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Highlights
e Predator-prey oscillating populations with weak dispersal exhibit intermittent synchrony
e Temporal patterns of this synchrony depend on the properties of predator-prey interactions
in individual patches and may be independent of synchrony strength
e The study identifies the properties of the predator-prey oscillators responsible for dynamics

with numerous short desynchronizations vs. few long desynchronizations



Abstract

The mechanisms and properties of synchronization of oscillating ecological populations attract
attention because it is a fairly common phenomenon and because spatial synchrony may elevate a
risk of extinction and may lead to other environmental impacts. Conditions for stable
synchronization in a system of linearly coupled predator-prey oscillators have been considered in
the past. However, the spatial dispersion coupling may be relatively weak and may not necessarily
lead to a stable, complete synchrony. If the coupling between oscillators is too weak to induce a
stable synchrony, oscillators may be engaged into intermittent synchrony, when episodes of
synchronized dynamics are interspersed with the episodes of desynchronized dynamics. In the
present study we consider the temporal patterning of this kind of intermittent synchronized
dynamics in a system of two dispersal-coupled Rosenzweig-MacArthur predator-prey oscillators.
We consider the properties of the distributions of durations of desynchronized intervals and their
dependence on the model parameters. We show that the temporal patterning of synchronous
dynamics (an ecological network phenomenon) may depend on the properties of individual
predator-prey patch (individual oscillator) and may vary independently of the strength of dispersal.
We also show that if the dynamics of predator is slow relative to the dynamics of the prey (a
situation that may promote brief but large outbreaks), dispersal-coupled predator-prey oscillating
populations exhibit numerous short desynchronizations (as opposed to few long

desynchronizations) and may require weaker dispersal in order to reach strong synchrony.



1. INTRODUCTION

Synchronization of dynamics of spatially separated populations appears to be a very general
phenomenon (see, e.g., (Liebhold et al., 2004) for a review). The mechanisms and properties of
synchronized population dynamics attract attention not only because it is a fairly common
phenomenon, but also because spatial synchrony may elevate a risk of extinction (Heino et al.,
1997; Earn et al., 2000; Johst and Drechsler, 2003) and may lead to other environmental impacts

(e.g., a severe impact of pest outbreaks (Liebhold et al., 2012; Petrovskii et al., 2014)).

One of the major mechanisms of the spatial synchrony is a dispersal between populations
(reviewed in Liebhold et al., 2004). Spatial synchrony due to dispersal is prominent in the
population with substantial cyclic fluctuations of populations (due to nonlinearity of interactions
between species; Vasseur and Fox, 2009). Thus, the dispersal-induced spatial synchrony was
considered in mathematical modelling as coupled oscillators. In particular, Goldwyn and Hastings
(2008, 2009) provided detailed mathematical analysis of how dispersal can induce synchronization
of predator-prey communities, including the consideration of the impact of spatial inhomogeneity.
These findings fit very well with the general mathematical view of synchronization of oscillators
(e.g., Pikovsky et al., 2001). Indeed, the coupling between predator-prey oscillators due to animal
migration would correspond to a linear dissipative coupling, very-well known to have

synchronizing effect.

These and many other studies of the synchrony in mathematical models are primarily focused on

the stable synchronized state and its associated properties. Generally speaking, stable synchrony



requires relatively large coupling between the oscillators. Yet, the dispersal between populations
appears to be relatively weak (Kot et al., 1996). Thus, the dispersal may not necessarily lead to a
stable synchrony. If the coupling between oscillators is too weak to induce a stable synchrony,
oscillators may be engaged into intermittent synchrony, when episodes of synchronized dynamics
are interspersed with the episodes of nonsynchronized dynamics (see, e.g., Pikovsky et al., 2001,

for a description of transitions to synchronization scenarios).

This leads to the question of what kind of dynamics the weak dispersal can induce in the predator-
prey systems. The same moderate level of synchrony may be achieved with two markedly different
types of dynamics: many short desynchronized episodes or few long desynchronized episodes (as
well as a spectrum of possibilities in between these two extremes). Thus, the objective of this study
is to investigate the temporal patterning of the intermittent synchrony in the predator-prey

oscillators coupled via weak dispersal.

Similar kind of questions have been studied in other types of biological oscillators (e.g., Park and
Rubchinsky, 2012; Ahn and Rubchinsky, 2013, 2017; Ahn et al., 2014a,b). We take the model
analysis and data analysis techniques used in those studies and apply them to the dispersal-coupled
predator-prey oscillators to investigate how the properties of predator-prey interactions affect the

temporal patterning of intermittent synchronization in this ecological system.



2. METHODS

2.1. Model

To consider interactions between two spatially distinct oscillating predator-prey systems we use
the Rosenzweig-MacArthur model in two patches with linear difference coupling. We follow the
modelling framework of Goldwyn and Hastings (2008, 2009) as these studies provide a
mathematically detailed analysis of how the dispersal in heterogeneous predator-prey systems can
affect synchronous dynamics (however, unlike those studies we are considering the weak coupling,
resulting in partially synchronized dynamics). This model is relatively simple for mathematical
and computational analysis, yet it captures complex synchronization phenomena. We will briefly

describe the model here.

The populations for prey and predators are described by the variables V; and P; where i € {1,2} is

the patch. The dynamics of V; and P; is given by:
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The growth of the prey in the absence of predation follows the logistic growth with the intrinsic
rate 7; and the carrying capacity K;. Predation has a Holling Type II functional response with

predation rate a; and half saturation coefficient b;. The loss of prey due to predation is also



proportional to c; (c; > 1), the ratio of the loss of prey to the gain in predators. The predator has a
linear death rate m;. Migration has a linear per capita rate. There is no immigration or emigration

out of the system. Coupling parameters Dle and D}f represent the prey migration from patch i to j

and j to i, respectively (Di’;- and Df; are analogous for predator migration). We consider small

values of coupling so that their individual predator-prey oscillators are weakly coupled (in line
with observations of Kot et al.,, 1996). The heterogeneity is modeled via the differences in

parameters a;, b;, ¢;, 1;, K;, m; in two patches.

Following (Goldwyn and Hastings, 2009) this model is rescaled by letting the intrinsic parameters
q1 = q and q; = (1 + 04)q where q = a, b, ¢,r, K, m and the coupling parameters D{, = D" and
DY, = (1 + op)DV as well as DY, = DP and DY, = (1 + op)DF. Further rescaling involves

Vi

= p = (%)Pi T=at, a=b/K, n=m/a, €= a/r, dj; = D}/a, df} =Df/a. (3)
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This results in the following system of four ordinary differential equations (Goldwyn and Hastings,

2009):
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We consider the oscillatory intrinsic dynamics, which occurs when @ < 1 andn < 1;—2 (Hastings,
1997). We assume that the coupling strength d¥V = dP = d and o, = 0}, = 0. = 0, = 0 = O, =
04y = 04y = 0 wWhere 0 > 0 and d > 0. When ¢ > 0, two uncoupled patches will have different
frequencies. We consider the dynamics of coupled two predator-prey oscillators as we vary
oscillators’ parameters €, o, 1, and the coupling strength d. Numerical simulations of the model
were performed in XPP software package (Ermentrout, 2002) using adaptive-step fourth order

Runge-Kutta method for 20 units of time with 0.00001 step size.

2.2. Analysis of the temporal patterns of synchrony

The objective of this study is to explore the temporal patterning of synchronized dynamics.
Roughly speaking, the same moderate synchronization level may be achieved with many short
desynchronizations or few long desynchronizations (or different possibilities between these two
extremes) and the goal is to discriminate between these possibilities. We have recently developed
time-series analysis techniques to characterize temporal patterning of synchronous dynamics (Ahn
et al., 2011; Rubchinsky et al., 2014) and applied them to several biological oscillators (mostly
neural oscillators, e.g. Park et al., 2010; Ahn and Rubchinsky, 2013, 2017; Ahn et al., 2014a,b;
Ratnadurai-Giridharan et al., 2016). The data analysis employed here follows these works very

closely and is summarized below.



While there are multiple ways to analyze synchronization phenomena, we will use phase-based
analysis. Phase synchronization is a common phenomenon in weakly coupled oscillators
(Pikovsky et al., 2001). The phase synchronization has been considered in ecological dynamics
with model and real data (e.g., Blasius et al., 1999) as well as in the studies of neural dynamics
(see references above). For an oscillatory activity, a phase of the ith prey-predator system is

reconstructed here by computing

i(0-b;
@;(t) = arctan (ﬁ) (8)

with atan2-type function to reconstruct angular coordinate, (;, p;) is a middle point of oscillations
in the (v; , p;)-plane. Then we consider an average synchronization strength index to measure the

strength of the phase locking between two signals (e.g., Pikovsky et al., 2001; Hurtado et al., 2004):
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where Acp(tj) = gol(tj) - <p2(tj) is the phase difference, the t; are the sampling points, N is the
number of data points to be considered, and ||. || is the absolute value of a complex number. This
phase synchronization index y varies from 0 (lack of synchrony) to 1 (perfect synchrony). It
provides average value of phase-locking. There may be cycles of oscillations, when phase
difference is close to the average value of the phase difference (phase-locked, synchronized state)

and when it is not close to it (desynchronized state).



To study the fine temporal structure of the dynamics of synchronization, we construct a sequence
of phase lags between signals. Whenever ¢, crossed the zero from negative to positive values, we
recorded the value of ¢,, generating a set of consecutive phase values {¢;},i = 1, ..., M. If the
value of ¢; differs from the average value of ¢; by less than /2 then the oscillations are
considered to be in a synchronized state, otherwise they are in the desynchronized state. The choice
of /2 value for the threshold follows earlier applications of these method (see references above).
We used the Kolmogorov-Smirnov test to detect non-uniform distribution of {¢b;}'2, with the
significance level of 0.05 to include it in the further analyses (the results were not qualitatively
affected by this level). The duration of desynchronizations is defined as the number of cycles of
oscillations that the system spends in the desynchronized state. Note that synchronized state here
is the one with near constant (but not necessarily zero) phase lag (which is in line with observations

of non-zero lag population synchrony, e.g., Martin et al., 2017).

We characterize the temporal patterning of intermittent synchronization by considering the
distribution of desynchronization durations (measured in the cycles of oscillations, thus duration
is a discrete variable, as described above). In particular, we consider the mode of this distribution.
For example, mode=1 indicates that most common desynchronization duration is very short. We
also consider pmode —the probability to observe the duration, which corresponds to the mode (i.e.
the chance to observe the most common duration). There is a reason for this approach: if the mode
of the desynchronization duration is small, but long desynchronizations are still fairly frequent,
then the dynamics is not necessarily dominated by short desynchronizations overall. However, if

Pmode 18 relatively large, this guarantees that all other desynchronization durations are rare.



3. RESULTS

3.1. The impact of € (the ratio of the predation rate to the intrinsic prey growth rate) on the

temporal patterning of synchronization

We consider here how € affects the durations of desynchronization events. Parameter € is a ratio
of predation rate to the intrinsic rate of the prey growth. In the limit as € goes to zero, the system
becomes a relaxation oscillator. As the value of € increase, the fine temporal structure of
synchronization changes when € is about 0.1 as evident by the changes of the mode of the
distribution of desynchronization durations (Fig. 1A). Smaller values of &€ promote short
desynchronization episodes that last for only one cycle of oscillations. The increase in € leads to

the increase of the mode of the distribution of desynchronization durations.

There is also an effect on the synchrony strength y (Fig. 1B). Increasing € leads to a modest
decrease in the synchrony strength y. The frequency of oscillations is also affected by € although
quite weakly (Fig. 1C). This means that as € decreases, the mean desynchronization duration is
short not only if measured in relative units (cycles of oscillations), but also in the absolute units of

time.

Note that the probability of the dominant duration of desynchronization events p,,, 4. (the insert
in Fig. 1A) is always higher than 0.5. Thus, more than the half of all desynchronizations are
captured by the mode (1 or 2 cycles here) and mode of the distribution is really representative of

the dynamics in this situation.



3.2 The impact of 1 (the ratio of the predator death rate to predation rate) on the temporal

patterning of synchronization

We consider here how 7 affects the synchrony strength and the durations of desynchronization
events. Smaller predator death rate (and thus smaller 1) increases the amount of time necessary for
the predator population to become sufficiently small so as to allow for a prey outbreak, increasing
the amount of time in the cycle with low prey population. As the value of n increase, the fine
temporal structure of synchronization changes as evident by the changes of the mode of the
distribution of desynchronization durations (Fig. 2A). Smaller values of n promote short
desynchronization episodes lasting for two cycles of oscillations. On the contrary, the increase in
1 leads to the increase of the mode of the distribution of desynchronization durations to three and

four cycles (that is by a factor of two).

As 1 changes, there is also an effect on the synchrony strength y (Fig. 2B). Shorter
desynchronizations correspond to the higher synchrony level. Fig. 2C shows that the mean
frequency is also almost constant (minor increase). Thus, like for the variation of € case considered
above, the desynchronizations are short here not only if measured in the number of cycles, but also
measured in absolute time units. And again, the probability of the dominant duration of
desynchronization events p,,,4e (the insert in Fig. 2A) is mostly close to 1 and always higher than

0.5, indicating that the mode captures the majority of desynchronizations.



3.3 The impact of a (the ratio of the predation functional response half-saturation to the prey

carrying capacity) on the temporal patterning of synchronization

We consider now how a affects the synchrony strength and the durations of desynchronization
events. Decreasing a increases the carrying capacity, thereby increasing both the magnitude of the
prey outbreak and the time between outbreaks. Smaller values of a promote short
desynchronization episodes lasting for two cycles of oscillations. As « increases, the most frequent
desynchronization episodes are getting longer (Fig. 3A). As a changes, there is also an effect on
the synchrony strength y in the range of smaller a, which virtually disappears for larger a ;
frequency does not depend on a in the considered range of the variation of this parameter (Fig.
3B,C). Similar to what was observed above, the probability of the dominant duration of
desynchronization events p,,,4e (the insert in Fig. 3A) is mostly close to 1 and always higher than

0.5, indicating that the mode captures majority of desynchronizations.

3.4 Changing desynchronization durations independently of frequency and synchrony

strength

Earlier studies showed that one can change parameters of oscillators in such a way that the
distribution of desynchronization duration is changed independently of the average synchrony
strength (e.g., Ahn et al., 2011; Rubchinsky et al., 2014; Ahn and Rubchinsky, 2017). In the
coupled ecological oscillators considered here, changes in the temporal patterning of

synchronization can be independent of the synchronization strength too, as evidenced by the results



presented above (although they may co-vary together as well). This evidence is somewhat limited,
because in the ranges of parameters studied, eventually changes in the synchrony strength are
followed by the changes in the synchrony patterns. Nevertheless, when a is in the range of [0.49,
0.54] (Fig. 3), both the synchrony strength ¥ and the mean frequency of oscillators do not vary
much (Fig. 3B, C) while the mode of desynchronization durations changes substantially (from
cycle 2 to cycle 4, Fig. 3A). This kind of situation is present to a lesser degree in Figs. 1 and 2.
The point, however, is that the same level of synchrony strength may be supported either with
relatively large number of fairly short desynchronizations or a smaller number of long
desynchronizations regardless of whether the durations of desynchronizations are measured in

cycles of oscillations or in absolute time units.

3.5. Dispersal-induced synchronization threshold for different temporal patterns of

intermittent synchronization

We measure the threshold value of the dispersal rate d to reach strongly synchronized dynamics
(dynamics without any desynchronization events) between the dynamics of two patches in the
parameter regimes as in Fig. 1 (change ¢€), Fig. 2 (change n), and Fig. 3 (change a). The parameters
for each desynchronization duration mode (measured in cycles of oscillations) at each setting were
chosen as the smallest parameter to achieve the given mode of the desynchronization durations.
While one cannot directly vary the duration of desynchronizations, we vary system parameters to
change the mode of the desynchronization durations, which is reflected in the horizontal axes in
the Fig. 4. For example, for the Fig. 4A, the system achieves Cycle 1 when 0.08 < € < 0.09, Cycle

2 when 0.1 < € < 0.15. Then in Fig. 4A, for Cycle 1 the value of € = 0.08, for Cycle 2 the value



of € = 0.10. In Fig. 4B, for Cycle 2 the value of n = 0.27, for Cycle 3 the value of n = 0.29, for
Cycle 4 the value of n = 0.30. In Fig. 4C, for Cycle 2 the value of « = 0.47, for Cycle 3 the value
of a = 0.50, for Cycle 4 the value of a = 0.54. The results presented in Fig. 4 indicate that the
system with short desynchronization dynamics needs weaker dispersal strength to be synchronized
than the system with longer desynchronization dynamics (even if the initial synchrony strength is

nearly the same).

4. DISCUSSION

We considered two predator-prey populations coupled via dispersion modeled as two Rosenzweig-
MacArthur oscillators with linear difference coupling. Models of individual predator-prey patches
are rescaled to get dimensionless variables and have slightly different parameter values to represent
spatial heterogeneity following the framework introduced in the studies of Goldwyn and Hastings
(2008, 2009). However, unlike those studies (and in line with the observations of dispersion being
weak, Kot et al., 1996), we consider the case where the coupling strength is weak enough (relative
to the difference of frequencies in isolated oscillators), so that the coupling-induced synchrony is
only partial. The dynamics of these systems exhibits intermittent synchrony just due to the
moderate values of coupling (without any indigenous noise or environmental stochasticity). This
system exhibits intervals of time when the dynamics is synchronized, and intervals of time when

the dynamics is desynchronized.



We found that the temporal structure of this dynamics exhibit dependence on several parameters
of predator-prey model oscillators. In particular, the larger values of the ratio of predation rate to
intrinsic growth rate for prey, the ratio of predator half saturation coefficient to the carrying
capacity of prey, and the ratio of predator death rate to the predation rate lead to the dynamics with
longer desynchronization episodes (there are ratios of parameters here, because we considered
nondimensionalized systems). While changes in model parameters may affect both the average
synchrony strength and temporal patterning of synchronized dynamics, the average synchrony
strength and its temporal patterning can be independent. The present study shows how the
durations of desynchronizations may be altered while the average synchrony strength stays the
same. Thus, the same synchrony strength between migration-coupled predator-prey populations

may be achieved via many short desynchronized episodes or few long desynchronized episodes.

Our numerical analysis shows that the temporal patterns of synchrony (dynamics of ecological
network) may be altered just by the alteration of the properties of predator-prey interactions
(properties of individual oscillators) and this may be altered without changes in the dispersal
strength. On the other hand, dispersal strength is naturally affecting the overall synchrony strength
as larger coupling strength in general leads to complete synchrony between oscillators. What we
see here is that the interplay of the individual oscillator properties and dispersal leads to a
potentially important observation: dispersal-coupled predator-prey oscillating populations
exhibiting fewer longer desynchronizations (as opposed to numerous short desynchronizations)
may require stronger dispersal in order to reach strong synchrony. It is known that the weak
dispersal may have complex effects on the stability and survival of synchronized predator-prey

populations (see, e.g., Abbot, 2011). We show here a case where the same dispersal leads to



different impacts on the synchronized dynamics depending on the characteristics of predator-prey

Interactions.

The changes in the parameter values (towards the smaller values of €, a, and 1) that promote
shorter desynchronizations (even if the average synchrony stays the same) essentially make the
dynamics of predator slow relatively to the dynamics of the prey, separating the time-scales of
predator and prey dynamics. These small parameter values lead to the predator dynamics being
initially slow to follow the increase in prey, eventually leading to late but very sharp rise (outbreak)
in predator numbers. The predator-prey systems with substantially different timescales and
resulting dynamics of outbreaks has long been considered in mathematical ecology (e.g., Ludwig
et al., 1978; Rinaldi and Scheffer, 2000). It is worth mentioning that dispersal-synchronized
resources enrichment-induced outbreak-like population cycles were found to exhibit low
persistence under some conditions in a laboratory experiments (Laan and Fox, 2019), which
suggest that mechanisms of outbreaks may exhibit complex interplay with the synchronized
dynamics and persistence. Perhaps the outbreak-type oscillatory cycles effectively modulate the
coupling making it very strong at the top of the population peak while keeping it low at other times
(the coupling strength is constant in this consideration, it is the magnitude of the coupling term

that effectively increases, because it is proportional to population difference between patches).

Interestingly, another example of biological oscillator with separation of timescales is a spiking
neuron. In particular, many neurons have sodium-potassium spiking mechanism with fast Na" and
slow “delayed rectifier” K' currents and associated models of Hodgkin-Huxley type have

substantially different time scales (see, e.g., [zhikevich, 2007; Ermentrout and Terman, 2010). The



separation of the time scales in neuronal models also led to the prevalence of short
desynchronizations, if the neurons were connected via weak synapses and exhibited partially
synchronized dynamics (Ahn and Rubchinsky, 2017). This probably points to a very general

mathematical basis of this phenomenon, which calls for its mathematical exploration.

It would be interesting and important to consider the temporal patterns of synchronization and
desynchronization in the more realistic ecological context. Various sources of stochasticity
(whether indigenous or environmental) as well as seasonal variability may affect population
synchrony (e.g., Bressloff and Lai, 2013) and thus may potentially affect the temporal patterns of
synchronized dynamics. In particular, it may be important to consider temporal patterns of
ecological synchrony in the context of Moran effect (e.g., Goldwyn and Hastings, 2011).
Moreover, various spatial effects may affect synchronous dynamics (Walters et al., 2017, Hopson
and Fox, 2019) and may be relevant here as well. Overall, it is important not to overinterpret the
results of this study. The parameters of the model are not traced to a specific ecological system.
The actual mechanisms of the ecological oscillations and synchrony may involve much more that
the ones represented by the predator-prey interactions of Rosenzweig-MacArthur model
considered here (see e.g., Barraquand et al., 2017). Thus, this study presents only a potential
possibility for the temporal patterns of intermittent synchronous dynamics, its dependence on

parameters of predator-prey interaction, and its potential impact on long-term ecological dynamics.

Finally, we would like to put our observations in the context of the studies of transient dynamics
in ecology, which appears to be very important and quite common (Hastings et al., 2018) including

population synchronization phenomena (Klapwijk et al., 2018). From a mathematical perspective,



the idea that the ecologically relevant dynamics is not necessarily the dynamics near and on the
attracting synchronization manifold in the phase space is somewhat similar to the idea of
importance of transients in ecology. While the intermittent synchronization considered here is not
a transient phenomenon in a strict sense, in both situations the properties of dynamics of interest
depend not only on the properties of attractors in the phase space, but also on how the system

approaches to and leaves them.
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Figure 1. The effect of € (the ratio of the predation rate to the intrinsic prey growth rate). (A) Mode
value of the durations of desynchronization events (solid line with black dots) and the
corresponding probability to observe the mode value pmode (dotted line). The high (close to one)
value of probability to oberve a mode indicates that the desynchronizations of corresponding
duration are strongly prevalent. (B) Synchronization strength index y. (C) The mean frequency of
oscillations in coupled predator-prey oscillators. The other parameters are a = 0.34, n = 0.32,

d = 0.03, ratio 0 = 0.19.
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Figure 2. The effect of 17 (the ratio of the predator death rate to predation rate). (A) Mode value of
the durations of desynchronization events (black line with black dots) and the corresponding
probability to observe the mode value pmode (dotted line). (B) Synchronization strength index y.
(C) The mean frequency of oscillations in coupled predator-prey oscillators. The other parameters

are € = 0.09, « = 0.47,d = 0.05, ratio 0 = 0.11.
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Figure 3. The effect of a (the ratio of the predation functional response half-saturation to the prey
carrying capacity). (A) Mode value of the durations of desynchronization events (black line with
black dots) and the corresponding probability to observe the mode value pmose (dotted line). (B)
Synchronization strength index y. (C) The mean frequency of oscillations in coupled predator-

prey oscillators. The other parameters are € = 0.09, n = 0.27,d = 0.05, ratio 0 = 0.11.
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Figure 4. Threshold value of the dispersal rate d to reach dynamics without any desynchronization
events for different lengths of cycles by changing (A) € (Fig. 1), (B) n (Fig. 2), (C) a (Fig. 3). (A)
For Cycle 1 the value of € = 0.08, for Cycle 2 the value of € = 0.10. (B) For Cycle 2 the value of
n = 0.27, for Cycle 3 the value of n = 0.29, for Cycle 4 the value of n = 0.30. (C) For Cycle 2

the value of a = 0.47, for Cycle 3 the value of a = 0.50, for Cycle 4 the value of a = 0.54.



