
Parallelized Topological Relaxation Algorithm
Guangchen Ruan
Indiana University

Bloomington, USA
gruan@iu.edu

Hui Zhang
University of Louisville

Louisville, USA
hui.zhang@louisville.edu

Abstract—Geometric problems of interest to mathematical
visualization applications involve changing structures, such as the
moves that transform one knot into an equivalent knot. In this
paper, we describe mathematical entities (curves and surfaces)
as link-node graphs, and make use of energy-driven relaxation
algorithms to optimize their geometric shapes by moving knots
and surfaces to their simplified equivalence. Furthermore, we
design and configure parallel functional units in the relaxation
algorithms to accelerate the computation these mathematical de-
formations require. Results show that we can achieve significant
performance optimization via the proposed threading model and
level of parallelization.

Index Terms—mathematical visualization, topological relax-
ation, parallel computing, performance tuning, python

I. INTRODUCTION

The first central idea of this paper is to model self-
deformable mathematical objects in 3- and 4-dimensional
Euclidean Space. Our objects of fundamental interest are
mathematical curves (1D objects embedded in 3-space) and
mathematical surfaces (2D objects embedded in 4-space). In
topology, both mathematical curves and surfaces are changing
structures — they can deform into their equivalence which can
appear very different but indeed represent the same embedding
in mathematical space.

A. Relaxing 1D Mathematical Knots and 2D Surfaces

The idea of knot or surface equivalence is to give a precise
definition of when two objects should be considered the same
even when positioned quite differently in space. A formal
mathematical definition is that two objects are equivalent
if there is an orientation-preserving homeomorphism. For
example, topologically, sphere and cube are one and the same
object since one can be transformed continuously (i.e. with
no cutting nor tearing) into another. In this section we briefly
describe the basic algorithms for topologically relaxing 1D
mathematical knots and 2D surfaces with a simulation where
moves to change their structures are proposed and generated
during each iteration.

In mathematics, knots are closed loops (they do not have
ends) like a circle (or ring). In fact, a circle is a knot, known
as an unknot or a trivial knot because it is so simple. The

This work was partly funded by NSF grants #1651581 and #1726532. Hui
Zhang is corresponding author of this work.

bead
0

bead
1

bead
2

bead
3

Fig. 1. Illustration of 1D mathematical knot.

b1,2

b0,2

b2,2

b1,1 b1,3

b0,1

Fig. 2. Illustration of 2D mathematical surface.

creation of mathematical 3D curves and knots (closed 3D
curves) can often be facilitated with a 2D drawing interface.
One often constructs an initial configuration for an object
while neglecting most issues of geometric placement. The
next task that comes naturally is to topologically refine these
initial embeddings, not only to make the geometry look more
pleasant, but also to simplify the geometric representation.
Ideally most of the work can be done automatically. Our
approach is largely based on force-directed algorithms, also
known as spring embedders, that calculate the layout of a
graph (in our case, 1D linked nodes for knots as in Fig. 1,
and 2D linked nodes for surfaces as in Fig. 2) using only in-
formation contained within the structure itself, without relying
on domain-specific guidance (see e.g., the 1984 algorithm of
Eades [1]).

Force Laws for Topological Refinement. To embed a
graph we replace the vertices with electro-statically charged
masses and replace each edge with a spring to form a me-978-1-7281-0858-2/19/$31.00 ©2019 IEEE

chanical system. The vertices are placed in some initial layout
and let go so that the spring systems and electrical forces on
the masses move the system to a minimal energy state. Two
basic forces are used, an attractive mechanical force applied
between adjacent masses on the same spring and a repulsive
electrical force applied between all other pairs of masses. The
mechanical force is a generalization of Hooke’s law, allowing
for an arbitrary power of the distance r between masses,
Fm = Hr1+β , where H is a constant. The electrical force also
allows for a general power of the distance, Fe = Kr−(2+α),
where r again is the distance between the two masses, and
K is a constant. The electrical force is applied to all pairs of
masses excluding those consisting of adjacent masses on the
same link. In most of the preliminary results [2]–[4] shown in
this proposal, we used β = 1 and α = 2.

Collision Avoidance for Topology Preservation. For this
force-directed algorithm to be applicable to our principal test
case of mathematical curves positioned in R3, it is impera-
tive that any proposed evolution should respect topological
constrains: it does not involve cutting the curve or passing
the curve through itself. Parallel to the force laws previously
specified, the self-intersection problem is solved in our ap-
proach by requiring that the position of each mass be updated
one at a time, and collision avoidance is strictly performed to
determine if one is heading towards one of the following two
potential collisions:

• point-segment collision — a vertex of a 3D curve is
going towards a link of the curve and the distance is less
than a predefined threshold distance,

• segment-segment collision — a link of a 3D curve is
going towards another link and their distance is less than
a predefined threshold distance.

If either of these two states exists, the pair of closest points on
the colliding components are identified to define a 3D vector
passing through them. An equal (but opposite) displacement
along the 3D vector is then applied to each component to take
the component out of collision range. The collision avoidance
process modifies masses’ positions whenever necessary to
ensure the entire evolution is under topological constraint
[5], [6]. Fig. 3 shows the dynamic model works to prevent
unwanted intersections that might change the closed curve’s
topological features.

B. Related Work

The idea of making computer-generated mathematical pic-
tures of curves and surfaces has developed in many directions
with the recent advances in computational algorithm and math-
ematical visualizaiton. Carter generates nicely rendered figures
for many most complicated yet beautiful examples in modern
topology, such as the 2-manifolds embedded and evolved in
4-dimensional space [7]. Scharein’s Knotplot has been widely
used to construct and deform mathematical knots physically in
3D [8]. Weeks’ SnapPea software displays and manipulates the
over/under crossings of mathematical knots [9]. Some combine
haptic interfaces and 3D graphics to simulate the dynamics
of 3D curves and 4D knotted surfaces (see, e.g, Phillips [10],

Fig. 3. Typical screen images of the self-deformation. The simple
closed curve (a knot 51) relaxes, with the proposed force laws and
collision avoidance mechanism. During the relaxation, the knotted
string preserves the its topological structure.

Spillmann [11], and Zhang [12], [13]). Zhang’s work concerns
Reidemeister-move based interfaces to deform mathematical
3D knots and 4D surfaces with mathematically valid moves,
i.e., the Reidemeister moves [14], [15]. While such “expert’s
interfaces” have provided many interesting 4D visualization
results, the entire interaction process can be much tedious and
error prone.

In many application domains, parallel algorithms are de-
veloped to speed up computation of their serial counterparts.
In [16], Ruan et al. transform points in density based clustering
to graphs and leverage distributed iterative graph processing
framework to parallelize the clustering. In [17], Ruan et
al. propose parallel algorithms to mining quantitative timing
information from event based temporal data. The algorithms
leverage iterative MapReduce [18] framework for paralleliza-
tion. To enable quantitative and qualitative measurement of
caries lesion, in [19], Ruan et al. propose a parallel, MapRe-
duce [18] based framework where 2D contours are extracted
from dental CT scans in Map phase and 3D geometry of tooth
is reconstructed in Reduce phase.

II. PARALLEL FUNCTIONAL UNIT ALGORITHMS FOR
ONE-DIMENSIONAL MATHEMATICAL KNOT

As we can see from Section I-A, each iteration of the
simulation process consists of two steps: (1) calculating forces
for each bead, followed by (2) performing collision avoidance
where positions of involved beads are adjusted whenever the
collision is detected.

First of all, we have an important observation that the force
calculation procedure of one bead is independent of that of
another, which makes the force calculation of beads can be
effectively parallelized with multi-threading technique.

Furthermore, we note that the force calculation procedure
can be broken down into following functional units for each
bead. (1) calculating repulsive forces, (2) calculating attractive
forces, (3) calculating the total force by summing up received
repulsive and attractive forces, and (4) Moving the bead into
a new position based on the total force and the maximum
magnitude. This fine-grained breakdown opens the door of
of designing a parallel algorithm with particular level of
parallelization (i.e., # of threads) for each functional unit in
terms of its specific time complexity analysis and therefore
offering better performance compared to handling the force
calculation as a whole.

Below we detail the parallel algorithm design for each
functional unit along with time complexity analysis using big
O notation.

A. Parallel Algorithm for Repulsive Force Calculation

Time Complexity Analysis. For each bead, it receives
repulsive forces from all other beads. In addition, we note that
repulsive force is symmetric, meaning that the forces that bead
A receives from B and B receives from A have the same mag-
nitude with opposite direction. Therefore, the time complexity
for calculating repulsive forces is O(N ∗(N−1)/2) = O(N2)
where N is the number of beads in the knot in question.

Algorithm 1: Parallel Repulsive Force Calculation - 1D
Knot
Input : Beads: set of beads, NumWorkers: number

of worker threads
Output: distMatrix: distance matrix,

repulsiveForceMatrix: repulsive force matrix

1 #Initialization
2 distMatrix← zeros();
3 repulsiveForceMatrix← zeros();

4 #Get cell indices in form of row and
column numbers of the lower left
triangle of distMatrix

5 indexList← cell indices of the lower left triangle of
distMatrix;

6 #Generate list of thread ids, ranging
from 0 to NumWorkers− 1

7 threadIdList← range (NumWorkers);

8 threadList← [];
9 foreach threadId ∈ threadIdList do

10 task ← repulsiveForceTask (Beads,
NumWorkers, threadId, indexList,
distMatrix, repulsiveForceMatrix);

11 thread← newThread();
12 thread.run(task);
13 threadList.add(thread);

14 #Wait until all threads finish
execution

15 threadList.join()

Algorithm 1 outlines the logic of parallelizing the calcula-
tion of repulsive forces, with blue colored lines as comments.
The algorithm input are Beads which is a N by 3 matrix
where each row represents a bead in the form of a three-
dimensional vector, and NumWorkers which specifies the
of threads to speed up the computation. The output are
calculated distance matrix N by N distMatrix as well as
N by N by 3 repulsiveForceMatrix. We note that due to
symmetry for both matrices only a half triangle needs to be
calculated.

As preparation, we initialize distMatrix and
repulsiveForceMatrix (lines 3 and 4) and generate
list of cell indices (i.e., each entry in the list is a cell’s index
in the matrix in the form of row and column number pair) of
the lower left triangle of the distance matrix (line 5). The cell
indices are used to indicate the workload of the calculation.
Moreover, we generate a list of thread ids ranging from 0
to NumWorkers − 1, which are used by worker threads
to determine individual workload. Furthermore, we initialize
an empty thread list to hold threads to run (line 8). In the
for loop, for each worker thread, we compose task (line 10),
launch thread and invoke the task (lines 11 and 12), and
add the thread to the list (line 13). Finally, we wait until all
worker threads complete theirs tasks before exit (line 15).

The function repulsiveForceTask() used to compose worker
thread task is sketched in Algorithm 2. We can see that we
pass distMatrix and repulsiveForceMatrix by reference
so the two states are shared across all worker threads. To
dispatch workload evenly amongst workers, we employ a
round robin based approach. To fulfill this, we firstly get
indices of the entries in indexList, where each entry is a pair
of row and column numbers identifying the position of a cell
in the distance matrix. Then in the for loop that iterates over
the indices, we simply check whether i mod NumWorkers
equals to the assigned thread id. If the answer is yes, then
the worker proceeds to handle the entry, and skip it otherwise.
In this way, each worker handles exactly the same amount
of workload with at most one entry difference. In the mean-
time, this workload dispatching strategy effectively avoids
race conditional and threads can update the shared states
(i.e., distMatrix and repulsiveForceMatrix) concurrently
without requiring locking mechanism.

B. Parallel Algorithm for Attractive Force Calculation

Time Complexity Analysis. For each bead, it receives
attractive forces from two adjacent beads. Similar to repulsive
force, calculation of attractive force is symmetric as well.
Therefore, the time complexity for calculating attractive forces
is O(N ∗ 2/2) = O(N) where N is the number of beads in
the knot in question. Furthermore, we are able to reuse the
distance matrix derived from the previous step of calculating
repulsive forces.

Algorithm 3 highlights the algorithm used to parallelize
the calculation of attractive forces. The algorithm input are
original input Beads that represents the knot data and
NumWorkers which specifies the # of threads to speed

Algorithm 2: Repulsive Force Task - 1D Knot
Input : Beads: set of beads, NumWorkers: number

of worker threads, threadId: worker thread Id,
indexList: cell indices, distMatrix: distance
matrix, repulsiveForceMatrix: repulsive
force matrix

Output: None

1 #Get indices of the entries in indexList
2 entryIdxList← range (length (indexList));
3 foreach i ∈ entryIdxList do
4 #Use threadId to determine whether the

cell in question is its
responsibility

5 if i mod NumWorkers ! = threadId then
6 continue;

7 #Row index of beadi
8 indexI ← indexList[i].row;
9 #Row index of beadj

10 indexJ ← indexList[i].col;

11 #Get vectors for beadi and beadj
12 beadi ← beads[indexI, :]; beadj ← beads[indexJ, :];

13 #Calculate L2 distance between beadi
and beadj

14 v ← beadi − beadj ;
15 distMatrix[indexI, indexJ]← L2 (v);

16 #Calculate repulsive force that beadj
imposes on beadi

17 magnitude← K ∗ dist−(2+α);
18 repulsiveForceMatrix[indexI, indexJ, :]←

v/dist ∗magnitude;

up the computation. In addition, distMatrix is the dis-
tance matrix which is the output from prior repulsive force
calculation. The output of the algorithm is a N by 3
attractiveForceMatrix. Likewise, because of symmetry
only a half triangle needs to be calculated for the attractive
force matrix.

The algorithm starts by initializing
attractiveForceMatrix, threadIdList and threadList
(lines 1 to 5), followed by the for loop which starts workers
for actual processing. In each iteration of the loop, it
composes a task (line 7) and launches a worker thread which
in turn runs the task (lines 8 and 9), and bookkeeps the thread
by appending it to the thread list (line 10). Once all workers
are launched, we wait until their completion before exiting
the main thread (line 12).

Algorithm 4 gives the pseudocode of the task that is
assigned to a worker. Here we employ a similar round-robin
based strategy to dispatch workload evenly across all worker
threads as the one described in Algorithm 2. If the beadi in
question is on the worker’s duty list, it finds beadj that is next

Algorithm 3: Parallel Attractive Force Calculation - 1D
Knot
Input : Beads: set of beads, NumWorkers: number

of worker threads, distMatrix: distance matrix
Output: attractiveForceMatrix: attractive force matrix

1 #Initialization
2 attractiveForceMatrix← zeros();

3 #Generate list of thread ids, ranging
from 0 to NumWorkers− 1

4 threadIdList← range (NumWorkers);

5 threadList← [];
6 foreach threadId ∈ threadIdList do
7 task ← attractiveForceTask (Beads,

NumWorkers, threadId, distMatrix,
attractiveForceMatrix);

8 thread← newThread();
9 thread.run(task);

10 threadList.add(thread);

11 #Wait until all threads finish
execution

12 threadList.join()

to beadi and calculates the attractive force that beadj imposes
on beadi. By using modulo operation to determine the row
index of beadj we handle the special case when beadi is the
last row in the input matrix beads (line 10). We note that
due to symmetry we only need to do one way calculation,
i.e., the attractive force that beadj receives from beadi can be
inferred from the calculated one (i.e., force that beadj imposes
on beadi), by just negating the direction of the force. Therefore
we effectively cut the computation workload by half.

Moreover, recall that we can reuse the distance matrix
calculated from repulsive force calculation (see Algorithms 1
and 2) and only lower left triangle of the distance matrix has
been filled because of symmetry. In lines 14 to 17, we get the
distance between beadi and beadj by positioning the indices
(i.e., indexI and indexJ) carefully so the accessed cell falls
in the lower left triangle of the distance matrix. Finally, we
calculate the attractive force based on retrieved distance (lines
16 to 18).

C. Parallel Algorithm for Total Force Calculation

Time Complexity Analysis. For each bead, to get its total
force we sum up repulsive forces from all beads except the
two most adjacent ones and two attractive forces from the two
adjacent ones. Therefore, the time complexity for calculating
total forces is O(N ∗ (N − 1− 2 + 2) = O(N2) where N is
the number of beads in the knot in question.

Algorithm 5 sketches the algorithm that parallelizes the
calculation of total forces. Its input are dataset Beads, number
of worker threads to use NumWorkers, as well as repulsive
force matrix repulsiveForceMatrix and attractive force ma-
trix attractiveForceMatrix that are from prior calculation

Algorithm 4: Attractive Force Task - 1D Knot
Input : Beads: set of beads, NumWorkers: number

of worker threads, threadId: worker thread Id,
distMatrix: distance matrix,
attractiveForceMatrix: attractive force
matrix

Output: None

1 #Get number of beads in the dataset
2 numBeads← length (Beads);
3 foreach i ∈ range (numBeads) do
4 #Use threadId to determine whether the

bead in question is its
responsibility

5 if i mod NumWorkers ! = threadId then
6 continue;

7 #Row index of beadi
8 indexI ← i;
9 #Row index of beadj next to beadi

10 indexJ ← (i+ 1) mod numBeads;

11 #Get vectors for beadi and beadj
12 beadi ← beads[indexI, :]; beadj ← beads[indexJ, :];

13 #Get L2 distance between beadi and
beadj from distance matrix

14 if indexI < indexJ then
15 dist← distMatrix[indexJ, indexI];

16 else
17 dist← distMatrix[indexI, indexJ];

18 #Calculate attractive force that
beadj imposes on beadi

19 v ← beadi − beadj ;
20 magnitude← H ∗ dist1+β ;
21 attractiveForceMatrix[indexI, :]←

v/dist ∗magnitude;

(see Algorithms 1 and 3). The output of the algorithm is a
N by 3 matrix totalForceMatrix, which stores the resulting
total forces.

The algorithm initializes totalForceMatrix,
threadIdList and threadList (lines 1 to 5), and in
the following for loop it launches workers with assigned
tasks. The logic in the loop covers: (1) composing a task
(line 7); (2) launching a worker thread to run the task (lines 8
and 9); and (3) bookkeeps the thread for later join (line 10).
Once all workers are launched, we wait until their completion
before exiting the main thread (line 12).

The payload function totalForceTask() is outlined in
Algorithm 6. Again, we employ a round-robin based dis-
patching strategy. In line 8, we sum up attractive forces
from two most adjacent beads. Recall that when calculating
attractive forces we leverage the symmetry property therefore
the attractive force beadi receives from beadi−1 should be

Algorithm 5: Parallel Total Force Calculation - 1D Knot
Input : Beads: set of beads, NumWorkers: number

of worker threads, repulsiveForceMatrix:
repulsive force matrix,
attractiveForceMatrix: attractive force
matrix

Output: totalForceMatrix: total force matrix

1 #Initialization
2 totalForceMatrix← zeros();

3 #Generate list of thread ids, ranging
from 0 to NumWorkers− 1

4 threadIdList← range (NumWorkers);

5 threadList← [];
6 foreach threadId ∈ threadIdList do
7 task ← totalForceTask (Beads,

NumWorkers, threadId,
repulsiveForceMatrix, attractiveForceMatrix,
totalForceMatrix);

8 thread← newThread();
9 thread.run(task);

10 threadList.add(thread);

11 #Wait until all threads finish
execution

12 threadList.join()

the negative one that beadi−1 obtains from beadi (hence the
minus operator rather and add). To handle the special case
of beadi being the first in the dataset, we uses the trick of
(i − 1 + numBeads) mod numBeads to get the index of
beadi−1. In lines 7 to 20, we adopt a two-step approach
by first summing up repulsive forces from all other beads
(lines 7 to 13) and then subtracting the ones from the two
adjacent neighbors (lines 14 - 20). By this means, we have
a performance boost by eliminating the need of checking
whether a bead is beadi’s adjacent neighbor and needs be
skipped consequently. Once again, we use modulo operation
to get beadi’s two adjacent neighbors correctly when beadi
is either the first or the last in the input dataset (line 15). In
addition, for beadx that enforces repulsive force on beadi, we
check the relative order of indices of beadx and beadi (i.e.,
x and i) to make sure that the accessed cell lies in the lower
left triangle of the distance matrix and use negation as needed
(lines 10 to 13 and 16 to 20).

D. Parallel Algorithm for New Position Calculation

Time Complexity Analysis. For each bead, we adjust its
position based on the total force it received. Therefore, the
time complexity for calculating new position is simply O(N)
where N is the number of beads in the knot in question.

Algorithm 7 outlines the algorithm used to prarallelize
the calculation of new position of beads. Note that there is
no output since input beads is passed by reference and the
adjusted positions are updated upon it directly. The worker

Algorithm 6: Total Force Task - 1D Knot
Input : NumWorkers: number of worker threads,

threadId: worker thread Id,
repulsiveForceMatrix: repulsive force
matrix, attractiveForceMatrix: attractive
force matrix

Output: None

1 #Get number of beads in the dataset
2 numBeads← length (repulsiveForceMatrix);
3 foreach i ∈ range (numBeads) do
4 #Use threadId to determine whether the

bead in question is its
responsibility

5 if i mod NumWorkers ! = threadId then
6 continue;

7 #Sum up attractive forces from two
most adjacent beads

8 v = attractiveForceMatrix[i, :
]− attractiveForceMatrix[(i− 1 +
numBeads) mod numBeads, :];

9 #Sum up repulsive forces from all
beads

10 foreach j ∈ range (i) do
11 v += repulsiveForceMatrix[i, j, :];

12 foreach j ∈ range (i+ 1, numBeads) do
13 v −= repulsiveForceMatrix[j, i, :];

14 #Subtract repulsive forces from two
adjacent neighbors

15 idxList← [(i+ 1) mod numBeads, (i− 1 +
numBeads) mod numBeads];

16 foreach idx ∈ idxList do
17 if i < idx then
18 v += repulsiveForceMatrix[idx, i, :];

19 else
20 v −= repulsiveForceMatrix[i, idx, :];

21 totalForceMatrix[i, :]← v;

thread launching and task assignment are similar to prior
algorithms and hence we skip the details. Note however that
we need to first find the maximum magnitude of all forces (line
2), which serves a the normalizer in the position adjustment
process. This can be achieved by either a straightforward
linear scan of totalForceMatrix or a parallel approach based
on divide-and-conquer technique. Since the operation (i.e.,
magnitude comparison) is lightweight, a linear scan should
suffice and yield better performance.

Algorithm 8 sketches the position adjustment task. In line 8,
we come up with a new position for the bead in question based
on the total force it received, the maximum magnitude of all
forces as well as a user configured move threshold parameter.

Algorithm 7: Parallel New Position Calculation - 1D Knot
Input : Beads: set of beads, NumWorkers: number

of worker threads, totalForceMatrix: total
force matrix

Output: None

1 #Find the maximum magnitude of all
total forces

2 maxMagnitude← findMaxMagnitude
(totalForceMatrix);

3 #Generate list of thread ids, ranging
from 0 to NumWorkers− 1

4 threadIdList← range (NumWorkers);

5 threadList← [];
6 foreach threadId ∈ threadIdList do
7 task ← adjustPositionTask (Beads,

NumWorkers, threadId, totalForceMatrix,
maxMagnitude);

8 thread← newThread();
9 thread.run(task);

10 threadList.add(thread);

11 #Wait until all threads finish
execution

12 threadList.join()

Algorithm 8: Adjust Position Task - 1D Knot
Input : Beads: set of beads, NumWorkers: number

of worker threads, threadId: worker thread Id,
totalForceMatrix: total force matrix,
maxMagnitude: maximum magnitude

Output: None

1 #Get number of beads in the dataset
2 numBeads← length (Beads);
3 foreach i ∈ range (numBeads) do
4 #Use threadId to determine whether the

bead in question is its
responsibility

5 if i mod NumWorkers ! = threadId then
6 continue;

7 #Adjust position
8 Beads[i, :]← Beads[i, :] + totalForceMatrix[i, :

]/maxMagnitud ∗moveThreshold;

III. PARALLEL FUNCTIONAL UNIT ALGORITHMS FOR
TWO-DIMENSIONAL MATHEMATICAL SURFACE

The simulation of 2D mathematical surface shares a lot
of similar characteristics with 1D knot in terms of com-
putation. For instance, the force calculation can be broken
down into the calculation of repulsive force, attractive force,
total force and position move as well. In addition, force is
symmetry. Moreover, one important observation is that 2D
surface employs the same logical representation as 1D knot
after linear transformation, based on which many parallel
algorithms presented in Sec. III shall apply for 2D surface.
In this section we describe the rationale of the transformation
and for parallel algorithms we highlight the pieces that need
special attention for 2D surface scenario.

A. 2D Surface to 1D Linear Representation

In 1D knot scenario, the beads on knot can be viewed as a
1D array where each element in the array represents a bead
in the form a 3D point. In 2D surface scenario, we view the
surface as a 2D matrix where each element is again a bead
of the form 3D point. To be able to reuse the frameworks of
the parallel algorithms discussed in Sec. III, it is motivated to
transform 2D surface’s matrix into 1D knot’s array so logically
they use the same representation. The way to transform a cell
in 2D matrix with row index rowidx and column index colidx
is shown in Eq. 1, where NumCols is the # of columns in
the matrix.

linear index = colidx + rowidx ∗NumCols (1)

The reverse transformation from a linear index to original
row, column indices pair is also straightforward, as shown in
Eq. 2 (where // means integer division) and Eq. 3.

rowidx = linear index // NumCols (2)

colidx = linear index mod NumCols (3)

B. Parallel Algorithm for Repulsive Force Calculation

Time Complexity Analysis. For each bead, it receives
repulsive forces from all other beads. Hence the analysis
for 1D knot case applies here, i.e., O(N2) where N =
NumCols ∗ NumRows is the number of beads in the 2D
matrix in question.

With linear transformation, Algorithm 1 and Algorithm 2
shall directly work for the 2D surface scenario and we skip
the repetition. We simply note that the input Beads stores the
data of transformed 2D matrix, with linear index (i.e., row #
of Beads) based on Eq. 1 ranging from 0 to NumCols ∗
NumRows− 1.

C. Parallel Algorithm for Attractive Force Calculation

Time Complexity Analysis. For each bead, it receives
attractive forces from four adjacent beads, up, down, right and
left and the force is symmetry. Therefore, the time complexity

Algorithm 9: Attractive Force Task - 2D Surface
Input : Beads: set of beads, NumWorkers: number

of worker threads, threadId: worker thread Id,
numRows: # rows of 2D matrix, numCols: #
columns of 2D matrix, distMatrix: distance
matrix, attractiveForceMatrix: attractive
force matrix

Output: None

1 numBeads← length (Beads);
2 foreach i ∈ range (numBeads) do
3 if i mod NumWorkers ! = threadId then
4 continue;

5 #Transform from linear index to
(row, col) index

6 rowIdx← i // numCols;
7 colIdx← i mod numCols;

8 #Add right hand side neighbor
9 neighborIdx← [];

10 colIndex← colIdx+ 1;
11 if colIndex < numCols then
12 neighborIdx← append ((rowIdx, colIndex));

13 else
14 neighborIdx← append (None);

15 #Add lower side neighbor
16 rowIndex← rowIdx+ 1;
17 if rowIndex < numRows then
18 neighborIdx← append ((rowIndex, colIdx));

19 else
20 neighborIdx← append (None);

21 #Get vectors for beadi and beadj
22 indexI ← i; beadi ← beads[indexI, :];
23 cnt← 0;
24 foreach t ∈ neighborIdx do
25 if t is None then
26 cnt← cnt+ 1; continue;

27 #Get linear index of beadj
28 indexJ ← t[0] ∗ numCols+ t[1];
29 beadj ← beads[indexJ, :];

30 v ← beadj − beadi;
31 dist← distMatrix[indexJ, indexI]

32 magnitude← H ∗ dist1+β ;
33 attractiveForceMatrix[indexI, cnt, :]←

v/dist ∗magnitude;
34 cnt← cnt+ 1

for calculating attractive forces is O(N ∗4/2) = O(N) where
N = NumCols ∗NumRows− 1.

Algorithm 3 can be directly applied here. The only differ-
ence is that the output attractiveForceMatrix is N by 2
by 3 rather than N by 3. In this matrix, each rowi stores the
attractive forces from its right (in first column) and lower (in
second column) neighbors. The forces from its left and upper
neighbors can be inferred in terms of symmetry of the force.
Next we focus on Algorithm 9 which is the composed task
for worker thread. Compared to Algorithm 4, to get beadi’s
neighbors, we need to first transform the linear index to its
original (row, column) indices pair (line 5 to 7). Because of
symmetry property, we only need indices of right hand side
and lower side neighbors for force calculation, and consider
special case when beadi sits on edge row/column (lines 9 to
20). In the for loop, we transform pair index to linear index to
access beadj (lines 27 to 29), retrieve distance from previously
calculated distance matrix (line 31) and perform the force
calculation (lines 32 to 33).

D. Parallel Algorithm for Total Force Calculation

Time Complexity Analysis. For 2D surface, each bead
receives repulsive forces from all beads other than its four
most adjacent neighbors, which only enforce attractive forces.
Therefore, the time complexity analysis of total force calcu-
lation is O(N ∗ (N − 1− 4 + 4) = O(N2).

We can reuse Algorithm 5 as the parallelization framework
and hence only need focus on the worker thread task, as shown
in Algorithm 10. For beadi’s total force, first we sum up
attractive forces from its four neighbors (lines 5 to 13). Note
that forces from left and upper neighbors can be inferred with
opposite direction because of symmetry (lines 7 to 13). Next
we add all repulsive forces (lines 14 to 18). Finally we subtract
the forces from its four neighbors to get the total force.

E. Parallel Algorithm for New Position Calculation

Thanks to linear transformation, the time complexity anal-
ysis of 1D knot scenario applies here, with O(N) complexity.
In addition, we can also reuse Algorithm 7 and Algorithm 8
directly for 2D surface scenario.

IV. SEQUENTIAL ACCESS PATTERN OF COLLISION
AVOIDANCE

In Sec. II and Sec. III, we discussed how to parallelize the
forces calculation and position adjustment based on the key
observation that the calculation for one bead is independent
of that of another. However, the property does not hold for
collision avoidance procedure.

In 1D knot scenario, each iteration of the outer loop works
on one segment formed by two adjacent beads in the line,
and the distance between the segment in question and each of
non-neighbor segments is calculated through an inner loop. If
the distance falls within the specified threshold, the segment
and its neighbor segment need to be pulled apart so the
adjusted distance reaches the threshold. As we can see, not
only iterations in outer loop are dependent but also the ones

Algorithm 10: Total Force Task - 2D Surface
Input : NumWorkers: number of worker threads,

threadId: worker thread Id, numRows: # rows
of 2D matrix, numCols: # columns of 2D
matrix, repulsiveForceMatrix: repulsive
force matrix, attractiveForceMatrix:
attractive force matrix

Output: None

1 numBeads← length (repulsiveForceMatrix);
2 foreach i ∈ range (numBeads) do
3 if i mod NumWorkers ! = threadId then
4 continue;

5 #Sum up attractive forces from right
and lower neighbors

6 v = attractiveForceMatrix[i, 0, :
]− attractiveForceMatrix[i, 1, :];

7 #Sum up attractive forces from left
and upper neighbors

8 rowIdx = i // numCols;
9 colIdx = i mod numCols;

10 if colIdx− 1 > 0 then
11 v ← v − attractiveForceMatrix[i− 1, 0, :];

12 if rowIdx− 1 > 0 then
13 v ←

v−attractiveForceMatrix[i−numCols, 1, :];

14 #Sum up all repulsive forces
15 foreach j ∈ range (i) do
16 v ← v + repulsiveForceMatrix[i, j, :];

17 foreach j ∈ range (i+ 1, numBeads) do
18 v ← v − repulsiveForceMatrix[j, i, :];

19 #Subtract repulsive forces from four
adjacent neighbors

20 #Left neighbor
21 if colIdx− 1 > 0 then
22 v −= −repulsiveForceMatrix[i, i− 1, :];

23 #Upper neighbor
24 if rowIdx− 1 > 0 then
25 v −= repulsiveForceMatrix[i, i−numCols, :];
26 #Right neighbor
27 if colIdx+ 1 < numCols then
28 v += repulsiveForceMatrix[i+ 1, i, :];

29 #Lower neighbor
30 if rowIdx+ 1 < numRows then
31 v += repulsiveForceMatrix[i+numCols, i, :];

32 totalForceMatrix[i, :]← v;

in the inner loop, since the position of a segment may need to
be adjusted repeated based on its distance to other segments.

In 2D surface scenario, the collision avoidance not only
requires segment distance detection (i.e., line to line distance)
as in 1D knot case but also involves point-triangle distance
detection (i.e., the distance of a point to any virtual triangle
that it does not belong to). In a similar way, the position of a
segment, point, or triangle need to be adjusted if its distance
to another party falls within the threshold.

In summary, during collision avoidance the state of one
party (i.e., segment, point or triangle) depends on its prior state
and the state of involved party (when the distance falls below
threshold), therefore collision avoidance exhibits sequential
access pattern and cannot be parallelized.

V. PERFORMANCE TUNING

In Sec. II and Sec. III we propose parallel algorithms for
functional units that perform force calculation and position
adjustment. Here we discuss two aspects that have impact on
performance: threading model and level of parallelization.

A. Thread Pool Model

Traditionally, to speed up a parallel eligible job with multi-
threading, a set of worker threads are spawned before the
job begins and are shut down after the job completes. For a
mathematical simulation where the number of iterations can be
large (e.g., more than 5, 000 iterations), this can be problematic
if we need to do so for every iteration and every functional
unit calls within an iteration, since the total cost incurred by
the overhead of thread fork and reclaim is nontrivial when the
overhead is proportional to the number of iterations.

To handle such issue, we make worker threads long living
across the whole simulation process instead of ephemeral for
just a particular functional unit call. We use a thread pool to
maintain the threads and each call just checks out X number
of threads from the pool based on its computational need and
returns the threads to the pool once its job is done. By such
means, we effectively eliminate the recurring need of thread
fork and reclaim.

B. Level of Parallelization

As a rule of thumb, in determining the level of paralleliza-
tion (i.e., the # of worker threads), the overhead incurred
by threads should not outweigh the performance gain from
distributing the computation. In general, two important factors
to consider are the scale of the input and the time complexity
of the task. In our specific scenario, 2D mathematical surface
definitely has much more number of beads than 1D knot.
In addition, calculations for repulsive and total forces are
O(N2) time complexity and therefore are more computational
intensive than calculations for attractive force and position
adjustment which are linear O(N) time complexity. These
should serve as good indicators for choosing an appropriate
multi-threading level.

TABLE I
RUNTIME (IN MINUTE) COMPARISON UNDER DIFFERENT

PARALLELIZATION LEVELS, WITH A 96-BEAD KNOT AND 1,000
ITERATIONS. THE NUMBER IN PARENTHESES IS THE NORMALIZED

ONE.

Serial 2-1-2-1 4-1-4-1 4-2-4-2 6-1-6-1
1.71 1.56 1.89 2.03 2.15

(100.0%) (91.2%) (110.5%) (118.7%) (126.3%)

VI. EXPERIMENTS

Experimental Setup. We run our experiments on a Linux
server with following hardware specification: two 8-core Intel
Xeon processors, 256 GB of RAM, and 500 GB of hard
disk drive. The dataset for 1D knot simulation contains 96
beads and for 2D surface we use one matrix of size 50 by
50. Since collision avoidance has sequential access nature,
in experiments we bypass this procedure and only focus on
force calculation. In addition, for the purpose of obtaining
stable results, the figures presented below are the average of
10 independent runs. For each setting, we use format A-B-C-D
to indicate the set of parallelization levels we use, where A
indicates the # of threads for repulsive force, B indicates the #
of threads for attractive force, C indicates the # of threads for
total force, and D indicates the # of threads for new position
update.

Table I shows for a 1D knot of size 96 beads, the runtime
comparison under different parallelization levels with 1,000
iterations. We can see that by using 2 threads for the calcu-
lation of repulsive force and total force, approximately 10%
reduction in computational time can be achieved. However,
further increasing the multi-threading level leads to perfor-
mance degradation. We argue that this is because 1D knot does
not have sufficient data and therefore for higher parallelization
level overhead of managing threads outweighs distributing the
computation. In Figure 4, we show the bar char of runtime
figures used by Table I.

Table II shows for a 2D surface of size 50 by 50 matrix,
the runtime comparison under different parallelization levels.
Since the computational cost of a 2D surface is significantly
larger than a 1D knot, here we only show the runtime for one
iteration. Number in parentheses shows the normalized run-
time in terms of percentage with serial execution’s runtime as
the normalizer. Because of 2D surface has significantly larger
data to process compared with 1D knot, we can accordingly
see that with multithreading we can achieve better speedup
with at least 40% of runtime reduction. Furthermore, as
discussed in Sec. V-B, for calculations of attractive force and
position update which have linear or O(N) time complexity,
using more threads does not yield significant performance
gain. In addition, Figure 5 shows the bar char of runtime
figures used by Table II.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a suite of parallelized topo-
logical relaxation algorithms for 1D mathematical knot and
2D surface simulation. The overall idea is based on the

Serial 2-1-2-1 4-1-4-1 4-2-4-2 6-1-6-1
0.0

0.5

1.0

1.5

2.0
Ru

nt
im

e
(m

in
)

0

20

40

60

80

100

120

Pe
rc

en
ta

ge

Fig. 4. Runtime comparison under different parallelization levels, with a
96-bead knot and 1,000 iterations. Red bar for raw time and blue bar for
normalized time.

TABLE II
RUNTIME (IN MINUTE) COMPARISON UNDER DIFFERENT

PARALLELIZATION LEVELS, WITH A 50 BY 50 MATRIX AND ONE
ITERATION. THE NUMBER IN PARENTHESES IS THE NORMALIZED

ONE.

Serial 2-1-2-1 4-1-4-1 4-2-4-2 6-1-6-1
1.15 0.69 0.53 0.54 0.53

(100.0%) (60.0%) (46.1%) (47.0%) (46.1%)

observation that force calculation can be decoupled into fine-
grained functional units and that the calculation of one bead
is independent of another.

In general, we can abstract the data structure used for beads
(apply for both 1D and 2D scenarios) as linked data in a
graph and device similar algorithms to update the state of
each node in the graph in a parallel manner as long as there
is no dependency constraint for state update amongst different
nodes. This observation opens a door for the possibility of
speeding up scientific simulation in other domains and will be
our future direction of exploration.

REFERENCES

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms for
drawing graphs: An annotated bibliography,” Comput. Geom. Theory
Appl., vol. 4, no. 5, pp. 235–282, Oct. 1994. [Online]. Available:
http://dx.doi.org/10.1016/0925-7721(94)00014-X

[2] H. Zhang, S. Thakur, and A. J. Hanson, “Haptic exploration of mathe-
matical knots,” in ISVC (1), 2007, pp. 745–756.

Serial 2-1-2-1 4-1-4-1 4-2-4-2 6-1-6-1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt

im
e

(m
in

)

0

20

40

60

80

100

Pe
rc

en
ta

ge

Fig. 5. Runtime comparison under different parallelization levels, with a
50 by 50 matrix and one iteration. Red bar for raw time and blue bar for
normalized time.

[3] L. Jing, X. Huang, Y. Zhong, Y. Wu, and H. Zhang, “Python based 4d
visualization environment,” International Journal of Advancements in
Computing Technology, vol. 4, no. 16, pp. 460–469, September 2012,
http://www.aicit.org/dl/citation.html?id=IJACT-1290[Link].

[4] H. Zhang, J. Weng, and A. J. Hanson, “A pseudo-haptic knot diagram
interface,” in Proc. SPIE, vol. 7868, 2011, pp. 786 807–786 807–
14, http://dx.doi.org/10.1117/12.872409[Link]. [Online]. Available:
http://dx.doi.org/10.1117/12.872409

[5] H. Zhang and A. J. Hanson, “Shadow-driven 4d haptic
visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1688–1695, Nov 2007,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4376203[Link].

[6] J. Weng and H. Zhang, “Pseudohaptic interaction with knot diagrams,”
Journal of Electronic Imaging, vol. 21, no. 3, p. 033008, 2012,
http://spie.org/Publications/Journal/10.1117/1.JEI.21.3.033008[Link].

[7] J. S. Carter, “Reidemeister/roseman-type moves to embedded foams in
4-dimensional space,” 2012.

[8] R. G. Scharein, “Interactive topological drawing,” Ph.D. dissertation,
Department of Computer Science, The University of British Columbia,
1998.

[9] J. Weeks, “Snappea: a computer program for creating and studying
hyperbolic 3-manifolds,” 2001.

[10] J. Phillips, A. M. Ladd, and L. E. Kavraki, “Simulated knot tying,” in
ICRA. IEEE, 2002, pp. 841–846.

[11] J. Spillmann and M. Teschner, “An adaptive contact model for the robust
simulation of knots,” Comput. Graph. Forum, vol. 27, no. 2, pp. 497–
506, 2008.

[12] H. Zhang and A. J. Hanson, “Physically interacting with four dimen-
sions.” in ISVC (1), ser. Lecture Notes in Computer Science, G. Bebis,
R. Boyle, B. Parvin, D. Koracin, P. Remagnino, A. V. Nefian, M. Gopi,
V. Pascucci, J. Zara, J. Molineros, H. Theisel, and T. Malzbender, Eds.,
vol. 4291. Springer, 2006, pp. 232–242.

[13] H. Zhang and A. Hanson, “Shadow-driven 4d haptic visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 13, no. 6,
pp. 1688–1695, 2007.

[14] H. Zhang, J. Weng, L. Jing, and Y. Zhong, “Knotpad: Visualizing and
exploring knot theory with fluid reidemeister moves,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 18, no. 12, pp. 2051
–2060, dec. 2012.

[15] H. Zhang, J. Weng, and G. Ruan, “Visualizing 2-dimensional manifolds
with curve handles in 4d,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 12, pp. 2575–2584, Dec 2014,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6876027[Link].

[16] G. Ruan, H. Zhang, and B. Plale, “Parallelizing dbscan algorithm
with distributed iterative graph processing,” in Proceedings of the 2014
Workshop on Big Data Analytics: Challenges and Opportunities, in
conjunction with ACM/IEEE SuperComputing 2014, ser. BDAC’14,
2014.

[17] G. Ruan, H. Zhang, and B. Plale, “Parallel and quantitative sequential
pattern mining for large-scale interval-based temporal data,” in 2014
IEEE International Conference on Big Data (Big Data), Oct 2014, pp.
32–39.

[18] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Operating Systems Design and Implementation, ser. OSDI’04, 2004.

[19] G. Ruan and H. Zhang, “Visual analysis of large dental imaging data in
caries research,” in 2014 IEEE Symposium on Large Data Analysis and
Visualization, ser. LDAV’14, 2014, pp. 77–84.

