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Abstract—Extracting good views from a large sequence of
visual frames is quite difficult but a very important task across
many fields. Fully automatic view selection suffers from high data
redundancy and heavy computational cost, thus fails to provide
a fast and intuitive visualization. In this paper we address the
automatic viewpoint selection problem in the context of 3D knot
deformation. After describing viewpoint selection criteria, we
detail a brute-force algorithm with a minimal distance alignment
method in a way to not only ensure the global best viewpoint
but also present a sequence of visually continuous frames. Due to
the intensive computation, we implement an efficient extraction
method through parallelization. Moreover, we propose a fast
and adaptive method to retrieve best viewpoints in real-time.
Despite its local searching nature, it is able to generate a set of
visually continuous key frames with an interactive rate. All these
combine provide insights into 3D knot deformation where the
critical changes of the deformation are fully represented.

Index Terms—rvisualization; best view selection; paralleliza-
tion;

I. INTRODUCTION

Automatic selection of best views is an important fields in
computer vision related research. Since typical visualization
of our 3D world structures starts with projection geometric
information from 3D to 2D as its first step, a meaningful
projection from an appropriate view point can help to present
maximal information in the full dimensional space. The criteria
for choosing such good views can be very different according
the application needs. In this paper, we focus on the best
view selection for 3D mathematical curves which can be
deforming while keeping their topological structures; such dy-
namic structures are particularly useful in medical application
[1] and mathematical simulations [2]. When examining the
2D projections of 3D curves, a well-chosen 3D presentation
can provide not only salient features of the objects but also
structural continuity during the entire deformation. However,
finding an optimal 2D representation with a view-based ap-
proach for the changeable objects can be very challenging.
Efficient projection finding and view feature extraction suffer
from heavy computational cost and thus cannot easily meet the
needs in interactive visualization applications. Moreover, when
changing structure is visualized in real time , the traditional
methods are unable to appropriately handle the dependencies

This work was supported in part by National Science Foundation grant
#1651581 and the 2016 ORAU’s Ralph E. Powe Junior Faculty Enhancement
grant.

Knot Deformation

Hui Zhang (corresponding author)
Dept. of Comp Eng. & Comp Sci.
Speed School of Engineering
University of Lousiville
Louisville, USA
hui.zhang @louisville.edu

between each process of arbitrary deformation and thus fail
to present a series of continuous frames. In order to address
all the challenges, we need to explore a new paradigm to
communicate deforming structures in the most efficient and
fast way.

We start with a fairly familiar viewpoint entropy concept
and extend the criterion for the evaluation of the animation
curves that not only features the maximum information, but
also contains the less disturbance. Having established the
mechanisms, we proceed to a brute-force method and its
parallelization that guarantees a global best view. To further
improve the visual experience, we proposed an adaptive al-
gorithm based on local search where successive terms can be
presented with an interactive rate. All these combine to fulfill
the need where a meaningful and minimal set of representative
views are created to visualize a deformation sequence that
otherwise requires a huge number of visual frames.

The rest of our paper is organized as follows. Section 2
overviews related work on computational methods to identify
the effective viewpoints and 3D model alignment. Section 3
describes the brute-force approach with minimum distance
match as well as the parallel version. Section 4 focuses on
an adaptive viewpoint selection algorithm to improve the
performance. We then finally present our application study
and the conclusion.

II. RELATED WORK

Our fundamental techniques are based on a wide variety
of prior art, mainly concern with viewpoint selection and
3D model alignment. With advances in 3D model acquisition
technologies, the problem of selecting an optimal set of frames
from high redundancy and high computation cost of capture to
present useful information gets consistent attention. Assisted
with the incorporation of 3D graphic, information science and
mathematical theory, maximum information from a minimal
set of views can be abstracted automatically. Kamada and
Kawai [3] minimize the degenerated edges to select the
viewpoint, and an parallel projection is applied to determine
the viewing direction. A viewpoint entropy is widely used to
define the best view of a scene [4]. The main idea is based on
entropy theory where a good viewpoint should contain as much
geometric information as possible. And an extra adaptive view
selection method is designed to accelerate the computation



[5]. It starts with six points and predicts the entropy with
middle points recursively, obtains a large speed-up compared
with the brute-force method. Colin [6] develops an model
to calculate the good viewpoint with an octree. Lee et al.
[7] define mesh saliency with a center-surround operation on
Gaussian-weighted mean curvatures, and it is able to capture
the appealing regions automatically.

For the model alignment, Alexa et al. [8] present an en-
gaging shape interpolation to find the optimal least-distorting
transformation, the implementation can be applied not only on
morph and contour blending but also on texture colors. Henry
et al. propose a minimum projection area-based alignment
method with three principal axes [9], an optimization method
based on Particle Swarm Optimization is adopted to decide the
minimum projection. Such method can be used on rigid/non-
rigid models. The singular-value decomposition (SVD) is often
used to calculate the rigid transformation [10] [11], while it
fails to address the reflection problem. Cashbaugh and Kitts
[12] adopt a linear regression to write the transformation
matrix as a series of linear equation, and they sort out the
reflection problem through a pseudoinverse matrix. With only
paired data sets, a transformation matrix can be generated
effectively and accurately.

III. BRUTE-FORCE ALGORITHM

In this section, we introduce our viewpoint criterion, a
brute-force algorithm using such criterion to generate a list
of viewpoints, a minimal distance match method to minimize
the distortion of the intermediate shape, and the parallel
framework to accelerate the procedure.

A. Data Representation

An initial diagram of a 3D curve is represented through
a group of cylinders with given length L and radius R. The
i — th cylinder is connected with a pair of vertices (v;, v;+1),
where i € [1,n — 1]. The 3D representation can be obtained
by projecting each vertex 3D zyz-space to 2D xy-plane.
The curve moves with certain restrictions to guarantee the
geometry type will not be changed (see Figurel).
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Fig. 1: An example of curve representation in our work. (a)
A smooth 2D topological structure represented using an array
of line segments, nodes, and interpolation splines. (b) The 3D
render of the curve with color, texture and shading.

B. View feature extraction

Our approach is based on a general viewpoint entropy
measure obtained from Information Theory [13]. The main
idea is to use a probability distribution to represent the relative
area of the projected faces around a sphere viewpoint. A larger
viewpoint entpropy contains more useful information, the best
view will be the one with maximum viewpoint entropy.

During the deformation, the curve transforms in a unsuper-
vised way. To trace an explicit transformation, it is important
to identify the meaningful changes that occur in the process.
Here a crossing number is defined, that is, the smallest number
of crossing of any projective diagram of a 3D curve. The less
crossing number means the less complicated structure. Then
we redefine new viewpoint entropy formula, which features the
maximum information as well as the minimum complexity :
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where L, represents the projected length of curve segment ¢,
L; is the total length of the projected curve; V' (4) is the visi-
bility test function for curve segment ¢, V' (7)=-1 if the segment
is crossed by another segment, and otherwise V' (i)=+1. Here
the larger length of projected curves will contribute to a larger
entropy value, and the number of crossings in the projection
contributes to the entropy value as a penalty. In this way, the
best diagram is identified as one that contains the maximal
length of curves and the minimal number of crossing in the
diagram.

With the viewpoint entropy defined above, the deformation
requires to be examined with a huge sampling space of projec-
tions so as to make sure the best viewpoint can not be omitted.
In order to find the global best viewpoint, here a brute-force
method is presented. The camera rotates from 1 to 360 degree
incrementally around x,y, and z axis respectively(see Figure
2). In each position, the entropy is calculated and compared
to the current maximum value. This process is repeated until
all of position are examined.

C. The minimal distance alignment

The viewpoint entropy method can help us identify the
best view for a dynamic curve. However there is a large
probability to exhibit visual discontinuities from one diagram
to another. This is because the brute-force method searches
for the best diagram with the maximum viewpoint entropy
covers a serial of angles around the 3-dimensional space, the
resultant diagrams with various rotation direction can share
the same viewpoint entropy value. Then the orientation in
the original deformation cannot be preserved. It may cause
the disjunction between the intermediate shapes, leaves the
complete deformation difficult to trace.

Figure 3 shows a discontinuous relaxation for a classical
structure in Knot theory names trefoil knot since the brute-
force method fails to identify the difference among the dia-
grams that owns the same entropy.
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Fig. 2: (a) The viewpoints generated by the brute-force
method. The viewpoint incrementally changed 1 degree along
x,y, and z axis respectively. (b) The best projection presented

(a

Fig. 3: A discontinuous relaxation for a trefoil knot. These frames
fails to preserve their original orientation. (a) Initial conformation
with crossNum = 9. (b) A diagram rotates 180 degrees clockwise
with crossNum = 6. (c) A diagram makes mirror flip with
crossNum = 4. (d) Final conformation with crossNum = 3.

To maintain the original direction, we need to establish a
correspondence between the original structure and the follow-
ing list of candidate projection. One way is to adopt 3D model
alignment method, while it is time-consuming and error-prone.
Here a simple least-squares method (see Eq. 2) is proposed.
Compared to other projections, the most similar structure
suffers least change from the original structure, the minimum
distance value is obtained accordingly.
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During the force-brute method, we examine the visual frame
with the minimal number of crossing and the least square
distance from the previous frame at the same time. This
new searching criterion ensure the extract frames preserve the
best visual continuity in the extracted sequence. Algorithm
1 describes the process. Initially, the object is placed in the
middle of scene. It rotates along x-axis, y-axis and z — axis
incrementally. Each rotation generates a new projection value.
If this new projection value is larger than the old one, we
continue to compare the minimum distance, if the value is
less than the current one, it means a more closer projection
is found. Such process keeps comparing until a complete
360*360*360 angle combination is done. And the resultant

diagram is the one that obtains from the best viewpoint posi-
tion as well as minimum distance from the last frame. Figure
4 shows a successive relaxation for trefoil knot. The diagram
in Figure 3 (b) and Figure 4 (b) shares the same entropy value,
while Figure 3 (b) rotates 180 degrees clockwise from Figure
4 (b), arises a visual distortion in the deformation. With the
correction of minimal distance, Figure 4 (b) is selected as
resultant diagram. Figure 3 (c) and Figure 4 (c) show the
similar situation. Overall, compared to Figure 3, the minimal
distance strategy helps to identify the most similar diagrams
during the deformation, gives an appropriate illustration to

display the dependencies between the diagrams.
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Fig. 4: A successive relaxation for a trefoil knot.

Algorithm 1: Find the best viewpoint with the brute-
force method
Input: Initial Layout
Output: A projection with the best viewpoint
Initialize the current projection P,,x with the initial
viewpoint, best entropy v, 4., minimum distance

dmin 5
for all viewpoints do
Calculate current entropy v;
if v >= Umae then
Calculate current distance d ;
if d < d,,;, then
Update P4z 3
Update v,,4, With v ;
Update d,;,, With d ;
end

end
end

D. Accelerate Brute-Force Algorithm

A brute-force method ensures the best viewpoint would not
be missed and guarantee a global best solution. While this
algorithm suffers heavy computational cost, for each moment,
it requires traveling an angle combination of 360*%360*360
to find the best result. Since the entropy calculation for each
viewpoint has not data dependency and we only care about
those with the same maximum value, it is easy to process the
search in a parallel way. We then slightly change our algorithm
into a parallel framework, so that an effective searching
method is available. Algorithm 2 describes the process. We
generate a list of best viewpoints in a parallel way at the
beginning, deploy as many computing units as available. After



that, the distance between the last frame and the diagram
projected by current viewpoint are compared, the resultant
viewpoint is the one with the highest entropy and lowest dis-
tance value. In Algorithm 2, the minimal distance comparison
is excluded. Within a parallel pattern, the frequent data change
would be devastating. And the number of projections sharing
the same largest viewpoint value is far less than the amount
number of viewpoints. So it is appropriate to remove this
part out of the parallel execution framework. Figure 5 shows
the illustration for parallel searching method. The multiple
viewpoints are examined at the same time, which largely
increases the searching efficiency.

Algorithm 2: Find the best viewpoint in Parallel

Input: Initial Layout
Output: Best projection presentation
Initialize a empty projection list L P, best viewpoint
Vinaz, minimum distance d,,,;y, ;
Calculate all entropy v; in each computing unit ¢ ;
Barrier synchronization of all processes ;
Order the projection value and generate the L P with
the maximum values ;
for each projection P in LP do
if d < dypin then
Update Pyax with P ;
Update d,;, with d ;
end
end

Fig. 5: The viewpoints generated by the parallel brute-force
method. The viewpoint incrementally changed 1 degree along
x,Y, and z axis respectively and examined in a parallel way.
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Fig. 6: Average Speed-up with different number of cores.

E. Experiments

Our implementation uses R as the major analysis tool. The
RGL package is included to help the geometry’s depiction,
it uses OpenGL as the rendering backend and provides a
real-time 3D engine. The algorithms run on a Lenovo PC
desktop with Intel Core i7 CPU 1.8GHz. To accelerate the
iteration in our simulation, we adopt the library of doParallel
in R. The doParallel package acts as an interface between
foreach and the parallel package of R 2.14.0 and later [14].
It provides a nice, efficient parallel programming platform for
multiprocessor/multicore computers. As a blend of the snow
and multicore packages, the doParallel package works well on
Unix-like system, Windows and even their combination. The
most advantage of this package is it is very easy to install and
use.

We characterize the performance in term of Speed-up=
Ts/T,, where T is the execution time of the serial algorithm,
and T}, is the execution time of parallel execution. To verify
the performance of parallel algorithm, we test a set of curves
with different number of nodes ranges from 46 to 500. And
the average Speed-ups with 1 to 4 cores are shown in Figure
6 where the Speed-up is growing gradually long with the
increasing number cores. And the parallel algorithm obtains
reasonable speedup of 2.47x when executed on the multi-core
system with 4 cores.

Figure 7 shows the comparsion with different number of
nodes running wit 4 cores. With the increasing number of
nodes, and the execution time for each structure is growing
dramatically, while the parallel algorithm takes far less time
and the Speed-up keeps stable around 2.3x.

IV. ADAPTIVE VIEW SELECTION METHOD

In this section, we will focus on a more efficient approach to
present the best projection from long deformations. Although
Our basic idea presented in Section III ensures a global
best solution, it is compute-intensive, and thus very time-
consuming and nearly impossible to be helpful for our real-
time presentation. Here we devote to present a more flexible
local search algorithm boosts the efficiency and accuracy
simultaneously.
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Fig. 7: The performance for curves with different number of
nodes.

A. Overall Scenario

Our algorithm starts with a coarse-grained space to calculate
the viewpoint entropy value at each sampling vertex, and a
fine-grained local search follows to find the best viewpoint
recursively until a final optimal viewpoint is reached. The main
steps include:

1) Generate an initial set of viewpoints;

2) Evaluate each viewpoint and sort the viewpoint set in the
decreasing order, generate an initial triangular mesh with
the top three best position;

3) Evaluate the middle points of each edge, generate a new
triangle;

4) Apply last step (3) iteratively until the terminal criteria
satisfies.

B. Initial Viewpoints Generation

The performance bottleneck in our original method lies in
the function to identify critical changes at each time point,
which is very compute-intensive because it calculates the
curve’s crossing number from all possible viewpoints in 3-
dimensional space. It is possible to make the view selection
much faster. For example, for the two nearby viewpoint, they
usually present the similar projection. It is not necessary
to examine all of them. Instead, if we start from the most
promising area, pass through the similar position, our method
can be more efficient compared to the original brute-force one.

There are several viewpoint sampling methods include
longitude and latitude sampling method, random sampling
method, and pseudo uniform method, etc. In order to obtain
a reasonable sampling distance, cover an effective searching
area as well as make sure not to miss the essential viewpoints,
We start from sampling a set of points on the surface of the
sphere based on the subdivision of a regular icosahedron (See
Figure 8(a)). The first level subdivision produce 12 sampling
points around the sphere, which covers elementary viewpoints.
By applying the loop subdivision rule, we are able to narrow
down the searching space gradually.

C. Initial Viewpoints Evaluation

After the generation of the initial candidate viewpoints, it
is essential to evaluate these viewpoints and find a “good”
starting point. Since our proposed algorithm does not cover a
complete searching space, if the initial searching point fails to
provide a correct searching direction, there is not chance we
can correct later. So we evaluate and compare all of viewpoints
with Equ 1, sort these entropy in decreasing order. If there
are same entropy value, we go on to compare the minimum
distance, and generate an initial triangular mesh with the top
three best position with largest entropy value and minimum
distance with last diagram (See Figure 8 (b), Figure 8 (f) shows
current projection with this viewpoint).

D. Adaptive Viewpoints Selection

Next we use the three mid-points on this viewing triangle’s
edges to generate three new viewpoints for the next round
of viewpoint search (see Figure 8(c)). By calculating the
viewpoint entropy values for the three views, we now pick
the new best view (see the mid-point in yellow in Figure 8(d),
and Figure 8 (g) shows current projection with this viewpoint),
and this lead to us identifying the next six adjacent views (see
the 6 in green in Figure 8(e)). Our view search procedure is
recursively performed, leading to a finer searching area in each
iteration, until the terminating condition satisfies (see Figure
8 (h)).

The description of this procedure is sketched in the fol-
lowing algorithm (See Algorithm 3). After the stage of initial
configuration, the process is executed iteratively until none of
the projection value is higher or sampling points are at a very
close distance over a threshold. With the adaptive viewpoint
method defined above, the best diagram can be identified in
an more efficient way.

E. 3D alignment

The adaptive view selection obtains an approximate opti-
mal projection for current diagrams. While the curves relax
themselves in 3D space, when the critical change occurs, the
projection may vary greatly from the last diagram, thus leaves
structural discontinuity. In order to provide the desired visual
continuity and keep the computational efficiency, we apply a
rigid transformation to “re-align” between the diagrams in the
final visualization sequence.

We applied a homogenous transform [12] method to align
two resultant diagrams. In general, this method calculate an
4*4 augmented transformation matrix between two frames
with a linear regression. Through rewriting the transformation
matrix as a series of linear equations and minimizing the
square of the residuals of them, the values in each row of the
transformation matrix are obtained. And the rotation sequences
are recovered in a 3-2-1 way. Thats it , the object rotates in a
order of z-axis, y-axis and z-axis. The Euler rotation angles
can be obtained with these values.

Given two diagrams P 4 and P, a homogenous transfor-
mation matrix is defined in Eq. 3. It contains the rotation
R and translation 7" at the same time. The second row is a
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Fig. 8: The adaptive viewpoint selection procedure. (a) Initial 12 sampling viewpoints in the icosahedron. (b) The current best
viewpoint. (c) The first viewing triangle around the current best viewpoint. (d) The first candidate viewpoints generate in the
middle of edges. (e) The recursive generation of viewpoints. (f) The current projection presented by the viewpoint in (b). (g)
The current projection presented by the viewpoint in (d). (h) The final best projection.

Algorithm 3: Best diagram identification with adaptive
view selection

Input: Initial Layout
Output: Best Diagram with Maximal View Entropy
Value
Initialize a set of viewpoints placed on icosahedron
vertices around the object;

while un-visited viewpoints exist do
find the best viewpoint with maximum entropy

value (maximal projective length and minimal
number of crossing);

while the entropy value of current best view is
better do

Find all adjacent points, calculate all entropy
values on the mid-point of all edges;

Find the next viewpoint with the maximum
entropy value and minimal number of
crossing;

Update new entropy value and un-visited
viewpoints;

end
end

orthonormal perspective and homogeneous scaling factor. In
our case, it sets as 1 since we only focus on the deformation.
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With a linear regression to minimize the square of the
residual, a volume matrix A is obtained (Eq.4) to generate
each column of the transformation matrix (Eq. 5 - Eq.7).
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Then a rotation matrix can be abstracted where the values
are defined by the rotation sequences (Eq. 8).

T,1 T2 T1,3
B
RA = |r21 T22 T23 3
31 732 T33

The resultant rotation angles are calculated separately with
this matrix in the form of the Euler angles.
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Fig. 9: The relaxation for complex unKnot with parallel brute-force method. (a) Initial conformation with crossNum = 15.
(b)crossNum = 13. (¢) crossNum = 11. (d) crossNum = 10. (e) crossNum = 9. (f) crossNum = 8. (g) crossNum = 6.
(h) crossNum = 4. (i) crossNum = 2. (j) Final conformation with crossNum = 0.
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Fig. 10: The relaxation for complex unknot with adaptive best projection presentation.

TABLE I. Performance comparison between parallel brute-
force and the adaptive view selection method

Parallel .
Node Number  Brute-Force Method %dap tive Meth(?d Speed-up
. xecute Time(s)
Execute Time (s)
46 59.5 0.87 68.39
65 104.14 1.53 68.07
87 213.95 2.18 98.14
96 246.55 2.66 92.69
200 842.22 7.92 106.34
300 1650.38 15.85 104.12
400 3019.31 27.11 111.37
500 4392.2 40.75 107.78

Beside, each diagram is generated from a 3D object to a 2D
projection, for the data frames, the value in all z-axis are zero,
therefore A is not invertible in our case. We include Moore-
Penrose method [15] to produce a pseudoinverse matrix. And
an approximate inverse is generated through the Singular
Value Decomposition (SVD). In this way, we acquire a valid
transformation matrix to further produce a reasonable rotation
angles. More detailed derivation and proof can be found in
[12].

F. Performance and Cast Study

In order to verify the performance improvement, we test the
same set of curves and make the comparison between brute-
force and the adaptive view selection method. Table I shows
the results. Despite the parallelism exploration, the searching
space for the adaptive method is far less than the brute-force
one. It greatly reduces the time complexity of the algorithm
and helps to gain a large speedup. Beside, as the number of
nodes grows, the Speed-up is able to increase accordingly.

To further illustrate a complete clue with our algorithms,
we introduce a complex unknot in Knot Theory and present a
complete relaxation with an the parallel brute-force algorithm
. The resultant frames are presented in Figure 9 and Figure
10 respectively. The similar continuous diagrams shared by
two figures indicates that, although the adaptive method only
examines a small number of viewpoints, we can still obtain

the same effect than with the brute-force method, moreover the
time of computation reduces dramatically at the same time.

V. CONCLUSIONS

In this paper, aim to attack different level purpose, we have
presented two different methods for the automatic selection
of best views specific for 3D animation curves, a brute-force
method makes sure a complete exploration. Embedding in a
parallel computation framework, the performance boosts with
the demanding computation resource. An adaptive viewpoint
selection method is able to provide both scalability and high
efficiency. Such work can be applied to fully simulate the
important transformation with Knot Theory and other relative
data-intensive research domains.

In the future, we plan to proceed to an extension to view-
point selection mechanism for mathematical objects embedded
in higher dimension space. This is particularly challenging
since higher dimensional objects must be projected to three
dimensions or less for understanding and interaction, thus how
to identify the full features of the whole object and provide
structural continuity for higher-dimensional projection remains
a challenge to solve.
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