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1 | INTRODUCTION
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Abstract

Maize (Zea mays L.) has been a focus of scientific research and breeding for over a
century. It is also one of the most economically important crops in the world, with
a value of approximately US$50 billion per year in the United States alone. Addi-
tionally, maize has long been the model species of choice for the study and exploita-
tion of hybrid vigor, and it continues to be one of the world’s most efficient con-
verters of photosynthetic energy into starch. This review discusses the history and
future of maize predictive breeding in the context of both genotype centric meth-
ods, and those focusing on genotype X environment X management interactions. Cur-
rent prediction challenges are highlighted, as well as important advances in technol-
ogy, methods, datasets, interdisciplinary collaborations, and scientific culture that will
enable accelerated progress in predictive maize (and other crop species) breeding for

years to come.

to what would have been predicted at the time. Improvements
in our ability to predict the outcomes of maize breeding (and

Maize or corn (Zea mays L.) has been subject to human selec-
tion and improvement for over 10,000 yr. It has also been
a key organism for scientific study since at least the time
of Charles Darwin (Darwin, 1876). Throughout this effort,
predicting the performance of a given maize plant based on
the phenotypes of its parents has been important. Early farm-
ers, for example, saved seeds from their best plants under the
expectation that those seeds would result in better plants in the
next generation. Darwin, on the other hand, was intrigued by
crosses of maize, and indeed between many other animal and
plant species, which often resulted in hybrids that were more
vigorous than self-pollinated plants (Darwin, 1868), contrary

Abbreviations: G X E, genotype X environment; G X E X M,
genotype X environment X management; GBLUP, genomic best linear
unbiased prediction; GFBLUP, genomic feature best linear unbiased
prediction; GWAS, genome-wide association study; IBD,
identity-by-descent; LD, linkage disequilibrium; MAS, marker-assisted
selection; PHG, Practical Haplotype Graph; QTL, quantitative trait
locus/loci; SNP, single nucleotide polymorphism; WCP, whole-crop
physiological.
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breeding of other crops) have increased steadily over the past
century and a half but have also transitioned through dis-
tinct stages marked by technical, statistical, and methodolog-
ical advancements (Ramstein, Jensen, & Buckler, 2018). In
this review, we discuss the history of predictive breeding in
maize, recently developed prediction strategies and methods,
as well as promising advances and future directions. This dis-
cussion is divided broadly into genomic prediction methods
and advancements, and current and future opportunities to
enhance the prediction of phenotypes based on genomic, envi-
ronmental, and management data.

2 | A BRIEF HISTORY OF MAIZE
GENETICS AND PREDICTIVE
BREEDING

Numerous morphological, genetic, and archaeological studies
indicate that modern maize originated from the ancestors of
today’s teosinte [Zea mays L., Zea diploperennis H.H. Iltis,
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Zea perennis (Hitchc.) Reeves & Mangelsd., and Zea luxu-
rians (Durieu & Asch.) R.M. Bird] (Beadle, 1939; Doebley,
2004; Hufford et al., 2013; Jaenicke-Després et al., 2003; Mat-
suoka et al., 2002; Piperno & Flannery, 2001). Some of the
earliest selections and improvements to these ancient teosintes
came in the form of domestication traits, which were con-
trolled by a few genes with large effects and could be eas-
ily selected phenotypically. The teosinte branched 1 locus is a
well-known example where the modern maize allele represses
lateral branching, contributing to the compact single-stalk
architecture of maize plants (Doebley, Stec, & Gustus, 1995).
Other alleles, such as teosinte glume architecture 1, have dra-
matically changed ear morphology by exposing the kernels
(Dorweiler, Stec, Kermicle, & Doebley, 1993). Still, other
domestication-related genes control important traits like seed
shattering, spikelet pairing, and ear rank (Stitzer & Ross-
Ibarra, 2018).

A second distinct advancement in maize breeding and
prediction was the introduction of Mendelian genetics and
statistically informed formal breeding strategies. These
included the formalization of genetic theory, and the advent
of tools like the concept of genetic gain, the breeder’s
equation, linear mixed modeling, and the use of pedigrees as
a tool for selection (Henderson, Kempthorne, Searle, & von
Krosigk, 1959; Lush, 1937; Ramstein et al., 2018). Each of
these advancements gave breeders a greater ability to predict
the outcome of a given cross and more efficiently allocate
resources to make genetic gain more likely. Of unique
importance in maize improvement was the development of
heterotic groups and hybrid vigor (Duvick, 2001; Jones,
1917). Although the exact mechanisms of hybrid vigor were
not understood at the time (and remain the subject of much
debate today), the results of its application in maize breeding
were monumental (Duvick, 2001; Lippman & Zamir, 2007;
Mezmouk & Ross-Ibarra, 2014; Washburn & Birchler, 2014).
Concurrent with these genetic advances was a revolution
in agronomy and mechanized agriculture in the early to
mid-1900s. This included the broad use of fertilizers and the
introduction of modern fossil-fuel-powered farm equipment
(Erisman, Sutton, Galloway, Klimont, & Winiwarter, 2008;
Ertel, 2001). Norman Borlaug, who would later transform
agriculture in his own way, described the changes that
hybrid corn, fertilizer, and mechanization made to his 1930s
teenage life as follows: “The two-month horror of harvesting,
harvesting, husking, and heaving hundreds of thousands
of corn ears was no more... With a tractor shouldering the
brutal burdens corn picking seemed almost a lark. .. Suddenly
[young farm boys] could shape our own fate... We could get
an education; maybe even a profession” (Vietmeyer, 2011).

As significant as the innovations of the early to mid-1900s
had been, predictive breeding was still limited by a lack of
understanding the genetic architecture of complex traits, and
the ability to do large-scale genotyping. In the 1970s and

the following decades, these phenotyping and genotyping
tools came into existence and enabled statistical associa-
tion studies between molecular marker genotypes and trait
phenotypes. Genetic mapping, genome-wide association
study (GWAS), and marker-assisted selection (MAS) became
feasible and enabled maize breeders to better understand the
genetic underpinnings of traits and to select for them more
efficiently. Marker-assisted selection allowed breeders to
select traits early in the breeding cycle, and the creation of
detailed genetic maps allowed scientists to better localize
and understand the genetic architecture of traits (Davis et al.,
1999; Helentjaris, Slocum, Wright, Schaefer, & Nienhuis,
1986; Tanksley, Medina-Filho, & Rick, 1982). However,
for traits like yield, which are controlled by many genes or
quantitative trait loci (QTL) with small effects, GWAS still
faced the combined challenges of multiple testing correction
(resulting in more stringent significance cutoffs as the num-
ber of loci tested increases) and decreased detection power
due to the genetic complexity of traits and the small effect
sizes of individual QTL.

3 | GENOMIC PREDICTION

3.1 | The origin and implementation of
genomic prediction

In the late 1990s to early 2000s, decreasing sequencing
costs and the availability of informative markers led to a
major shift in the scale of quantitative genetics. Where
previous experiments were largely focused on small numbers
of qualitative traits, the study of complex, polygenic traits
became increasingly possible. Scientists had hypothesized
that MAS alone could be used to predict the phenotype of
an individual (Haley & Visscher, 1998). Shortly thereafter,
thousands of markers were fitted simultaneously to estimate
the genetic value of individuals to predict their phenotypes
(Meuwissen, Hayes, & Goddard, 2001). This strategy of
predicting genome-wide effects to gain accurate breeding
values for individuals allowed for the acceleration of genetic
gain per breeding cycle in previously difficult or inaccessible
traits with low heritability, complex genetic architectures,
and/or difficult to measure phenotypes (Heffner, Sorrells,
& Jannink, 2009). This methodology is commonly known
today as genomic prediction or genomic selection. Many
statistical variations on genomic prediction models exist, the
most common being genomic best linear unbiased prediction
(GBLUP), ridge regression, or Bayesian methods (Gianola,
de los Campos, Hill, Manfredi, & Fernando, 2009; Wang
et al., 2018a; Whittaker, Thompson, & Denham, 2000).
The details of these methods and their relative utilities for
different applications have been discussed broadly by other
authors (see citations above).
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TABLE 1 Reduced genome representation approaches commonly used for maize genotyping and genomic selection. Table modified from

Rasheed et al. (2017)

Approach No. of target sites Technology

Array 3000-50,000 Illumina BeadChip

Array 50,000-600,000 Affymetrix Axiom

Exome capture Variable Roche SeqCap EZ Design

GBS 50-300,000 Genotype-by-sequencing

DArT-seq 50,000 Diversity Arrays Technology
(DATT) sequencing

rAmpSeq 1-2000 Repeat amplification sequencing

rhAmpSeq 5000 RNaseH2amplificationsequencing

In typical genomic prediction experiments, two forms of
information on the breeding population are often collected: (i)
high density, genome wide markers, and (ii) phenotypic data
on the traits of interest. In the absence of genomic marker data,
population pedigree data can also be used. A training popula-
tion, containing both genotypic and phenotypic data from the
desired breeding population, is used to create a model of geno-
typic effects and to estimate the breeding values for individu-
als (Jannink, Lorenz, & Iwata, 2010). Models generated using
the training population are then used to predict estimated
breeding values for new individuals for which phenotypes
are desired but only genotypic information exists (Meuwis-
sen et al., 2001; Poland, Endelman, Dawson, Rutkoski, & Wu,
2012). Prediction accuracy relies heavily on the relationship
between the training population and the individuals being pre-
dicted, as well as the number of lines in the training popula-
tion (Crossa et al., 2017). The power of a given trained model
is also highly dependent on trait heritability, population size,
population structure, and marker density (Liu et al., 2018).

3.2 | Genotyping strategies for
genomic prediction

The number of genetic markers required to make accurate
genomic predictions depends on the structure and complexity
of the population and trait(s) of interest. In some cases, as few
as 300 single nucleotide polymorphisms (SNPs) in maize are
sufficient to make predictions on traits with low complexity,
but the use of tens of thousands or more SNP variants is more
common (Zhang et al., 2017). In any case, genomic prediction
experiments typically make use of sparse sequence data (e.g.,
genotyping-by-sequencing [GBS], chip-array, etc.), which,
thanks to the usually extended linkage disequilibrium (LD)
patterns in breeding populations, is sufficient to identify
extended haplotypes that might include causal loci (Xu, Li,
Yang, & Xu, 2017b). This association, however beneficial
for prediction across related populations, can also hinder the

Reference

Ganal et al. (2011), Rousselle et al. (2015)

Unterseer et al. (2014), Xu et al. (2017a)
https://sequencing.roche.com/en-us/products-solutions/
by-category/target-enrichment/shareddesigns.html
Elshire, Glaubitz, Sun, Poland, and Kawamoto (2011)

https://www.diversityarrays.com/

Buckler et al. (2016)

https://www.idtdna.com/pages/products/next-generation-
sequencing/amplicon-sequencing/custom-rhampseq-panels

implementation of genomic prediction in other cases. For
example, the ability to perform prediction over more distant
populations will be diminished, as LD patterns might not be
shared, and the actual causal alleles might not be associated
with any genotyped markers. Increasing marker density in
these cases can increase prediction accuracy (Liu et al.,
2018). Saturation of markers increases the probability that a
marker will be in LD with a causal variant, but adding more
markers to the same LD block does not provide additional
useful information and increases the complexity of the model.

The development of accurate, affordable, and reproducible
genotyping platforms has been a main driver in the adoption
of genomic prediction approaches. In most cases, to keep costs
manageable for a breeding program, genotyping involves ana-
lyzing a reduced representation of the genome (Table 1). The
choice of genotyping technology is dependent on the genetic
architecture of the trait(s) of interest, and the underlying pop-
ulation structure of the target population: simple traits and
populations with extended LD patterns require fewer markers,
whereas traits with complex genetic architecture and popula-
tions with low LD structure require larger numbers of markers
for successful prediction.

To achieve the desired level of affordability, genotyp-
ing technologies have been developed to achieve maximal
multiplexing—that is, the inclusion of as many samples per
single experiment (DNA sequencing run) as possible. This
push towards higher throughput multiplexing strategies has
driven the development of new DNA sequencing chemistries
and reduced representation approaches. A side effect of this
multiplexing, however, is that some samples might be under-
represented or missing in the genotyping libraries. To allevi-
ate this problem, several bioinformatics approaches have been
developed that allow for the imputation of missing genotypes.

Imputation approaches can exploit known pedigree
relationships (Swarts et al., 2014), the diversity found in
identity-by-descent (IBD) regions (Browning, Zhou, &
Browning, 2018), or the relative measure of LD (Money,
Gardner, Migicovsky, Schwaninger, & Zhong, 2015) in the


https://sequencing.roche.com/en-us/products-solutions/by-category/target-enrichment/shareddesigns.html
https://sequencing.roche.com/en-us/products-solutions/by-category/target-enrichment/shareddesigns.html
https://www.diversityarrays.com/
http://rhAmpSeq
http://5000
http://RNaseH2amplificationsequencing
https://www.idtdna.com/pages/products/next-generation-sequencing/amplicon-sequencing/custom-rhampseq-panels
https://www.idtdna.com/pages/products/next-generation-sequencing/amplicon-sequencing/custom-rhampseq-panels
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population. For imputation, maize represents a particular
challenge (Bukowski et al., 2018), specifically when looking
at diverse landrace material (Romero Navarro et al., 2017,
Swarts et al., 2014), where regions of IBD might be hard to
identify, LD decays particularly rapidly and heterozygosity is
high. To improve on this, some current and future genotyping
and imputation efforts look to leverage the known haplotypic
diversity of a species by capturing the entire gene set in
a representative pangenome (Golicz, Batley, & Edwards,
2016; Tettelin et al., 2005). Such a representation would also
eliminate the inherent bias of mapping all genotypes to a ref-
erence genome that is more closely related to some genotypes
than to others. Current efforts by the maize community are
generating high-quality genome assemblies for many diverse
maize lines (Hufford, 2019), as well as developing a genome
graph approach for representing all known maize haplotypes
(Bradbury et al.,, 2018). This particular graph approach,
named the Practical Haplotype Graph (PHG), defines a set of
evolutionarily conserved regions, to which assemblies from
diverse maize accessions can be anchored. This collection
of haplotypes is a representation of the maize pangenome
and can be used with sparse and inexpensive genotyping
data to construct high-quality imputations across populations
for genomic prediction. Although this effort is ongoing in
maize, human geneticists have reported improvements in read
mapping sensitivity and structural variant calling based on
graph representations of the human pangenome (Rakocevic,
Semenyuk, Lee, Spencer, & Browning, 2019). Hopefully, the
PHG and other novel genotyping and imputation approaches
will reduce the costs of genotyping even further, allowing for
increased use and accuracy in genomic prediction.

In recent years, genomic prediction has become common-
place in state-of-the-art maize breeding programs (see exam-
ples in Cerrudo et al., 2018; Crossa et al., 2014, 2017; Eath-
ington, Crosbie, Edwards, Reiter, & Bull, 2007; Gaffney et al.,
2015; Heslot, Jannink, & Sorrells, 2015; Ramstein et al.,
2018; Shikha et al., 2017), but its use remains limited in
smaller scale breeding, particularly in developing countries.
This is due to many factors, including genotyping costs, edu-
cation about when and how to apply genomic prediction,
lack of computational expertise, and logistical challenges
related to genotyping, analyzing, and making decisions within
the short timeframe required for breeding. Ongoing work to
disseminate genomic prediction to more breeding programs
around the world, both in maize and other crops, will likely be
critical to yield improvements and increased food availability
(Bevan et al., 2017; Rasheed et al., 2017).

Although current genomic prediction methods have revo-
lutionized maize breeding, they still have significant weak-
nesses (as discussed above), and they often fail to capture
important amounts of heritable variation (Manolio et al.,
2009; Xiao, Liu, Wu, Warburton, & Yan, 2017). Genomic
prediction also commonly fails to make accurate predictions

across environments, and to disentangle genotype X environ-
ment (G X E) interactions, which are often critical to predict-
ing yield and other economically important traits (Boer et al.,
2007; Cooper, Technow, Messina, Gho, & Totir, 2016; Tech-
now, Messina, Totir, & Cooper, 2015; Zhao & Xu, 2012).

3.3 | Improving genomic prediction through
the use of molecular phenotypes

Recent developments in genomic prediction have begun to
analyze molecular phenotypes such as RNA, proteins, or
metabolites, produced within an individual. These molecu-
lar phenotypes can be quantitatively measured and are asso-
ciated with multiple, distinct layers of biological information.
Importantly, they also represent intermediate states between
the effects of genomic variants and the final, complex, whole-
plant phenotype traits commonly measured in breeding pro-
grams (i.e., yield, biomass, plant height, etc.). Recent devel-
opments allow for assaying many molecular phenotypes in
a high-throughput manner, using tens to hundreds of sam-
ples measured for tens to hundreds of thousands of individual
observations from a single experiment (Kremling et al., 2018;
Seifert et al., 2018; Yobi & Angelovici, 2018). It is the com-
bination of these two characteristics—(i) representing a more
direct effect of the genotype and a less complex trait than a
whole-plant phenotype, and (ii) being high-throughput—that
makes molecular phenotypes in genomic prediction valuable.
These characteristics also lower the burden of multiple testing
in the context of QTL mapping and GWAS studies by ana-
lyzing, for example, tens of thousands of expression levels,
instead of hundreds of thousands to millions of SNPs. Indeed,
recent approaches combining genetic markers, with transcrip-
tome or metabolome data for association studies, have been
shown to increase the power to detect causal genes (Krem-
ling, Diepenbrock, Gore, Buckler, & Bandillo, 2019; Man-
cuso et al., 2017), and to better predict hybrid performance
(de Abreu e Lima et al., 2017).

The effective implementation of molecular phenotypes
in genomic prediction is contingent on several important
factors and assumptions. First, since molecular phenotype
expression can vary dramatically across tissue types and
time points, both need to be relevant to the trait being
predicted. Second, molecular phenotypes cannot always
be assumed to be causative of the predicted phenotype,
vs. the predicted phenotype causing the molecular trait.
Although that assumption is tempting due to molecular
phenotypes being biochemically closer to a whole-plant
trait than a SNP, molecular phenotypes can only be con-
sidered as associative unless tested under a Mendelian
randomization approach (Davey Smith & Ebrahim, 2003),
because pleiotropic effects are possible and difficult
to disprove.



WASHBURN ET AL.

cropscience BB

3.4 | The role of transcriptomic and
metabolomic molecular phenotypes in genomic
prediction

Using transcriptomic data (RNA abundance) within genomic
prediction has the ability to bridge the dynamic activity of
gene expression to the static profiles of molecular markers.
Doing so can potentially differentiate closely related individ-
uals who share highly similar genotypes and capture epistatic
interactions between lines (Westhues et al., 2017; Zenke-
Philippi et al., 2017). In practice, however, the use of tran-
scriptomic data alone or in combination with genotypic data
has seen mixed and often trait-dependent results. In some
cases, transcriptomic data alone outperformed genotypic data
for highly complex traits like dry matter yield, whereas in
other cases, no differences, or even reductions in predic-
tion accuracy, were found between the genotypic and tran-
scriptomic models (Westhues et al., 2017). The combina-
tion of both genomic and transcriptomic data as predictors in
genomic prediction models also show trait-specific responses
compared with standard genotypic models (Guo, Magwire,
Basten, Xu, & Wang, 2016). In one study, models using both
transcriptomic and genotypic data as predictors outperformed
genetic markers for traits like dry matter yield and protein
content while performing more poorly than, or equivalent
to, genetic markers for predicting sugars, fat, and fiber con-
tent (Westhues et al., 2017). Similarly, in combined genomic
and transcriptomic models, numerous traits related to plant
architecture and flowering time saw small improvements in
predictive abilities, whereas some traits related to yield such
as kernel weight and cob diameter saw decreases in predic-
tion accuracy (Guo et al., 2016). The combination of small
RNAs, messenger RNAs, genotype, and pedigree information
into a single model also shows accuracy increases for some
traits; however, most combination models show little to no
increase in their predictive ability compared with solely geno-
typic data (Schrag et al., 2018). The inability of the transcrip-
tome to show meaningful changes over standard genomic pre-
diction models may be hindered by the availability of adequate
genomic and transcriptomic data (Zenke-Philippi et al., 2016,
2017). In addition, which tissues and developmental time
points are most important for predicting a given trait is not
immediately obvious, and resource limitations seldom allow
for the scale of data needed to test multiple tissues and time
points in a breeding program. Methods for imputing missing
transcript profiles from genotype data have been developed
(Gamazon et al., 2015). These methods have been shown to
moderately improve prediction accuracy (Westhues, Heuer,
Thaller, Fernando, & Melchinger, 2019), but further improve-
ments in this area are possible by novel machine learning
techniques on sequence data (Washburn et al., 2019). Reduc-
tions in the costs of RNA sequencing, along with improved
sampling strategies for large populations, should allow more

thorough testing of the ability of transcriptomic data to
improve genomic prediction models (Kremling et al., 2018).

Incorporating information on the metabolome during the
early stages of a plant’s life cycle is another method to possi-
bly improve genomic prediction. Although metabolites have
high turnover rates, they also have extensive diversity and
have been shown to be associated with numerous quantita-
tive traits in plants (Carreno-Quintero et al., 2012; Hill et al.,
2015). In rice (Oryza sativa L.), metabolic-based predictions
nearly doubled predictive ability compared with genomic
markers (Xu, Xu, Gong, & Zhang, 2016). In maize, metabolic
profiles have been shown to improve predictive ability over
genomic data for grain yield and grain weight, but for numer-
ous other traits, metabolic information alone decreases pre-
dictive abilities when compared with genomic markers (Guo
et al., 2016; Riedelsheimer et al., 2012; Schrag et al., 2018;
Westhues et al., 2017). Within maize, combining genotypic
and metabolic prediction seems to be a much more powerful
approach than metabolites by themselves (Guo et al., 2016;
Westhues et al., 2017). The abundance of a given metabo-
lite may be controlled by complex biochemical pathways and
interactions between multiple proteins, genes, and modules of
regulatory machinery. The incorporation of metabolites may
be capturing networks of activity that are not captured by
genomic and/or transcriptomic data. When used all together,
metabolites, genetic markers, and transcriptomic data have
higher predictive abilities than standard genomic prediction
for numerous traits (Guo et al., 2016; Westhues et al., 2017).
This increase might be attributed to the complementary novel
information content overlap between genomic, metabolic, and
transcriptomic data. The information content overlap between
genomic and metabolomic data is likely much lower than
the overlap between genomic and transcriptomic data, there-
fore allowing combined genomic, metabolomic, and tran-
scriptomic models to outperform most single or paired pre-
dictor models.

The addition of metabolite information can provide insight
into how different metabolites influence a single moment of
a plant’s life cycle. Sampling these moments, similar to sam-
pling the transcriptome, can be very expensive for breeding
programs when compared with genomic marker and pedi-
gree information. Additionally, the time points and/or tis-
sues one should sample to most effectively increase predic-
tion accuracy are not always obvious. More efficient methods
for sampling plants across the life cycle and for processing,
identifying, and quantifying metabolites inexpensively could
have profound effects on the application of both metabolite
and transcriptomic data in predictive breeding. For exam-
ple, physiological and developmental information has been
used to determine the developmental time points most rel-
evant to grain yield (Li, Guo, Mu, Li, & Yu, 2018b; Millet
et al., 2019). These and similar analyses could be used to pri-
oritize sample collection. Whole-crop physiological (WCP)
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models (discussed in more detail below) could also be used
in this way or perhaps adapted to produce rank ordering of
the most important samples to collect for prediction of a
given trait. Additionally, methods for predicting or imput-
ing metabolism related traits from limited data should be
explored. For both metabolomic and transcriptomic data, the
expense and labor involved in generating the data often out-
weighs the potential gains. However, if sampling and imputa-
tion approaches can be made inexpensive enough, then includ-
ing one or both of these data types in predictive models could
become commonplace.

3.5 | Functionality of genomic-derived features
and microbiomes in genomic prediction

Variants on genomic prediction models that use publicly avail-
able gene ontology information have been explored for their
ability to assess the biological importance of genetic marker
effects to improve prediction accuracy. In GBLUP models,
genetic marker effects are not differentiated based on the
genomic features they reside within. An alternative version of
GBLUP models called genomic feature best linear unbiased
prediction (GFBLUP), incorporates gene ontology metadata
on each marker as a covariate in a standard GBLUP model
(Edwards, Sgrensen, Sarup, Mackay, & Sgrensen, 2016). This
method has shown promising results between inbred lines of
Drosophila and between cattle breeds (Fang et al., 2017).
These additional gene ontology terms serving as predictors
may be picking up on unique layers of trait functionality
potentially associated with gene regulatory networks or tran-
scriptional modules. These methods, however, are still limited
by the availability of accurate genomic annotations in regions
of the genome affecting the trait in interest (Edwards et al.,
2016; Fang et al., 2017). Gene ontology information within
GFBLUP models has the ability to increase the predictive
ability compared with GBLUP and can provide some biologi-
cal insight into the genetic architecture of the trait under selec-
tion in addition to trait prediction (Edwards et al., 2016).
While not a molecular phenotype of an individual, the
microbiomes of mammals have been used to predict com-
plex host phenotypes. The human microbiota has been shown
to affect gut metabolic pathways (Li et al., 2008) and
brain behavior in individuals with anxiety (Foster & McVey
Neufeld, 2013), whereas in plants, the microbiome within the
rhizosphere and leaves of maize inbreds is heritable and geno-
type specific (Peiffer et al., 2013; Wallace, Kremling, Kovar,
& Buckler, 2018; Walters et al., 2018) and plays multiple
roles in immune health, nutrient uptake, and stress responses
(Berendsen, Pieterse, & Bakker, 2012). Due to the impact
of microbiomes on host phenotypic variation, the use of this
alternative, genetic information in genomic prediction may be
insightful. A study using metagenomic profiles to predict the

body mass index and inflammatory bowel disease in humans,
as well as methane production in cattle, found that genetic
information from these microbiomes, without any host geno-
typic markers, was able to predict the traits equivalently, if
not slightly better than standard genomic prediction models
(Ross, Moate, Marett, Cocks, & Hayes, 2013). These micro-
bial communities capture an additional layer of genetic infor-
mation that is not found within host genomes and could assist
in breeding for traits whose phenotypes are strongly influ-
enced by these communities (Ross et al., 2013).

3.6 | Machine learning methods in
genomic prediction

Machine learning, as considered here, includes statistical
methods and algorithms in which the system “learns” a func-
tion for predicting outputs from inputs based on the data itself,
rather than the researcher providing the function. Machine
learning methods for genomic prediction have been explored
as both a complement to, and a replacement for, traditional
GBLUP. Many types of machine learning methods can poten-
tially be applied to genomic prediction, but deep neural net-
works show particular promise and are the focus of the meth-
ods here discussed. Any mathematical function can, in the-
ory, be approximated by the right neural network. However,
training a network to accurately approximate the relationship
between genotypes and phenotypes (or anything else) requires
showing it numerous datasets in which that relationship exists,
and designing, training, and testing a network that can cor-
rectly identify that relationship. Additionally, like many sta-
tistical techniques, neural networks cannot inherently differ-
entiate between correlation and causation (Marcus, 2018).
One example of the application of machine learning to
genomic prediction is DeepGS, a deep learning based R
package developed as a reduced marker assumption nonlinear
genomic prediction model (Ma et al., 2018). DeepGS uses
a multilayered convolutional neural network to learn the
association between genotypes and phenotypes in training
populations and then predicts breeding values within the
test population. In tests on an Iranian bread wheat landrace
population, DeepGS was comparable with ridge regression
best linear unbiased prediction (RR-BLUP) and GBLUP in
predicting grain length (Ma et al., 2018). Machine learning
models have also been applied to understanding G X E inter-
actions and their impacts on predictive ability. In both single-
and multi-trait models in maize and wheat (Triticum aestivum
L.), deep learning models performed better than standard
GBLUP when G x E effects were removed (Montesinos-
Lépez, Montesinos-Lopez, Crossa, Gianola, & Hernandez-
Suarez, 2018). However, when G X E effects were included,
GBLUP performed better than deep learning methods. In
general, current machine learning methods are not able to
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outperform standard genomic prediction. It remains to be
seen if fine tuning of these methods, either by carefully
incorporating molecular phenotypes, and/or using better
dimension reduction methods to identify subsets of highly
informative data, may allow them to outperform standard
genomic prediction.

3.7 | Future directions of genomic prediction
in maize breeding

Much of predictive breeding suffers from high dimension-
ality where there is more information on genetic markers
than there are observations (n < < p) within the popula-
tion (Crossa et al., 2017; Ramstein et al., 2018). This issue
has been addressed in genomic prediction using numerous
forms of dimensionality reduction. Some examples include
selecting SNPs that are more functionally relevant according
to machine learning (Li, Zhang, Wang, George, & Reverter,
2018a; Ma et al., 2018), and focusing on SNPs with high con-
servation as inferred by Genomic Evolutionary Rate Profil-
ing (GERP) scores (Rodgers-Melnick et al., 2015; Yang et al.,
2017). The use of open chromatin regions has also been sug-
gested to reduce the complexity of the maize genome to the
small, functionally accessible regions that account for most
phenotypic variation (Rodgers-Melnick, Vera, Bass, & Buck-
ler, 2016). This reduction in the genomic space containing
the most informative loci can address the problem of high
dimensionality. Ramstein et al. (2018) recently reviewed the
n < < p dimensionality problem in great detail. They sug-
gest that overcoming high dimensionality may be a critical
step towards a new era in quantitative genetics. In particular,
they concluded that key improvements of genomic prediction
might come from high-throughput phenotyping (increasing
n), the use of molecular phenotypes and/or component traits
(potentially simplifying the genetic architecture), machine
learning methodologies, and replacing genomic markers with
high-quality haplotype data (e.g., using methods similar to the
abovementioned PHG).

4 | PREDICTING ACROSS
GENOTYPE, ENVIRONMENT, AND
MANAGEMENT

Numerous approaches for predicting phenotypes from a com-
bination of genotype, environmental, and management (some-
times included in environment) have been developed over
the years (Burguefio, Crossa, Cornelius, & Yang, 2008,
2011; Fisher & Mackenzie, 1923; Malosetti, Ribaut, & van
Eeuwijk, 2013; Thomas, 2010; van Eeuwijk, Denis, & Kang,
1996). Several recent approaches to the problem include: (i)
using environmental covariance structures within a genomic
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Initialize Plant (sowing)

Loop Repeated Daily | %

Transpiration (water supply and demand)
|

Phenology (thermal time accumulation)
| |

Biomass/Seed (energy, water, carbon partitioning)
| |

Leaf Area (carbon, leaf number, leaf size) z
| |

Senescence (leaf death due to: age, water, etc.)
|

Nitrogen (demand, uptake, translocation)
| |

Plant Death (due to stress)
I $

End Plant (harvest, decomposition)

FIGURE 1 Diagram representation of a crop model (Soufizadeh
et al., 2018)

prediction model (Jarquin et al., 2014), (ii) incorporating
environments into genomic models through environmental
indices (Li et al., 2018b), and (iii) incorporating whole
crop physiological growth models into genomic prediction
(Cooper et al., 2016; Technow et al., 2015). Each of these and
other approaches have strengths and weaknesses that could be
the subject of an entire review. Here, we will focus on the use
of WCP models to improve genomic prediction. In so doing,
we also discuss the importance of weather, soil, and field man-
agement data, and the inherent challenges in working across
disparate disciplines such as soil science, agronomy, physiol-
ogy, and breeding. Understanding these challenges will likely
be crucial to any attempt at uniting genotype, environment,
and management into a single useful predictive framework.

4.1 | Introduction to crop physiological models

Whole-crop physiological models rely on plant physiological
measurements and calculations, as well as environmen-
tal variables to predict field level phenotypes over time
(Hammer, Kropff, Sinclair, & Porter, 2002, 2016; Messina,
Hammer, Dong, Podlich, & Cooper, 2009; Soufizadeh et al.,
2018; Wang et al., 2002). Each day, the model cycles through
a variety of modules, each determining aspects of the plant’s
development for the day based on the weather data provided,
calculations of available water and nutrients in the soil, the
plants leaf area and radiation use efficiency, and other factors.
These calculations feed together into predictions about the
plant’s developmental stage, how much stress the plant is
experiencing, and how much biomass the plant will gain on
a given day (Figure 1). Whole-crop physiological models are
typically constructed at a species level (i.e., a different model
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for maize, sorghum [Sorghum bicolor (L..) Moench], wheat,
etc.), but they also have built-in cultivar parameters which
allow tuning to fit different genotypes (or cultivars) within
a species. This tuning to a new cultivar is often referred to
as model calibration and requires measuring physiological
variables (phenotypes) on a new cultivar in as many environ-
ments as possible. Some of these phenotypes can be entered
into the model directly, whereas others are compared with
the models predictions and used as feedback in an iterative
tuning process. Once calibrated, models can accurately
predict cultivar specific phenotypes across widely varying
locations (even future climates) given soil and weather data
from those locations (Hammer et al., 2014, 2016).

Whole-crop physiological models have been applied to
crop risk assessment, management decision making, and
even plant breeding decisions for several decades (Hammer
et al., 2014, 2016; Messina et al., 2009; Technow et al., 2015;
Wallach, Makowski, & Jones, 2018). However, the models
incorporate little to no genetic data, and calibrating them for
new genotypes is costly, time consuming, and usually (though
not necessarily) requires multiple seasons. Additionally, the
estimation of model parameters can suffer from issues such
as expressivity, equifinality, and instability (Lamsal, Welch,
White, Thorp, & Bello, 2018). These challenges make it
difficult to apply WCP models directly to novel breeding
materials or even elite cultivars and make it nearly impossible
to calibrate models for the large numbers of genotypes
inherent in breeding programs. For these reasons, the impact
of WCP models on predictive breeding in maize (and other
crops) has been limited.

4.2 | Integrating physiological models
with genomic prediction

The integration of quantitative genetic models with WCP
models has long been proposed as a solution to the challenge
of genotype X environment X management (G X E x M) pre-
diction (Baldazzi et al., 2016; Chapman, Cooper, Podlich, &
Hammer, 2003; Cooper & Hammer, 1996; Cooper & Podlich,
2002; Cooper et al., 2014, 2016; Hammer et al., 2006, 2016;
Hoogenboom et al., 1997; Messina, Jones, Boote, & Vallejos,
2006; Parent & Tardieu, 2014; Reymond, Muller, Leonardi,
Charcosset, & Tardieu, 2003; Technow et al., 2015; Wang
et al., 2003; White & Hoogenboom, 1996; Yin, Struik, van
Eeuwijk, Stam, & Tang, 2005). Various strategies for how this
might be accomplished have been proposed, but in general,
none of the strategies have been fully explored, implemented,
and tested. One exception is a recent attempt made by scien-
tists at DuPont Pioneer (now Corteva). In this case, approxi-
mate Bayesian computation and Bayesian hierarchical models
were used to unite a standard genomic prediction model with
a very simplified WCP model (Cooper et al., 2016; Messina

et al., 2018; Technow et al., 2015). These methods outper-
formed the standard genomic prediction model in the context
of training in one environment and predicting in another while
showing similar results to the standard model for within envi-
ronment predictions.

In general, the development of integrated quantita-
tive genetics and WCP models faces several significant
community-level challenges. Some of these challenges are
cultural or historical (the two types of models were devel-
oped by different communities and for different purposes over
decades), whereas others are more specific to the challeng-
ing nature of the problem itself (i.e., need for large datasets,
computational resources, etc.). Necessary in solving each of
the challenges is a critical mass of investigators from multiple
disciplines working together.

4.3 | Major challenges
4.3.1 | Culture

A surprising, yet significant, challenge to the development
of integrated WCP and quantitative genetic methods is the
educational, linguistic, and practical divides between geneti-
cists/breeders (those whose education is genetics centric) and
agronomists/physiologists/soil scientists (those whose educa-
tion is more physiology or chemistry centric). Although both
groups of scientists work with plant-based agriculture, the ter-
minologies they use and their approaches to the same prob-
lems are very different. Additionally, the way these subdisci-
plines of plant science set up and execute experiments and the
desired outcomes are not always compatible. Not surprisingly,
genetics and breeding experiments often maximize the num-
ber of distinct genotypes being studied. This is particularly
true in quantitative and population genetics where large num-
bers of genotypes are required to meet the statistical require-
ments in the desired analysis. Genetic experiments are also
often designed with the goal of minimizing environmental
variation or simply controlling for it statistically. Agronomy,
physiology, and soil science projects often take the opposite
approach in that genetic variation is minimized. These exper-
iments may involve a single genotype examined under mul-
tiple sets of conditions. In some cases, many environments
may be critical to these experimental designs, whereas a sin-
gle well-controlled environment is preferred in others. The
disparate goals between the subdisciplines make the gener-
ation of cross-discipline datasets challenging (see the section
on data collection below), but they also hamper collaboration
and discussion across the disciplines.

The quantitative genetics and plant breeding viewpoint, for
example, often focuses on end points and static relationships
(e.g., the relationship between plant yield and a given culti-
var’s genetic marker data). Whole-crop physiological model
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practitioners, on the other hand, tend to view the world in
terms of time-dependent relationships and processes that vary
with the plant’s developmental stage. These differences in
viewpoint are not particularly surprising when one considers
that a given plant’s genetics are in fact stable across the entire
growing season, whereas the physiological and developmen-
tal processes the plant is undergoing change with time.

Some simple yet pervasive examples of differing view-
points can be illustrated by the different semantics of common
agricultural research words and phrases. In physiological
modeling, the word environment is thought of and mea-
sured in complex, time-dependent variables, which can be
extremely granular and specific (e.g., temperature variations
across hours, days, weeks, at a specific location). In quantita-
tive genetics, on the other hand, environments are generally
represented and thought of in a reduced or summative form.
Environments may be represented as indices, for example, or
more often they are simply thought of as distinct experiments
or replicates in a statistical framework and characterized by
plant performance differences (e.g., the yield of cultivar x
is more variable across environments than is the yield of
cultivar z). These differences in viewpoints and terminologies
extend further into the meaning behind ideas like GX Ex M
interactions. Breeders and geneticists take a plant-centric
viewpoint of G X E and rarely use (or think in terms of) the
G x E X M terminology. From the plant’s point of view,
all influences external to it are environmental. Agronomists,
physiologists, and soil scientists, on the other hand, often take
the farmer’s perspective and think in terms of G X E X M.
Here, environment includes only factors that are out of the
farmer’s control, and management includes factors that can
be influenced through agronomic intervention.

4.3.2 | Data collection

As mentioned above, the goals, design, implementation, and
analysis of experiments varies widely across genetics, breed-
ing, agronomy, physiology, and soil science. This presents
a major challenge to the integration of quantitative genetics
with WCP models because currently available datasets only
include subsets of the types of data needed. For example, there
are many high-quality datasets available on the effects of vari-
ations in soil type and chemistry on plant phenotypes, but
these datasets are mostly limited to a few genotypes. Con-
versely, multiple large-scale datasets are available for maize
association and diversity panels with thousands of genotypes
included across multiple environments, but the matching soil
data and many physiologically important variables are not
available. Even when attempts are made to collect extra data
(i.e., more genotypes in a soil experiment, or soil data in a
genetics experiment), the financial costs and/or the expertise
to collect the proper data are too prohibitive. Table 2 lists

the types of data that might be considered minimal for run-
ning both genomic prediction and WCP models given current
separate implementations (based primarily on data used by
the Agricultural Production Systems sIMulator, or APSIM)
(Archontoulis, Miguez, & Moore, 2012; Cresswell, Hume,
Wang, Nordblom, & Finlayson, 2009; Dalgliesh & Foale,
2005; Littleboy, Freebairn, Silburn, Woodruff, & Hammer,
1999). Of course, the relative importance of each of these vari-
ables within the context of a combined model, and if any of
them can be imputed without significant loss of fidelity, need
to be tested experimentally.

On the other hand, one phenotyping concept used in both
quantitative genetics and physiological modeling is the idea
of breaking complex phenotypes (like yield or biomass)
into component traits (like stress tolerance, seed number,
and weight, etc.). Complex traits are likely controlled by
many genes and tied to multiple physiological processes.
Breaking them down into simpler, better understood traits
should allow more accurate and intuitive modeling and more
straightforward genetics. Component traits like flowering
time are relatively simple to measure, but still time consum-
ing on a large scale. Others, like radiation use efficiency,
require specialized equipment and/or highly controlled
conditions for accurate measurements. Recent advances in
high-throughput phenotyping allow many traits to be mea-
sured quickly and accurately using unmanned aerial vehicles,
field robots, or sensors mounted on farm vehicles and driven
through the field (Andrade-Sanchez, Gore, Heun, Thorp,
& Elizabete Carmo-Silva, 2014; Crain, Mondal, Rutkoski,
Singh, & Poland, 2018; DeChant et al., 2017; Shi et al.,
2016; Wang, Singh, Marla, Morris, & Poland, 2018b). These
high-throughput phenotyping systems may even be able to
estimate some of the more difficult physiological traits using
machine learning algorithms, carefully designed training
experiments, and/or correlated traits (Ramstein et al., 2018;
Rosati, Metcalf, & Lampinen, 2004; Twohey, 3rd, & Studer,
2018; Zhang et al., 2015). Such advances could enable WCP
model calibration and validation at population scales.

4.3.3 | Modeling and computation

Whole-crop physiological and quantitative genetics models
are built on statistical frameworks and philosophies distinct
from each other. Whole-crop physiological models rely
heavily on physiological calculations made from both small-
and large-scale experiments and approximations calculated
through differential equations. They calculate daily inter-
mediate values that result in the final trait values (yield,
biomass, height, etc.). Cultivar tuning is often performed
manually and based on limited amounts of training and
testing data. Genomic prediction models, on the other hand,
rely almost entirely on maximum likelihood or Bayesian
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TABLE 2 Minimal phenotypes, weather, soil, and management data required for running a typical crop growth model. Based on the

requirements of the Agricultural Production Systems sIMulator (APSIM)

Measurement

Plant phenotypes
Planting date
Flowering/anthesis date
Harvest date

Grain yield

Grain no. per ear

Grain weight

Total leaf number
Largest leaf area

Biomass (at least for checks)

Soil/water/residue properties (by soil layer)*

Bulk density (BD)

Gravimetric water content (GWC)

Drained upper limit (DUL)
Saturated water content (SAT)

Lower limit 15 (LL15)

Air dry (AD)

Soil texture

U

Conna

Soil pH

Soil and root C/N ratios

Soil organic carbon (OC)

Initial water

Initial N

Surface residue amount

Surface residue C/N ratio
Agronomic/management details
Irrigation (dates and quantities)
Fertilizer (dates, types, quantities)
Tillage (date, type, depth)

Row and plant spacing

Planting depth

Harvesting equipment and scheme

Field layout (row and column)

Weather recording (daily measurements)

Radiation

Max. temperature
Min. temperature
Precipitation
Vapor pressure

Daylength

Description or formula

Date seeds were planted

Date when 50% of plants have 50% of their anthers exposed
Date when grain was harvested

Weight of grain, and grain moisture content at harvest
Average number of kernels per ear of corn

Average weight of a single kernel

Total number of leaves produced through plant’s life cycle
The area of the largest leaf (generally the ear leaf)

Aboveground total plant biomass (excluding grain)

How dense or porous the soil is. BD = dry soil weight/soil volume

Percentage water in soil. GWC = [(wet weight — dry weight)/dry weight — container
weight] x 100

Water held by soil after drainage. DUL = GWC x BD

Maximum water soil can hold. SAT = [1 — (BD/2.65)] — e, e = 0.03 (clay soil) to 0.07
(sandy soil)

Soil water content at 15 bar (1.5 MPa) vacuum pressure

AD=LLI5SXx A, A=0.5to | depending on soil depth. See Cresswell et al. (2009)

Relative proportion of sand, silt, and clay within the soil.

Water evaporation potential from bare soil. See Littleboy et al. (1999)

Soil water evaporation over time. See Littleboy et al. (1999)

pH of the soil

Ratio of C to N separately for soil and roots

Organic C in soil separated into labile and inert pools

Water in the soil profile at beginning of simulation

N in the soil profile at beginning of simulation

Residual surface organic matter present at beginning of simulation

Ratio of C to N in surface residue

Amount of water applied to the field through irrigation
Amount of fertilizer applied to the field

Tillage and/or cultivation applied to the field

Spacing between rows of plants and plants in a row

Depth to which seeds were planted in the soil

Equipment used for harvesting and how harvest was carried out

Layout of the field. How were different cultivars or species spread across the field spatially?

Average incident shortwave radiation over the day
Daily maximum temperature

Daily minimum temperature

Total precipitation over the day

Average water vapor partial pressure over the day

Time from dawn until dusk

#s0il descriptions and calculations summarized from Archontoulis et al. (2012) and Dalgliesh and Foale, (2005).
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regression frameworks, without intermediate phenotypes,
and are entirely focused on predicting final trait values. When
compared with WCP methods, genomic prediction models
are usually relatively simple with very few inputs and outputs
(single phenotype, genomic, and/or pedigree relationships).
Publication standards are also different between the model
types, with genomic prediction models undergoing extensive
leave-one-out or k-folds testing (the product is a model that
will be recalibrated for use on different populations), and
WCP models generally being tested and calibrated across
many environments (the product is a calibrated model). An
important point here, which relates to the earlier discussion
on cultural differences, is that breeders and geneticists are
trained with a statistical viewpoint that does not allow for the
use of testing data to improve the model in any way. Using
the same data (or insights gained from it) to both improve
and test the model is considered scientifically unacceptable.
This viewpoint is critical because the statistical models used
in breeding and genetics (i.e., genomic prediction) are gen-
erally nonmechanistic by definition and can therefore not be
validated biologically. Whole-crop physiological models, on
the other hand, are calibrated with the perspective that funda-
mental biological, chemical, or physiological mechanisms are
represented within the model, and that the model should be
validated, at least in part, by its mechanisms and results fitting
within the realm of well-researched scientific understanding.
Combined models will likely need to be validated in multiple
ways including both biological sensibility and k-folds or
leave-one-out testing methods that test in both genotypes and
environments never previously seen by the model.

Both WCP and genomic prediction models require sub-
stantial computational resources and many iterations (e.g.,
iterative optimization algorithms for maximum-likelihood-
based models such as GBLUP, or Markov chain Monte
Carlo sampling for Bayesian regression models). Both can
be run on a standard desktop computer for very simple
datasets, but running larger datasets becomes too resource
intensive and requires the use of high-performance comput-
ing clusters. Parallelization is possible for many use cases
of both methods, and in some cases, data structure analy-
ses have been used to efficiently organize computational runs
and better utilize available resources (Lamsal et al., 2017).
Any combination of WCP and genomic prediction models
into a common framework will most certainly require high-
performance computing, as well as careful software engi-
neering to reduce the resources needed for computation.
Even then, being able to gather all of the needed data and
run the models fast enough for use in a breeding program
may be challenging. As discussed above, the Messina et al.
(2018) implementation of genomic prediction combined with
WCP was able to run within a reasonable timeframe due to
the use of a simplified WCP model. The effects of these

or any simplifications on model accuracy remain unknown
at this point, but future research into the value (in terms
of speed and accuracy) of simplifying WCP and genomic
prediction models in a combined framework will be criti-
cal to designing the most cost-effective and useful model-
ing schemes. The application of machine learning, ensem-
ble models (combination of multiple models together), and
other statistical methods that are flexible to data input types
and designed for modeling nonlinear properties should also
be useful for incorporating G X E X M into predictive
models. These approaches are beginning to be applied to the
field, but their full potential remains relatively unexplored
(Montesinos-Lopez et al., 2018).

5 | CONCLUSIONS

Maize breeding began many centuries ago with early farmers
saving seeds from their best plants for use in the next gener-
ation. Today, large and highly efficient maize breeding pro-
grams carry on that tradition, but with numerous molecular,
statistical, computational, and technological tools. Genomic
prediction, in particular, has become a critical tool for large-
scale maize breeding programs around the world and has the
potential to revolutionize smaller-scale public, private, gov-
ernment, and nongovernment breeding efforts in maize and
other species. Current challenges and opportunities in predic-
tive breeding include: (i) better measurement and incorpora-
tion of high-throughput phenotypes, molecular phenotypes,
and environmental data into predictive models, (ii) reduc-
ing the costs and increasing the availability of genotyping,
phenotyping, and predictive modeling, (iii) finding new and
better ways to overcome the n < < p dimensionality prob-
lem (the first and second points should help with this), and
(iv) increasing collaboration and communication across dis-
ciplines. Machine learning methods show promise for over-
coming some of these issues by allowing predictive models
that are more flexible to data formats and can better cap-
ture nonlinear relationships. The use of crop growth mod-
els together with genomic data also shows great promise for
cross-environment prediction. High-accuracy models that can
predict and explain the performance of new genotypes in
new environments would allow unprecedented gains in maize
breeding efficiency, and the development of new maize culti-
vars that can survive and thrive in current and future climates.
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