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Design-by-analogy (DbA) is an important method for innovation that has gained much
attention due to its history of leading to successful and novel design solutions. The
method uses a repository of existing design solutions where designers can recognize and
retrieve analogical inspirations. Yet, exploring for analogical inspiration has been a
laborious task for designers. This work presents a computational methodology that is
driven by a topic modeling technique called non-negative matrix factorization (NMF).
NMF is widely used in the text mining field for its ability to discover topics within docu-
ments based on their semantic content. In the proposed methodology, NMF is performed
iteratively to build hierarchical repositories of design solutions, with which designers
can explore clusters of analogical stimuli. This methodology has been applied to a repos-
itory of mechanical design-related patents, processed to contain only component-,
behavior-, or material-based content to test if unique and valuable attribute-based ana-
logical inspiration can be discovered from the different representations of patent data.
The hierarchical repositories have been visualized, and a case study has been conducted
to test the effectiveness of the analogical retrieval process of the proposed methodology.
Overall, this paper demonstrates that the exploration-based computational methodology
may provide designers an enhanced control over design repositories to retrieve analogi-
cal inspiration for DbA practice. [DOI: 10.1115/1.4043364]

1 Introduction

Designers often seek inspiration and direction during ideation
and the early stages of the design process. Among various efforts
to find such inspiration is design-by-analogy (DbA) [1]. Design-
by-analogy involves the retrieval of analogies from a design
repository, a “database” of existing design solutions (sometimes
simply memory), and the transfer of knowledge from a “source”
domain to a “target” domain. To facilitate design-by-analogy in
practice, several researchers have studied and developed computa-
tional supports to retrieve analogies from electronic patent data-
bases [2,3]. The patent database is deemed an ideal design
repository for its innovative ideas across various fields of applica-
tion and sheer size that grows exponentially worldwide [4].
Unfortunately, our understanding of design-by-analogy practice is
inadequate compared to the ever-increasing size of the patent
database, restricting designers from being able to utilize the data-
base at its full capacity. To address this research gap, the work
presented here uses a computational methodology to explore pat-
ents for analogical inspiration, with the goal of facilitating the
design-by-analogy practice. Specifically, the work presents fol-
lowing main contributions:

(1) The authors generate and visualize hierarchical repositories
of large-scale mechanical design-related patents in which
designers can interactively explore for analogical inspiration.

(2) The authors generate component-, behavior-, or material-
based hierarchical repositories to provide designers

different lenses to influence the way they search for analo-
gies in patent data.

(3) The authors test computational methodology for its ability
to assist with the identification of analogical inspiration
within the generated design repositories using a case study.

1.1 Prior Studies in Design-by-Analogy. Design-by-analogy
has been an active research area [2,5–8], and studies have focused
on understanding the effects of analogies on ideation and design
outcomes. Many other researchers have contributed to this area,
as described next. Linsey et al. explored how various types of rep-
resentation of information affect the designers’ ability to identify,
retrieve, and map analogies to design solutions [9]. Tseng et al.
studied how analogous information of different levels of applic-
ability to the design problem affects ideation when the design
problem has an open-goal [7]. Several studies also focused on
methodologies to retrieve analogies including but not limited to:
the WordTree method, which retrieves functional analogies by
systematically integrating the knowledge of designers and design
database [10]; a computational technique to recognize biological
analogies using causally related functions derived from semantic
information [11]; D-APPS, which provides functional analogies
based on a design’s product requirements [12]; a number of differ-
ent patent mining tools [3,13–15]. Most DbA tools, including the
prior work reviewed here, use a query-based approach or straight-
forward input–output method to retrieve analogies. In the case of
the WordTree method, designers input a word characterizing a
design’s functionality and are returned a set of functionally ana-
logical words from various domains, compiled by the algorithm,
as source of inspiration [10]. The work presented in this paper is
differentiated from the prior work in that our methodology gives
designers an entire structured design space for exploration where
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they can freely interact with the design solution and discover anal-
ogies from various potential sources. The emphasis on the explo-
ration for analogical retrieval is discussed in the next section.

1.2 Exploration for Expert Thinking in Design. Based on
the findings of prior research, expert designers have exhibited sev-
eral cognitive characteristics and abilities during the design pro-
cess. First, they have been shown to have better spatial memory
than novices, being able to process more information [16,17].
Bjorklund found that experts gather more information than novi-
ces to ideate design solutions for a given problem [18]. Other
researchers found that experts can also cognitively organize the
information and conceptualize abstract ideas by viewing the prob-
lems objectively [19,20]. Experts have been found to have a sys-
tematic approach to design [19], being able to spontaneously
adapt to the design constraints [21] and develop heuristics or
“rules of thumb” to approach the problem [17,22]. The dynamic,
flexible, and systematic characteristics of the expert designers that
have been discovered in prior research indicate that the explora-
tive approach is better matched with their cognitive mechanisms.
The explorative approach allows the designers to retrieve analogi-
cal inspiration by interactively exploring a design repository and
autonomously recognizing analogical connections among poten-
tial design sources, which could have been ruled out by the query-
based algorithm. In addition, the user-controlled explorative
approach allows designers to personalize their search for analo-
gies using various analogical properties, creating unique represen-
tations of the design repository and/or design problem that could
lead to diverse creative design output [23]. Some potential analog-
ical properties that could be employed are introduced in Sec. 2.1.

1.3 Patent Database as Design Repository. The U.S. Patent
database has several features that make it a suitable design reposi-
tory for the design-by-analogy practice. The prior design solutions
in the database are valuable knowledge that are deemed
“patentable.” Patentable ideas can be further defined as ideas that
are “useful,” meaning that the ideas are functional and operable,
and novel. The term “novel” here implies that the ideas have not
previously existed before [24]. The database size, already enor-
mous at approximately 10 million patents in 2015 [25], grows
continuously in various technical fields and promises designers sub-
stantial opportunities to explore for design inspiration in multiple
domains. The patent database uses classification systems, such as
Cooperative Patent Classification (CPC), to categorize the patents
into specific domains for efficient patent-retrieval processes [24].
The characteristics of the patent database not only make it an ideal
source of innovation but an efficient means for retrieving analogies.

The vast size of the patent database offers a great opportunity
for discovering analogies for design-by-analogy practice, but it
simultaneously presents a challenge for effective mining of pat-
ents. To address this challenge, many computational tools and

methodologies have been studied. Song and Luo integrated the
mining of patent texts, citation relationships, and inventor infor-
mation to retrieve patents for assisting data-driven design [26].
Murphy used a Vector Space Model algorithm to evaluate func-
tional analogies within patents [3]. These works implement differ-
ent computational approaches to retrieve analogies from the
electronic patent database. They all exemplify the importance of
computational support to access the patented knowledge in the
design repository.

2 Methodology

A structural form of data is essential for providing valuable
insights into the data. For instance, Linnaeus’s tree structure for
biological species and Mendeleev’s periodic table for chemical
elements led to major scientific advancements in understanding
nature [27]. Finding a structural form requires a clustering or cate-
gorization of data. In text mining and data mining fields, a popular
computational technique used for data clustering is non-negative
matrix factorization (NMF) [28,29]. NMF is a topic modeling
technique that discovers semantically meaningful topics within a
large corpus of documents to aid text mining [30,31]. It has been
an active research area in text mining for its practical advantages
over other semantic techniques such as latent Dirichlet allocation
[32]. One advantage is that NMF generates consistent topic clus-
tering results, assuring that users are returned similar results for
multiple runs. Also, numerous matrix computation and optimiza-
tion studies for efficient NMF computation suggest its compe-
tency for the large corpus topic modeling [33–36].

Similar to most semantic techniques, NMF starts with trans-
forming a corpus into a word-document matrix, in which the
matrix elements represent the frequency of words (rows) occur-
ring in the patent documents (columns). Mathematically, the
word-document matrix is represented by X�Rm�n

þ , where m rep-
resents the number of words and n represents the number of docu-
ments in a corpus. Given k � min (m, n) as a user-specified
number of topics, NMF factorizes the input matrix, X, into two
non-negative matrices, namely W�Rm�k

þ and H�Rk�n
þ such that

XffiWH. Here, W is a word-topic matrix whose ith topic column
is represented by the weighted distribution of words. Similarly, H
is a topic-document matrix whose jth document column is repre-
sented by the weighted distribution of the respective topics. The
matrix decomposition is illustrated in Fig. 1 [29].

In this work, the patent data were processed to generate the
cluster structures shown in Appendix A (Figs. 12–14). First,
word-document matrices of patents were prepared. Second, clus-
ter structures of the patents were generated using NMF. Lim et al.
conducted NMF study with the U.S. patents to study the computa-
tional performance of the topic modeling tool [37]. However, the
work presented in this study is the first DbA study to use NMF for
retrieving analogies for a design practice. Last, visual representa-
tions of the structures were generated. All computations for

Fig. 1 Illustration of NMF
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establishing the algorithmic approach were performed using MAT-

LAB R2016b. Each of these steps is described in detail in the sub-
sequent sections.

2.1 Preparing Word-by-Document Matrices. The first part
of the computational approach involves retrieving patent data
from a data storage system of United States Patent and Trademark
Office (USPTO). The database consists of a bulk of U.S. regis-
tered patents, each assigned to at least one classification term
called CPC. All registered U.S. patents are categorized into one of
nine CPC sections and further assigned into a subsection, which
provides a general overview of the patent’s design features and
area(s) of application. To limit the scope of the study, only
mechanical design-related patents were used; Fifty-three
CPC subsections were chosen by the researchers as shown in
Appendix B. For each subsection, 20 patents were selected using
a random number generator, comprising a total of 1060 patents.
This sample size (>1000 patents) was chosen to capture various
analogical structures in the patent space with a goal of addressing
the research gap in implementing the computational DbA tool in a
larger-scale design repository. Prior work by the authors has been
with sample sizes of 100 patents [38]. In future work, the authors
hope to continue to scale up the sample size by orders of magni-
tude. For each patent document, the researchers used only the
words in the abstract, claims, and description sections, as they are
the most representative of the patent’s design features. All other
words in prior patent data and reference sections were omitted as
they do not characterize the patent’s design aspects.

In addition to the patent documents, a design problem statement
was also added to the corpus for generating the word-document
matrix. Its purpose was to provide a “starting point” in the cluster
space to facilitate data analysis and exploration. The design prob-
lem statement, which was used in the researcher’s prior study,
was as following [38]:

Design a device to collect energy from human motion for use in
developing and impoverished rural communities in places like India
and many African countries. Our goal is to build a low-cost, easy to
manufacture device targeted at individuals and small households to
provide energy to be stored in a rechargeable battery with
approximately 80% efficiency. The energy is intended to be used by
small, low power draw electrical devices, such as a radio or lighting
device, hopefully leading to an increase in the quality of life of the
communities by increasing productivity, connection to the outside
world, etc. The target energy production is 1 kWh per day, roughly
enough to power eight 25 W compact fluorescent light bulbs for 5 h
each per day, or enough to power a CB radio for the entire day. For
reference, an average adult human can output about 200 W with full
body physical activity for short periods of time, with a significant
reduction for sustained power output.

After the word-document matrix was generated, the matrix was
further processed to characterize three design properties—
components, behaviors, and materials. In the early stages of the
design processes, designers often have diverse objectives and
lenses through which they look when searching for inspiration or
external information. By allowing for these different lenses to
influence the way the design space is structured and inter-related,
we give designer the ability to explore in a more tailored and effi-
cient manner than before. The manipulation of the patent data set
was done by first manually compiling a list of words that character-
ize each analogical property, then reducing the original matrix to
contain only the rows of the listed words. The word lists were gen-
erated by drawing a master wordlist from the patent corpora and
classifying each word into one of the three properties. As a designer
searches for analogical inspiration, he/she might, for example, ask
the following questions when considering components, material, or
behavioral content within their potential analogical sources.

� Component: What specific components have been integrated
to the system/artifact/technology?

� Behavior: What are the attributes of the system/artifact/
technology that describe how it behaves?

� Material:What materials does the system/artifact/technology
use or consume?

After a test run, words that appear too frequently were removed
to distinguish one patent from another. As a result, wordlists of
components (709 words), behaviors (262 words), and materials
(377 words) were compiled as shown in Appendices C, D and E.
Cohen’s kappa inter-rater agreement analysis was performed to
verify the robustness of all the wordlists (j¼ 0.756, p< 0.005).
The refinement does not alter the matrix’s numerical element—
the frequency of words occurring in each document—but rather
removes any words that are “noise” within the given context. This
allows designers to explore the patent space using a particular pri-
ority, angle, or attribute. A similar practice was done in the
author’s previous study, in which function and surface features of
patents were explored using verbs-only and nouns-only data,
respectively [38]. This study is an extension of the prior study in
that the components, behaviors, and materials of the patent data
are explored to investigate their potential for facilitating design
inspiration. For the final step, inverse entropy weighting was per-
formed on the word-document matrices to assign higher weight to
words that appear less frequently and vice versa.

2.2 Processing With Topic Clustering Algorithm. The clus-
ter structures of the three patent data sets were generated using
NMF. The computational algorithm requires a user-specified num-
ber of topics, k, to process the word-document matrix. It is critical
that an appropriate topic number is selected for the algorithm, as
overly or inadequately clustered data leads to an inaccurate clus-
tering result. Unfortunately, computing an appropriate topic num-
ber is still an ongoing research [39], and thus questions the
effectiveness of the topic clustering, especially for a large-scale
data whose range of topics may vary exceedingly. To cope with
this challenge, a computational method similar to Du et al.’s
divide-and-conquer non-negative matrix factorization (DC-
NMF) was used [33]. As illustrated by a hierarchy structure in
Fig. 2, NMF with k¼ 2, or rank-2 NMF, was performed recur-
sively on an input word-document matrix. The rank-2 NMF,
which has fast computational speed [40], divides the input
matrix into two output matrices of clustered patents. These clus-
ters are then used as inputs for the next iteration. The iteration
continues until the processed output cluster contains less than or
equal to ten patents. The stopping criterion is an important factor
for determining the clustering quality, as it could result in overly
or inadequately clustered structures. We acknowledge that the
current stopping criterion was experimentally determined and
that it generates cluster structures whose qualities are sufficient
for analyzing the analogical relationships among patents. How-
ever, the stopping criterion of the iterative method is an impor-
tant area of improvement for an effective topic clustering in
future studies.

Throughout the process of generating structures, a label was
generated for each cluster so that the analogical relationships
among the clustered patents become more transparent and inter-
pretable [38]. In each iteration of NMF, the algorithm outputs W,
word-topic matrix, and H, topic-document matrix. Here, W repre-
sents the probabilistic distribution of words for each column of
topic, implying that the word that has the highest probability score
in the jth column in the matrix contributes the most to the jth
topic’s description. In this study, the columns of words in W were
sorted in descending order, and the top five words in the column
were used to create the cluster label.

2.3 Visualization. The cluster structures of the three patent
data sets were visualized using MATLAB’s graphing tool to enable
the exploration and interpretation of the large-scale cluster space.
This section details two visualization methods used to analyze the
clustered patent structures.
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2.3.1 Three-Dimensional Hierarchical Visualization. Three-
dimensional (3D) hierarchical visualization was used to interac-
tively explore the cluster space. The hierarchy structure is
composed of nodes, or clusters of the patent documents, and lines,
or the connections between the clusters. The structure contains the
initial input data, or “root node” at the center. Starting from the
root node, two child nodes branch out recursively outward until
all clusters at the end, or “leaf nodes,” contain less than or equal
to 10 patents. For exploration of the space, the user can rotate or
zoom into the structure to search for a node and select the node to
view its cluster label and cluster ID number, used for retrieving
patent titles. The 3D structure, as shown in Appendix A, was gen-
erated using MATLAB’s “digraph” function with “force3” layout.
The force3 layout generates 3D force directed plot, where the
coordinates of nodes and length of edges are determined based on
the structure and size of the input graph.

2.3.2 Two-Dimensional Bar Graph Visualization. Figure 3
illustrates the transformation of the three-dimensional hierarchy

visualization into a two-dimensional (2D) bar graph visualization.
Note that the 3D hierarchy structure in the figure is represented on
a 2D graphing space for an effective understanding of the transfor-
mation. In the 3D structure, the node of patents iteratively breaks
down into two child nodes based on their topic similarity. This
implies that the most similar patents in the entire data set would be
clustered in a leaf node after a series of NMF iterations. In this
manner, if that leaf node is “1.1.1.1” in Fig. 2, the next similar set
of patents would be clustered in a leaf node, “1.1.1.2,” derived
from the same parent node, “1.1.1.” Accordingly, the least similar
set of patents would be separated in the first iteration performed on
the initial node, “1.” Once the set of patents is separated, it would
go through another series of NMF iterations resulting in several
leaf nodes on the other side of the hierarchy structure. This iterative
concept was visualized in a two-dimensional bar graph diagram. In
the diagram, the horizontal axis represents the level of the hierar-
chy, equivalent to the series of nodes on the bolded path in Fig. 3.
On each level of the hierarchy is a set of leaf nodes with cluster
labels that are generated with the separated set of patents at each

Fig. 2 Illustration of rank-2 NMF iterations

Fig. 3 Transformation of 3D visualization to 2D visualization
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level. This way, the leaf nodes are distributed across the level of the
hierarchy in the order of similarity from a starting leaf node (indi-
cated with an * symbol) in Fig. 3. For consistency of the study, the
design problem node—or a leaf node that contains the design prob-
lem statement—was chosen as the starting point.

The screenshots of the cluster structures are shown in Appendix
A. In the 3D visualizations, the design problem node was selected
to display its cluster label and highlight its path from the root node
in the center. In the 2D visualizations, all leaf nodes are plotted in
the order of similarity to the design problem node on the first level.
The two visualization methods were used interchangeably to evalu-
ate the patent data’s cluster space. For instance, the 3D visualiza-
tion was used to view the entire cluster space where individual
clusters can be explored by their labels. Two-dimensional visualiza-
tion was used to sort all clusters on the two-dimensional plane to
view the leaf clusters by their similarity to the starting leaf cluster.
The analysis results are presented in the next section.

3 Results

The clusters in component, behavior, and material analyses
exhibit different characteristics. For the component result, the clus-
ters consist of patents of similar functionality. The functions of the
individual components correspond to the subfunctions of the inte-
grated design. The patents in the behavior result are clustered by
the design’s descriptive quality. The patents in the material result
are clustered for two different aspects—(1) material that the design
is composed of and (2) material that the design uses or consumes.

The three cluster results are visually unique, suggesting that dif-
ferent design insights can arise from a single patent data set [23].
To confirm this, the researchers first selected three random patents
(“pocket tool,” “ice gripping sandal,” and “shower bath apparatus
and spray nozzle”); then, using the computer-generated cluster
labels, the researchers evaluated their analogical relationships
with other clustered patents as shown in Fig. 4. The figure is a
simplified version of 2D bar-graph visualization, where each cluster
containing the node number, cluster label, and list of patents is laid
out on the order of similarity. In this section, the analogies of the
clustered patents are evaluated to understand the clustering mecha-
nism for component-, behavior-, and material-based patent data.
However, the meaning of the level of similarity is not discussed due
to the limited information to interpret the analogical distance among

different clusters. Future studies need to investigate the meaning of
the “level” and its utility during the analogical exploration.

3.1 Example 1: Component-, Behavior-, and Material-
Based Analogies for Pocket Tool. The component result shows
patent pocket tool and patent “electric toothbrush” in a cluster label
of “switch, circuit, battery, house, port,” suggesting that they are com-
posed of small electronic components. The behavior result shows the
same patent pocket tool and patent “method for protecting electric
line” in a cluster label of “electronic, electric, peripheral, mechanic,
secure,” suggesting that they have a commonality of protecting and
securing electronic components. Lastly, the material result shows the
same patent “pocket tool” and patent “deburring knife with replacea-
ble blade” in a cluster label of “arrow, metal, solid, waste, stem,” sug-
gesting that they are either made of metal or use metal.

3.2 Example 2: Component- and Behavior-Based Analogies
for Ice Gripping Sandal. In a second example, the component
result shows patent ice gripping sandal and patents “weight dis-
tributing knee pad” and “balance assist for rotating recreational
device” in a cluster label of “port, strap, case, mount, heel.” The
behavior result shows the same patent ice gripping sandal and pat-
ents “abrasive tool” and “hairpiece and fitting method therefor” in
a cluster label of “secure, flex, light, sole, alternative.” Although
the cluster labels of the component and behavior results are differ-
ent, the patents, interestingly, share a common functionality of
securing or fixing something to something else. This is an exam-
ple of discovering patents of similar design attributes from various
apparel domains using component and behavior data. For
instance, patent ice gripping sandal is from the footwear domain,
weight distributing knee pad is from wearing apparel domain, and
hairpiece and fitting method therefor” is from headwear domain.

3.3 Example 3: Component- and Material-Based Analogies
for Shower Bath Apparatus and Spray Nozzle. In a third exam-
ple, the component result shows patent shower bath apparatus and
spray nozzle and patent “transmucosal hormone delivery system”
in a cluster label of “nozzle, spray, bath, body, valve,” suggesting
that they use certain components to deliver fluids. The material
result shows the same patent shower bath apparatus and spray
nozzle and patent “humidifier” in a cluster label of “water, fluid,

Fig. 4 Comparison of component, behavior, and material results
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air, steam, carbon,” suggesting that water or fluid is the common
material used by the two designs. Although the two cluster labels
represent different analogical relationships, they all have a com-
mon functionality of delivering fluids—one that is implied by the
components such as “nozzle” and “spray” and one that is implied
by the liquid material that the design uses.

As shown in the examples, exploring different representations
of the patent data leads to retrieving multiple analogies that can
be valuable for design-by-analogy process. In practice, a designer
may explore the multiple representations to retrieve more analo-
gies to improve the idea generation [8]. Also, they may explore a
specific representation of the patents that is better matched with
their individual perspective or way of thinking.

4 Case Study and Discussion

To test the usefulness of the generated patent structures to design-
by-analogy practice, a case study has been conducted to examine
the retrieval of analogies for idea generation. The case study is
hypothetical use case scenario, in which one of the researchers used
the computational methodology for idea generation. The case study
introduces two patent exploration methodologies, referred to as (1)
searching similar patents in different CPC sections and (2) search-
ing patents by suggested cluster label. This section discusses the
step-by-step procedures of retrieving analogies from the compo-
nent- and behavior-based patent structures to solve the human
motion energy collection problem introduced in Sec. 2.1.

4.1 Method 1: Searching Similar Patents in Different
Cooperative Patent Classification Sections Using Component
Data. For the given design problem shown in Sec. 2.1, a designer
first brainstorms relevant terms for generating electrical energy
from human motion. For example, if the designer wants to explore

patents by their components, a list of terms might be “generator,”
“turbine,” “wheel,” “shaft,” “gear,” “rotor,” “tooth,” “pulley,”
“disk,” and “crankshaft.” These component terms are selected for
their rotational movement, which is the most common type of
mechanical energy that is converted to electrical energy. The
designer then uses the list to select patents whose cluster label
matches the component terms. As discussed in Sec. 2.2, the cluster
label is composed of the top five most important words to the group
of patents in the cluster, determined by NMF, that characterize the
cluster’s topic. In such a case, the large patent dataset is refined to a
few clustered patents that are operated by or composed of the com-
ponents that involve rotational energy/movement. After the patent
data are reduced, the designer categorizes the patents by their CPC
section. Categorizing the patents by their CPC sections not only
helps the designer to understand patent’s usage and application, but
also helps the designer to recognize similar technology in various
domains. Consequently, this method results in a reduced dataset of
193 patents in 11 different fields of application as shown in Fig. 5.

The number of retrieved patents and analogies are expected to
increase with an increased input patent corpus size, which is cur-
rently set to 1060 patents in this study. The designer then explores
the refined patent data by the field of application. Table 1 lists
three patents from machine, footwear, and land vehicle domains
that have useful analogies to solve the design problem. For exam-
ple, one resulting design concept is an inflatable floor mat
(inspired by patent “inflatable boot liner with electrical generator
and heater”) that uses human body weight to pump and direct air
across an electrical generator. Furthermore, the designer can
implement a gravity motor (inspired by patent “gravity motor and
method”) that uses gravitational energy to rotate a shaft or contin-
uously variable transmission (inspired by patent “continuously
variable transmission”) that improves the shaft’s torque efficiency.
The concepts generated are shown in Fig. 6.

Fig. 5 Number of patents in different CPC categories

Table 1 Retrieved patents in different CPC sections

Cluster number (cluster label) Patent title (patent number) CPC section

134
(shoe, mount, boot, heel, generator)

“Inflatable boot liner with electrical
generator and heater”

(4845338)

A43
(Footwear)

123
(motor, generator, shaft, detector, crankshaft)

“Gravity motor and method”
(7768142)

F3
(Machines or engines for liquids)

121
(disk, shaft, wheel, ramp, transmission)

“Continuously variable transmission”
(7147586)

B62
(Land vehicles for travelling otherwise than on rails)
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4.2 Method 2: Searching Patents by Suggested Terms in
Cluster Label Using Behavior Data. For the same design prob-
lem, an alternative method may be used to retrieve more analogies
from the patent data. Similar to the first method, the designer first
generates a list of relevant terms for the design problem. For
example, if the designer wants to explore the behavior-based pat-
ent structure, a set of behavior terms would be “rotational” and
“rotary” as the rotational movement is conventionally used for
generating electricity. The designer then explores the patents by
matching their cluster labels to the behavior terms. The cluster
label consists of the top five words that are closely related to each
other by an NMF-determined topic. Figure 7 demonstrates that the
designer first retrieves a patent in a cluster “rotary, secure, sec-
tional, flex, peripheral.” In this label, the designer discovers
another term “flex,” implying that some patents may integrate
both rotational and spring behaviors. Using the new keyword,
“flex,” the designer retrieves two more patents and discovers three
more keywords “elastic,” “resilient,” and “collapsible” that result
in retrieving three more patents. Interestingly, in Fig. 7, patents
with an asterisk mark (*) after the title represent patents with com-
bined elastic and rotational behaviors. This exemplifies the
retrieval of analogies using distinct yet suggested terms in
the cluster label, with an emphasis on exploration and discovery.
Figure 8 shows three example design concepts generated using
patents “method and apparatus for harvesting energy from ankle
motion,” “training device for football or for all games using a
small or large ball” and “archery bow assembly.”

The two patent searching methods can be used interchangeably
for an effective retrieval of analogies. The first method demon-
strates that if a list of keywords for the desired technology is avail-
able or can be generated by a designer, a patent structure can be

refined with the keywords and further refined by CPC sections. The
refining or categorizing of the patent data can enable designers to
systematically and efficiently retrieve similar analogies in various
application fields. If the list of keywords is not available, the second
method demonstrates that the patents can be iteratively searched
with the suggested terms in the cluster labels. This approach is
more spontaneous as designers can determine the exploration paths
using the cluster label while interacting with the patent structure.

As demonstrated by the two methodologies, the patent explora-
tion depends significantly on the usage of keyword search, as it
greatly reduces the analogical information that designers need to
process. Moreover, the user-defined keywords allow the designers
to tailor the patent exploration to focus on specific analogies that
satisfy the designers’ objectives for a design problem. In the case
study, the component and behavior terms relating to the rotational
movement/energy are used to solve the human motion energy col-
lection problem. As discussed earlier, designers may have diversi-
fied design objectives, implying that the list of the terms is just
one of many paths to approach the design problem. These motiva-
tions call for future studies to generate lists of words that address
specific working or physical principles of patents and investigate
the effectiveness of refining the patent structure using the pre-
established list of words.

4.3 Clustering Quality of Material Data. In the case study,
the material-based patent structure has not been studied due to the
difficulty of identifying and retrieving analogies. Unlike the com-
ponent and behavior results, the cluster labels in the material
result do not carry definite topics. For instance, terms like “water,”
“fluid,” “air,” “gas,” and others appear in many cluster labels,
causing the clusters to be indistinguishable from one another. To

Fig. 6 Concepts generated using method 1

Fig. 7 Patents (bolded) retrieved using suggested terms (underlined)
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understand why the cluster quality is relatively poor for the mate-
rial data, the word-document matrices of component, behavior,
and material data are studied. Figures 9–11 show the histograms
of three different datasets that represent the distribution of the
number of patent documents (y-axis) by the proportion of terms
that do not appear in each document (x-axis). The proportion
value varies from 0 (the document contains all terms listed in a
wordlist) to 1 (the document does not contain any of the terms
listed in a wordlist). The histograms show a general bell curve for
all datasets, where the mean values are 0.954 for component data,
0.944 for behavior data, and 0.966 for material data. Although the
mean values are similar, it is clearly observed that the histogram
for the material data is skewed to the right. The skewed data rep-
resent approximately 500 patents that contain less than 3% of the
material terms and approximately 150 patents that contain zero of
the material terms. This finding explains the poor cluster quality
of the material data, as NMF would randomly determine the topic
of the patent documents whose column cells are empty. As dis-
cussed in Sec. 2.1, the wordlists for the component, behavior, and
material properties in Appendices C, D and E were compiled by
drawing a master wordlist from the entire patent data and man-
ually categorizing the words into an appropriate property. This
ensures that the compiled material wordlist captures all material
words of the input patent data. In such a case, the absence of
material words in many of the patent documents raises some inter-
esting research questions about the nature of patent documents: to
what extent do patent documents describe the materials that the
system/artifact/technology use? When documenting for patents,
do designers or inventors detail the functional features of the sys-
tem/artifact/technology to protect the functional quality of the
intellectual property, but omit what the input or comprising

materials in the system/artifact/technology to ensure the broadest
protection from infringement? Future studies need to investigate
whether certain types of words are used more frequently than
others for documenting patents. Interviews with patent lawyers on
their writing process and choices may help to uncover some of the
driving factors behind the composition of the semantic data.
Understanding the unique traits of patent documents could help
researchers to improve the quality of topic modeling of patent
data.

Fig. 8 Concepts generated using method 2

Fig. 9 Histogram of component result Fig. 10 Histogram of behavior result

Fig. 11 Histogram of material result
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4.4 Limitations and Future Work. There are several limita-
tions in the proposed methodology that are important to acknowl-
edge. It has been observed that the clustering quality is poor when
there is a substantial number of patents that contain ambiguous or
indeterminable topics. This suggests that the clustering perform-
ance of the current methodology may not be competent for a
larger set of patents. It is also uncertain that the current visualiza-
tion methods are appropriate for interpreting the larger patent
data. Collaborations with computer scientists on investigating
clustering and visualization methods may lead to developing
more effective DbA tools for designers. The case study shows
that the material-based clustering is not useful in assisting the
design-by-analogy process. This may be a product of the dataset
examined in the study or a more widespread phenomenon, such
as how patents are documented, that needs to be investigated in
future studies. In addition, the wordlists that are manually com-
piled may not capture all relevant content in the patent data. How-
ever, we expect the content of these lists to reach saturation as
larger data sets are tested in future studies. Other limitations and
future work have been discussed throughout the paper including,
but not limited to, the implementation of improved stopping crite-
rion for the iterative NMF process to generate the clustering struc-
tures and investigation of the meaning of the “level of similarity”
for its utility during analogical exploration process.

5 Conclusion

The goal of this work is to provide designers a computational
design-by-analogy tool to explore a design repository for analogi-
cal inspiration. The computational methodology utilizes a topic

modeling technique called NMF to generate a hierarchical cluster
structure of the U.S. patent database where designers can visual-
ize and retrieve analogies to solve given design problems. In this
work, a user-driven exploration technique has been implemented
on the patent database, processed to contain only component-,
behavior-, or material-based content to generate a unique and val-
uable representation of the patent database; a case study was con-
ducted to demonstrate the systematic and interactive retrieval of
analogical inspirations from patents for concept generation.
Through the demonstration of retrieving analogical inspiration
from the structured patent database for concept generation, the
proposed methodology shows promise as an effective design-by-
analogy tool that facilitates the systematic and interactive explo-
ration of patents to support innovative design idea generation.

Acknowledgment

This work is supported by the National Science Foundation,
under grant CMMI 1663204. The United States Government
retains, and by accepting the article for publication, the publisher
acknowledges that the United States Government retains, a non-
exclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this work, or allow others to do
so, for United States Government purposes.

Funding Data

� National Science Foundation (Grant No. CMMI 1663204;
Funder ID: 10.13039/501100008982)

Appendix A

Fig. 12 Three-Dimensional and Two-Dimensional Visualizations for Component Representation of Patent Data
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Fig. 13 Three-Dimensional and Two-Dimensional Visualizations for Behavior Representation of Patent Data

Fig. 14 Three-Dimensional and Two-Dimensional Visualizations for Material Representation of Patent Data
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Section Subsection Categories Description

Section A:
Human necessities

1 Agriculture Agriculture; forestry; animal husbandry; hunting; trapping; fishing
41 Personal or

domestic articles
Wearing apparel

42 Headwear
43 Footwear
45 Hand or traveling articles
46 Brushware
47 Tables; desks; office furniture; cabinets; drawers; general details of

furniture
61 Health; amusement Medical or veterinary science; hygiene
62 Life-saving; fire-fighting
63 Sports; games; amusements

Section B:
Performing operation;
transporting

2 Separating; mixing Crushing, pulverizing, or disintegrating; preparatory treatment of
grain for milling

3 Separation of solid materials using liquids or using pneumatic
tables or jigs; magnetic or electrostatic separation of solid materials
from solid materials from solid materials or fluids; separation by
high-voltage electric fields

5 Spraying or atomizing in general; applying liquids or other fluent
materials to surfaces, in general

6 Generating or transmitting mechanical vibrations in general
7 Separating solids from solids; sorting
8 Cleaning
9 Disposal of solid waste; reclamation of contaminated soil
21 Shaping mechanical metal-working without essentially removing material;

punching metal
22 Casting; powder metallurgy
23 Machine tools; metal-working not otherwise provided for
24 Grinding; polishing
25 Hand tools; portable power-driven tools; manipulators
26 Hand cutting tools; cutting; severing
27 Working or preserving wood or similar material; nailing or stapling

machines in general
28 Working cement, clay, or stone
29 Working of plastics; working of substances in a plastic state, in

general
41 Printing Printing; lining machines; typewriters; stamps
60 Transporting Vehicles in general
61 Railways
62 Land vehicles for traveling otherwise than on rails
63 Ships or other waterborne vessels; related equipment
64 Aircraft; aviation; cosmonautics
65 Conveying; packing; storing; handling thin or filamentary material
66 Hoisting; lifting; hauling
67 Opening, closing (or cleaning) bottles, jars, or similar containers;

liquid handling

Section F:
Mechanical engineering; lighting;
heating; weapons; blasting

1 Engines or pumps Machines or engines in general
2 Combustion engine
3 Machine or engines for liquids
4 Positive displacement machine for liquids; pumps for liquids or

elastic fluids
5 Indexing schemes relating to engines or pumps in various sub-

classes of classes
15 Engineering in general Fluid-pressure actuators ; hydraulic or pneumatics in general
16 Engineering elements and units; general measures for producing

and maintaining effective functioning of machines or installations;
thermal insulation in general

17 Storing of distributing gases or liquids
21 Lighting; heating Lighting
22 Steam generation
23 Combustion apparatus
24 Heating; ranges; ventilating
25 Refrigeration or cooling; combined heating and refrigeration sys-

tems; heat pump systems; manufacture or storage of ice; liquefac-
tion solidification of gases

26 Drying
27 Furnaces; kilns; ovens; retorts
28 Heat exchange in general
41 Weapons; blasting Weapons
42 Ammunition; blasting

Appendix B: List of 53 Cooperative Patent Classification Subsections
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Appendix C: Wordlist of Components

abaci
abacus
absorber
accelerator
accelerometer
accessory
accumulator
activator
actuation
actuator
adapter
adaptor
adjuster
adjustor
afterburner
agitator
ailette
airfoil
airgun
airplane
alarm
alignment
alternator
ammunition
amplifier
analyzer
anchor
anchorage
annulus
annunciator
antenna
anticipator
applicator
aquarium
armature
armrest
arrow
arrowhead
artery
aspirator
atomiser
atomizer
atrium
attemperator
auditorium
autoinjector
automobile
ax
axle
backbone
backpack
backpack
backrest
badge
bag
bagatelle
ball
balloon
band
bandage
bar
barbell
barcode

barometer
barrel
barrier
base
basin
bath
bathseat
bathtub
battery
beam
beanbag
bear
bearing
bed
bedstead
bell
bellows
belt
bench
bicycle
bike
billard
bin
bingo
biomarker
birdhouse
bladder
blade
block
board
boat
body
bogie
boiler
bolt
bone
booster
boot
border
bottle
bottles
bow
bowl
bowstring
box
brace
bracelet
bracket
brake
branch
breadboard
breech
brewer
bridge
bronchoscope
brooch
brush
bucket
buckle
bulb
bullet
bundle
bus

button
buzzer
cabinet
cable
cage
calculator
calibrator
caliper
cam
camera
camshaft
candle
canister
cannister
cannula
canoe
canopy
cantilever
cap
capacitor
capsule
car
carabiner
carbine
carburetor
carburettor
cardia
carousel
carpet
carriage
carrier
cart
cartridge
cartridges
case
cassette
castor
catalyst
catapult
catheter
cathetor
catridge
cavaletti
cavity
ceiling
cell
centimeter
centrifuge
chain
chair
chalk
chamber
channel
chassi
chimney
chip
circuit
clamp
classifier
cleaner
clip
clock
closure

cloth
club
clutch
clutches
coat
cogwheel
coil
colander
collar
collector
collimator
combustor
commutator
compactor
comparator
compartment
compensator
component
compress
compressor
computers
condenser
condensor
conditioner
conditioners
conductor
connecter
connector
conrod
console
contactor
container
containers
contractor
convertor
conveyor
cooker
cookstove
cooktop
coordinator
cord
core
cork
cornea
corset
cotter
countermeasure
countershaft
cover
cradle
crankcase
crankshaft
cribbage
crinoline
crossbar
crossbow
crown
cuff
cufflink
cup
cursor
curtain
cushion

cuspidor
cylinder
cytometer
dam
dampener
damper
dashboard
dashpot
deck
decoder
defibrillator
deflector
defroster
dehydrator
demodulator
descrambler
descriptor
designator
desk
desktop
desuperheater
detector
detonator
dial
dialyzer
diaphragm
diffuser
dilator
diode
disk
discriminator
dish
dishwasher
disk
dispenser
displacer
display
disruptor
distractor
distributor
divider
dome
door
doublet
dowel
drawstring
drier
drill
drum
duct
dumbbell
durometer
dynamometer
economiser
economizer
editor
effector
ejector
electrode
electroluminescent
electromagnet
electronics
elevator
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eliminator
emitter
emulsifier
encoder
endoscope
engine
enhancer
envelope
equalizer
equalizer
equipment
estimator
evaluator
evaporator
examiner
excavator
exciter
exhaust
expander
extender
extension
extinguisher
extruder
eyelet
eyepiece
fan
fastener
fastening
femur
fence
fermenter
fermentor
ferrule
fertilizer
festoon
filament
filler
film
filter
fin
fins
firearm
firebridge
fireplace
firmware
flameholder
flap
flash
flashlight
flask
floor
flue
flute
flywheel
foil
footwear
forceps
forearm
fork
frame
freewheel
furnace
fuze
gaiter
gallery
gamepad
garland
garter
gasket
gastroscope

gate
gauge
gear
gearbox
gears
gearset
generator
geometrizer
girdle
glove
glowplug
glue
goggle
gown
graft
granulator
grease
grenade
grid
grip
guidewire
guitar
gum
gun
handle
handled
hardware
harness
harpoon
hat
headband
headgear
headrest
headset
heart
heel
helicopter
helmet
highway
hinge
hoist
holder
hole
holster
homogenizer
honeycomb
hood
hook
hoop
hopper
horn
horseshoe
hose
hosel
house
housing
howitzer
hub
hypotube
identifier
idler
igniter
ignitor
illuminator
impeller
inclinometer
incubator
indicator
inducer
inductor

inflator
inhaler
inhibitor
initiator
injector
injector
ink
inlet
installer
instance
insulator
integrator
interconnector
intercooler
interface
interior
interrupter
intestine
introducer
investigator
isolator
jack
jacket
jaw
jet
jets
joint
joypad
joystick
kernel
key
keyboard
keypad
kit
kite
knife
knob
lamp
lanyard
laser
lash
latch
layer
leaflet
leash
led
leg
legging
legs
lens
lenslet
lever
lid
lift
lighter
liner
lining
link
linkage
lip
liquefin
lobe
localizer
locator
lock
lodge
longbow
loop
loudspeaker
lubricant

luggage
luminaire
magnet
maintainer
mandrel
manifold
manipulator
manometer
mantle
marker
mask
mast
mat
mattress
mediator
membrane
microcomputer
microcontroller
microlens
micrometer
microphone
microprocessor
microscope
microswitch
midline
mirror
missile
modifier
modulator
module
moisturizer
monitor
motherboard
motor
motorcycle
mouldboard
mount
mounted
mousetrap
mouthpiece
mover
mower
muffler
multicylinder
multiplate
multiplier
multivibrator
muscle
muscles
muzzle
nanometer
neck
neckband
needle
nerve
net
neurotransmitter
nostril
notebook
notepad
nozzle
nut
observer
obturator
occluder
opacifiers
operator
ordnance
organ
orifice

oscillator
oscilloscope
outlet
oven
oversleeve
oxidizer
oximeter
pacemaker
package
pad
paddle
paintball
pan
pane
panel
panel
parachute
parameter
parlor
passage
passageway
patch
path
pawl
pedal
pedestal
peg
pen
pencil
penetrator
penis
peppergun
perforation
petticoat
phone
photodetector
photosensitizer
pillar
pillow
pin
pinion
pipe
pipeline
pistol
piston
pitot
planetary
plasticizer
plate
platelet
platform
player
playhouse
playslip
pleximeter
plug
pocket
pod
pointer
polarizer
pole
pool
pore
port
portafilter
potentiometer
pouch
powertrain
prechamber
precipitator
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precursor
predictor
prefilter
pressurizer
preventer
probe
processor
progenitor
projector
promoter
propeller
protector
protrusion
provider
puck
pulley
pump
puttee
puzzle
rack
racket
radar
radiator
radio
rail
railroad
ramp
ratchet
razor
reactor
reboiler
receiver
receptor
rectifier
reducer
reel
reflector
refrigerant
refrigerator
regenerator
regulator
repeater
resectoscope
reservoir
resistor
respirator
restorer
restricter
restrictor
resuscitator
retainer
retina
retractor
rib
ribbon
riblet
ribs
rifle
riflescope
rille
rim
ring
rips
rivet

robot
rocket
rod
rodlink
roller
roof
room
root
rope
rotary
rotator
rotor
sack
saddle
sandbox
satellite
scaffold
scale
scattergun
scene
scheme
scissors
scooter
scope
screen
screw
screwdriver
scroll
seal
seat
sector
see-saw
segment
segments
selector
semiconductor
sensor
separator
servomotor
sewer
shack
shackle
shaft
shank
shaver
sheath
shelf
shell
shield
ship
shoe
shoelace
shooter
shotgun
shredder
shuttle
sidewall
sieve
silencer
simulator
sink
siren
ski
skin

skirt
sleeve
slide
sling
slot
slug
sluice
snare
sock
socket
socles
solenoid
solubilizer
speaker
spear
speargun
spectrometer
sphincter
spigot
spindle
spine
spinner
spittoon
spool
spoon
spray
spring
sprocket
stabilizer
stand
staple
station
stator
stem
stent
stents
stethoscope
stiffener
stile
stimulator
stock
stool
storage
stove
straightener
strap
stratifier
straw
streamline
string
stroke
stud
subchamber
subsoiler
suction
sulky
supercharger
suppressor
suspension
suture
swashplate
swing
switch
swivel

synchronizer
synthesizer
syringe
table
tablet
tack
tail
tampon
tank
tape
tappet
target
tassel
teaspoon
teeth
telemetry
telemotor
telephone
television
tendon
terminal
tether
thermister
thermistor
thermocouple
thermometer
thermosensor
thermoset
thermostat
thorax
thread
throttle
thyristor
ticket
tie
tile
timer
tip
tire
tissue
tongue
tooth
toothbrush
torch
toup�ee
towel
toy
tracheal
track
trackball
tractor
trail
transceivera
transducer
transformer
transistor
transmission
transmitter
transometer
transponder
trap
tray
trebuchet
trigger

trimmer
trocar
trolley
trommel
trough
truck
trunk
tub
tube
tubes
tunnel
turbine
turbo
turbocharger
turboexpander
turbofan
turbomachine
turbomachinery
turbopump
turf
turnbuckle
turntable
turret
ultrafilter
umbrella
ureter
vacuum
valance
valve
vane
vaporizer
vault
vehicle
vein
velcro
vent
ventilator
venturi
vessel
vibrator
visor
wagon
wall
wand
warhead
washer
watch
watercraft
weapon
wedge
wheel
wheelchair
whiteout
window
wing
wire
wrench
yoke
zipper
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Appendix D: Wordlist of Behaviors

abdominal
absorbable
absorbent
accessible
acetabular
acid
acidic
actuatable
actuated
adaptable
adaptive
adherable
adhesive
adverse
aerodynamic
agricultural
alignable
alternative
anatomic
anhydrous
aqueous
aromatic
arterial
artificial
asymmetric
atmospheric
attachable
audible
automated
automatic
automotive
auxiliary
bacterial
ballistic
bendable
bimetallic
bioabsorbable
biocompatible
biodegrade
biologic
bipolar
bloated
bodily
breathable
buoyant
cardiac
cellular
ceramic
cervical
chemical
chronic
clean
clinic
coated
cold
collapsible
combustible
compact
compatible
complementary
complex
composite

compressed
compressive
condensed
conductive
conjoint
consistent
controllable
controlled
convective
cool
coronary
cosmetic
cryogenic
curable
decorative
deflectable
deformable
demountable
dense
dental
deployable
detachable
detectable
diffuse
discrete
displaceable
disposable
dissolvable
distal
divisional
downward
dry
durable
dynamic
edible
elastic
elastomeric
electric
electromagnetic
electronic
electrostatic
electrosurgical
elevated
elevational
endless
engageable
enlarged
environmental
equivalent
evaporative
exchangeable
expandable
expanded
explosive
extendable
extended
extendible
extracellular
fast
fastenable
fatty
femoral

fetal
fibrous
fitting
flammable
flex
flexural
floatable
floating
floral
fluidic
fluorescent
fragile
fresh
frictional
fungicidal
fusible
gaseous
gastrointestinal
genetic
hard
harmonic
healthy
heavy
hemispheric
hemostatic
hot
hybrid
hydraulic
hydrodynamic
hydrophilic
hydrophobic
hydrostatic
hypodermic
idle
ignitable
immovable
immune
impermeable
implantable
inbred
incompressible
indicative
inducible
inductive
inelastic
inert
inertial
inexpensive
inflammatory
inflexible
infrared
injectable
inorganic
insertable
insoluble
instant
instantaneous
insulative
interchangeable
interconnecting
intravenous
intricate

invasive
inverted
invertible
irregular
irreversible
isolate
latent
light
lubricant
lumbar
luminous
magnetic
magnetizable
malleable
mechanic
medial
medical
metallic
miscible
mixed
mobile
modular
molten
mountable
movable
moveable
muscular
myocardial
nasal
nestable
neutral
noncombustible
nonionic
nonrotatable
nuclear
nucleic
ocular
opposing
optic
optimal
orbital
organic
periodic
peripheral
permanent
permeable
pharmaceutical
pharmacologic
physical
piercing
pivotable
pivotal
planetary
pneumatic
polymeric
positionable
precise
premature
programmable
programmed
prolonged
propelled

proximal
pure
pyrotechnic
quick
radiant
radioactive
rapid
rechargeable
recombinant
recyclable
reflective
refractory
regenerative
releasable
reliable
remote
repellent
repetitive
replaceable
reproducible
residual
resilient
resistant
resonant
responsive
resting
reusable
reverse
reversible
revolving
rigid
robotic
rollable
rolling
rotary
rotatable
rough
rugged
safe
saline
saturated
seal
sectional
securable
secure
semipermeable
sensible
sensitive
shiftable
shrinkable
slidable
slideable
sliding
slow
smooth
soft
solar
sole
soluble
spatial
spinal
spinning

spinous
stabilized
stable
stackable
stainless
static
stationary
steady
steerable
sterile
sticky
stiff
stretch
strong
sturdy
submersible
supporting
surgical
susceptible
sustained
swivelable
symmetric
synchronous
synergistic
synthetic
systolic
tangential
therapeutic
thermal
thermodynamic
tight
tiltable
torsional
toxic
transluminal
transparent
transportable
turbulent
ultrasonic
underwater
unstable
variable
vascular
vehicular
ventricular
vertebral
virtual
viscous
visible
volatile
warm
waterproof
waxy
weak
wearable
wet
wheeled
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Appendix E: Wordlist of Materials

acetate
acid
acridine
adhesive
adsorbent
agent
air
albumin
alcohol
algae
alkali
alkaline
alkaloid
alkenyl
alkoxy
alkyl
alkylcarboxamide
alkylene
allantoin
alloy
alum
alumina
aluminum
aluminum
amide
amine
aminoalkyl
ammonium
animal
antibacterial
antibiotic
antibody
arrhythmia
arrow
arthropod
aryl
ash
asphalt
atom
bacterium
bait
ball
bamboo
banana
bark
baseball
bauxite
bead
bean
beeswax
benzotriazole
benzyl
beryllium
beverage
biodiesel
biopolymer
blood
book
borax
brass
brick
bromide

bronze
bubble
bur
calcium
cancer
canvas
carbide
carbohydrate
carbon
carbonate
carboxyl
cast iron
castor
cellulose
cement
ceramic
chalk
charcoal
chemical
chloride
chlorine
chocolate
chromium
claudin
clay
cloth
coal
cobalt
coffee
collagen
composite
compost
compound
concentrate
concrete
condensate
coolant
copolymer
copper
corn
cotton
crab
cream
crystal
curd
cycloalkyl
daub
dextran
dialysate
diamond
diesel
dimethyl
diode
dioxide
disulfide
dough
drug
duroplastic
dye
dynamite
earth
egg

elastomer
elastomeric
electrolyte
enamel
enantiomer
endocardium
enzyme
epoxy
espresso
ester
ethanol
ether
ethyl
ethylene
fabric
fat
feedstuff
fenugreek
fiber
fiberglass
fiber
fir
fish
flour
fluid
fluoride
fluorine
fluorite
foam
food
foodstuff
fructose
fruit
fuel
fungicide
galactosyl
gas
gasoline
gel
gem
gemstone
gene
glass
glucose
glyceryl
glycol
gold
grain
granite
graphite
gravel
hair
halogen
hay
hemoglobin
hemp
herbal
herbicide
heteroaryl
honey
honeycomb
humectant

huperzine
hydride
hydrocarbon
hydrochloride
hydrogel
hydrogen
hydromorphone
hydroxide
hydroxyethyl
hydroxyl
ice
ingredient
ink
insect
insecticide
insulin
interbody
iodidea
ion
iron
item
ivory
juice
keratin
keratinocyte
kernel
kerosene
ketone
lactose
lamina
latex
leaf
leather
lime
limestone
linoleum
lipid
liquid
lubricant
luggage
lye
lyophilizate
lysine
magnesium
mannitol
manure
marble
martensite
meat
medicament
medicine
membrane
mesalamine
metal
methane
methanol
methyl
methylbenzyl
methylene
microorganism
milk
mineral

mixture
molecule
mollusk
mud
myocardium
natural
nickel
niobium
nitro
nitrogen
nitrous
nucleotide
nut
nylon
object
oil
oligonucleotide
ore
organ
organic
organism
oxide
oxygen
paclitaxel
paint
paper
particle
particulate
pathogen
peanut
pearl
peel
peptide
pet
phosphate
phosphite
phospholipid
photograph
piperazine
pith
planet
plant
plasma
plaster
plastic
platinum
plaything
plenum
plywood
pollen
polyamino
polycarbonate
polyester
polyethylene
polyglycolide
polymer
polynucleotide
polypeptide
polyphosphate
polyphosphite
polystyrene
polyurethane
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porcelain
potassium
poultry
powder
primer
prodrug
progeny
propane
propellant
propylene
protein
pulp
pvc
quartz
quinacrine
rebaudioside
reed
refrigerant
render
resin
reticulocyte
rock
root
rubber
saline
salt
sand
sap
sash
sawdust
seawater
seed
shampoo
sheet
silica
silicon

silicone
silver
slag
slate
sludge
slurry
slush
smoke
soap
sodium
soil
solid
solute
solvent
soy
soybean
specimen
spider
sponge
starch
steam
steel
stem
steroid
stockpile
stone
stream
substance
substrate
sucrose
sugar
sulfate
sulfide
sulfur
sunlight
surfactant

sweetener
syrup
tantalum
tarpaulin
tea
termite
tetracycline
textile
thatch
thermoplastic
thread
tile
timber
time
tin
tissue
titanium
tobacco
transferase
tree
triethylamine
trifluoromethyl
triglyceride
tuft
tungsten
uranium
urethane
urine
vaccine
vantablack
vapor
vegetable
veneer
vinyl
waffle
wallpaper

warp
waste
water
wax
weed
wheat
whiteout
wire
wood
wool
yarn
yeast
zinc
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