
SCRaaPS: X.509 Certificate
Revocation Using the Blockchain-based Scrybe Secure Provenance System

Sai Medury, Anthony Skjellum
SimCenter and

Dept. of Computer Science
and Engineering

University of Tennessee at Chattanooga
Chattanooga, TN 37403

Email: sai-medury@mocs.utc.edu,
tony-skjellum@utc.edu

Richard R. Brooks, Lu Yu
Electrical and Computer Engineering

Clemson University
Clemson, SC 29631

Email:{rrb,lyu}@g.clemson.edu

Abstract

X.509 certificates underpin the security of the Internet economy,
notably secure web servers, and they need to be revoked promptly
and reliably once they are compromised. The original revocation
method specified in the X.509 standard, to distribute certificate
revocation lists (CRLs), is both old and untrustworthy. CRLs are
susceptible to attacks such as Man-in-the-Middle and Denial of
Service. The newer Online Certificate Status Protocol (OCSP) and
OCSP-stapling approaches have well-known drawbacks as well.

The primary contribution of this paper is Secure Revocation as
a Peer Service (SCRaaPS). SCRaaPS is an alternative, reliable
way to support X.509 certificate revocation via the Scrybe secure
provenance system. The blockchain support of Scrybe enables the
creation of a durable, reliable revocation service that can with-
stand Denial-of-Service attacks and ensures non-repudiation of
certificates revoked. We provide cross-CA-revocation information
and address the additional problem of intermediate-certificate
revocation with the knock-on effects on certificates derived thereof.

A Cuckoo filter provides quick, communication-free testing by
servers and browsers against our current revocation list (with no
false negatives). A further contribution of this work is that the
revocation service can fit in as a drop-in replacement for OCSP-
stapling with superior performance and coverage both for servers
and browsers. Potential revocation indicated by our Cuckoo filter
is backed up by rigorous service query to eliminate false positives.
Cuckoo filter parameters are also stored in our blockchain to
provide open access to this algorithmic option for detection.

We describe the advantages of using a blockchain-based
system and, in particular, the approach to distributed ledger
technology and lightweight mining enabled by Scrybe, which
was designed with secure provenance in mind.

1 Introduction

X.509 certificates need to be revoked rapidly and reliably once
compromised. The method specified in the standard, to distribute
certificate revocation lists (CRLs), is old and untrustworthy.
CRLs are susceptible to attacks such as Man-in-the-Middle
and Denial of Service. Newer formulations—OCSP and
OCSP-stapling—have well-known drawbacks too.

We describe SCRaaPS, Secure Certificate Revocation as a Peer
Service, a reliable way to support X.509 certificate revocation
using the Scrybe secure provenance system [7, 26]. The
blockchain support of Scrybe enables the creation of a durable,
reliable revocation service that can withstand Denial-of-Service
attacks while ensuring non-repudiation.

The X.509v3 standard [11] provides specifications to
implement the Public Key Infrastructure (PKI) system in which
each entity has a public key, a private key, and a certificate
that is typically assigned by a Certificate Authority (CA). Each
certificate holds a validity period along with other important
related information, and the CA may revoke a certificate before
it expires for reasons that include change of name, change of
association between subject and CA (e.g., an employee terminates
employment with an organization), and compromise or suspected
compromise of the corresponding private key [11].

The standard defines one method of certificate revocation in
which the CA periodically issues a CRL [11]. The CRL is a data
structure signed by the CA that is made freely available in a public
repository and contains a time-stamped list of serial numbers of all
revoked certificates [11]. The process of certificate validation in-
volves checking for the certificate’s serial number in the “suitably
recent” CRL [11]. A major advantage of this method was that the
means to issue CRLs is the same as that of issuing certificates—
namely, via untrusted servers and untrusted communication [11].

If a browser does not already have a fresh copy of the CRL,
then it has to fetch it during the initial connection, which can
be tedious. The problem of scalability arises when the CRL

1



becomes large; for instance, close to 50,000 certificates were
revoked after the HeartBleed bug. The browsers had to download
large CRLs, which slowed down most website connections [19].
The periodic nature of updating the CRLs opens a window of
opportunity for attackers to work with revoked certificates until
the next updated CRL becomes available, which can be an hour,
a day, a week, or even a month in some cases. Additionally, there
may be instances when a CRL server is unable to handle requests
from clients, in which case most browsers render it as a “soft
fail” [6] and accept the certificate.

SSL is susceptible to Man-in-the-Middle attack, in which an
attacker can insert a CA certificate into the client’s root store so
that the client may communicate with the attacker’s website in a
way that seems perfectly secure and legitimate. Furthermore, the
“CRL Distribution point” field in the certificate is an optional field
and is considered non-critical [11]. Additionally, an attacker using
a revoked certificate with no CRL distribution point mentioned
will most certainly have an advantage of not being discovered.

The remainder of this paper is organized as follows. In
Section 2, we describe existing approaches to revocations, as well
as limitations of these systems, including attacks on revocation.
Section 3 defines the concept of secure provenance and relates
its properties to the revocation problem. Section 4 explains the
secure provenance system, Scrybe, based on distributed ledger
(blockchain) technology. Section 5 describes our approach
to utilizing Scrybe as a new means for certificate revocation
(SCRaaPS). Next, we provide an analysis of why our approach to
certificate revocation is superior to existing methods in Section 5.
Finally, in Section 6, we offer conclusions and mention future
work including our follow-on goal to move from the prototype
stage to a sustainable realization of Secure Certificate Revocation
as a Peer Service (SCRaaPS) that could be used in production
and at scale by a variety of browsers.

2 Current Revocation Methodologies

The Online Certificate Status Protocol (OCSP) was proposed to
replace CRL revocation [23]. OCSP enables a client to verify the
status of a certificate dynamically during the stage of connection
establishment and specifies a client-server architecture in which a
client can request the revocation status of a certificate. An OCSP
responder will respond with a status of good, revoked, or unknown
[23]. The response was intended to be both quick and lightweight
and to solve the scalability issue with large CRLs that needed to
be downloaded and parsed. The window of vulnerability vanishes
since the request/response is dynamic and the client always re-
ceives a response from the most updated knowledge of an OCSP
responder [23]. The protocol also mentions certain standards for
the encryption algorithm to be used in the request, and the respon-
der can reject any request using a weak encryption algorithm [23].

While OCSP solved many problems inherent in CRLs, imple-
mentation was not quite up to the mark. As a single point of failure,
OCSP responders incurred too many requests and became the
bottleneck. They were notorious for being slow to respond [1] and,
in addition, were deemed not to have good up-time [1]. Another
case of poor implementation arose when a client would attempt to

log in on a captive portal while waiting for an OCSP response that
could be blocked by the captive portal [1] that would perhaps allow
a response only after a user logged in. Web browsers like Chrome
and Firefox devised a workaround to enhance user experience
by implementing OCSP with a “soft-fail” approach [6] (i.e., if a
certificate is within its validity time and an OCSP responder takes
too long to respond, then the certificate is accepted to be valid) [1].

Recognizing all these flaws, the IETF proposed a new
technique, commonly referred to as OCSP-Stapling, in which the
client can request the revocation status of a certificate as part of
the TLS handshake [12]. A website that enables this feature must
periodically request its Certificate Authority (CA) for updated
revocation status [12] and must also send the most updated
information as part of the TLS handshake response. This method
saves the client the burden of having to make a third-party request
for revocation status, therefore resolving the problem of slowing
website communication while safeguarding the client from
attacks like Denial of Service. This technique would have worked
well if the protocol enforced the server to always send an OCSP
response, which it did not do [15]. Even though a client sends
an extension “status request” as part of TLS handshake
(which mentions that the server must include an OCSP response
in the handshake), the server may choose not to [15] append an
OCSP response and the client will have to accept the certificate as
valid. Alternatively, the browser client may choose to request the
OCSP responder by itself, but this option would not be without
all the inherent vulnerabilities of OCSP. This gap was perhaps not
filled because not all CAs were equipped at that time with OCSP
response capability; there would be a lot of connection failures if
the clients were enforced to fail from connection establishment to
a CA that has not yet implemented OCSP response methodology.
Later, a modification to the TLS standard was proposed in which
a client is forced to fail from establishing a connection to a server
that does not respond with an OCSP response [15]; by then most
CAs had evidently implemented the capability.

In a subsequent addition to the protocol, an extension
“status request v2” was introduced to carry out
OCSP status checking for all the intermediate certificates
present in the certificate chain [22]. A client mentioning the
“status request v2” extension must also mention a list
data structure containing the list of certificates for which revoca-
tion status is requested. The server may respond by “stapling” the
list of revocation status for all the certificates. This development
was substantial in improving certificate revocation since the
revocation checking of intermediate certificates was crucial and
client browsers had to rely on CRLs or other methods to achieve
it. Client browsers could mention trusted OCSP responders [22]
and would accept an OCSP response coming from one of those
responders, but they would also accept an OCSP response from
an authorized OCSP responder [22]. (An authorized responder
is one that has been delegated by a CA that issued the certificate
for the website and signed the delegation using the same private
key [15] that the CA used to issue the certificate.)

Presently, browsers implement various revocation method-
ologies. Mozilla Firefox moved away from CRL revocation
in 2010 [10] and enforced OCSP response with CRL as a



fallback. In 2013, the company announced its own methodology
called “OneCRL” [14] in which a centralized revocation list
containing the revocation status of all the intermediary certificates
was maintained and pushed to clients periodically. Later, it
also enabled OCSP stapling and currently enforces OCSP
must-staple methodology. In 2012, Google Chrome announced
that it would stop conducting any standard form of revocation
checking like CRL or OCSP [17]. Instead, Google designed
its own methodology called CRLSets. The company maintains
a comprehensive internal list of crawled CRLs [8], which are
mostly obtained from CAs. From this internal list, only those
with no reason code or the specific reason codes (Unspecified,
KeyCompromise, CACompromise, or AACompromise) [8]
are published to clients. CRLs are published periodically every
few hours. The implementation ensures that most or all of the
intermediate certificates are part of the published CRL [8].

3 Secure Provenance

Here we define secure provenance and indicate how its
properties can address the revocation problem.

Data provenance is metadata that can be used to track changes
in data [24] over time and to ensure integrity. Secure provenance is
achieved in a system where the integrity of provenance data can be
maintained and ensured, and the metadata is always available for
querying. The metadata collected in secure provenance must al-
ways follow the chronological order in which events occurred and
must be immutable [3]; that is, once logged, the information must
remain read-only and should not be susceptible to falsification.
The system enforces accountability and non-repudiation where an
entity cannot claim that it was not responsible for a change that
occurred and is logged in the system [4]. Further, in case an error
occurs, changes can be traced back chronologically to identify
when and what triggered the change responsible for the error [4].

Having secure provenance data for revoked certificates will
help ensure the integrity and availability of revocation. There
is no confidentiality goal for such data. Secure provenance data
will incorporate the revocation status of all the intermediate
certificates including when, by whom, and why a given certificate
was revoked (some can be revoked implicitly by virtue of an
antecedent’s revocation). Additionally, chronologically ordered
data can be implemented with data structures that provide insight
into the hierarchy of the certificate chain, thereby offering
convenient revocation of all the certificates that an intermediate
certificate provider may have issued.

4 Overview of the Scrybe System

We explain how we verify that Scrybe supports non-repudiation
and is also robust against distributed denial of service (DDoS)
attacks; in particular, we explain how the Lightweight Mining
(LWM) algorithm, a unique feature of Scrybe, proves resilient
to such attacks.

4.1 Overview

As illustrated in Figure 1, there are two main components of
the Scrybe blockchain: blocks and transactions. A blockchain
is simply a sequence of linked blocks, where the current block
contains the hash of the previous block.

4.1.1 Blocks

As previously mentioned, each block contains the hash of the
previous block, which makes the blockchain immutable. Blocks
are added to the blockchain by miners, entities responsible
for maintaining the integrity of the blockchain. Scrybe only
allows authorized entities to mine blocks through the secure
LWM algorithm (comprising the Scrybe consortium) Miners are
responsible for aggregating a list of transactions and calculating
the Merkle root. The Merkle root allows other miners to quickly
verify that every transaction is actually included in the block.
When a miner is selected to add a block to the blockchain, the
block is broadcast to all the other miners, and the data are verified
(previous hash, Merkle root, and the miner’s signature). At
this stage, other miners will be able to detect if a transaction is
omitted from the block, if an unauthorized miner broadcasts a
block, and if the miner’s signature is invalid.

4.1.2 Transactions

Transactions are the backbone of provenance. Conceptually,
transaction input is categorized as input fields and output fields.
A transaction in Scrybe takes input fields, output fields, and
submitter’s details including the name, public key, and signature
as input. The miner adds the timestamp as part of the transaction.
Transactions can also be genesis events, which register the acqui-
sition of new data. The persistent URLs (PURLs) that point to the
data, along with the SHA-3 hash of the data, ensure its validity.
Note that all transactions have output fields; genesis events only
have an output with no input, but normal transactions have both.

By only storing the SHA-3 hash of the transaction instead
of the original transaction, we can drastically reduce the size
of the blockchain; consequently, there will consequently be no
penalty for an extensive number of inputs and outputs in any
given transaction. The original transaction will be stored on a
transaction server, which will be locally maintained, along with
the data server and the metadata server.

Note that for the SCRaaPS application, we have changed
the transaction format and scheme compared to the nominal
Scrybe format. We store certificate information directly on the
blockchain, which we choose to do because there is no need for
a separate data or metadata server in this use case referred to by
PURLs. Our Entries contain sufficient information to describe
certificate revocation without reference either to an external
data or metadata server. This simplification is essential because
SCRaaPS is working to eliminate DoS/DDoS against revocation
information. Furthermore, we store Cuckoo filter coefficients
periodically on the blockchain (handled by a single trusted agent



Figure 1: Scrybe Architecture showing a CA sending a revocation entry to the Scrybe consortium, miner selection, and the blockchain
on mining servers .

in the first implementation, and to be handled by a distributed
app on the blockchain itself in the future).

4.1.3 Lightweight Mining

Scrybe introduces a novel way to mine new blocks in the
blockchain, which is not a difficult proof-of-work required in
cryptocurrency applications. The lightweight mining algorithm
(LWM) introduced in Scrybe is presented in the following frame.

Lightweight Mining Algorithm (LWM)
Input: The number of miners N .
Algorithm: For each miner mi, 0≤i<N ,

• Step 1: mi generates a random number ri;
• Step 2: mi broadcasts the SHA-3 hash of ri, denoted by
H(ri);

• Step 3: Once mi has collected all N hashes
{H(r0),H(r1),···,H(rN−1)}, mi broadcasts ri.

• Step 4: Once mi has collected all N random numbers
{r0,r1,···,rN−1}, mi calculates l=

∑
jrj modN .

• Step 5: ml is the selected miner to create the next
block from the collected transactions. (Without loss of
generality, we map mi= i,0≤ i<N as a simple rank
ordering for the registered miners.)

The Genesis block contains the information related to initial
miners, and the number of miners is fixed before the beginning
of every round of miner selection. Each round has a fixed
timeout for synchronization. If a miner fails to send the hash
within this timeout, then that miner’s hash and random number

are considered to be NULL for that particular round. Optimal
timeout depends on the number of active participants and the
desired number of transactions per round.

Considering that the network is a permissioned network, new
miners wishing to join are not accepted until after the end of
current round. The purpose of LWM is to provide randomization
in miner selection. In a Denial of Service (DoS) attack against
Scrybe, we assume a malicious miner targets a particular user
by excluding the victim’s transactions from the block he or she
creates. The randomization offered by LWM, coupled with
the fact that each miner maintains a local pool of transactions,
guarantees the victim’s transactions will always be integrated
sooner or later, as long as there is at least one honest miner.

The core idea of LWM is “sharing-hash-first.” If every miner
sends out the random number without sharing the hashes first,
a miner can hold his or her own number until he or she has
received everyone else’s random number. This caveat allows
a malicious miner to manipulate miner selection by choosing
a number that produces a ml in favor of a particular miner or
deliberately excludes a particular miner. Scrybe takes a naive
approach for random number generation in a peer-to-peer service.
Each node generates a random number independently before
sharing the hash of that random number. This method has been
proven to be robust [2]; as long as one node is generating a
random number, the

∑
jrj mod N remains random.

“Sharing-hash-first” ensures that every miner has to share
his or her own number (in the form of the hash) with others
before they see others’ choices. Since hash values are considered
impossible to invert in practice, a miner cannot change the
random number after the fact. Further, the hash is signed with
the sender’s digital signature, which disallows a miner from



Figure 2: Revocation using Scrybe distributed CRL ledger

equivocating. Each miner may broadcast any number they wish,
and it is in the interest of each sender to broadcast a random
number to avoid predictability and a pattern that can be exploited
to reduce the chances of the sender being selected.
Thus, LWM can tolerate up to N − 1 malicious miners who
collude. As long as there is one miner generating a random
number, the modulo operation is randomized.

The LWM consensus is one-CPU-one-vote majority, same
as PoW [20], but there is no need for the concept of longest chain.
In the case of a miner trying to broadcast a block containing a
previous hash entry that is not the same as that of the latest block,
that block will not be added to the blockchain. Furthermore, there
is no chance for a fork in the blockchain for Scrybe since only
one miner is chosen in each round to propose the next block.

4.1.4 Servers

Locally maintained transaction servers will hold the transactions
comprising the ledger. An additional metadata server can be
maintained along with the transaction server wherever it makes
sense. The integrity of the database can be verified by generating
transaction lists for each block and ensuring that these transactions
and corresponding hashes accurately display the state of the
database. If there is any discrepancy, the database server is
deemed disreputable. The integrity of the data and metadata can
be verified by comparing the SHA-3 hash of the data to the SHA-
3 hash stored in the transaction: if these hashes differ, the relevant
server is considered disreputable. The method for storing data on
these servers is configurable and left to the end-user’s discretion.

The Certificate Authorities can maintain an optimal minimum
number of transaction servers, processing OCSP-staple requests
from the web servers that have certificates assigned by that CA.
A quorom of all Certificate Authorities can be established with a
common blokchain containing the list of all revoked certificates.

5 Secure Provenance Approach to Revocation

This section explains how secure provenance can address the
CRL problem, first in general and then specifically with our
Scrybe-based system using non-cryptocurrency digital ledger
technology.

Scrybe can be configured to provide secure provenance as a
service for the revocation lists and can be used to replace OCSP
responders in the OCSP Must-staple protocol. Certificate author-
ities can broadcast the serial number of a certificate to be revoked
along with the entity’s public key and the CA’s public key. This
transaction would be validated and added to the blockchain. Web
servers may periodically request the OCSP response for its certifi-
cate and its certificate chain using the “status request v2,”
and SCRaaPS can respond with the revocation status for all these
certificates. The servers can staple this revocation status during
connection establishment using the TLS handshake. Furthermore,
Scrybe can act as a public bank of revocation statuses for any client
that may wish to check revocation for any number of certificates.

The distributed nature of the Scrybe blockchain safeguards re-
vocation data from Denial-of-Service attacks. Assuming that each
web server has a list of an optimal minimum number of SCRaaPS
servers’ IP addresses, if one Scrybe server does not respond within
a reasonable timeout, then the next Scrybe server in the list may
be contacted for revocation status. An attacker should never be
able to take down all the servers once there are a sufficient number,
and there is no way to know for sure which server will respond
to a given client’s request. In OCSP revocation, the client request
would enumerate a list of OCSP responders [23] that the client
trusts, and an attacker may choose to launch a Denial of Service
attack on these responders. Such a scenario does not arise with
SCRaaPS, provided many Scrybe miners form the consortium
that implements the blockchain in a production deployment.

The LWM algorithm enables building the blockchain quickly:
all the mining servers will have the most updated blockchain
within a reasonable delay. With Scrybe, the latency in updating the
CRL is low, and the window of opportunity for an attacker to make
use of a revoked certificate consequently reduces substantially.

To disseminate revocation information in a more scalable
and low-latency manner, a set membership data structure can
be utilized for quick lookup.

A Bloom Filter is an m-bits-long binary data structure
indicating whether an element ai is a part of a list [25]
A={a1,a2,...an}. An element is fed into k hash functions to
determine which bits to set in the Bloom Filter data structure.
False negatives are impossible, but false positives may occur. The
probability of a false positive [25] is as follows:

(1−ekn/m)k (1)
A cuckoo filter, like Bloom Filter, is a probabilistic data struc-

ture that can be used to look up set membership [9]. The cuckoo
filter supports removing members and a bounded false positive
rate for practical applications while maintaining similar space
complexity as Bloom Filter [13]. It is a compact variant of cuckoo
hash table [21] that stores fingerprints of member elements. With
dynamic relocation of elements and delete capability [13], cuckoo
filter is the perfect probabilistic data structure for SCRaaPS. Opti-
mal parameters must be evaluated for negligible false positive rate.

Utilizing a set membership data structure for querying
revocation status can significantly reduce the time taken to
retrieve the response. The coefficients can be stored on the
blockchain and updated periodically and can be cached by
clients (web servers and web browsers). The test indicates with



Figure 3: Multiple CAs adding revocation to Scrybe. The revocation service is not just CA-centric. Multiple CAs have equal opportunity
to contribute revocation information to our open revocation service. Because of the blockchain, integrity and availability of revocation
data, once recorded, is assured.

certainty if a certificate is not part of the revocation list but may
have a false positive (key properties of Cuckoo filters). The
data structure bits may be downloaded on the client browser,
further speeding up the process. Also, in case a certificate returns
positive, the browser may fetch the updated response from the
cuckoo filter on Scrybe to eliminate a false-positive outcome.

Web browsers will be able to utilize the same process to check
the revocation for intermediate certificates instead of their self-
created database of intermediate certificates. For example, Mozilla
can utilize the SCRaaPS service provided by Scrybe instead of
CCADB (a repository of information about intermediate CAs and
root certificates [18]) for Firefox, and Google could use SCRaaPS
instead of CRLSet for Chrome. Instead of competing to provide
revocation, Mozilla and Firefox could contribute and support
to a common service with better overall revocation coverage.

Our plan is to update the cuckoo filter coefficients on an
event-driven basis after every ten certificates are revoked.
Typically [16], there are 200-300 certificates revoked per day.
More frequent updates could also be possible. But, we consider
that in addition to using the Cuckoo filter, an extremely high
security client could download all blocks that have come after
the most recent filter data block and allow a linear search of up
to nine more recent revocations (in some cases, we may have
more than one entry per block, but that doesn’t detract from this
concept). Those blocks can be discarded each time a new set
of Cuckoo filter coefficients is updated.

In addition to creating and validating blocks, each SCRaaPs
server will be responsible for the creation of this Cuckoo filter.
Organizations may choose to add edge servers as pruned nodes
(a node that does not participate in mining) to store the most

updated part of the blockchain [5], and these servers may be
queried for quick revocation response.

In an ideal scenario in which SCRaaPS is implemented and
utilized by CAs across the world, there would be a uniform
distributed ledger containing revoked certificates from all CAs
and a single, robust distributed service that all browsers/web
servers can rely upon for revocation status.

6 Conclusion and Future Work

We introduced SCRaaPS, Secure Certificate Revocation as
a Peer Service, as an alternative, reliable method and system
to support X.509 certificate revocation, accomplished using the
Scrybe secure provenance system. Scrybe is based on distributed
ledger technology (a blockchain with lightweight mining). X.509
certificates need to be revoked promptly and reliably once they
are compromised. The method specified in the X.509 standard
to distribute CRLs is old and untrustworthy. CRLs are susceptible
to attacks such as Man-in-the-Middle and Denial of Service. The
newer OCSP and OCSP-stapling approaches have drawbacks
as well. Such issues were described above.

Scrybe’s blockchain support enables a durable, reliable
revocation service that can withstand Denial-of-Service attacks
and ensure non-repudiation. Our architecture provides cross-CA-
revocation information. We address the problem of intermediate-
certificate revocation. We described the advantages of using a
blockchain-based system, and in particular, Scrybe’s advantages.

Future work includes defining a deployment strategy of a
production-grade, self-sustaining implementation of SCRaaPS
that scales out to enable practical utilization Internet-wide,



plug-ins for popular web browsers to enable wide utilization, and
possible secondary connection of the Scrybe distributed ledger
technology to Ethereum. Ethereum could be harnessed to provide
a payment or crypto token via smart contracts associated with
revocation activities in order to create a self-sustaining public
service and dissuade nuisance accesses of the system. A study of
the economics of the revocation system will be relevant to ensure
practicality of the system and understand required incentives
for all the actors to participate positively. Potential benefits and
drawbacks of making SCRaaPS a permissioned service should
also be studied (aka SCRaaPS2). The potential requirement to
standardize the service, vs. providing a de facto service, should
also be considered in future work.

It would also be feasible for SCRaaPS to enable an entity to
revoke its own certificate by broadcasting a transaction using
its private key for that certificate. This possibility could further
reduce the delay in revocation by removing the extra step of
notifying the CA. The concept “Right to Revoke” may be refined
to avoid unnecessary or accidental revocation. Similarity to the
goals of Certcoin would be studied in this regard.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under Grant Nos. 1547164, 1547245, and
1821926. Any opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

[1] M. Almeshekah. Proposal for better revocation model of ssl
certificates. https://wiki.mozilla.org/images/
e/e3/SSLcertRevocation.pdf, 2013. [Online,
Accessed:2/21/2018].

[2] B. Awerbuch and C. Scheideler. Robust random number generation
for peer-to-peer systems. Theor. Comput. Sci., 410:453–466, 2006.

[3] M. Benchoufi, R. Porcher, and P. Ravaud. Blockchain protocols
in clinical trials: Transparency and traceability of consent.
F1000Research, 6, 2017.

[4] M. Benchoufi, R. Porcher, and P. Ravaud. Traceability of consent
[version 3; referees: 1 approved, 2]. 2017.

[5] Bitcoin.org. Bitcoin core version 0.11.0 release notes. https:
//github.com/bitcoin/bitcoin/blob/v0.11.0/
doc/release-notes.md#block-file-pruning,
2015. [Online, Accessed:3/4/2018].

[6] H. Bock. The problem with ocsp stapling and must
staple and why certificate revocation is still broken.
https://blog.hboeck.de/archives/886-The-Problem-with-OCSP-
Stapling-and-Must-Staple-and-why-Certificate-Revocation-is-
still-broken.html, 2017. [Online, Accessed:2/14/2018].

[7] R. Brooks and A. Skjellum. Using the blockchain to secure
provenance meta-data (a CCoE webinar presentation), June 2017.
Technical presentation. NCCoE seminar.

[8] Chromium.org. Crlsets. https://dev.chromium.
org/Home/chromium-security/crlsets. [Online,
Accessed:2/26/2018].

[9] A. Chumbley and C. Williams. Cuckoo filter. https:
//brilliant.org/wiki/cuckoo-filter/. [Online,
Accessed:8/15/2018].

[10] M. F. community. Ca:improving revocation. https:
//wiki.mozilla.org/CA:ImprovingRevocation.
[Online, Accessed:2/15/2018].

[11] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile. RFC 5280, RFC Editor, May
2008. http://www.rfc-editor.org/rfc/rfc5280.txt.

[12] D. Eastlake. Transport layer security (tls) extensions: Ex-
tension definitions. RFC 6066, RFC Editor, January 2011.
http://www.rfc-editor.org/rfc/rfc6066.txt.

[13] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proceedings of the
10th ACM International on Conference on emerging Networking
Experiments and Technologies, pages 75–88. ACM, 2014.

[14] M. Goodwin. Revoking intermediate certificates: In-
troducing onecrl. https://blog.mozilla.org/
security/2015/03/03/revoking-intermediate-
certificates-introducing-onecrl/, 2015. [Online,
Accessed:1/29/2018].

[15] P. Hallam-Baker. X.509v3 transport layer security (tls) feature
extension. RFC 7633, RFC Editor, October 2015.

[16] ics.sans.edu. Certificates revoked per day. https://isc.
sans.edu/crls.html. [Online, Accessed:3/12/2018].

[17] ImperialViolet. Revocation checking and chrome’s crl.
https://www.imperialviolet.org/2012/02/05/
crlsets.html. [Online, Accessed:2/4/2018].

[18] Mozilla.org. Common ca database. [Online, Accessed:3/6/2018].
[19] P. Mutton. Heartbleed: Revoke! The time is nigh!

”https://news.netcraft.com/archives/2014/
04/15/revoke-the-time-is-nigh.html”. [Online,
Accessed:3/9/2018].

[20] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[21] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,

51(2):122–144, 2004.
[22] Y. Pettersen. The transport layer security (tls) multiple certificate

status request extension. RFC 6961, RFC Editor, June 2013.
http://www.rfc-editor.org/rfc/rfc6961.txt.

[23] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. X.509 internet public key infrastructure online certificate
status protocol - ocsp. RFC 6960, RFC Editor, June 2013. ”http:
//www.rfc-editor.org/rfc/rfc6960.txt”.

[24] Technopedia. Data lineage. https://www.techopedia.
com/definition/28040/data-lineage. [Online,
Accessed:2/27/2018].

[25] Wikipedia.org. Bloom filter. https://en.wikipedia.
org/wiki/Bloom_filter. [Online, Accessed:3/8/2018].

[26] C. Worley, L. Yu, R. R. Brooks, J. Oakley, O. Hambolu, A. Skjel-
lum, A. Altarawneh, J. S. Obeid, L. Lenert, K. Wang, and
U. Mukhopadhyay. Scrybe: A 2nd-generation Blockchain technol-
ogy with Lightweight Mining for secure provenance and related ap-
plications. 2018. under review for IEEE Blockchain 2018, Halifax.

https://wiki.mozilla.org/images/e/e3/SSLcertRevocation.pdf
https://wiki.mozilla.org/images/e/e3/SSLcertRevocation.pdf
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning
https://dev.chromium.org/Home/chromium-security/crlsets
https://dev.chromium.org/Home/chromium-security/crlsets
https://brilliant.org/wiki/cuckoo-filter/
https://brilliant.org/wiki/cuckoo-filter/
https://wiki.mozilla.org/CA:ImprovingRevocation
https://wiki.mozilla.org/CA:ImprovingRevocation
http://www.rfc-editor.org/rfc/rfc6066.txt
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://isc.sans.edu/crls.html
https://isc.sans.edu/crls.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://news.netcraft.com/archives/2014/04/15/revoke-the-time-is-nigh.html
https://news.netcraft.com/archives/2014/04/15/revoke-the-time-is-nigh.html
http://www.rfc-editor.org/rfc/rfc6961.txt
http://www.rfc-editor.org/rfc/rfc6960.txt
http://www.rfc-editor.org/rfc/rfc6960.txt
https://www.techopedia.com/definition/28040/data-lineage
https://www.techopedia.com/definition/28040/data-lineage
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter

	Introduction
	Current Revocation Methodologies
	Secure Provenance
	Overview of the Scrybe System
	Overview
	Blocks
	Transactions
	Lightweight Mining
	Servers


	Secure Provenance Approach to Revocation
	Conclusion and Future Work

