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Abstract—Advancement in communication technologies and
the Internet of Things (IoT) is driving adoption in smart cities
that aims to increase operational efficiency and improve the
quality of services and citizen welfare, among other potential
benefits. The privacy, reliability, and integrity of communications
must be ensured so that actions can be appropriate, safe,
accurate, and implemented promptly after receiving actionable
information. In this work, we present a multi-tier methodology
consisting of an authentication and trust-building/distribution
framework designed to ensure the safety and validity of the
information exchanged in the system. Blockchain protocols and
Radio Frequency-Distinct Native Attributes (RF-DNA) combine
to provide a hardware-software codesigned system for enhanced
device identity and overall system trustworthiness. Our threat
model accounts for counterfeiting, breakout fraud, and bad
mouthing of one entity by others.

Entity trust (e.g., IoT devices) depends on quality and level
of participation, quality of messages, lifetime of a given entity
in the system, and the number of known “bad” (non-consensus)
messages sent by that entity. Based on this approach to trust, we
are able to adjust trust upward and downward as a function
of real-time and past behavior, providing other participants
with a trust value upon which to judge information from and
interactions with the given entity. This approach thereby reduces
the potential for manipulation of an IoT system by a bad or
byzantine actor.

Keywords—IoT, RF-DNA fingerprinting, Trust management,
Blockchain

I. INTRODUCTION

The integration of wireless communications into IoT de-
vices has facilitated ubiquity of IoT devices and increased
the ease with which such devices have been integrated into
daily life. Although IoT provides users with easy control-at-
a-distance over such things as lights, thermostats, and doors,
IoT infrastructure is not without vulnerabilities. Three such
vulnerabilities are that (1) approximately 70% of IoT devices
employ weak or no encryption [1], (2) IoT devices often use
commercially available and open source wireless communica-
tions standards, and (3) wireless access points remain a key
point through which attacks occur [2]. Thus, there remains
a need for effective approaches capable of bolstering IoT
security before there can be trustworthy systems at scale that
incorporate IoT.

Over the past two decades, significant research has focused
on enhancing a wireless network’s digital security mecha-
nisms (e.g., encryption) through the use of Physical (PHY)
layer techniques [3]–[8]. Radio Frequency-Distinct Native At-
tributes (RF-DNA) fingerprinting is one PHY layer approach
that has been introduced to augment digital security mecha-
nisms by facilitating the identification of wireless transmitters
by exploiting PHY layer characteristics. In the context of this

Figure 1: IoT integration toward a resilient architecture

communication, RF-DNA will be the mechanism used to pro-
vide a physically unclonable property for IoT devices, yielding
a unique identity for each device within our architecture.

Over the past decade plus, significant work on Blockchain
technology, commencing with Bitcoin [9], has led both to
a cryptocurrency revolution and to innovative uses of dis-
tributed, immutable ledgers to provide consensus information,
smart contracts, and highly available, permanent, unforgeable,
distributed data sets (i.e., providing for completeness and
integrity) [10]–[13]. Here, trust information is considered at
both local and non-local (“global”) levels (generalizable to
N-level hierarchies) in order to enable and manage trust
dissemination.

IoT systems are based on a collective organization in
which devices collaborate to provide better and more accurate
decisions. It is important to ensure that the information being
shared is legitimate to avoid any significant degradation in sys-
tem performance because of false or inaccurate information.
Building trust—the “assurance” between two devices that the
information being shared can be used with confidence that it
is accurate—will create a trustworthy, secure system in which
all devices are identified and no information is accepted from
any unauthorized device.

Therefore, the aim of this work is to combine (1) strong
identity based on a lightweight blockchain technology and
(2) Radio Frequency-Distinct Native Attributes (RF-DNA)
fingerprinting to produce a secure, scalable, trustworthy envi-
ronment for IoT devices. This environment will be suitable for
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use in many applications, such as scale-out to support smart
cities, in which security is paramount. This work is timely,
transformative, and of broad impact because of the rapid roll-
out and scale-out of IoT systems, the rapid development of
smart environments, and emerging threats involving large-
scale IoT systems.

A key assertion is that the system must identify devices
accurately both initially and over time in order to establish
and maintain useful measures of trust. A second key assertion
of this work is that hardware-software codesign is essen-
tial to achieve strong device identity. Third, we assert that
Blockchains provide a transformative architectural component
for IoT trust management because of their unique properties of
immutability, decentralization, integrity, and DDoS resistance.

A key outcome is the trust mechanism for each entity (IoT
device). Here, entity trust depends on quality and level of
participation, quality of messages, lifetime of a given entity in
the system, and the number of known “bad” (non-consensus)
messages sent by that entity. Based on this approach to trust,
we are able to adjust trust upward and downward as a function
of real-time and past behavior, providing other participants
with a trust value upon which to judge information and
interactions of the given entity. This approach consequently
reduces the potential for system manipulation by bad or
byzantine actors.

The remainder of the paper is organized as follows: We
discuss related work in Section II, followed by our motivations
and contributions in Section III. We present the threat model
in Section IV. Our Hardware-Software Codesign Approach
is given in Section V, followed by our experimentation and
evaluation in Section VI. We discuss how our proposed
approach mitigates the threat model in Section VII. Finally,
we conclude and discuss future directions in Section VIII.

II. RELATED WORK

Related work presented in this section covers three underly-
ing areas for this paper: Trust Management, Blockchain, and
Wireless Transmitter Identity Verification.

A. Trust Management
Trust is based on the history of interactions and the validity

of the information exchanged between network entities [14]–
[16]. Recently, the idea of managing trust in the network
has received significant attention since it adds an additional
security layer designed to ensure that the data being exchanged
in the network is valid and originates from a trustworthy
source [17], [18]. Several trust management schemes have
been proposed, including entity-based, data-based, and hybrid
trust models [19]. One area of interest in cyber-physical
systems is connected vehicles. Compared to static networks,
the dynamic nature of connected vehicles requires a distributed
system that allows vehicles to gather and share information
toward building trust in the network as they move from
one place to another (this trust building can be achieved
through collaboration between the connected vehicles and
fixed roadside units).

Previous work has proposed solutions for trust manage-
ment implementation in Vehicle Ad Hoc Network—Intelligent
Transportation Systems (VANET-ITS) (e.g., [19]–[23]). The
authors in [19] proposed a decentralized system, claiming

that a centralized system is impractical for the growth that
a VANET-ITS would require; this concern is clearly valid.
By having several roadside units (RSUs) located throughout
a city, each area within it can be divided roughly equally,
and therefore the load will be reasonably balanced as well.
Furthermore, the authors in [19] continue by proposing trust-
factor calculations. Each vehicle begins with a neutral value,
and, as messages are passed between vehicles, the trust value
will be updated depending upon the accuracy of messages that
were previously passed. The method of evaluating the accuracy
of a message is based on the experiences that other vehicles
in the network have had with a given message. The critical
drawback of this approach is the scenario in which there are
several malicious vehicles in the network and these vehicles
collude to evaluate their messages as accurate. This scenario
increases the malicious vehicles’ trust factor, thus decreasing
the overall integrity of the system.
B. Blockchain

Blockchain is a recent, breakthrough technology used in
the financial industry. Blockchains create a consistent, tamper-
proof ledger that records information without the need for a
centralized bank [12]. Notable Blockchains include Bitcoin
[9] and Ethereum [10]. For instance, Ethereum’s key features
include decentralized control, availability, tamper-proof prop-
erties, and the consensus (mining) algorithm through proof-of-
work (PoW) and/or proof-of-stake (PoS) [11]. Tamper-proof
is a key feature of Blockchains. Any malicious nodes in
the system would be unable to tamper with previous blocks
because of the data structure (subject to Byzantine limits).
Later blocks depend on data collected from earlier blocks,
and, if any changes are made to such earlier blocks, this
manipulation will create a disparity in the chain [12]. Some
Blockchain protocols support smart contracts, which are self-
executing scripts; smart contracts are immutable and possible
because of this tamper-proof Blockchain feature [13].

In [19], the authors proposed to use Blockchain as a means
of storing the trust factor of each vehicle. As vehicles exchange
messages, these messages will be compiled into one data
block that will then be uploaded to a local RSU. A given
RSU will then compete against other RSUs in the network
via a joint Proof-of-Work (PoW) and/or Proof-of-Stake (PoS)
to determine which will be elected as the miner. Using a
joint PoW/PoS will evidently prevent RSUs that are in a
high-demand area (with lots of ratings (stakes)) from always
uploading to the chain by also allowing smaller and less com-
monly accessed RSUs to upload their data to the Blockchain
too. Although this work proposed the use of Blockchain to
support trust management in the network, it lacks the ability
to verify the data being added to the block by RSUs.

The authors in [24] proposed the solution of retaining
only the last few blocks of a Blockchain on each vehicle
to save storage. While this solution will certainly require
less storage capacity on vehicles, it will greatly increase the
communications needed between vehicles and RSUs. Should
a vehicle be unable to access all of the Blockchain data
and come into contact with another vehicle whose trust is
unknown, then an RSU query must be made to determine the
trust factor of said vehicle. Querying the RSU each time a
device comes into contact with a new vehicle can be a costly
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action. A method to eliminate such delays is necessary for a
connected vehicle system to function in real time.
C. Wireless Transmitter Identity Verification

The work in [25] presented the first case in which RF-
DNA fingerprinting was used not only to verify the identity
of known/trusted transmitters but also in the rejection of
rogue transmitters. A rogue transmitter is one that falsifies
its digital credentials (e.g., MAC address) to pose digitally
as a trusted transmitter in order to circumvent digital-based
network security mechanisms. For the eighteen Worldwide
Interoperability for Microwave Access (WiMAX) transmitters
used in [25], a 93% rogue transmitter rejection was achieved
for 72 unique digital identity spoofing attacks at a signal-to-
noise ratio (SNR) of 21 dB. At the same SNR, the rogue
rejection performance was improved to 100% when an ac-
curate sample of the overall WiMAX transmitter population
was used. These results were achieved using dimensionally
reduced RF-DNA fingerprints and a neural-network-based
classifier known as Generalized Relevance Learning Vector
Quantization-Improved (GRLVQI). In [25], the models used
for verification of a trusted transmitter’s identity and rogue
transmitter rejection were developed by training the classifier
using a distinct class for each of the trusted transmitters (six
and eight classes for the 93% and 100% rejection performance
at SNR=21 dB). For a given SNR, the results in this work
are based upon training the classifier using only two distinct
classes. One class represents the trusted transmitter whose
identity is to be verified based upon the presented digital
credentials, and the second class consists of the remaining
trusted transmitters; thus, there is a classifier model, consisting
of two classes, for each of the trusted WiMAX transmitters.

The work in [26] presents rogue device feature classification
using k-Nearest Neighbor (KNN) machine learning. Their
results demonstrated an accuracy from 30% up to 94% at
SNR=15 dB. In comparison to KNN, the choice of Support
Vector Machine (SVM) was driven by (1) less sensitivity to
outliers, (2) the ability to use kernel functions to facilitate
the mapping of the RF-DNA fingerprints to an n-dimensional
feature space to reduce problems associated with nonlinear
data, (3) the ability to fine tune its hyperparameters without
requiring the same level of precision to produce the same
results, and (4) greater robustness in cases of unpredictability.

Identity verification of five wireless transmitters using SVM
and RF fingerprints is first presented in [27]. The wireless
transmitters used are 3GPP UMTS mobile handsets, and
verification is performed by comparing a given handset’s RF
fingerprints with the SVM model corresponding to that hand-
set’s digital credentials. In this case the digital credential is the
International Mobile Subscriber Identifier (IMSI) assigned to
each mobile handset. The RF fingerprints are extracted from
the preamble associated with the Random Access Channel
(RACH). The paper [27] investigates identity verification using
SVM in both a single class and a “customized ensemble” case.
The customized ensemble was investigated using three ap-
proaches: tiered, weighted tiered, and double weighted tiered.
For all three tiered approaches, an SVM model is developed
using a pair of handsets (that is, three given handsets, A, B,
and C, require the development of three SVM models: (A and
B), (A and C), and (B and C)). Thus, if a handset presents

the IMSI of handset A, then two SVM models are required
in the verification of the handset identity. In the approach
presented here, a handset presenting the IMSI of A would have
its RF fingerprints compared to a single SVM trained using RF
fingerprints from A, B, and C in which one class represents A
and the second class represents B and C. Lastly, the paper [27]
used signals that were collected within an anechoic chamber
and neglected analysis as SNR degraded.III. MOTIVATIONS AND CONTRIBUTIONS

This project ensures the security of IoT/Cyber-physical Sys-
tems (CPS) through a dynamic information infrastructure that
incorporates lightweight blockchain technology for integrity,
availability, and identity while ensuring trust among IoT/CPS
devices. Since the vast majority of these components are
manufactured in environments of limited trust and are later
deployed in critical infrastructures worldwide, we need to
design and develop solutions for protecting both hardware
and software that take into account the variety of attacks and
threats inherent in such devices. Attacks can originate from
untrusted hardware of an IoT/CPS system and/or from the
Internet by exploiting existing communication protocols and/or
network traffic. Hardware attacks against such systems can
occur via physical tampering of a device and/or by the intro-
duction of a cloned or counterfeit device [28]–[32]. Software
attacks against the system can be performed through network
attacks such as phishing, Denial of Service (DoS), and/or data
spoofing [33], [34]. Our approach aims to disallow classes
of cloning and counterfeiting threats—as well as man-in-the-
middle attacks against secure connections—through unique
identity.

The contributions of this work are as follows:

• Design of an RF-DNA fingerprinting approach to provide
unique identity to devices (hardware-based security)

• Introduction of a behavioral trust management approach
between the devices that include hysteresis

• Architecture of a multi-layer decentralized database based
on Blockchains that manage trust information (presently
two levels)

• Construction of dynamic trust available “locally” and
“globally” by integrating RF-DNA fingerprinting, trust
algorithms, and a two-level blockchain

IV. THREAT MODEL

We present a number of threats that target IoT devices:

Threat 1. Breakout Fraud: Devices in the network can
participate and exchange messages collaboratively, and de-
cisions will be made based on these interactions. Devices
can attack the system by maintaining a period of (or initial)
good behavior that yields a high level of trust, then start
injecting the network with invalid information. We present the
behavioral monitoring trust approach (Section V-A) that helps
the network identify anomalous behaviors, thus quarantining
malicious devices.
Threat 2. Bad Mouthing: Devices in the network will work
collaboratively and exchange messages to enhance system per-
formance and create a shared state between network devices.
Malicious devices may incorrectly report low trust values of
peers in the network, thus enabling them to gain higher trust
values compared to their peers; this situation will mislead
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the system to quarantine legitimate devices improperly. We
present the multi-level Blockchain approach (Section V-B)
to overcome this issue; we do so by creating a multi-level
verification system to validate the trust updates in the system.
Threat 3. Counterfeiting/Impersonation: The availability
of cheap knockoffs of big brands creates a challenge of true
identify and genuine devices in the network. Adversaries can
inject the network with malicious devices that will participate
in illegal ways in order to interfere with legitimate network
devices, thus degrading their performance. We present the RF-
DNA fingerprinting approach (Section V-C) to aid the network
in identifying and better authenticating network devices to
discover both initial counterfeits and device impersonation
during system operation.

V. HARDWARE-SOFTWARE CODESIGN APPROACH

We start by presenting our trust management approach with
focus on how trust between devices will be realized and
dynamically managed by taking device behavior in the system
into consideration; trust is evaluated based on interactions with
peers and the quantity and quality of those interactions as
compared with its peers.

A. Behavioral Trust Management

Previous trust-based schemes of which we are aware have
been based solely on the history of communications [20]–[23].
While message validation is an essential component in such
systems, it is critical for system entities to know who to trust;
therefore, in our design, we consider three types of trust:

a) Direct trust (Dt(u, v)) is established between device u
and device v that are within each other’s direct transmis-
sion range.

b) Indirect trust (It(u,w)) is established between device u
and device w based on neighbor-of-neighbor connection.

c) Reputational trust (Rt(u, v, w)) can be formed between
device u and its directly connected device v based on the
information gathered from device w.

Along with the aforementioned levels of trust, we will use
an integral-action approach to manage and build the trust
between devices. Within its peer group of devices, a device’s
trust is based on the quality and quantity of interactions, as
well as the lifetime of the device in the system.

Four major factors drive trust: the first measures partic-
ipation of the device and its current trust as compared to
its peers in the system; second, the device’s behavior in the
system, which is monitored by the number of messages it
generates and has shared in the system during its lifetime,
and the critically (rank) of the messages being shared by the
device during its lifetime; and third, the time it took a device
to build these messages as compared to the total uptime of
the system since the last update. The fourth factor is based on
the fraction of bad messages sent by the device in the system.
We weighted these four factors as θ (20%) for the current
behavior and participation, where the device will be rewarded
for participation based on its behavior among other devices.
Sometimes this proves to be a good incentive for the devices to
participate in order to maintain their trust value. But, it is not
the case for all devices. For example, if the device is among
the best behaving and its trust value is 92% or higher, then

the maximum weight it achieves is 20% (θ) , 20% (χ) for the
rank and number of messages, 20% (φ) for the total uptime
of the device being active to share their messages, and 40%
(τ ) for the fraction of bad messages shared by the device.

B. Multi-level decentralized database

A Blockchain enables a decentralized approach with its key
features such as tamper-proofing, consistency, and timeliness,
which makes it a strong candidate for storing data regarding
the system. The use of Blockchain can assist in critical aspects
of the system. Tamper-proofing is possible because, by design,
Blockchains prevent any previous data from being modified
without the change being discovered. If a malicious node
should attempt to modify any contents of the Blockchain,
it will be indisputable to all other nodes in the network
and the attempted change will subsequently be disregarded.
Blockchain also satisfies consistency by frequently creating
and distributing new blocks, allowing all devices to maintain
a consistent data set. Finally, timeliness assures the low-cost
ability to verify that newly created blocks are valid and can
be added to the chain, which in turn allows the system to be
updated in real time.

Our design incorporates two levels of Blockchains: At
the IoT devices level, a Cluster Blockchain (CB) will be
formed for each cluster of devices. And, at the gateway level,
the Global Blockchain (GB) will be formed based on the
cluster’s Blockchain, where gateways begin mining to add
the data (cluster’s Blockchain) onto the global Blockchain.
The concept behind the global Blockchain is to form a global
trust management system that provides devices with a global
view of the trust in the system, which will benefit IoT devices
as they move to different regions of the system. The cluster
Blockchain is formed to store a localized trust consensus based
on each cluster, as it will only be accessible by members of
said cluster. This limited accessibility will ensure that the data
being sent to the gateway is valid and will be loaded onto the
global Blockchain with confidence.

1) Cluster Blockchain (CB): Because of the high overhead
associated with Blockchains, we propose the use of a smaller,
less computationally demanding Blockchain that stores trust
values of devices in a cluster. A cluster will be able to
add data onto its Blockchain quicker than it could onto the
global Blockchain. This approach better supports the real-time
requirement of the connected IoT system. These groups will
work similarly to the overall design of a connected IoT system,
in which the devices are passing messages, and, when enough
data is collected, after a distributed consensus on the data, a
miner will be elected to add the block to the chain.

The use of a less computationally demanding algorithm
allows for blocks to be generated and mined quickly, which
in turn allows the dynamic nature of connected devices to be
unaffected by the high overhead associated with adding blocks
to a chain. Furthermore, there are dynamic scenarios where
IoT devices move or are being moved under a new gateway
zone. A threshold will be set to determine when to upload the
cluster’s chain onto the global Blockchain, where the elected
miner will be required to push the cluster chain to a gateway
upon meeting the threshold of blocks. The gateway will be
required to verify that the cluster chain is valid and will then
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proceed to perform the calculations necessary to create a new
block out of the data and upload this and potentially other
cluster’ chains to the global Blockchain. Upon uploading, the
cluster will “forget” the previous chain and begin constructing
a new one. Because an index block is also necessary and
must be provided by a trusted source, we propose that the
gateway will respond to the uploaded cluster chain with the
index block, which will contain the trust values for all of the
devices in the group. This arrangement will allow all devices
to have a quick reference point for the trust factors of other
cluster members, therefore decreasing the overhead of having
to query the gateway to obtain this information.

By using a cluster Blockchain between groups of devices,
along with the tamper-proofing nature of the Blockchain
in general, we seek to prevent any malicious device from
modifying contents of the Blockchain prior to data being
distributed to all devices in the network. Furthermore, with
each group of devices working on their own data sets and
cluster chains, cluster Blockchains will enable rapid upload
of data to the global Blockchain, which ensures the real-time
nature that is required by the system.

2) Global Blockchain (GB): The global Blockchain stores
trust factors of all devices in the system. It will obtain these
values from the numerous cluster Blockchains that will be
uploaded to the gateways. As a gateway receives data from the
cluster Blockchains, it will begin to mine a new block. When
a gateway is attempting to mine a block to add to the global
Blockchain, the data will likely be several cluster Blockchains
from the many clusters that the gateway has come into contact
with recently. The global Blockchain is considered the source
of trust management in the system because of the tamper-proof
concept discussed earlier. Upon mining a block, the gateway
will broadcast the newly created block to maintain consistency
throughout the network.

C. RF-DNA Fingerprinting

RF-DNA fingerprinting is presented here as a PHY layer
mechanism for verifying the identity of a specific transmitter.
RF-DNA fingerprints exploit the distinct and unique coloration
that is imparted on the waveform during its formation and
transmission.

1) Signal of Interest: This work uses signals collected
from eighteen Alvarion BreezeMAX Extreme 5000 802.16e
WiMAX Mobile Subscriber (MS) transmitters. The network
implemented a 60/40 Time Division Duplexing (TDD), mean-
ing the first 60% of the 5.0 ms time frame includes a Base
Transceiver Station (BTS) Down-Link (DL) transmission, and
the remaining 40% is for MS Up-Link transmission. The
frames themselves have been shown to have three sub-frame
UL modes: Data-Only, Range-Plus-Data, and Range-Only. RF-
DNA fingerprints used in this work were generated from
from Range-Only responses. The WiMAX TDD UL signals
lack consistency between frames with respect to both time
and spectrum. It has also been observed that the sub-frames
comprising BreezeMAX UL responses possess an inherent
DC offset over their duration (Fig. 2). The cause of this
characteristic bias is uncertain, but it is this region from which
the RF-DNA fingerprints are generated [35].
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Figure 2: “Near-Transient” TDD UL sub-frame Range-Only
response. [35].

2) Signal Collection and Detection: The signal collection
and processing technique adopted by this work is based on
the process in [36] and illustrated in Figure 3. Generated
signals were collected with an adjustable 36 MHz RF filter
equipped Agilent E3238S-based RF Intercept and Collection
System (RFSICS). Post-collection, the band of frequencies
were down-converted via the implementation of a 70 MHz
Intermediate Frequency (IF), then digitized using a 12-bit
analog-to-digital converter (ADC) with a 95 mega-samples-
per-second operating frequency. Next, the signal is once again
converted to baseband. It is digitally filtered at a value of
9.28 MHz bandwidth, subsequently Nyquist sub-sampled, then
finally formatted into complex In-phase (I) and Quadrature (Q)
samples. Prior to RF-DNA fingerprint generation, the initial
device transmission point was determined using the Variance
Trajectory (VT) burst detection processes detailed in [37].

3) RF-DNA Fingerprint Generation: The RF-DNA finger-
prints used here are the same as those generated and used in
[25], which are extracted from the Discrete Gabor Transform

Signal Collection 
(RFSICS) 

Post-Collection Processing 
(MATLAB) 

Signal Noise 

Figure 3: Signal collection and post-collection processing [36].
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Figure 4: Gabor-based RF-DNA fingerprint generation pro-
cess showing NT×NF 2D patches taken from centered, nor-
malized, magnitude-squared coefficients (|Gmk|2)∈[0, 1] of a
WiMAX signal [36].

(DGT). The DGT is given by

Gηk =

MNΔ∑
m=1

s(m)W ∗(m− ηNΔ) exp
−j2πkm/KG , (1)

where s(m)=s(m + lMNΔ) is the periodic input signal,
W (m)=W (m + lMNΔ) is the periodic analysis window,
NΔ is the number of samples shifted, η=1, 2, . . . ,M for
M total shifts, and k=0, 1, . . . ,KG − 1 for KG≥NΔ and
mod(MNΔ,KG)=0 are satisfied. As in [25], the RF-DNA
fingerprints were generated from the normalized magnitude-
squared Gabor coefficients in which the DGT is oversampled
(i.e., KG≥NΔ). Figure 4 shows a representative normalized
Gabor magnitude-squared response. This two-dimensional
time-frequency (T-F) response was subdivided into NT×NF

patches, formed into NTF vectors, and features extracted. The
features used in forming the RF-DNA fingerprints are standard
deviation (σ), variance (σ2), skewness (γ), and kurtosis (κ).
The DGT was calculated using values of M=150, KG=150,
and NΔ=1; thus, the DGT was oversampled with a factor of
150. Prior to dimensional reduction, each RF-DNA fingerprint
is comprised of Nf=204 total features.

4) Dimensional Reduction: Dimensional reduction is used
to minimize the number of RF-DNA fingerprint features
in an effort to reduce computational complexity and data
storage space while maintaining transmitter discrimination
performance. The work in [25] used the feature relevance
vector (λ) to perform dimensional reduction. The relevance
vector is produced when training the Generalized Relevance
Learning Vector Quantization-Improved (GRLVQI) classifier.

For a given signal-to-noise ratio (SNR), the “best” relevance
vector (λB) is given as

λB(SNR) =
[
λ1, λ2, . . . , λNf

]
, (2)

where λj is the relevance value associated with the jth RF-
DNA fingerprint feature and λj>λk indicates that the jth

feature is more influential on the classification decision than
that of the kth feature. For a given SNR, the “best” relevance
vector corresponds to the GRLVQI classifier model that re-
sulted in the lowest error across all noise realization and cross-
validation folds. For the results in [25] and the dimensionally
reduced RF-DNA fingerprints used here, the “best” relevance
vectors from each SNR were averaged together and the result-
ing average relevance vector (λ̄B) used in selecting the most
(i.e., top 10%) relevant features.

5) Support Vector Machines: For non-separable data, Sup-
port Vector Machines (SVM) is defined as

min||β|| subject to

{
yi(x

T
i β + β0) ≥ 1− ξi∀i,

ξi ≥ 0,Σξi ≤ constant.
(3)

where β is the inverse of the half length of the margin,
yi∈[−1, 1], xT

i β + β0 is the definition of a hyper-plane, and
ξi are the slack variables to account for point on the wrong
side of the margin [38]. A quadratic programming solution,
through the use of Lagrange multipliers, is used to solve the
convex optimization problem in (3) and is rewritten as

min
β,β0

1

2
||β||2 + C

N∑
i=1

ξi, (4)

where,
ξi ≥ 0, (5)

yi(x
T
i β + β0) ≥ 1− ξi, ∀i, (6)

and C is the “cost” parameter used to tune the function, which
was set to 1 for all results presented in Section VI. The primal
Lagrange function is given as

LP =
1

2
||β||2 + C

N∑
i=1

ξi −
N∑
i=1

μiξi

− C
N∑
i=1

αi

[
yi(x

T
i β + β0)− (1− ξi)

]
,

(7)

and is minimized with respect to β, β0, and αi, which is a
scaling factor determined by the Lagrange multipliers. The
result of (7) is the dual form of the Lagrange function, which
is given by

LD =
N∑
i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj , (8)

and serves as the lower bound of (3). The dual form is
constrained by and satisfies the Karush-Kuhn-Tucker (KKT)
conditions. This form is maximized based upon 0≤αi≤C and

N∑
i=1

αiyi = 0.
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The characteristic solutions to the primal (7) and dual (8)
Lagrangian functions are achieved through the minimization
of β, β0, and αi and are given by

β̂ =

N∑
i=1

α̂iyixi, (9)

where observations of β̂ are the support vectors. Support
vectors at the edge of the margin have value ξ̂i=0 and
0≤α̂i≤C. The remaining support vectors have values of ξ̂i>0
and α̂i=C. Based upon these and the KKT conditions, β̂0 can
be calculated and the decision function expressed as

Ŝ(x) = sign
[
xTβ + β̂0

]
, (10)

where the sign[. . . ] notation indicates a binary decision func-
tion that determines the location of a point with respect to
the margin and assigns a −1 or 1 to that point. The SVM
classifier searches for a linear boundary in the feature space
of the given input. The process can be broadened in application
by mapping the points to a larger feature space using kernels.
The input features are represented as

h(xi) = {h1(xi), h2(xi), . . . , hM (xi)} , i = 1, . . . , N,

and due to non-separable data provides the nonlinear function

f̂(x) = h(x)Tβ + β0, (11)

where class assignment is performed by (10). The input h(x)
is transformed into a higher feature space using the general
kernel function given by

K(x, x′) = 〈h(x), h(x′)〉 , (12)

where K is the Radial Basis Function (RBF) kernel. The RBF
kernel is given by

K(x, x′) = exp
(−ψ||x− x′||2) , (13)

where ψ is a positive constant [38].

VI. EXPERIMENTATION AND EVALUATION

First we consider the trust mechanism, then ID verification.

A. Trust Mechanism
The trust mechanism includes four factors and covers the

current and past behavior for devices in a way that reduces the
potential for threats. Following is the approach to updating
the trust for each device in detail. The first function below
represents the devices’ participation and their current behav-
iors among other devices. F (Ct) is defined by the following
algorithm for each device:

a) Find the mean (μ) value for all the trust values and the
standard deviation (σ).

b) Using the empirical rule [39] to calculate the interval that
covers at a maximum 99.7% of the devices and builds the
categories; for instance: μ ± σ is approximately 68% of
the measurements, μ ± 2σ is approximately 95%, and
μ ± 3σ is approximately 99.7% of the measurements,
which will lead us to create five categories around the
mean to measure the current behavior among other peers.
Thus, the update to the current trust value is as follows:

• The “Average” category has impact factor of 0.05;
values within the interval [μ ± σ] are in the majority,
which represents 68% of the devices in the system.

• The “Above average” category has impact factor of
0.07; values are within the interval ((μ+ σ),(μ+2σ)].

• The “Best” category has impact factor equal to 0.09;
values are greater than (μ+ 2σ).

• The “Below average” category has impact factor of
0.03; values are within the interval [(μ−2σ), (μ−σ)].

• The “Worst” category has impact factor of 0.01; values
are less than (μ− 2σ).

c) Determine the device category based on the five cate-
gories above and calculate the corresponding equation of
that category with the device’s current trust value using
the following function:

F (Ct) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ct ≥ (μ+ 2σ) , Ct × 1.09

(μ+ σ) ≤ Ct < (μ+ 2σ) , Ct × 1.07

(μ− σ) < Ct < (μ+ σ) , Ct × 1.05

(μ− 2σ) < Ct ≤ (μ− σ) , Ct × 1.03

Ct ≤ (μ− 2σ) , Ct × 1.01

The second factor is based on the history of the device.
In our system, the messages are ranked from 1 to 10, which
reflects how critical the messages being shared by this specific
device during its lifetime are. So, the number of messages of
each rank are stored as a list for each device, which results in
calculating the number of points Mpoints as follows:

Mpoints(id) =

m∑
i=1

(Messagefreq(rank) × rank),

rank ∈ {1− 10}.
(14)

This value will be calculated and later will be compared to the
maximum value achieved among all devices using g(Mpoints):

g(Mpoints(id)) =
Mpoints(id)

Max(Mpoints)
. (15)

The third factor, which is the time it took the device to build
the messages, is evaluated using L(ltid), which is the ratio of
the time that a device spent to build its message history to the
amount of time on the system since the last update (uptime):

L(ltid) =
ltid

TotalT ime
. (16)

The fourth factor is 40% of the updated trust. It is computed
based on the following function, where B is the fraction of
bad messages, count is the number of times the device behaves
maliciously, and Reset is the flag value to reset the total trust
value to zero if count exceeds 3 or B is greater than 30%:

P (B) =

{
0.4× [1− (count×B)] , count ≤ 3, B ≤ 0.3

Reset = 1 , count > 3, B > 0.3

The final trust value will be the sum of all four factors
if the flag Reset is zero, where each is multiplied with its
corresponding weight; thus, the updated value for each device
in the system participating in that round will be calculated as

Trust(Reset) =

{
Reset = 0 , Tnew

Reset = 1 , Tnew = 0
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where Tnew is

Tnew = F (Ct)× θ +

g(Mpoints(id))× χ +

L(ltid)× φ +

P (B)× τ.

(17)

This final formula reflects the punishment and reward in
the new trust based on the current and the past behavior
of the device, considering the quality and the quantity of
messages during its lifetime, the fraction of bad messages,
and how many times the device repeated that behavior. The
trust value does not increase or decrease independently for
each device; rather, the formula rebuilds the new trust for
each device based on its behavior in comparison with other
devices’ behaviors (current and past). All devices start their
trust at 50%. Thus, each device’s trust in the next update
will be nearly the same if they were active to the same
degree and communicated honestly with the same number of
messages and no bad messages (see Figure 5). The weight
for participation and current behavior in comparison with one
another in the formula is the same for all given their common
initial trust. Differences arise from other factors such as the
active uptime for each, the number of generated messages, and
the fraction of bad messages produced by each. In Figure 5,
we assume that all devices are honest, where the fraction of
bad messages is zero. It can be seen that on the third update
the trust values for all three devices decreased, while device
B’s trust value decreased less than that of the others because
of B’s higher percentage of active uptime. This is because our
algorithm values total uptime of a given device when assigning
updated trust over time.

Figure 5: Devices Trust Updates

The system allows up to 30% of messages to be bad with
negligible increase or decrease of the total updated trust value.
However, this allowance has a short duration: this percentage
seeks to address possible temporary malfunctions rather than
malicious behavior. The device could have a percentage of
30% or less for three times the maximum, then the system
resets its trust value to zero as punishment. In addition, the
fraction of bad messages is multiplied by the number of times
the device repeats this behavior; thus, the trust value decreases
quickly. In Figure 6—which shows the updated trust curves
for one device with different percentages of bad messages—
one can see that it takes the system only three consecutive or
nonconsecutive updates to drop the trust value of an device by
a maximum a 30% of bad messages, while it takes one trust

update to drop its trust when the percentage of bad messages
is higher than 30%.

Figure 6: Percentage of bad messages allowed in the system

If a device starts with honest behavior to build up its trust
value and then it starts manipulating the system by sharing
bad messages, the trust mechanism resets its trust to zero after
three trust updates in the worst case, or after one trust update in
the best case; both reactions reduce the impact of the breakout
fraud threat (see Figure 7).

Figure 7: Malicious behavior to enable breakout fraud

B. SVM-based ID Verification Results

Similarly to the work in [26], [27], [40]–[43], transmitter
identity (ID) verification is leveraged here as a means of
authenticating a given IoT transmitter’s claimed digital ID
(e.g., MAC, IMSI) using the reference model generated from
the RF-DNA fingerprints of the actual, trusted transmitters. As
in [25], ID verification serves two purposes: (1) verification
of an authorized IoT transmitter’s ID for the purpose of
granting the user network access and (2) rejection of a rogue
IoT transmitter to deny the corresponding user access to the
network. There are four possible outcomes associated with IoT
transmitter ID verification:

1) True Verification: A trusted transmitter’s ID is correctly
deemed to be authentic and granted network access.

2) True Rejection: An impersonating transmitter is correctly
deemed to be a rogue and denied network access.

Table I: Verification Outcomes [25].

System Declaration

Actual ID Authentic Rogue

Authentic True Verification (TVR) False Reject (FRR)

Rogue False Verification (FVR) True Reject (TRR)
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Table II: SVM ID verification results for Nt=6 trusted and Nr=12 rogue transmitters at SNR=9 dB.

SVM Declaration SVM Declaration
Claimed Digital ID Actual ID Verified Rejected Claimed Digital ID Actual ID Verified Rejected

MS63A7
MS63A7 99% 1%

MS6373
MS6373 84% 16%

Rogue 0% 100% Rogue 2% 98%

MS63A9
MS63A9 91% 9%

MS6387
MS6387 93% 7%

Rogue 0% 100% Rogue 9% 91%

MS66E7
MS66E7 84% 16%

MSD905
MSD905 100% 0%

Rogue 8% 92% Rogue 88% 12%

Table III: SVM ID verification results for MSD905.

SVM Declaration
SNR (dB) Actual ID Verified Rejected

9
MSD905 100% 0%

Rogue 88% 12%

18
MSD905 100% 0%

Rogue 85% 15%

27
MSD905 100% 0%

Rogue 84% 16%

3) False Verification: An impersonating transmitter is in-
correctly deemed to be a trusted transmitter and granted
network access.

4) False Rejection: A trusted transmitter’s ID is incorrectly
deemed to be rogue and denied network access.

The last two outcomes constitute an error being made by the
ID verification algorithm, which in this work is the SVM. A
summary of these outcomes is presented in Table I. All SVM-
based ID verification results presented hereafter conform to
the presentation of the outcomes shown in Table I.

The ID verification results presented here are generated
using SVM reference models that are developed using Monte
Carlo simulation with Nz=10 independent and like-filtered
Additive White Gaussian Noise (AWGN) realizations, k=5-
fold cross-validation, and Nb=900 dimensionally reduced RF-
DNA fingerprints extracted from independent WiMAX near-
transient responses for each of the trusted transmitters as
described in Sect. V-C and [25]. A total of ND=18 WiMAX
transmitters are used in this study with digital IDs MS63A7,
MS63A9, MS66E7, MS6373, MS6387, MSD905, MS637D,
MS9993, MSDAB9, MSDAC9, MSDADB, MSC2FF, MS-
DAC5, MSDDC7, MSDF5B, MSDF7D, and MSDF65. As
in [25], Nt=6 transmitters are designated as the trusted
transmitters: MS63A7, MS63A9, MS66E7, MS6373, MS6387,
and MSD905. The remaining Nr=12 transmitters serve as
the rogues that present false digital credentials in an attempt
to gain unauthorized network access, thus representing 72
possible, unique, digital ID spoofing attacks. Different than the
approaches presented in [25]–[27], the SVM is trained using
the RF-DNA fingerprints for all trusted WiMAX transmitters,
where class one represents the transmitter whose digital ID
is to be verified and class two represents the remaining
trusted transmitters. In this approach, the remaining trusted
transmitters serve as a representative sample of the overall
population.

Table II presents the SVM-based ID verification results for
the Nt=6 trusted and Nr=12 rogue WiMAX transmitters at
SNR=9 dB. The rogue transmitter results are the average
ID verification performance across NB×Nz×Nr=12,000 in-
dependent, rogue transmissions. At SNR=9 dB, the ID of
every trusted transmitter is verified at a rate of 84% or higher.

Specifically, the identities of MS66E7 and MS6373 are verified
at rates of 84%, while all others have ID verification rates of
91% or better. Rogue transmitters are rejected at a rate of
91% or higher when spoofing the digital credentials of the
trusted transmitters, MS63A7, MS63A9, MS66E7, MS6373,
and MS6387. However, for the case of rogue transmitters
spoofing the digital ID of MSD905, the rejection rate is 12% at
SNR=9 dB. Thus, the rogue transmitters would be granted net-
work access at a false verification rate of 88%. For MSD905,
ID verification is also performed at SNR=[18,27] dB and
the results presented in Table III. These results show that
the ability to effectively reject rogue transmitters that spoof
the digital ID of MSD905 is independent of the SNR. This
independence indicates that the issue is either with the SVM
settings, the RF-DNA fingerprints of the trusted transmitters
not being sufficiently distinct to facilitate 90% or better rogue
transmitter rejection, or a combination thereof.

VII. HOW OUR APPROACH MITIGATES THE THREAT MODEL

Here are our impacts on the threats (see Section IV):
Counterfeiting/Impersonation: Strong identity achieved
through RF-DNA Fingerprinting helps prevent these threats.
Breakout Fraud: Adjusting trust dynamically means that trust
will decrease rapidly in the system if behavior degrades. This
effect indirectly accounts for device takeover, which could
produce such a change after a long period of compliance.
Bad Mouthing: The blockchain manages the trust values to
prohibit reporting of incorrect trust values. Verification is first
done by peers and the data is shared on the global blockchain
so that the device can change domains while maintaining its
trust from its previous domain.

VIII. CONCLUSION AND FUTURE WORK

With regard to our results for RF-DNA fingerprinting, the
selected SVM settings may be contributing to the poor rogue
rejection performance when the digital ID of MSD905 is
spoofed. Future work will investigate the impact of some of
the SVM settings. The cost parameter C was set to 1, but this
value may not be the best for rejection of rogue transmitters.
The results presented in Table II and Table III are based on
a binary decision. Thus, the decision is absolute and does not
consider how much a given RF-DNA fingerprint resembles the
assigned class, trusted versus rogue. One approach would be
to consider a measure of similarity such as probability to aid
in distinguishing rogue from trusted transmitters. Lastly, this
work used the dimensionally reduced RF-DNA fingerprint data
set from [25], which demonstrated improved rogue transmitter
rejection performance when the number of fingerprint features
was reduced from 204 to 20. For the case of the SVM classi-
fier, this reduction may be inhibiting its ability to distinguish
rogue from trusted transmitters.
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Our architecture reduces the potential for counterfeiting by
providing strong identity; it also reduces the possibility of bad-
mouthing and breakout fraud by providing trust that varies
over time as a function of quality/ quality of the data provided.
While we may choose to update specific parameters for the
trust algorithm in the future, this approach already produces
useful feedback as a function of entity behavior. Crucial to the
dissemination of trust is the highly available, high integrity of
the blockchain ledgers utilized. Our system successfully uses
a hardware-software codesign approach to delivering a secure
and trustworthy IoT infrastructure.
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