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Abstract. Improvements to climate model results in po-

lar regions require improved knowledge of cloud proper-

ties. Surface-based infrared (IR) radiance spectrometers have

been used to retrieve cloud properties in polar regions, but

measurements are sparse. Reductions in cost and power re-

quirements to allow more widespread measurements could

be aided by reducing instrument resolution. Here we ex-

plore the effects of errors and instrument resolution on cloud

property retrievals from downwelling IR radiances for res-

olutions of 0.1 to 20 cm−1. Retrievals are tested on 336

radiance simulations characteristic of the Arctic, including

mixed-phase, vertically inhomogeneous, and liquid-topped

clouds and a variety of ice habits. Retrieval accuracy is

found to be unaffected by resolution from 0.1 to 4 cm−1, af-

ter which it decreases slightly. When cloud heights are re-

trieved, errors in retrieved cloud optical depth (COD) and

ice fraction are considerably smaller for clouds with bases

below 2 km than for higher clouds. For example, at a res-

olution of 4 cm−1, with errors imposed (noise and radia-

tion bias of 0.2 mW/(m2 sr cm−1) and biases in tempera-

ture of 0.2 K and in water vapor of −3 %), using retrieved

cloud heights, root-mean-square errors decrease from 1.1 to

0.15 for COD, 0.3 to 0.18 for ice fraction (fice), and 10 to

7 µm for ice effective radius (errors remain at 2 µm for liq-

uid effective radius). These results indicate that a moderately

low-resolution, surface-based IR spectrometer could provide

cloud property retrievals with accuracy comparable to exist-

ing higher-resolution instruments and that such an instrument

would be particularly useful for low-level clouds.

1 Introduction

Knowledge of polar cloud properties is critical for under-

standing climate change in polar regions. Polar regions are

among the most rapidly warming regions on Earth, with sig-

nificant concurrent changes in cloud properties that influence

the amount of warming (Wang and Key, 2005) and indica-

tions that sensitivity to clouds may increase in a warming

Arctic (Cox et al., 2015). Clouds have a strong influence

on the polar surface energy budget (Lawson and Gettelman,

2014; van den Broeke et al., 2017), influencing sea ice loss

(Francis and Hunter, 2006; Kay and Gettelman, 2009; Wang

et al., 2019) and Greenland ice melt (van den Broeke et al.,

2017). Despite ongoing efforts to improve cloud processes

in climate models, the Intergovernmental Panel on Climate

Change (IPCC) finds that “clouds and aerosols continue to

contribute the largest uncertainty to estimates and interpre-

tations of the Earth’s changing energy budget,” (Boucher et

al., 2013). Improving the representation of cloud processes

in climate models requires observational constraints, includ-

ing ice and liquid water paths, particle size, and thermody-

namic phase (Komurcu et al., 2014; Winker et al., 2017).

This is particularly true for the polar regions, where clouds

and cloud processes are distinctly different from lower lati-
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tudes and present unique challenges for modeling cloud ra-

diative effects (Hines et al., 2004) and where measurements

are sparse.

Although ground-based observations in the polar regions

are sparse, measurements made during campaigns and at per-

manent field sites (e.g., Bromwich et al., 2012; Cox et al.,

2014; Uttal et al., 2015, and references therein; Lachlan-

Cope et al., 2016; Silber et al., 2018) and from satellites

(e.g., L’Ecuyer and Jiang, 2010) have made important con-

tributions to our understanding of polar clouds. IR spectrom-

eters are proven instruments for remote sensing that have

been part of many of these surface and satellite-based mea-

surements. Surface-based IR spectrometers are most sen-

sitive to the cloud base, providing an important comple-

ment to satellite-based measurements. In particular, Atmo-

spheric Emitted Radiance Interferometer (AERI) instruments

currently operate at Barrow (1998–current), Eureka (2006–

current), and Summit (June 2010–current): three Arctic in-

tensive observing sites (Uttal et al., 2015). In the Antarc-

tic, there have been only short-term surface-based IR spec-

trometer measurements, including measurements made at

Amundsen–Scott South Pole Station in 1992 (Mahesh et

al., 2001) and 2001 (Rowe et al., 2008), at Dome C during

Austral summer 2003 (Walden et al., 2005) and 2012–2014

(Palchetti et al., 2015), and at McMurdo (as part of the Atmo-

spheric Radiation measurement (ARM) West Antarctic Ra-

diation Experiment, or AWARE; Silber et al., 2018). These

measurements are crucial, but represent only very sparse cov-

erage of the polar regions.

Because IR radiance measurements are passive, the energy

requirements are considerably lower than for active instru-

ments such as lidar. Thus there is the potential for portable,

low-cost, autonomous IR spectrometers that could be de-

ployed to remote locations to make widespread IR radiance

measurements across the polar regions from which cloud

properties could be retrieved. Such measurements would be

beneficial in a number of ways: First, they could be used

to fill gaps in satellite measurements. For example, cloud

properties were retrieved at Eureka from 2006 to 2009 from

AERI measurements made nearly continuously every ∼ 40 s

(Cox et al., 2014). By contrast, satellite overpasses are typ-

ically twice per day. Second, surface-based measurements

can be used to validate satellite-based measurements. Finally,

surface-based instruments are generally better at characteriz-

ing clouds in the boundary layer. To demonstrate the feasi-

bility of such an instrument, the limitations of the retrieval

given instrument operational constraints and availability of

ancillary data must first be assessed.

In this paper, we explore the accuracy with which cloud

properties could be retrieved from a portable IR spectrome-

ter, including optical depth, thermodynamic phase, and effec-

tive radius. This paper builds on similar work that explored

the accuracy of cloud-height retrievals (Rowe et al., 2016).

One way to develop a robust, low-power portable spectrom-

eter might be to reduce the instrument resolution. Here we

quantify cloud-property retrieval accuracy as resolution be-

comes coarser, from 0.1 to 20 cm−1. Cloud properties are re-

trieved from simulated downwelling radiance spectra using

the CLoud and Atmospheric Radiation Retrieval Algorithm

(CLARRA). In addition to retrieving cloud height (Rowe

et al., 2016), CLARRA retrieves cloud optical and micro-

physical properties from IR radiances using an optimal in-

verse method in a Bayesian framework. Cloud property re-

trievals are performed for simulated polar clouds with vary-

ing atmospheric thermal and humidity structure, cloud opti-

cal depth (in the geometric limit, hereafter COD), thermo-

dynamic phase (including mixed-phase and supercooled liq-

uid), liquid effective radius, ice effective radius, ice crystal

habit, and cloud vertical structure. Mixed-phase clouds were

simulated as an external, homogeneous mixture of liquid and

ice particles. We also examine the sensitivity of retrieved re-

sults to noise and bias imposed on the radiance as well as

to errors in specified input parameters, especially the atmo-

spheric state and cloud height.

2 Simulated radiances

To test the effect of instrument resolution on the ability to

retrieve cloud properties from downwelling radiances, re-

trievals using CLARRA were performed on a set of simu-

lations. Using simulations rather than actual measurements

confers a variety of benefits: (1) the basic capability of the

model, in the absence of error, can be determined, setting

a benchmark for retrieval capability, (2) the effects of var-

ious sources of error (such as noise, bias, or uncertainty in

the atmospheric state) can be determined and assessed inde-

pendently, and (3) errors in the retrieved values are known

and thus can be compared to assess the uncertainty predic-

tion from the CLARRA model.

The set of simulated downwelling radiances is described

in detail by Cox et al. (2016) and by Rowe et al. (2016). The

simulations are based on observed Arctic atmospheric pro-

files and cloud properties meant to represent a typical Arc-

tic year, based on statistics from field observations (Cox et

al., 2016, and references therein; although designed for the

Arctic, significant overlap is expected for typical Antarctic

atmospheric states, except perhaps in winter in the interior,

when the atmosphere is colder and drier). All clouds were

modeled as plane-parallel, single-layer clouds. Precipitable

water vapor (PWV) varied from 0.2 to 3 cm.

A base set of 222 simulated radiances was created for at-

mospheres with vertically uniform clouds, using spheres for

ice crystal habit (as well as for liquid droplet shape). Cloud

bases vary from 0 to 7 km, with about 70 % of clouds within

the lowest 2 km and 30 % above; thickness varies from 0.1

to 1.6 km; and temperatures vary from 225 to 282 K. Mixed-

phase clouds are modeled as externally mixed and span tem-

peratures of 240 to 273 K. Cloud phase includes liquid-only

(about one-sixth of cases), ice-only (about one-sixth), and
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Table 1. Statistics of cloud properties. Standard deviations were

calculated for the logarithms of cloud optical depth referenced to

the geometric limit (τg), effective radius of liquid (rliq), and ef-

fective radius of ice (rice) because distributions for the logarithms

were found to be more Gaussian in shape; these standard deviations

were converted to positive and negative linear standard deviations

for these quantities. The ice fraction, fice, peaks strongly at both

limits; thus no standard deviation is provided.

Quantity Units Mean SD Range

τg (tau) 2 −0.5, +2 0.03–9.3

fice (fract) 0.5 – 0–1

rliq (µm) 10 −3, +4 2–21

rice (µm) 25 −9, +14 5–58

mixed-phase (about two-thirds). Statistics for cloud proper-

ties are summarized in Table 1. (Statistics were generated for

lognormal distributions of COD and effective radii. Thus the

standard deviations were computed for the logarithms. For

convenience, these were converted to positive and negative

linear deviations in Table 1.)

A second set of simulated radiances was created for test-

ing the effects of cloud vertical inhomogeneity, including 23

cases from the base set for which the cloud spanned multi-

ple layers of the atmospheric model; these are referred to as

“diffuse.” Simulations were created for identical conditions,

including the total COD, except that clouds were modeled

as dense (physically thinner), inhomogeneous (the cloud was

optically thicker at the center and thinner at the upper and

lower edges), or liquid-topped (liquid cloud was confined

to the uppermost layer, while ice cloud was confined to the

lower model layers).

A third set was created for testing the effect of ice habit on

the retrieval, including nine base cases having an ice COD

greater than 0.5. Simulations were created for identical con-

ditions, except that single-scattering properties from different

cloud habits were used: hollow bullet rosettes, smooth plates,

rough plates, smooth solid columns, and rough solid columns

(Yang et al., 2013).

The set of simulated spectra was created at monochro-

matic or perfect resolution using the DIScrete Ordinates

Radiative Transfer (DISORT; Stamnes et al., 1988) model,

with monochromatic gaseous optical depths created using the

Line-By-Line Radiative Transfer Model (LBLRTM; Clough

et al., 2005) as inputs. Spectra were then convolved with a

sinc function to obtain sets of spectra at resolutions of 0.1,

0.5, 1, 2, 4, 8, and 20 cm−1. These are hereafter referred

to as the “observed” spectra. Figure 1a shows a spectrum

at 0.5 cm−1 resolution, together with the clear-sky spectrum

for the same atmospheric conditions. Additional examples at

0.5 cm−1, as well as at 4.0 cm−1, are given in Fig. 2 of Rowe

et al. (2016).

Figure 1. (a) Clear- and cloudy-sky downwelling radiance

(1 RU = 1 mW/(m2 sr cm−1)) for a typical polar atmosphere at a

resolution of 0.5 cm−1. (b) Model errors (model–true) in down-

welling radiances for the clear-sky radiance shown in (a) (blue solid

line), and box-and-whisker plots of model errors for all radiances,

averaged in microwindows (horizontal lines give the median, boxes

give the 1st and 3rd quartiles, and whiskers give the range).

3 CLoud and Atmospheric Radiation Retrieval

Algorithm (CLARRA)

CLARRA retrieves cloud properties (cloud height and

temperature, COD, ice fraction, effective radius of liquid

droplets, and effective radius of ice crystals) from down-

welling IR radiances, given knowledge of the atmospheric

state. As the first step in the retrieval, cloud heights are re-

trieved by CLARRA as described by Rowe et al. (2016; see

also references therein). Alternatively, cloud heights can be

input into CLARRA (e.g., from other instrumentation, such

as lidar, or from reanalysis models). Next, CLARRA per-

forms a fast preliminary retrieval to estimate cloud optical

and microphysical properties (Sect. 3.1). These are then used

as first-guess values in an iterative optimal nonlinear inverse

retrieval (Sect. 3.2).

In preparation for running CLARRA, model atmosphere

layer boundaries must be chosen and the atmospheric pro-

files must be constructed (based on model and measured data

for the location and time of the downwelling radiance spec-

trum). For this work, the same atmospheric profiles used to

create the simulated radiances are used (although errors are

sometimes added). In addition to uncertainty estimates for

the observed radiance, the optimal inverse retrieval requires a

priori values for the optical and microphysical properties and

their covariance matrix. These can be taken from a climatol-

ogy or can be determined from the fast retrieval. In this work,

the statistics of the cloud properties used to create the simu-

lated radiances are used. Finally, the observed spectrum and

associated covariance matrix are needed (here, the simulated
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radiances with known errors are used). After these prepara-

tions, CLARRA is run as follows.

1. Compute gaseous layer optical depths at monochro-

matic resolution.

2. Using the above and the temperature profile, calculate

terms related to emission and transmission by gases at

the effective instrument resolution.

3. Retrieve cloud height (see Rowe et al., 2016), or alter-

natively input the cloud height from another source.

4. Perform the fast retrieval that neglects scattering to get

first-guess optical and microphysical properties.

5. Perform the optimal iterative inverse method to retrieve

cloud properties, using the first-guess or previous iter-

ation results, the a priori and covariance matrix for the

cloud properties, and the observed spectrum and its co-

variance matrix.

6. Repeat step 5 until the result converges or a maximum

number of iterations is reached.

For step 1, gaseous layer optical depths are computed

at monochromatic resolution using LBLRTM. The cloud-

height retrieval (step 3) was described by Rowe et al. (2016).

The fast retrieval (step 4), the optimal inverse method (steps

5 and 6), and calculation of necessary terms (step 2) are de-

scribed below.

3.1 Fast preliminary retrieval

The preliminary retrieval provides a computationally fast es-

timate of cloud properties. Cloud properties are retrieved

from the absorption optical depth, computed from the cloud

emissivity, ignoring scattering. The fast retrieval can be used

to inform real-time decisions about measurements (e.g., du-

ration of time to average spectra for noise reduction) as

well as providing estimates of cloud property statistics that

can inform further analysis. Cloud properties retrieved from

the fast retrieval also serve as a first guess for the iterative

optimal inverse method described in the following section,

with the goal of enhancing performance by starting iterations

closer to the solution. Optionally, the fast retrieval results can

provide input statistics for the optimal inverse method (a pri-

ori means and standard deviations). The description of the

fast retrieval, below, can be skipped without loss in continu-

ity.

The cloud emissivity is approximated as in Rowe et

al. (2016):

ε =
Robs − Rclr

Bctc + Rc − Rclr
, (1)

where Robs is the observed radiance, Rclr is the clear-sky ra-

diance, Bc is the Planck function of cloud temperature, tc is

the surface-to-layer transmittance, and Rc is the surface-to-

layer clear-sky radiance. All terms must be at the effective

instrument resolution (as will be discussed in Sect. 3.3 and

the Appendix).

The cloud reflectivity is ignored so that the cloud emissiv-

ity is assumed to be 1 minus the cloud transmittance. The nat-

ural logarithm of the cloud transmittance is the cloud absorp-

tion optical depth, which can thus be calculated from quanti-

ties that are measured or can be calculated independently of

the cloud properties:

τa,obs = ln

(
1 −

Robs − Rclr

Bctc + Rc − Rclr

)
. (2)

The value of τa can also be calculated from the state vari-

ables: COD (τg), ice fraction (fice), effective radius of liquid

(rliq), and effective radius of ice (rice),

τa = τg/2
[[

1 − fice

]
Qa,liq

(
rliq

)
+ ficeQa,ice (rice)

]
. (3)

Qa,liq and Qa,ice are the absorption efficiencies of liquid and

ice, determined from the extinction efficiencies Qe and the

single-scatter albedos ω0. For ice

Qa,ice = Qe,ice (rice)
[
1 − ω0,ice

]
, (4)

where Qe,ice and ω0,ice are determined for averages over

a lognormal distribution of particle radii corresponding to

the effective radius rice. For the fast preliminary retrieval,

spheres were assumed for ice, and single-scattering parame-

ters for each particle radius were calculated from Mie theory

using the index of refraction of Warren et al. (2008), based

on a temperature of 266 K. For liquid, single-scattering pa-

rameters determined from temperature-dependent indices of

refraction at temperatures of 240, 253, 263, and 273 K were

used (Rowe et al., 2013; Zasetsky et al., 2005; Wagner et

al., 2005). Letting T1 be the temperature from this list that is

closest to but lower than the cloud temperature and T2 be the

temperature closest to but higher than the cloud temperature,

Qa,liq is given as the weighted sum:

Qa,liq = w1Qe,liq

(
rliq,T1

)[
1 − ω0,liq

(
rliq,T1

)]

+ w2Qe,liq

(
rliq,T2

)[
1 − ω0,liq

(
rliq,T1

)]
, (5)

where w1 = (T2 − Tc)/(T2 − T1) and w2 = (Tc − T1)/(T2 −

T1).

The values of Qe,liq, Qe,ice, ω0,liq, and ω0,ice, are pre-

computed for the full range of possible rliq and rice. The COD

(τg) is retrieved by inverse retrieval (using Eqs. 6 and 7 be-

low, but with R replaced with τ a,obs, F replaced with Eq. 3,

and γ = 0). Next, τ a,obs is calculated for the retrieved τg and

for a variety of values of fice (0.2, 0.4, 0.6, 0.8), rliq (integers

between 5 and 30), and rice (even numbers between 10 and

50). Calculating τ a,obs for all combinations of these values is

computationally fast compared to other aspects of CLARRA.

Finally, the values of fice, rliq, and rice are selected that cor-

respond to the minimum absolute difference between τ a,obs

and τ a.
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3.2 Optimal nonlinear inverse method

The optimal nonlinear inverse method iteratively retrieves

cloud properties (COD, fice, rliq, and rice), using the re-

sults of the fast retrieval as a first guess. The inverse method

uses radiances from 400 to 600 cm−1 (allowing thermody-

namic phase determination; Rathke et al., 2002a) and from

750 to 1300 cm−1, which is sensitive to phase, COD, and

effective radius. Similar optimal nonlinear inverse methods

have been used to retrieve cloud properties from AERI in-

struments in the Arctic (Turner, 2005; Cox et al., 2014) and

from satellite instruments (Wang et al., 2016; Poulsen et al.,

2012; L’Ecuyer et al., 2019). Cloud properties are retrieved

from observed radiances averaged in microwindows (see Ta-

ble 2). The remainder of this section provides additional de-

tails about the optimal nonlinear inverse method.

The inversion equation used here is the iterative

Levenberg–Marquardt method (Rodgers, 2000, and refer-

ences therein),

xi+1 = xi+

{[
1 + γi

]
S−1

a + KT
i S−1

e Ki

}−1

{
KT

i S−1
e [R − F (xi)] − S−1

a [xi − xa]
}
, (6)

where x is the state vector, with a priori xa and covariance

matrix Sa. The subscript i indicates the iteration number and

R is the observation, with covariance matrix Se. F is the for-

ward model (described below), and the kernel (K) is the Jaco-

bian matrix, computed numerically by perturbing each state

variable in turn and rerunning F .

The Levenberg–Marquardt formulation is a hybrid of the

Gauss–Newton formulation and the method of steepest de-

scent, with γ = 0 defaulting to Gauss–Newton. As γ in-

creases, Eq. (6) becomes more heavily weighted towards

steepest descent and convergence slows. Choosing γ is diffi-

cult, as a large value of γ will slow the retrieval. Here we start

with γ = 0. Each time the current iteration causes the root-

mean-square (rms) error between measurement and forward

model result to increase in magnitude by more than 1 RU, or

by more than double the current error, γ is increased (first

to γ = 1 and then) by a factor of 10; the retrieval is then re-

peated with the new γ . After increasing γ , if a subsequent

iteration does not increase the rms error as described above,

γ is decreased by a factor of 10. Iterations are repeated un-

til γ < 0.01 or the maximum allowed number of iterations is

reached.

Error in the retrieved state variable is given by the covari-

ance matrix

S =

(
KT S−1

e K + S−1
a

)−1
. (7)

Note that this equation applies only when γ = 0. We find

that our criterion of γ < 0.01 results in negligibly different

retrievals than for γ = 0. Convergence is tested using

d2
i = (xi − xi+1)

T S−1 (xi − xi+1) � n, (8)

Table 2. Microwindows used in the optical and microphysical cloud

property retrievals. The first column gives the central wavenumber,

and the second column gives the microwindow width for resolutions

of 0.1 to 4 cm−1. For resolutions of 8 cm−1, some microwindows

were widened slightly so that there was at least one point in the mi-

crowindow (a few were narrowed so that there was only one point).

Two sets of microwindows were used in this work: a combination of

those used by Rathke and Fischer (2000) and Mahesh et al. (2001),

indicated with superscripts R and M , and microwindows similar to

those used by Turner (2005), consisting of all wavenumbers in plain

font (e.g., not bold).

0.1–4 cm−1

ν (cm−1) width (cm−1)

497.0 4.1

522.5R 4.0

531.8R 3.7

560.0R 4.0

572.5R 3.0

772.8 3.9

788.1 4.0

811.5 4.0

820.2 6.5

831.6M 6.0

845.6 5.0

862.0M 3.9

875.0 5.0

893.8 3.9

901.5M 6.6

917.5M 4.0

934.6M 10.1

961.1M 6.3

988.2M 6.6

1080.7 8.2

1095.2 5.7

1115.1 3.0

1128.5 8.2

1145.1 5.8

1159.3 8.2

(Rodgers, 2000), where n is the length of x.

In this work, the observation R is derived from the simu-

lated spectra described in Sect. 2 by averaging radiances in

microwindows between strong gaseous emission lines. Mi-

crowindows used in this work for resolutions of 0.1 to 4 cm−1

are shown in Table 2. They span 3–10 cm−1 and include at

least one radiance (wavenumber spacing is equivalent to res-

olution). For retrievals at 8 and 20 cm−1, the closest measure-

ment point to each central microwindow frequency was used.

Using radiances in microwindows minimizes the contribu-

tion by gases, increasing sensitivity to cloud and reducing er-

rors. However, due to the finite resolution, gas emission from

outside the microwindow is convolved into radiances within

the microwindow. For example, at a resolution of 0.1 cm−1,

in a microwindow of 4 cm−1, the contribution from gaseous
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absorption lines outside the microwindow will be minimal.

As resolution gets coarser, the gaseous absorption lines bor-

dering the microwindow contribute more and more, poten-

tially decreasing sensitivity and increasing errors.

The state vector x is composed of COD, ice fraction, log

of the effective radius of liquid, and log of the effective ra-

dius of ice, so that n = 4. For the a priori (xa), means of the

values of x used to create the base set are used (Table 1). The

covariance matrix Sa is assumed to be diagonal, with diag-

onal elements based on a standard deviation of about one-

half the range of values; this is used rather than using the

standard deviations given in Table 1 to weight the retrieval

heavily toward the measurement rather than the a priori. The

error covariance matrix for radiance (Se) is assumed to be

diagonal with elements based on the model errors described

in the next section and the measured and simulated radiance

errors due to any imposed errors, added in quadrature. The

first guess values (i = 0) are determined from the fast cloud

property retrieval. The maximum number of allowed itera-

tions was set to 20 and the tolerance for convergence was set

to d2 < 1. For convenience, the result of the forward model

acting on the retrieved state vector is termed the retrieved ra-

diance.

The forward model (F ) is calculated by running DISORT

with the state variables and with effective-resolution gaseous

optical depths (described below). Other inputs to DISORT

include the solar contribution, surface albedo, temperature

profile, and the Legendre moments that describe the phase

function, single-scatter albedo, and COD, which depend on

the state variables and cloud height. DISORT is run with 16

streams. Single-scattering properties were the same as for the

fast preliminary retrieval.

3.3 Resolution and model errors

In this work, DISORT was used for both simulating the

observed radiances and for the forward model F . DIS-

ORT requires gaseous layer optical depths, which are cal-

culated more accurately for observed radiances compared to

those used in F . Gaseous layer optical depths computed by

LBLRTM are at monochromatic or perfect resolution and a

fine wavenumber spacing, and DISORT must be run for each

wavenumber, after which the radiance must be convolved to

instrument resolution. This was done to simulate the obser-

vations but is too computationally intensive for the iterative

inverse retrieval (i.e., for F ). Instead, we develop a novel

method for producing effective-resolution gaseous layer op-

tical depths (given in the Appendix) so that DISORT need

only be run for each microwindow.

Model errors arising from these differences are shown

in Fig. 1b, as box-and-whisker plots of model errors

for cloudy-sky radiances at 0.5 cm−1 resolution, in mi-

crowindows used in the cloud optical and microphysi-

cal property retrievals. The errors were calculated as dif-

ferences between downwelling radiances calculated using

the effective-resolution layer optical depths (described in

the Appendix) and monochromatic radiances convolved

with the instrument line shape (the radiance simulations

described in Sect. 2), and averaged in microwindows.

At 0.5 cm−1 resolution, median model errors are within

±0.02 RU (1 RU = 1 mW/(m2 sr cm−1)). For resolutions of

0.1 to 2 cm−1, all model errors are within ±0.15 RU (fig-

ures for other resolutions are given in the Supplement). For

resolutions of 4 to 20 cm−1, model errors generally increase

with coarsening resolution, with maximum errors of −0.7 to

1.0 RU at 20 cm−1 resolution (Supplement).

Another source of model error is related to the cloud-

height retrieval. The cloud-height retrieval also uses

effective-resolution terms: the gaseous radiance and the

transmittance from the surface up to each possible cloud

layer (Rc and tc) and the clear-sky radiance (Rclr), described

in Rowe et al. (2016). Derivation of these quantities is given

in the Appendix. Model errors for a typical clear-sky radi-

ance used in the cloud-height retrievals are also shown in

Fig. 1b (solid blue curve); the error shown is the difference

between Rclr calculated in this work (as described in the

Appendix) and the monochromatic radiance from LBLRTM

convolved with the instrument line shape. As the figure

shows, model errors for clear skies are typically very low.

4 Imposed errors

To determine the impact of sources of error on the cloud

property retrievals, various errors were imposed on observed

radiances, including Gaussian noise (mean of 0.2 RU) and

bias (±0.2 RU). In remote locations, reanalysis datasets may

be used for specification of the atmospheric state. Wesslen

et al. (2014) characterized temperature errors in the Euro-

pean Centre for Medium-Range Forecasts (ECMWF) Interim

(ERA-Interim; Dee et al., 2011) as varying from −0.5 to

1 K. Rowe et al. (2016) found such errors to have a roughly

equivalent effect on radiative transfer calculations as a pos-

itive temperature bias of 0.2 K. Wesslen et al. (2014) char-

acterized water vapor errors to be 2 % to 10 %, with lower

biases in the first 3 km and higher biases above. Because wa-

ter vapor decreases rapidly with height, this was found to be

roughly equivalent to a water vapor bias at all heights of 3 %

(Rowe et al., 2016). Thus, imposed errors also included bi-

ases in the atmospheric temperature (±0.2 K) and water va-

por (±3 %). Higher biases in water vapor and temperature

were also tested (±10 % and ±1 K). Cloud optical and mi-

crophysical properties were retrieved with these errors each

imposed in isolation, using both true cloud heights and cloud

heights retrieved with CO2 slicing as described in Rowe et

al. (2016).

In addition to errors imposed in isolation, various combi-

nations of the above sources of errors were imposed on re-

trievals, as described in Sect. 5 below.
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5 Results and discussion

5.1 Retrieval overview

Use of the fast retrieval as a starting point for the inverse

retrieval was found to have a variety of benefits. The fast re-

trieval reduced rms errors relative to the a priori: from 300 %

to 6 % for τg, from 0.4 to 0.2 for fice, from 4.4 to 3.7 µm for

rliq, and from 16 to 11 µm for rice. This provided a first-guess

for the inverse retrieval that was closer to the solution, low-

ering retrieval errors slightly, modestly increasing the num-

ber of cases that converged, and preventing convergence to

an incorrect solution for a few cases. Overall, the greatest

improvement from using the fast preliminary retrieval was

reducing computation time; on average, one fewer iteration

was needed when the fast retrieval was used.

Figure 2 shows the inverse-retrieval trajectory, with itera-

tions, for an ice-only cloud with a COD of 0.89 and effective

radius of 22 µm. The retrieval trajectory is superimposed on

error contours (root-mean-square radiance differences). As

the figure shows, the retrieval converged from the first-guess

value (red dot on right in each panel), to the minimum in four

iterations. Furthermore, the retrieval correctly converged to

an ice-only cloud, although the mean cloud temperature of

∼ 256 K falls within the range of temperatures where mixed-

phase clouds may occur.

Retrievals using the base set of simulations indicate that

the kernels are typically sufficiently linear to converge on

the solution, except for large COD and effective radii. We

find that the retrievals lose sensitivity to COD between about

5 and 10 (see Sect. 5.2 below); in previous work retrieving

cloud properties from downwelling IR radiances in a simi-

lar wavenumber range, cutoffs of 4 to 6 were used (Mahesh

et al., 2001; Rathke, 2002a, b; Turner, 2005). The retrievals

were found to lose sensitivity to effective radius above about

50 µm (see Supplement), which is in keeping with Rathke

and Fischer (2000) and Garrett and Zhao (2013), but differs

from the cutoff values of 25 µm used by Mahesh et al. (2001)

and of 100 µm by Turner (2005). In addition, when values

approach these limits, the retrieval was found to sometimes

move away from the solution. To avoid this, upper bounds

were set for the COD (10) and effective radius (50 µm), and

the kernels were typically calculated for a step in the direc-

tion of smaller COD and effective radius, that is, in the direc-

tion where sensitivity is larger.

Nearly all retrievals converged to within the specified tol-

erance in d2, with only zero to two cases failing to con-

verge for any set of imposed errors. Overall, convergence

was achieved in a mean of four iterations (median of three).

At most two cases failed to converge within 20 iterations for

any set of imposed errors.

Figure 2. Error contours for retrievals of ice effective radius (rice),

ice fraction, and cloud optical depth, as root-mean-square error in

radiances for an ice-only cloud. The retrieval trajectory (red line)

and results for each iteration (red dots) are superimposed on the

contour surface.

5.2 Retrieval errors

To determine the retrieval capability, errors in retrieved val-

ues are examined in the absence of any imposed errors, where

only model errors are present. Table 3 shows errors in re-

trieved cloud properties (τg, fice, rliq, and rice) for the base

set of spectra, for spectral resolutions of 0.1, 0.5, and 4 cm−1.

Retrieval errors are shown for different ranges of τg. For thin

clouds (τg < 0.4), the low signal reduces sensitivity. For thick

clouds (τg > 5), the spectrum begins to approach saturation,

and sensitivity to cloud optical and microphysical properties

diminishes. Thus, both large and small τg values can result in

large errors in fice, rliq, and rice (such increases are not seen

for τg > 5 in Table 3 but occur when errors are imposed). By

contrast, error in τg increases with increasing τg and is small-

est for the thinnest clouds. Based on these considerations,

the ideal range for τg was identified as 0.4 < τg < 5. (To get

a sense of how common such clouds are, Cox et al. (2014)

found that at Eureka, Nunavut, in 2006–2009, clouds with

optical depths of 0.25 to 6 accounted for about 32 % of AERI

measurements, 17 % when quality control procedures and a

PWV threshold of 1 cm were applied; in this work PWV
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Table 3. Root-mean-square errors in retrieved cloud properties for

base set of spectra due to model error only (no errors imposed) for

spectral resolutions indicated. Errors are shown for cloud geometric

optical depth (τg), ice fraction (fice), effective radius of liquid (rliq),

and effective radius of ice (rice) for four ranges in τg.

0.1 cm−1 0.5 cm−1 4 cm−1

τg τg < 0.25 0.005 0.004 0.005

0.25 < τg < 0.4 0.005 0.006 0.006

0.4 < τg < 5 0.013 0.007 0.013

τg > 5 0.3 0.3 0.4

fice τg < 0.25 0.11 0.11 0.13

0.25 < τg < 0.4 0.10 0.08 0.09

0.4 < τg < 5 0.03 0.03 0.03

τg > 5 0.017 0.013 0.10

rliq τg < 0.25 4 3 4

(µm) 0.25 < τg < 0.4 2 2 3

0.4 < τg < 5 0.6 0.7 0.6

τg > 5 0.7 0.7 1.2

rice τg < 0.25 7 6 8

(µm) 0.25 < τg < 0.4 7 7 6

0.4 < τg < 5 4 3 3

τg > 5 3 3 8

is as high as 3 cm.) Unless otherwise specified, results will

be presented for this range. Retrieval errors for 0.4 < τg < 5

are overall quite low, with magnitudes of errors in τg below

0.013, in fice below 0.03, in rliq below 0.7 µm, and in rice be-

low 4 µm. Overall, the table shows no trend in retrieval errors

with coarsening resolution for 0.4 < τg < 5.

Retrieval accuracy was tested for two sets of microwin-

dows. Set 1 consists of 22 microwindows similar to those

used by Turner (2005), indicated in Table 2 in plain (non-

bold) font; these were used in the retrievals described be-

low. Set 2 consists of the combined microwindows of Rathke

et al. (2000) and Mahesh et al. (2001), indicated in Table 2

with superscripts R and M (11 microwindows). Retrieval er-

rors were found to be slightly lower for set 1; therefore it

is used in the remainder of this work. However, differences

were small (compare Table 4, described below, to Table S1 of

the Supplement), indicating that a smaller set of microwin-

dows is likely sufficient. Choice of optimal microwindows

depends on noise level and spectrally varying errors (e.g.,

due to errors in assumed profiles of atmospheric water vapor

and chlorofluorocarbons) and is therefore a complicated but

interesting topic for future work.

Errors in retrieved cloud properties for different imposed

errors are given in Table 4 for a spectral resolution of

0.5 cm−1 and τg between 0.4 and 5. Magnitudes of imposed

errors are given in the first column except for cases of com-

bined errors. Error combination (a) includes noise of 0.2 RU,

radiation bias of 0.2 RU, temperature bias of 0.2 K, and wa-

ter vapor bias of −3 %, and uses true cloud heights. Com-

bination (b) is the same but with opposite signs on biases.

Combinations (c) and (d) are the same as (a) and (b), respec-

tively, but use retrieved cloud heights (similar sets but with

radiation biases of 0.5 RU are given in Table S2 of the Sup-

plement). Subsequent columns give the mean errors and the

standard deviations of the errors.

When true cloud heights are used, errors in τg are within

±0.2 for large biases imposed on the observed radiation,

temperature, and water vapor, (±1.0 RU, 1 K, and 10 %, re-

spectively) or combined errors, and within ±0.09 for smaller

imposed biases (±0.2 RU, 0.2 K, and 3 %, respectively).

Large imposed errors also lead to large errors in fice, mak-

ing it difficult to distinguish liquid and ice. Errors in rice are

typically 2 to 3 times larger than errors in rliq. Mean errors re-

veal how biases in measured radiance, water vapor, and tem-

perature lead to biases in retrieved cloud properties. For ex-

ample, positive biases in observed radiances lead to negative

biases in COD, rliq, and rice, and positive biases in ice frac-

tion, while the reverse is true for negative biases in observed

radiance.

When cloud heights are retrieved from the observed radi-

ances (columns labeled CO2 slicing and combined errors (c)

and (d)), errors in cloud height lead to biases in inferred cloud

temperature. Biases in cloud temperature cause errors that

are spectrally flat. Because cloud emissivity depends fairly

linearly on τg, spectrally flat errors have a large effect on τg.

Furthermore, in the cloud-height retrieval (CHR), the cloud

is placed in the atmospheric model layer containing the cloud

height retrieved with CO2 slicing. This means that errors in

COD are also affected by the choice of atmospheric layer-

ing. One approach to improving cloud temperature and opti-

cal depth is the geometric method of Rathke et al. (2002b),

for which the instrument would be designed to look at mul-

tiple angles; this can also be used to examine the horizontal

homogeneity of clouds.

Additional work is needed to understand the effects of

CHR errors on cloud optical and microphysical property re-

trievals, for several reasons. First, Rowe et al. (2016) found

that CHR errors for CO2 slicing were most sensitive to biases

in observed radiance and temperature, with less sensitivity

to noise and biases in water vapor. By contrast, for an al-

ternate CHR method (MLEV) these sensitivities were found

to be the opposite. Since CHR errors translate into errors in

retrieved COD, it is important to choose the CHR method

to use based on expected error magnitudes. Second, Rowe

et al. (2016; see, e.g., Fig. 7) found that CHR errors gen-

erally decrease with increasing cloud signal, which should

oppose the tendency of optical and microphysical property

retrieval errors to grow with increasing COD. Finally, Rowe

et al. (2016; Fig. 7) found that CHR errors generally decrease

with decreasing cloud height. Here we find important conse-

quences for retrievals of COD and fice. For example, when

errors are imposed (noise of 0.2 RU, radiation bias of 0.2 RU,

temperature bias of 0.2 K, water vapor bias of −3 %, and

CHR errors in cloud height, for spectra at 4.0 cm−1 resolu-
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Table 4. Errors in retrieved cloud properties (mean error and standard deviation of error; SD; COD refers to cloud optical depth in the

geometric limit, rliq and rice are the effective radii of liquid and ice) for various errors imposed on the observations (see text).

COD Ice fraction rliq (µm) rice (µm)

Mean SD Mean SD Mean SD Mean SD

None 0.001 0.007 0.00 0.03 0.0 0.9 1 3

Noise (0.2 RU) 0.00 0.03 0.00 0.13 0 1.8 0 6

Bias (0.2 RU) −0.03 0.03 0.04 0.14 −1 1.5 −2 5

Bias (−0.2 RU) 0.03 0.03 −0.04 0.14 0 1.6 2 5

Bias (1.0 RU) −0.12 0.13 0.04 0.17 −1 2 −5 6

Bias (−1.0 RU) 0.17 0.2 −0.08 −0.2 1 2 6 7

Temp. (0.2 K) 0.03 0.03 −0.04 0.11 0.2 1.2 2 4

Temp. (−0.2 K) −0.01 0.09 0.00 0.19 −0.2 1.1 0 5

Temp (1.0 K) 0.15 0.2 −0.09 0.18 0 2 3 6

Temp (−1.0 K) −0.10 0.13 0.04 0.21 0 2 −2 6

WV (3 %) 0.01 0.02 −0.02 0.09 −0.3 1.5 1 5

WV (−3 %) −0.01 0.02 0.05 0.11 −0.4 1.6 −1 6

WV (10 %) 0.04 0.05 −0.02 0.14 −1 2 1 6

WV (−10 %) −0.04 0.06 0.07 0.15 0 2 −2 7

CO2 slicing 0.1 0.3 −0.04 0.14 0.3 1.4 1 4

Combined, a −0.01 0.04 0.04 0.14 0 2 −3 7

Combined, b 0.08 0.08 −0.10 0.18 0 3 4 6

Combined, c −0.1 0.7 0.03 0.25 0 2 −3 7

Combined, d 0.1 0.3 −0.12 0.20 1 2 4 7

Figure 3. Root-mean-square error in retrieved cloud properties as a

function of resolution, where rliq is the effective radius of liquid and

rice is the effective radius of ice, for cases with and without imposed

error, as described in the text.

tion), comparing clouds with bases above 2 km to those with

bases below, rms errors in retrieved COD decrease from 1.1

to 0.15, errors in fice decrease from 0.3 to 0.18, and errors in

rice decrease from 10 to 7 µm (errors remain at 2 µm for the

effective radius of liquid).

Errors in retrieved cloud properties are shown as a func-

tion of resolution from 0.1 to 20 cm−1 for clouds with bases

below 2 km, in Fig. 3. Errors are shown for base cases with

no imposed error and for a combination of imposed errors:

noise of 0.2 RU, radiation bias of 0.2 RU, temperature bias

of 0.2 K, water vapor bias of −3 %, and CHR errors in cloud

height. No trend is seen in retrieval errors for resolutions of

0.1 to 4 cm−1, after which errors increase. For clouds with

bases above 2 km, errors are larger for optical depth and ice

fraction (Fig. S4 of the Supplement), and trends with resolu-

tion are similar but less pronounced. (Scatter plots of true vs.

retrieved cloud properties are given in Figs. S5 and S6 of the

Supplement.) Based on these trends, an instrument resolution

of 4 cm−1 seems to be a good compromise for reducing res-

olution while avoiding increases in retrieval errors. For ex-

ample, at 0.5 cm−1 (for clouds at all heights), rms retrieval

errors are 0.6 for COD, 0.2 for fice, 3 µm for rliq, and 8 µm

for rice; at 4 cm−1 they are nearly the same (0.6, 0.2, 2, and

8 µm, respectively).

5.3 Retrieval error covariance matrix

Discussion of errors so far has focused on actual retrieval er-

rors, which can be calculated because simulated data were

used as the observation set. For real measurements, error

analysis relies on the covariance matrix S, which in turn de-

pends on the kernels and covariance Se (Eq. 8); Se is calcu-

lated by adding measurement and forward model errors in

quadrature; model errors are determined from errors in wa-

ter vapor or temperature profiles. Here we determine how

well S represents retrieval errors. For unbiased, normally dis-

tributed errors, the diagonals of S should correspond to the
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68 % confidence interval. We can test this by comparing re-

trieval errors to the diagonal of S. This is complicated by

the fact that S is not constant but depends on x (because the

kernels depend on x). Thus for each retrieved x, the abso-

lute error was divided by the square root of the appropriate

diagonal element of the corresponding S. For Gaussian er-

rors, this ratio should be < = 1 for 68 % of retrievals (and

< = 2 for 95 % of retrievals). In the absence of imposed er-

ror, only 52 % to 63 % of retrievals had a ratio within 1 (for

Se based on model errors). The lowest model errors are likely

underestimates since it is unlikely all sources of error in the

forward model were captured. A minor increase in model er-

ror (0.03 RU) gave values between 68 % and 77 %. However,

the error distributions were found to decrease more slowly

than Gaussians, with only 78 % to 87 % of errors (rather than

94 %) falling within the second standard deviation indicated

by S.

For imposed noise of 0.2 RU, only 52 % to 58 % of re-

trievals were found to have a ratio within 1, suggesting that

model errors are amplified in the presence of error. This is

likely because away from the correct solution, the estimate

of S is incorrect. Increasing the contribution of noise to Se

by 30 % accounted for this, resulting in values of 65 % to

70 %.

S was found to provide a poor indication of retrieval er-

rors due to biases in radiance, temperature, water vapor, or

cloud height. This is likely because the inverse retrieval is

based on an assumption of unbiased, normally distributed er-

rors. For biases in radiance and water vapor and for errors in

cloud height, S is particularly nonrepresentative for COD, for

which only 11 % to 25 % of cases fall within 1 standard de-

viation for S (for other properties the range is 36 % to 78 %).

Biases in temperature affect S similarly for COD, fice, rliq,

and rice (range of 48 % to 66 %). This underscores the impor-

tance of removing bias errors from measurements whenever

possible to ensure that S provides the best possible represen-

tation of errors.

5.4 Cloud vertical inhomogeneity and ice habit

Errors in retrieved cloud properties (from spectra at 0.5 cm−1

resolution) due to failing to capture cloud vertical inhomo-

geneity are shown in Table 5. For the upper set of cases

shown in the table, errors were not imposed and true cloud

heights were used. In performing the retrieval the correct

cloud base and top were used, but the cloud was assumed to

be vertically homogeneous in terms of COD and phase; thus

the cloud model is accurate for dense and diffuse clouds but

not for inhomogeneous or liquid-topped clouds. This emu-

lates a measurement where the cloud base and top are known

from an ancillary instrument such as a lidar. As expected,

therefore, errors are similar for dense and diffuse clouds. For

inhomogeneous clouds, which are thinner at the upper and

lower edges, errors are slightly larger for τg. The largest re-

trieval errors are found to be for liquid-topped clouds, par-

Figure 4. Radiance errors (1 RU = 1 mW/(m2 sr cm−1)) for dif-

ferent methods of approximating the radiance at a resolution

of 0.5 cm−1. Approximate radiances are computed using mean

perfect-resolution layer optical depths R(〈1τ̃ 〉), mean surface-to-

layer perfect-resolution transmittances R(〈̃t〉), or mean surface-to-

layer transmittances after convolution to the instrument R(〈t〉); av-

erages are over 0.5 cm−1 (a) or over microwindows (b). Approx-

imate radiances are compared to simulated radiances at 0.5 cm−1

resolution (Rclr), which are averaged over microwindows in (b).

ticularly for τg and fice, for which errors are about 5 times

as large. These errors are large because the cloud heights are

effectively wrong for the liquid and ice layers of the cloud. A

lidar that can classify phase would allow reduction of these

errors down to the level seen for other cloud types. The en-

hancement of errors in liquid-topped clouds relative to other

cloud types disappears when errors are imposed on the obser-

vations (imposed noise of 0.2 RU, radiation bias of 0.2 RU,

temperature bias of 0.2 K, and water vapor bias of −3 %; see

the last two sets of cases in Table 5). This is true when true

cloud heights are used (middle set) and when they are re-

trieved (lowest set). (Similar trends are found when the ra-

diation bias is increased to 0.5 RU, as shown in the Supple-

ment.)

Errors in retrieved cloud properties (from spectra at

0.5 cm−1 resolution) due to assuming a spherical ice habit

are shown in Table 6. The first column of the table shows the

true ice habit. The upper set of data has no other imposed

errors, while the lower two sets have the same imposed er-

rors as for vertically varying clouds. Retrieval error in rliq is

not shown because clouds were mainly ice. In the absence

of imposed errors, compared to spheres, the increase in er-

ror is greatest for τg, for which errors increase by an order

of magnitude or more. This large increase suggests that er-

rors in habit mainly bias the magnitude rather than spectral

shape of the cloud emissivity. Overall, errors are the smallest

for solid columns. However, differences in errors based on

assumed ice habit diminish when errors exist in observations
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Table 5. Root-mean-square errors in retrieved cloud properties for

vertically varying clouds: cloud optical depth (COD), ice fraction

(fice), and effective radii of liquid and ice (rliq and rice). For the

upper set of cases, errors were not imposed on observations (er-

ror = n) and true cloud heights were used. The middle set of cases

includes imposed errors with true cloud heights (error = y), while

the lowest set includes imposed errors with retrieved cloud heights

(error = y∗; see text).

Cloud Error COD fice rliq rice

type (µm) (µm)

Dense n 0.012 0.01 0.5 6

Diffuse n 0.012 0.02 0.5 6

Inhomogeneous n 0.019 0.02 0.5 7

Liquid topped n 0.09 0.10 1.1 10

Dense y 0.04 0.16 2 9

Diffuse y 0.05 0.15 3 9

Inhomogeneous y 0.05 0.12 2 8

Liquid topped y 0.08 0.14 3 8

Dense y∗ 0.10 0.17 2 10

Diffuse y∗ 0.09 0.17 2 9

Inhomogeneous y∗ 0.18 0.19 2 9

Liquid topped y∗ 0.12 0.15 3 8

Table 6. Root-mean-square errors in retrieved cloud properties, as-

suming a spherical ice habit, for ice clouds of varying habit (first

column): cloud optical depth (COD), ice fraction (fice), and effec-

tive radius of ice (rice). For the upper set of cases, errors were not

imposed (error = n) and true cloud heights were used. The mid-

dle set of cases includes imposed error with true cloud heights (er-

ror = y), while the lowest set includes imposed errors with retrieved

cloud heights (error = y∗; see text).

Habit Error COD fice rice

(µm)

Sphere n 0.02 0.01 4

Hollow bullet rosette n 0.6 0.07 10

Smooth solid column n 0.3 0.03 7

Rough solid column n 0.3 0.04 7

Smooth plate n 0.6 0.05 7

Rough plate n 0.5 0.07 7

Sphere y 0.06 0.12 8

Hollow bullet rosette y 0.6 0.09 8

Smooth solid column y 0.3 0.07 7

Rough solid column y 0.3 0.09 7

Smooth plate y 0.5 0.11 9

Rough plate y 0.5 0.10 6

Sphere y∗ 0.7 0.11 6

Hollow bullet rosette y∗ 0.8 0.22 8

Smooth solid column y∗ 0.7 0.19 4

Rough solid column y∗ 0.8 0.17 5

Smooth plate y∗ 0.7 0.21 5

Rough plate y∗ 0.7 0.21 4

and cloud heights are retrieved (bottom set). Thus, using a

realistic ice habit can minimize errors, but this becomes less

important when cloud height is also retrieved.

6 Conclusions

This work explores the capability of a low-resolution IR

spectrometer for retrieving cloud properties in polar regions.

To this end, the CLoud and Atmospheric Radiation Retrieval

Algorithm (CLARRA) was used to retrieve cloud properties

(height, following Rowe et al., 2016, as well as COD, ice

fraction, effective radius of liquid, and effective radius of

ice) from simulations of surface-based IR downwelling radi-

ances, to determine the effect of instrument resolution on ac-

curacy. CLARRA includes a method for calculating gaseous

transmission and emission terms at the effective instrument

resolution, minimizing model errors. A fast-forward retrieval

rapidly retrieves preliminary cloud optical and microphysical

properties, which then serve as inputs into an optimal nonlin-

ear inverse method. Cloud properties were retrieved from 222

simulated radiances based on atmospheric and cloud condi-

tions characteristic of the Arctic, with additional tests of sen-

sitivity to cloud vertical inhomogeneity and ice habit.

Sensitivity studies for vertically varying clouds indicate

that, in the absence of observational errors, errors in retrieved

cloud properties are highest for liquid-topped clouds that

are assumed to be homogeneously mixed phase (relative to

clouds that are dense, diffuse, or inhomogeneous vertically).

However, in the presence of errors in observations, the gap in

retrieved cloud-property errors between liquid-topped clouds

and other cloud structures disappears. Future work is needed

to assess errors when multiple cloud layers are present. For

different ice habits, sensitivity studies indicate that use of a

reasonable guess for the ice habit can help minimize errors,

but these differences become minor in the presence of obser-

vational errors.

Retrieval accuracy was determined as a function of res-

olution for model errors, CHR errors, and a variety of im-

posed observational errors, including random noise as well

as biases in the measured spectrum and atmospheric state.

In the absence of imposed errors, errors in retrieved cloud

properties were found to be 0.007 for COD, 0.03 for fice,

0.7 for rliq, and 3 µm for rice (0.5 cm−1 resolution; COD be-

tween 0.4 and 5). In the presence of imposed errors, errors in

retrieved COD and ice fraction were found to be strongly

affected by bias errors in cloud height, which in turn are

high when the CHR is used. Furthermore, CHR errors typ-

ically decrease with decreasing cloud base height (Rowe et

al., 2016), with consequences for optical and microphysical

property retrievals. For example, for a combination of errors

including noise of 0.2 RU, radiation bias of 0.2 RU, temper-

ature bias of 2 K, water vapor bias of −3 %, and CHR errors

(at 4.0 cm−1 resolution), comparing clouds with bases above

2 km to those with bases below, the rms error decreases from
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1.1 to 0.15 for COD and from 0.3 to 0.18 for fice, pointing to

a strong potential for retrievals of low clouds.

Retrieval errors were found to be fairly invariant to res-

olution up to about 4 cm−1, after which accuracy declined.

For example, at 0.5 cm−1 resolution, for the combination

of errors given above, rms retrieval errors (for clouds at all

heights) are 0.7 for COD, 0.2 for fice, 3 µm for rliq, and 8 µm

for rice. At 4 cm−1 these errors are similar (0.6, 0.2, 2, and 8,

respectively). Taken together, this lack of sensitivity to reso-

lution indicates that a moderately low-resolution (∼ 4 cm−1)

surface-based IR spectrometer could provide cloud prop-

erty retrievals with accuracy comparable to existing higher-

resolution instruments. Furthermore, these retrievals would

be particularly useful for low-level clouds, for which accu-

racy is likely to be highest.

Code availability. Simulated radiances at monochromatic resolu-

tion (Cox et al., 2015) are available by email to the corresponding

author. Computer code is available at Bitbucket (https://bitbucket.

org/{4e9c3a2c-5ac5-40f9-a7e4-0c9578f88b21}, Rowe, 2019), in-

cluding repositories containing Python computer code (runDis-

ort_py) and MATLAB/Octave computer code (runDisort_mat) for

creating cloudy-sky spectra using DISORT (Stamnes et al., 1988).

See also Rowe et al. (2013, 2016).
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Appendix A: Approximations for cloud-height retrievals

To solve the radiative transfer equation in LBLRTM and DIS-

ORT (Stamnes et al., 1988), the atmosphere is divided into

model atmospheric layers and the approximation is made that

the Planck function varies linearly with optical depth through

the layer (Wiscombe et al., 1976; Clough et al., 1992). In the

absence of scattering, the downwelling radiance from a layer

at a given wavenumber is approximated as

1R̃L =

τ̃L∫

τ̃L−1

B̃ (̃τ )e−τ̃ secθ dτ̃ , (A1)

where the tildes indicate monochromatic, or perfect, resolu-

tion (all quantities with tildes depend on wavenumber), τ is

defined as the vertical optical depth from the surface up to

some height (e.g., within layer L), τL−1 is from the surface

to the layer bottom, and τL is from the surface to the layer

top. (Parentheses are used here and below to indicate depen-

dence.) B̃ is the Planck function and θ is the viewing angle

from zenith. Note that the formulation here differs from that

of Clough et al. (1992); here, RL, τL, and the transmittance,

tL (defined below) are defined from the bottom of the model

atmosphere (e.g., from Earth’s surface) to the top of layer L.

Quantities that are for layer bottom to top only are indicated

with a delta. Using these conventions means that Eq. (A1)

represents the radiance from layer L that is transmitted by

the atmosphere below to the surface. The viewing angle is

included explicitly here so that τ refers to the vertical optical

depth.

The surface-to-layer-top transmittance depends on the op-

tical depth,

t̃L = exp(−τ̃L secθ). (A2)

The linear-in-optical depth approximation for B allows the

integral to be solved, yielding

1R̃L = −B̃L̃tL + B̃L−1̃tL−1 − 1B̃L

[
1̃tL

1τ̃L

]
, (A3)

where B̃L−1 and B̃L are the Planck functions of the tem-

perature at the lower and upper boundaries of layer L, and

the deltas indicate the change across the layer. (Note that

1R̃L is calculated slightly differently in LBLRTM, following

Clough et al., 1992; the two methods give similar results.)

Thus 1RL is the radiance from the layer that makes it to

the surface. The total (clear-sky) radiance is the sum of all the

layer radiances. To match instrument resolution, the clear-

sky radiance needs to be convolved with the instrument line

shape S,

Rclr (ν) =

∞∫

−∞

∑

L

1R̃L(̃ν)S(ν, ν̃)d̃ν, (A4)

where the dependence on wavenumber has been included ex-

plicitly. Equation (A4) can also be calculated directly by run-

ning LBLRTM and convolving with the S (typically a sinc

function). We will use Rclr calculated in this manner to test

the remaining approximations.

In practice the integral need only be performed over the

small wavenumber region characterized by the width of S

(typically a sinc function). Switching the order of the sum

and the integral, we have

Rclr (ν) ≈
∑

L

1RL(ν), (A5)

where

1RL(ν) ≡

∞∫

−∞

1R̃L(̃ν)S(ν, ν̃)d̃ν. (A6)

In addition to Rclr, the cloud-height retrieval (Rowe et al.,

2016) requires the gaseous radiance from the surface up to

each possible cloud layer (Rc), which can also be calculated

from 1RL,

Rc ≈
∑c

L=1
1RL. (A7)

Finally, the cloud-height retrieval requires the transmittance

of the atmosphere below the cloud (tL; in Rowe et al., 2016,

it is referred to as tc) at the effective instrument resolution.

Examining Eqs. (A1)–(A6) shows that it is more accurate to

convolve the Planck function multiplied by the surface-to-

layer transmittance. Thus we define the effective transmit-

tance from the surface to a layer as

tL (ν) ≡




∞∫

−∞

B̃L (̃ν) t̃L (̃ν)S (ν, ν̃) d̃ν


/BL(ν). (A8)

To summarize how these approximations are used for the

cloud-height retrieval, first gaseous layer optical depths 1τ̃L

are computed using LBLRTM. Next, 1τ̃L values are summed

from the surface up to each layer to get τ̃L. Equation (A2) is

then used to calculate t̃L, and Eqs. (A3) and (A6) are used to

calculate 1RL. Equation (A5) is used to calculate Rclr, and

Eq. (A7) is used to calculate Rc for each model layer that

could contain cloud (for cloud heights within layers, terms

are interpolated). Equation (A8) is used to calculate tL.

A1 Approximations and model error for cloud optical

and microphysical property retrievals

Retrieval of optical and microphysical cloud properties re-

quires effective-resolution layer optical depths, 1τL, as in-

put into the DISORT radiative transfer code. One method to

create the set of 1τL might be to reduce the resolution of the

layer optical depths. However, the above equations suggest
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that a more accurate method would be in terms of transmit-

tances. Inserting Eq. (A2) into Eq. (A8) and breaking up the

integral gives

1RL (ν) =−

∞∫

−∞

B̃L̃tLS (ν, ν̃)dν̃ +

∞∫

−∞

B̃L−1̃tL−1S (ν, ν̃)dν̃

−

∞∫

−∞

1B̃L

[
1̃tL

1τ̃L

]
S(ν, ν̃)dν̃. (A9)

The first two terms on the right-hand side of this equation

have the same form as the integral in Eq. (A8) and can be

replaced with −BLtL and BL−1tL−1. Thus it makes sense to

create the set of 1τL using tL (noting that the third term in

Eq. A9 also includes the monochromatic layer gaseous opti-

cal depth and thus represents a source of error).

Due to ringing, tL can be greater than 1 or less than 0,

resulting in optical depths outside physical bounds. To mini-

mize ringing, transmittances were averaged over small spec-

tral regions between strong emission lines, or microwindows

(Table 2). Observed radiances are therefore also averaged

over microwindows. (Note that it might be more accurate

to average the term in brackets in Eq. A8; an alternate op-

tion would be to use an apodization function rather than a

sinc function in Eq. A8 to reduce ringing; these are both in-

teresting topics for future work.) Following this, transmit-

tances below 10−40 and above 1 were modified such that

10−40 <= tL <= 1.

Finally, layer optical depths are calculated from tL. For the

first layer,

1τ1 ≡ − log(t1). (A10)

For subsequent layers, the optical depths of all layers below

must be subtracted.

1τL ≡ − log(tL) −
∑L−1

x=1
1τx . (A11)

The advantage of approximating radiances using layer opti-

cal depths derived from surface-to-layer transmittances con-

volved to the instrument resolution is shown in Fig. 4. Errors

for this convolved-transmittance (CT) method are compared

to errors for radiances calculated using optical depths de-

rived from averaged monochromatic surface-to-layer trans-

mittances (or from averaged monochromatic layer optical

depths). In Fig. 4a averages are over the wavenumber spac-

ing (no averaging is needed for the CT method, for which the

spectra are already at the appropriate wavenumber spacing).

Figure 4b shows errors for averages over microwindows. Er-

rors are determined by comparison with Rclr calculated as

in Eq. (A4), using LBLRTM and then convolving to the de-

sired resolution (0.5 cm−1 here) and (in b) averaged over

microwindows. Errors are reduced significantly by the CT

method, relative to the other approximations. In microwin-

dows (Fig. 4b), errors are within 3 or 30 RU for the other

methods, whereas for the CT method they are <= 0.01 (for

this example, the range for cloudy cases used in this work is

shown in Fig. 1); thus the CT method represents a significant

improvement. Finally, it is worth noting that errors at instru-

ment resolution are also fairly low (Fig. 4a). This is shown

here for reference only, and is not used in this work, but has

the potential for use in a cloud-height retrieval that includes

scattering, using DISORT.

To summarize the approximations used for the cloud opti-

cal and microphysical property retrievals, the set of effective-

resolution gaseous layer optical depths needed for running

DISORT is calculated as follows. The first few steps are the

same as for the cloud-height retrieval: 1τ̃L values are com-

puted using LBLRTM and these are summed from the sur-

face to each layer to get τ̃L, and Eq. (A2) is used to calculate

t̃L. Next, Eq. (A8) is used to calculate tL, which is then aver-

aged over microwindows and bounded to be between 10−40

and 1. Equations (A10) and (A11) are then used to calculate

1τL. Since DISORT is run at single precision, serious errors

can result for very small input optical depths; thus 1τL was

increased as needed such that 1τL >= 10−5.
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