6% 3/4000

pf_4 (VI) 153/285 30/44 92.2% 3/4000

pf_5 (VI) 126/270 27/44 98.8% 62/4000

pf_6 (VI) 153/326 30/50 92.1% 3/4000

dyes (VI) 131/331 29/55 96.3% 1/4000

dyes_020 (VI) 129/330 29/56 96.3% 1/4000

ES (VI) 129/250 29/44 95.8% 1/4000

ES_020 (VI) 129/254 29/44 95.8% 1/4000

GP2 (VI) 131/553 29/77 99.9% 1/4000

GP2_020 (VI) 129/557 29/77 99.9% 1/4000

radon (VI) 129/439 29/61 100.0% 1/4000

Avg. Savings 56.58% 42.04% 97.25% 6/4000

6.1 Test Cases Reduced by Storm
Tables 1, 2, and 3 show the performance of Storm for the bugs in Stan

examples, Stan issues, and Pyro examples, respectively. Column 1

(Test) is the test-case identifier – an issue number or benchmark

name for the example-models, and algorithm[NUTS/ HMC/ Varia-

tional(VI)/Optimize(Opt)] ormode[Diagnose(Diag)/Fixed-Param(FP)]

used to run the program. Column 2 (SRR) presents the ratio of the

original number of program constructs to the ones in reduced test

cases (Section 5.3). Column 3 (LoC) presents the ratio of original
source lines of code to the reduced source lines of code for the

test case. Column 4 (Data Red.) presents the percentage of the

reduced data points (relative to the original size). The cases which

did not have any data are marked as NA. Column 5 (Iters) presents
the reduction of the argument (the number of samples for MCMC,

iterations for variational inference) of the approximate inference al-

gorithms. For SRR, LoC, and, Data Red., we compute the average

savings by adding up the savings for each benchmark and dividing

by total benchmarks in the set. For Iters, we compute the average

of original iterations and reduced iterations separately and report

the ratio as savings.

From the data in the three tables, we conclude that Storm was

able to reduce all 47 test cases across all algorithms in at least one

of program constructs, number of lines, data, or the number of

samples. Storm was able to reduce over 90% in program size, data,

and inference arguments (samples in Monte-Carlo simulation and

iterations in Variational inference). Out of total 47 programs, 5

improved in one category, 7 improved in two categories and 29

improved in three categories. Tables 1 and 3 show that with an

exception of salm, all larger probabilistic programs are reduced by

Storm in all three categories.

Coverage. Table 4 presents how many lines of the PP system the

original and reduced program cover on average (as measured with

gcov for Stan and coverage.py for Pyro). Column 1 (Benchmark)
presents the group of benchmarks. Column 2 (Hit) presents the
average number of lines executed by the original programs. Col-

umn 3 (Total) presents the total number of lines in the PP system.

Column 4 (Cov) presents the average original line coverage for the
benchmarks. Column 5 (HitR) presents the average number of lines

executed by the reduced programs. Column 6 (TotalR) presents the
total lines in the PP system. Column 7 (CovR) presents the average
line coverage for the reduced programs.

Table 4: Coverage of Reduced Programs
Benchmarks Hit Total Cov HitR TotalR CovR
Stan Issues 9796 25713 38.07% 8996 25713 34.97%

Stan Examples 10690 25738 41.53% 9844 25738 38.24%

Pyro Examples 7272 24790 29.31% 7224 24790 28.92%

The results show that 1) the number of lines covered by both the

original and the reduced programs is significant and 2) the coverage

of the reduced programs, despite of their significantly smaller size

is only slightly lower than the coverage of the original programs.

6.2 Impact of Probabilistic Transformations
We next study the impact of the newly proposed probabilistic trans-

formations. To do so, we compare the impact of Storm when using

both the probabilistic and basic transformations, to a variant that
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uses only basic transformations. Table 5 presents the summary of

the results. For each group of benchmarks, we compute and ag-

gregate three statistics from Section 6.1. We compared the savings

of that version of Storm to the original (non-reduced) program.

Here, Column 2 (Code) presents savings in code constructs – SRR.

Column 3 (Data) presents savings in data items. Column 4 (Iters)
presents savings in the number of iterations. Note that the basic

transformations cannot not reduce the number of iterations. In all

cases, the savings are represented as percentages.

Table 5: Comparing Storm and Basic Transformations Only

Benchmarks Code Data Iters
Storm Basic Storm Basic Storm Basic

Stan Issues 40% 36% 60% 46% 97% 0%

Stan Examples 68% 61% 71% 47% 89% 0%

Pyro Examples 56% 53% 97% 82% 99% 0%

The results show that probabilistic transformations improve re-

duction of both code and data. The reduction in data with basic

transformations is due to the Dead Variable Remover transformer:

when it is possible to remove some data variables from the model,

corresponding data-sets can also be removed from the data file with-

out any effect on the model. Even then, we notice that in three cases,

probabilistic transformations can further reduce the data-sets.

Probabilistic transformations contributed significantly to the suc-

cess of reduction – more than 60% of the successful transformations

across the three sets of benchmarks were domain-specific trans-

formations. The Storm algorithm accepted 59% of all the domain-

specific transformations, compared to 48% of the basic transforma-

tions across all benchmarks.

The reduction of inference arguments is unique to Storm with

probabilistic transformations. For all the test cases which use sam-

pling algorithms, Storm was able to significantly reduce the number

of samples (to 1 in all cases except stan543 and stan1474). For vari-

ational inference, the iterations were reduced to 1 in 8 cases (out of

12) for Stan and 8 cases (out of 13) for Pyro. This shows that often

the bugs can be revealed quickly by a small number of iterations

and can save debugging time for the developer.

6.3 Speedup of Reduced Programs
If the developers needs to rerun these tests in regression testing,

they can leverage smaller versions of the programs provided by

Storm’s transformations. Table 6 presents the summary of the run-

times (without compilation) of the original and reduced programs,

run with recent versions of Stan (2.16.0) and Pyro (0.2.1). We only

consider the cases where both original and reduced programs pass

the test. Column 2 (TimeO) presents the average time of the origi-

nal program. Column 3 (TimeR) presents the average time of the

reduced program. Column 4 (Speedup) presents the ratio of TimeO

by TimeR. Overall, the speedup when running the reduced tests is

significant, especially for the larger programs with more data (for

Stan and Pyro examples).

Table 6: Execution time reduction
Benchmarks TimeO TimeR Speedup
Stan Issues 1.02s 0.25s 4.1x

Stan Examples 12.63s 0.10s 126.3x

Pyro Examples 106.36s 0.85s 125.1x

6.4 Impact of Transformation Orders
We evaluated whether the order of transformations in each step

of the algorithm has a significant impact on the overall reduction

of the test cases. We ran Storm on the test cases using six orders

described in Section 4.3.

Table 7 presents the total execution times of the algorithm for

these six orders, on a 12-core machine, using all cores for evalu-

ation. Each time is in the format “minutes:seconds”. In all cases,

Storm converges to the minimal test case, or a test case with very

similar quantitative reduction metrics (which we omitted), even in

unfavorable orderings. Recall that Storm’s algorithm iterates until

reaching a fixed point, and unfavorable ordering will most often

simply take more steps to terminate.

Table 7: Execution Times for Different Orders.

Fixed Rnd Size CoA B-P P-B
Stan Issues 41:24 45:04 53:33 41:32 55:58 44:27

Stan Examples 47:33 43:26 42:15 46:15 46:32 52:28

Pyro Examples 2:25 7:14 4:52 1:46 2:05 2:18

For Stan Issues, Fixed and CoA orders show the best results. For

Stan Examples, Size order is the fastest. We believe the reason is that

these programs are more complex than the Stan issues and have

more control structures like loops and conditions. Hence, using the

transformations which remove the larger blocks early on reduces

the run-time of the programs and thus the reduction algorithm as

well. Finally, for Pyro examples, CoA is the fastest. The time of

algorithm for Pyro is significantly smaller than for Stan because it

interprets the programs, instead of compiling them, like Stan.

7 APPLICATIONS OF STORM
In this section, we highlight two additional scenarios in which

Storm can be applicable.

7.1 Incremental Debugging
A test case can potentially reveal multiple bugs in the system. But

during execution, one failure can hide other bugs. A developer then

has to go through a cycle of fixing a bug and re-running the test

case to find other bugs in the system. Storm can help automate this

cumbersome process.

Consider a simplified program for linear regression in Figure 6.

The program has two data-sets x and y, each of size 10 (lines 2

and 3). In lines 4-6, the parametersw , b, and p, are assigned prior

distributions. In line 7, the linear regression model is defined and

conditioned on the data variables using observe statement. Lines

8-10 contain queries for posterior distribution for each parameter.

The original program fails when run with Pyro 0.1.2 with the error

”Domain error in arguments”, which does not clearly indicate the

cause of the failure. When we run this program with Storm, it is

reduced to the program from Figure 7. The data-set y now has only

1 element and the observe statement has a simple distribution and

data variable y. Now, it is quite easier to figure out that the value in

y (−2.99) is outside the range of support for beta distribution (0, 1).

If we look at the original program, we can observe that the values

in y were outside of the support of lognormal distribution, (0,∞).

Even after this issue is resolved (for instance, by changing log-
normal distribution to normal), the program fails with the same
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1 N: 10

2 x: [ 72.97, 34.94, ...]

3 y: [ −2.99, 1.95, 2.77, ...]

4 w:= exponential(37.47)

5 b:= exponential(−31.49)[N]

6 p:= lognormal(55.43,61.35)[N]

7 observe(lognormal(w∗x+b, p), y)

8 posterior(w)

9 posterior(b)

10 posterior(p)

Figure 6: Original Program

1 N:1

2 y: [−2.99]

3 p:= gamma(1.0,1.0)[N]

4 observe(beta(1.0, 1.0), y)

5 posterior(p)

Figure 7: Minimized Prog. 1
1 N:3

2 b:= exponential(−31.49)[N]

3 posterior(b)

Figure 8: Minimized Prog. 2

error. Using Storm again, we reduce the fixed original program

(Figure 6) to the snippet in Figure 8, which has only one parameter

with exponential distribution. The bug here is the negative value

in exponential distribution, which expects a positive value. The

original program had the same issue at Line 5. Storm takes only 74

seconds to find the error-inducing lines in each round.

7.2 Using Coverage as a Criterion
We explore the generality of Storm through a case study where we

change the reduction property (ψ ) to preserve the line coverage

of the PP system (Stan) under test i.e. the coverage of the reduced

program is the same as the original program. We used lcov to

measure the line coverage after each transformation.We also turned

off transformations that do not always reduce code and might

cause the transformed program to execute a different function (e.g.,

Distribution Simplifier may replace a distribution with another

distribution). Overall, Storm reduced the code constructs by 30.4%

and data by 22.5%.

8 THREATS TO VALIDITY
Internal. Our Storm implementation may contain bugs, some bugs

may have been mis-categorized during our selection and reproduc-

tion, and we may have made wrong conclusions about some mini-

mized programs. To mitigate the risk of implementation bugs, mul-

tiple co-authors conducted a code-review of Storm and test-cases.

External. Storm methodology may not generalize to all PP system.

However, there are three aspects which help mitigate the risk. First,

we present the evaluation on two commonly used languages with

different design, Stan and Pyro. Second, we looked at historical

bugs, which may provide a good guide for the kind of bugs that

may appear in the future. The maturity of Stan and the development

effort in Pyro increase confidence that these bugs are representa-

tive of probabilistic programming in general. Third, our design on

Storm minimizes the dependence on the language – most of the

transformations are generic and can be applied to other languages.

9 RELATEDWORK
Test Reduction. C-Reduce [45] reduces test cases for C programs

(often generated using CSmith [56] test generator). C-Reduce uses

source-to-source transformations customized for C-like programs,

but its application to the domain of probabilistic programming is not

straightforward. We also show the importance of domain-specific

(probabilistic) transformations for successful program reduction,

and make a parallel to CSmith and C-Reduce, by showing how

Storm can reduce the programs generated by Probfuzz [10]. Other

approaches for program reduction include Delta debugging [57],

which is one of the earliest known techniques for test reduction.

It removes parts of the failing test (code or data) until no single

part can be removed without the test passing. Hierarchical Delta

Debugging (HDD) [36] applies DD using the structure of the input.

HDD generates fewer syntactically invalid programs but provides

no guarantee. In contrast to these approaches, Storm produces only

syntactically-correct reduced tests.

Perses [51] is a recent language-agnostic framework for reduc-

ing programs in conventional programming languages (e.g., C and

Java). Like Perses, Storm uses the syntax of the language to guide

the reduction process, applies the transformations on the interme-

diate representation, and generates syntactically valid programs.

Storm strengthens the reduction process using various kinds of

static analyses including dimensional and type analysis. Storm also

uses probabilistic transformations to reduce data and inference

parameters, which improves the overall reduction quality beyond

the reach of general reduction frameworks.

Zhang et al. [58] proposed a technique for test simplification that

is also able to modify portions of a test by replacing expressions

with those already existing in the test. Other approaches [21, 30, 53]

provide domain specific transformations to produce minimal struc-

tured data sets and reduce size of tests. To the best of our knowledge,

we are the first to present domain-specific transformations and min-

imization for the probabilistic programming domain.

Verification and Analysis of Probabilistic Programs. Previous
research proposed various techniques for statically analyzing and

verifying properties of probabilistic programs, e.g., [6, 11, 14, 25,

31, 33, 37], including analyses that aim to help with debugging,

e.g., [23, 38, 40]. In comparison, Storm presents a dynamic analysis

that performs a heuristic search for smaller probabilistic program

that reveal the same bugs.

Program slicing [54] is a standard technique for removing un-

necessary parts of the code. Researchers recently extended slicing

to probabilistic setting [3, 24]. Similarly, refactoring is a general set

of techniques that modify program source code while preserving

the program semantics, yet improve the program’s internal struc-

ture [12, 34]. In contrast, Storm reduces program while ensuring

that only bug manifestation remains, and has the freedom to change

program semantics.

10 CONCLUSION
This paper presented Storm, a novel approach for reducing proba-

bilistic programs. Storm presented both basic program reduction

transformations, driven by program analysis and domain-specific

probabilistic techniques to minimize the size and complexity of

bug-revealing probabilistic programs. We evaluated Storm on 47

bug-revealing programs from two state-of-the-art PP systems, Stan

and Pyro. For Stan, our minimized programs have 49% less code, 67%

less data, and 96% fewer iterations. For Pyro, our minimized pro-

grams have 58% less code, 96% less data, and 99% fewer iterations.
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