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Abstract Mathematical knots are different from everyday ropes in that they
are infinitely stretchy and flexible when being deformed into their ambient iso-
topic. For this reason, challenges of visualization and computation arise when
communicating mathematical knot’s static and changing structures during its
topological deformation. In this paper we focus on visual and computational
methods to facilitate the communication of mathematical knot’ dynamics by
simulating the topological deformation and capturing the critical changes dur-
ing the entire simulation. To improve our visual experience, we design and
exploit parallel functional units to accelerate both topological refinement in
simulation phase and view selection in presentation phase. To further allow
a realtime keyframe-based communication of knot deformation, we propose a
fast and adaptive method to extract key moments where only critical changes
occur to represent and summarize the long deformation sequence in realtime
fashion. We conduct performance study and present the efficacy and efficiency
of our methods.

Keywords knot untanglement - view selection - least squares fitting -
parallelization

1 Introduction

One of the fundamental problems in knot theory [2] is to determine whether a
closed mathematical curve can be deformed into a ring (or “unknot”) without
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cutting or passing through the curve itself. The objects being studied, i.e.,
mathematical knots, are familiar and appear similar to the 3D ropes in our
everyday life, except that the mathematical ones are infinitely stretchy and
flexible during deformation to their ambient isotopic.

The mathematical way of untangling a knot is to perform Reidemeister
moves [24], which reduce all knot deformations to a sequence of three types
of “moves” called the twist move, poke move, and slide move. In principle,
knot untanglement can be presented as a sequence of such simple (and pow-
erful) moves. However, choosing the right combination of the Reidemeister
moves in the right order can be very challenging. The whole procedure is often
error-prone and thus requires technical expertise. Our goal in this paper is to
develop an interactive visual tool that requires minimal knot theory exper-
tise to model and present mathematical knots that can evolve and untangle
by themself into simplified embeddings. We start with a family of interac-
tive methods to sketch mathematical knots as closed node-link diagrams with
“energy” charged at each node. In this way, mathematical knots untangle by
themself from a higher energy state to the lower. The complete untanglement
can take a fairly long sequence of deformation to simulate. We then proceed to
developing an algorithm to capture the key visual frames from the entire sim-
ulation where successive terms in the sequence differ only by critical changes.
The key frames become the “snapshots” of the mathematical movies for us to
visualize, explore, and track the entire deformation.

The rest of our paper is organized as follows. In section 2 we will review
related work and existing interfaces in mathematical knot visualization, as
well as computational methods to identify “snapshots” to represent a long se-
quence of visual frames. In section 3 and 4, we describe the basic force models
to untangle knots and methods to identify key frames in our knot interface.
In section 5, we discuss the use of parallel computing to accelerate the knot
deformation and key frame selection to pursue performance improvement. In
section 6, we propose an even faster approach to extracting key frames in real-
time fashion for better communicating knot deformation, and the conclusions
section will follow.

2 Related Work

The advent of interactive computer graphics and visualization has opened a
new era for creating a tangible experience with these mathematical objects and
their topological phenomena [17]. Several researchers have devoted to facili-
tating mathematical knot understanding through various computer interfaces
and visualization tools. For example, Knotplot [21] is widely used in drawing
and interacting to draw and interact with mathematical knots. KnotApp [4]
presents numerical algorithms to create knot shapes from their fourier rep-
resentations. KnotSketch [8] adopts an enhanced version of Gauss code to
facilitate the manipulation of virtual knots. Zhang et al. develop a family of
user interfaces to visualize knots in 3D and 4D space [16,28, 30].
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There are a range of research efforts involving graph layout algorithms in
knot visualization. Eades [9] improves graph layout with spring embedder algo-
rithm, a method that only uses the graph’s structural information rather than
domain-specific knowledge [14]. Similar methods have been applied in large and
dynamic graphs [6,10,12]. How to minimizing the number of edge-crossings
is an important research question in graph drawing, proved as NP-complete
in [11]. Schaefer [20] surveys the rich variety of crossing number invarant, con-
sidered as a popular tool in graph drawing and visualization. Along with these
research efforts, several others have also been focused on simulating mathe-
matical knot’s dynamics and topological deformation. For example, Snibble et
al. merge springs and constrains with the study of geometric characteristics
relevant to knots [23]. Zhang et al. suggest studying mathematical knot equiv-
alence by making step-by-step Reidemeister moves with a computer graphics
interface [29,31]. Wu’s MING [27] is a knot drawing and refinement tool that
utilizes energy based minimization model and turns knot untanglement into a
computational simulation.
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Fig. 1: Visually communicating key moments of mathematical knot deformation: our tool
generates, visualizes, and tracks the dynamics of mathematical knot deformation. The tool’s
user interface elements include: @ — the major visual panel to create, edit, and visualize
mathematical knot deformation that automatically simplifies and optimizes knot’s 3D em-
beddings; (B) and () — panels to plot the changing knot’s energy and the resulting crossing
number in real time; (d) — a property grid that provides access to the knot’s geometric
information, and (€) — the “snapshot” viewer that summarizes the deformation sequence
with a set of key moments when only critical changes occur during the deformation.

In this paper, we are mainly concerned with how to computationally un-
tangle mathematical knots and visually communicate their topological phe-
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nomena by extracting the key moments from the deformation sequence, which
often comnsists of hundreds of thousands of visual frames. Our basic method
for untangling mathematical knots is similar to the energy based minimization
model in [27]. While the energy model allows complex knotted embeddings to
evolve and untangle by themselve towards simplified embeddings, the evolu-
tion takes a large number of computational iterations to complete and track.
We are motivated to investigate how to computationally identify and capture
the key moments when critical changes occur during the deformation, and
integrate the most efficient and effective way of presenting these key visual
frames to our knot interface, in order to communicate, track, and navigate the
mathematical knot’s evolution in a clear and intuitive visual means.

3 Overall Scenario

Figure 1 shows the overall visual communication scenario for our objects of
interest, i.e., mathematical knots. Our tool derives from the familiar pencil-
and-paper process of drawing 2D knot diagrams, with visual interfaces to
allow the creation of mathematical knots, the exploration of the resultant
geometric structures, and the multiple synchronized views to observe the knot
untanglement rendered as continuous simulation in 3D and 2D, and a sequence
of captured key frames to represent all the “critical changes” that have taken
place in the entire deformation. The four major user interface elements are
listed as follows:

Central Panel — the major visual panel to create, edit, and visualize
mathematical knots and their continuous topological phenomena. Multiple
data formats are supported including those from “Knot Zoo” [21].

Feature Windows — windows used to plot the changing knot’s energy
and the resulting crossing number in real time. Knot energy is calculated based
on the Minimum Distance (MD) energy model [22]. Deforming knots will tend
to evolve to its simplified construction with minimal crossing number and knot
energy. The plotting of knot energy and crossing number is synchronized with
the rendering in central panel.

Property Grid — a window that provides access to the knot’s geometric
information, i.e., each node’s z,y, z values.

Snapshot Viewer — the “snapshot” viewer on the bottom of our tool
can summarize the deformation sequence with a set of moments when only
critical changes occur during the deformation. Each snapshot can be selected
to backtrace the corresponding moments in deformation.

4 Knot Deformation and Key Moments

In this section, we introduce our basic user interfaces and methods to create
and represent mathematical knots, the algorithm to optimize knots’ construc-
tion, and our approaches to identifying and capturing the critical changes from
knot deformation.
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4.1 Deforming Knot as Node-link Diagram

Mathematical knots are represented as node-link diagrams in our work. An
initial diagram of a 3D curve can be obtained by projecting each vertex from
R3 (zyz—space) to R? (zy—space).

() (b)

Fig. 2: Deforming mathematical knot with an underlying node-link structure. (a) A smooth
knotted structure represented with an array of line segments, nodes, and interpolation
splines. (b) The basic force model includes an attractive force applied between a node
(colored in yellow) and its adjacent masses on the same component (colored in green), and
an repulsive force applied between a node and its non-adjacent pairs of masses (colored in
blue).

Let K = (V,E) represent this initial diagram of a given smooth curve in
R3, where V = {v1, va, ..., vy} is the finite set of vertices of the polygon and E
is the set of edges. Our basic force model is applied as follows: the vertices on
the knot are replaced with electrostatically charged masses and each segment
linking between two vertices becomes a stretchy line to form a mechanical
system [21]. The masses are placed in the initial layout and the forces will
move the system to a stable state. Two types of forces are implemented — an
attractive mechanical force applied between adjacent masses on the same
component,

Fa(i) = Ha||vigr — Vil (Vigr — vi)+ )

Hallvicr — villP (vic1 — vi)
where ¢ € [1,n], (ifi =1,i—1=mn;ifi =n,i+1 = 1); H, is a con-
stant; (vip1 — vi) represents the vector pointing from v; to vii1; similarly
a repulsive electrical force is applied between all non-adjacent pairs of
masses,

Fo(i)= Y Hllvi—vil|*(vi - vy) 2)
[li—glI>1

where 4, j € [1,n], H, is a constant. In our studies [16], a=-6, =2.
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The knot deformation driven by the above two forces will update each
node’s position with a distance up to 0.2 x R at each iteration, where R is
the predefined thickness of the knot. In this way, the knot deformation will
respect the topological constrains: the mathematical knots should stretch or
move around without cutting the or passing through itself. At each iteration,
after the update of new position for each mass, collision avoidance is strictly
performed to detect potential collision between segments. If one segment is
going towards another and their distance is less than § < 2 x R, the two
components will be pulled out of the collision range by moving an equal but
opposite distance (|[v| = R — §/2). Figure 3 shows an example deformation
where an initial knot diagram is being simplified into a smooth trefoil knot
with our proposed force model after iterations.

(a) (b) (c) (d)

Fig. 3: Deformation of a trefoil knot with the two forces and collision avoidance.

4.2 Extracting Key Moments of Deformation

Force-guided knot deformation usually involves a large number of computa-
tional iteration. For example, for a “monster” knot with 86 control points
to be fully untangled (see e.g., Figure 4), it may take over 10,000 iterations
before it reaches its final structure. This poses a significant challenge to visu-
alize and trace the entire knot deformation. Furthermore, a large portion of
the deformation are just about geometric updates that are not relevant to the
topological question. Communication about the deformation can potentially
be improved if we can just focus on those moments of the deformation where
only critical changes have occurred.

4.2.1 Identifying Critical Changes

To extract key moments of the deformation, the first step is to identify the
critical changes that occur in the mathematical deformation. In the mathe-
matical area of knot theory, the crossing number of a knot is the smallest
crossing number from all projective diagrams of the knot. It is a knot invari-
ant — when the knot’s crossing number changes, a critical change occurs.
Calculating the crossing number is not trivial: to find the best diagram with
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the minimal number of crossings, every single possible diagram (from different
projection) needs to be examined and the crossing number in that diagram
needs to calculated before we know the minimum crossing number of the knot.

Our approach to finding this best diagram (with minimal number of cross-
ings) is based on the widely-used viewpoint entropy from Information The-
ory [25]. A larger entropy value means more desired information is included
in the view (i.e., the projective diagram in our case.) Our entropy formula
features the total length of the knot and the crossing number in the projective
diagram:

YL, L
1 1 .

) = 3 (- Flog 1 + V(@) (3)
where L; represents the projected length of curve segment i, L; is the total
length of the knot projected curve; V(i) is the visibility test function for curve
segment i, V' (i)=-1 if the segment is crossed by another segment, V' (i)=+1 oth-
erwise. Here the larger length of projected curves will contribute to a larger
entropy value, and the number of crossings (collisions) in the projection con-
tributes to the entropy value as a penalty. In this way, the best diagram is
identified as one that contains the maximal length of knot and the minimal
number of crossing in the diagram.

With the viewpoint entropy defined above, the knot during the deforma-
tion is examined with a huge sampling space of projections, that is, the knot
is rotated from 1 to 360 degree incrementally around z,y, and z axis respec-
tively. The entropy value is then calculated upon each diagram to search for
the best diagram with the minimal crossing number and maximal projected
knot length. During the knot deformation, when the knot’s crossing number
is changed, a critical change has occurred (see e.g., Figure 4 lists the 9 critical
changes captured from the untanglement of the “monster” knot.)

4.2.2 Retrieving Key Moments of Critical Changes

The viewpoint entropy method can help us identify the critical changes from
the knot deformation. However the diagrams representing the critical changes
exhibit visual discontinuities from one diagram to another. This is because
the viewpoint entropy method searches for the best diagram with the minimal
crossing number from rotated knots with all possible angles the 3-dimensional
space. The resultant diagrams extracted from each critical changes do not
preserve their orientations in the original deformation (see e.g., the visual
discontinuities arise in the successive diagrams in Figure 4).

To extract the original key moments where these critical changes occurred,
we need to align the visual frames of critical changes using the least-squares
method (see Eq. 4). When searching for the optimal diagrams for critical
changes, we choose the visual frame with the minimal number of crossing and
the least square distance from the previous key frame. This new searching
criterion will ensure the extract key frames preserve the best visual continuity
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Fig. 4: Extracted critical changes of a “monster” unknot being untangled. These frames
do not preserve their original orientations in the deformation. (a) Initial conformation
with crossNum = 10. (b) crossNum = 9. (¢) crossNum = 8. (d) crossNum = 7. (e)
crossNum = 6. (f) crossNum = 4. (g) crossNum = 3. (h) crossNum = 1. (i) Final
conformation with crossNum = 0.
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Fig. 5: Improved visual experience by aligning critical changes presented in Figure 4.

in the extracted sequence. In Algorithm 1 we describe the process of finding
the key moments in knot deformation. Algorithm 2 gives a framework for the
complete knot relaxation with the key moment finding. Figure 5 shows the
sequence of such key moments obtained from the “monster” unknot’s defor-
mation. Compared to Figure 4, the “aligned” key moments in Figure 5 can
provide a better visual communication about the original mathematical defor-
mation.

1 n
d(Kp, Kq) = n Z [Vpi = Vaill (4)
i=1
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Algorithm 1: Extraction of Key moments

Input: Initial Layout
Output: A Key Moment
1 Initialize the current projection Pmax with the initial rotating angle, best entropy
VUmaz, Minimum distance dy,in ;
Rotate the knot from 1 to 360 degree incrementally around z,y, z respectively ;
Calculate current entropy v;

if v >= Umaz then
Calculate current distance d ;
if d < dpin then
Update Pmaz ;
Update vmaz with v ;
Update dpin with d ;
end
end

© 0N o0 ;A WN

B
= o

Algorithm 2: Knot untanglement with key moments presentation

Input: Initial Layout
Output: A updated Layout
1 while the stop condition is not satisfied do

2 for each vertex ¢ in the knot do
3 Calculate the attractive force Fa(i), the repulsive force Fr(i) ;
4 Calculate the total F¢(i) = Fa(i) + Fr(i) ;
5 end
6 Calculate the maximum magnitude f of all forces ;
7 for each vertex i in the knot do
8 ‘ Update the position vi/ =vi+0.2x RxFc(i) * HFCf(i)H ;
9 end
10 for each vertex i in the knot do
11 ‘ Collision Detection and adjust position;
12 end
13 Obtain the key moments representation with Algorithm 1
14 end

In Figure 6 and Figure 7 we show another example of extracting key mo-
ments from the deformation of a Knot}. Figure 6 shows the sequence of critical
changes captured by our view entropy based searching method. Figure 7 is the
result of visually continuous key moments to represent the entire deformation.

5 Parallelizing Knot Deformation and Key Moment Extraction

Thus far we have proposed the basic framework that makes use of topological
relaxation algorithm and key moment extraction to guide and understand knot
deformation in the configuration space. Both topological relaxation and key
moment extraction are compute-intensive and time-consuming. In this section,
we first exploit parallelization to accelerate the computation needed for knot
deformation and key moment extraction. We have chosen OpenMP [1] as the
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Fig. 6: Critical changes captured from the deformation of K noté, with visual discontinuities
in successive frames. (a) Initial conformation with crossNum = 12. (b) crossNum = 9. (c)
crossNum = 7. (d) crossNum = 6. (e) Final conformation with crossNum = 5.
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Fig. 7: Aligning critical changes to reconstruct the key moments in the original deformation
of Knoté. The visual experience is improved from Figure 6.

parallel programming platform. Combined with the single program multiple
data (SPMD) processing model, OpenMP allows a straightforward conversion
from a serial process into a multi-threaded parallel manner, which is appro-
priate for accelerating the visual communication of the knot deformations in
our principal cases.

5.1 Accelerating the Deformation

We now focus on the function units in Algorithm 2 for potential parallelization.
In Algorithm 2, each iteration consists of five main steps: (1) calculating the
two forces for each vertex (line 2-5), (2) finding the maximum magnitude f
of all forces (line 6), (3) updating node position based on the calculated f
(line 7-9), (4) collision avoidance (line 10-12), and (5) key moment extraction
(line 13). Among these 5 steps, the computation needed for generating the
deformation can be accelerated. For example, the force calculation and the
position update for each vertex is independent of those for another vertex,
we therefore can parallelize the computing needed for force calculation and
position update. Since the maximum magnitude calculation only involves a
magnitude comparison, a linear execution should be very efficient. Collision
avoidance is a very critical step: each position update may introduce a new
collision, thus the state of each vertex depends on all related elements, so
collision avoidance and position renewal require one sequential process and
cannot be parallelized. In Figure 8 we use a flowchart to show the function
units in our parallel relaxation execution. Within this framework, all data
points are evenly distributed to the slave threads. Each thread calculates the
attractive force, the repulsive force, and the aggregated force for each single
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Fig. 8: Functional units in our parallelized topological relaxation.

vertex. After the calculation of the maximum magnitude of all forces through
the master thread, each vertex’s position is updated by the slave threads.

5.2 Accelerating the Key Moment Extraction

Our basic implementation of key moments extraction (presented in Section 4)
was a brute-force searching algorithm, which during the entire deformation
has to examine every single possible diagram of the evolving knot in order to
find out the one diagram with the minimal number of crossings at each time
point. Such brute-force searching suffers from very heavy computational cost,
at each time point, because it requires the knot to be rotated at many angles
in 3D space just to find out the knot’s crossing number (i.e., the invariant).
Since each such operation (rotation and calculation of crossings) is dependent
to others, we can again parallelize the key moment extraction with a multi-
threaded parallel framework. In our implementation, two lists named LV and
LP are used to store each projection value and projection diagram respectively.
The projection calculation is included within the parallel computation and
the projection value selection is outside the process. This is because we are
only interested in those projections with the maximum projection value and
compare them with others to identify the one with the minimal distance. The
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number of these projections of interest is small and the operation is lightweight.
After generating the projection values, a linear scan is used to yield a better
performance.

In Algorithm 3 we describe the above-mentioned process. We generate a
list of projections in a parallel way at the beginning. After that, the distances
between the last frame and the diagram projected by current viewpoint are
compared, the resultant viewpoint is the one with the highest entropy value
and lowest distance value. Figure 9 shows the process for Knotg. We first rotate
the knot to an arbitrary angle. Then a serial of projection values are examined
in parallel and the best projection is generated as the resultant diagram.

Algorithm 3: Key moments extraction in parallel.
Input: Initial Layout
Output: Best projection presentation
1 Initialize a empty projection list L P, projection value list LV, minimum distance

dmin 5

2 Calculate all projection value and store the value and the structure in LV and LP
respectively in parallel. Sort the LV to find projections owns same max projection
value;

3 for each same projection P in LP do
4 if d_ < dmin then
5 Update Pmax with P ;
6 Update din with d ;
7 end
8 end
y Candidate
List
Generate C\ """
EREER Candidate X
e Projection @
R R
. ._: : . ... . b Extract the
Al’bitl‘aly . . I SRR P P ¢ " .
Rotation
— b, . S

—

Initial
Status

Fig. 9: The projection values generated by the parallel brute-force method.
The knot incrementally rotates 1 degree along z,y, and z axis respectively
and examined in a parallel way.
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The speed-up for relaxation and projection search
for different number of vertices
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Fig. 10: The speed-ups of relaxation and projection search for different number
of vertices.

Our implementation is based on OpenGL and Windows Visual Studio
C++. The algorithms run on a Lenovo PC desktop with Intel 4-Core i7 CPU
1.8GHz. As mentioned above, we adopt OpenMP as the parallelizing imple-
mentation. We use speed-up= T;/T),, as our performance metric, where T is
the execution time of the serial algorithm, and T}, is the execution time of
parallel execution. To validate the performance improvement of our proposed
parallel algorithm, we test a set of knots with different number of vertices
ranging from 46 to 1000. (We note that knots of our interest in real applica-
tions have less than 200 vertices.) Figure 10 shows the speed-ups of relaxation
and projection search for different number of vertices. As is shown in the fig-
ure, both relaxation process and projection search are able to get around 3x
speed-ups in most scenarios in the execution supported by a 4-core proces-
sor. Overall, with parallelization, both relaxation and projection search are
processed in a faster way.

6 Communicating Knot Deformation with Real-time Key Moment
Extraction

Although a parallel execution in the above section can accelerate knot de-
formation and key moments extraction, the projection search itself is still
compute-intensive, and thus very time-consuming and nearly impossible to be
helpful in our real-time mathematical knot interface. In this section, we will
focus on a even more efficient approach to extracting key moments from long
mathematical deformations. We propose an adaptive view selection way to
accelerate our core computation components. Our fundamental techniques are
based in a wide variety of prior arts, including Vazquez’s the adaptive method
to compute best views to improve view selection performance by orders of
magnitude [26], Colin’s best viewpoint selection with octree for performance
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improvement [7], Lee’s center-surround operation on Gaussian-weighted mean
curvatures to capture the appealing regions automatically [15] etc.

6.1 Identifying Critical Changes by Adaptive View Selection

The performance bottleneck in our original method lies in the function to
identify critical changes at each time point, which is very compute-intensive
because it calculates the knot’s crossing number from all possible rotation
angles in 3D. In is possible to make the selection much faster. For example,
instead of rotating the knot, we can examine the viewpoint entropy values
from multiple viewpoints. A number of projection entropy values are generated
initially; if these values can be compared and used to find the most promising
direction for the next round of searching, our method can be more efficient
compared to the original brute-force one. In this approach our algorithm only
focus on the most promising searching area throughout the entire process, by
adaptively narrowing down to the best views using a coarse-to-fine strategy.

Our new algorithm starts with a coarse-grained space to calculate the view-
point entropy value at each sampling vertex, and a fine-grained local search
follows to find the best viewpoint recursively until a final optimal viewpoint
is reached. The main steps include:

1. Generate an initial set of viewpoints;

2. Evaluate each viewpoint and sort the viewpoint set sort in descending
order, and generate an initial triangular mesh with the top three best
positions;

Evaluate the middle points of each edge, and generate a new triangle;

4. Apply last step (3) recursively until the terminal criteria is satisfied.

w

6.1.1 Initial Viewpoints Generation

There are several viewpoint sampling methods, include longitude and latitude
sampling method [18], random sampling method [13], and pseudo uniform
method [3], etc. In order to cover an effective searching area with a reasonable
sampling distance, we start by sampling a set of points on the surface of
the sphere based on the subdivision of a regular icosahedron (see e.g., Figure
11(a)). This first-level subdivision will produce 12 sampling points around the
sphere, which form our elementary viewpoints. By applying the subdivision
rule recursively, we are able to narrow down the searching space gradually.

6.1.2 Initial Viewpoints Evaluation

After obtaining the initial candidate viewpoints, it is essential to evaluate these
viewpoints and find the next “good” starting point. Our proposed algorithm
does not cover a full searching space; however if the initial searching point
fails to provide the correct searching direction, the algorithm will correct it
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Fig. 11: Adaptive viewpoint selection. (a) The initial 12 sampling viewpoints on the icosa-
hedron. (b) The current best viewpoint. (¢) The first viewing triangle around the current
best viewpoint. (d) The first candidate viewpoints generated by midpoints from edges. (e)
The recursive generation of viewpoints. (f) The current projection presented by the view-
point in (b). (g) The current projection presented by the viewpoint in (d). (h) The final best
projection.

in the following iterations. We next evaluate and compare all the viewpoints
using Equ 3, and sort the viewpoints by comparing their entropy values in
descending order. If two viewpoints are associted with identical entropy values,
the comparison will continue to use their minimum distances, and will generate
an initial triangular mesh with the three best viewpoints (i.e., with largest
entropy value and minimum distance) from the last diagram (see e.g., Figure
11 (b) and (f).)

6.1.3 Adaptive Viewpoints Selection

Next we use the three mid-points at current view’s triangle edges to generate
next three viewpoints to continue viewpoint search (see Figure 11 (c)). By
calculating the viewpoint entropy values for the three views, we now choose
the new best view (see the mid-points colored in yellow in Figure 11(d), and
Figure 11 (g) shows the corresponding projection associated with this view-
point), and this allows us to identify the next six adjacent views (see the 6
colored in green in Figure 11(e)). Our view search procedure is then recur-
sively performed, leading to a finer searching area in each iteration, until the
terminating condition is satisfied (see Figure 11 (h)).

The description of this procedure is sketched in the following Algorithm
4. After the initial configuration step, the process is executed iteratively until
no higher projection value can be found or sampling points have reached a
threshold distance. With the adaptive viewpoint method defined above, the
best diagram can be identified in an efficient way.
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Algorithm 4: Best diagram identification with adaptive view selec-
tion

Input: Initial Layout

Output: Best Diagram with Maximal View Entropy Value
1 Initialize a set of viewpoints placed on icosahedron vertices around the object;
2 while un-visited viewpoints exist do

3 find the best viewpoint with maximum entropy value (maximal projective
length and minimal number of crossing);

4 while the entropy value of current best view is better do

5 Find all adjacent points, calculate all entropy values on the mid-point of
all edges;

6 Find the next viewpoint with the maximum entropy value and minimal
number of crossing;

7 Update new entropy value and un-visited viewpoints;

8 end

9 end

6.2 Reconstructing Key Moments from Identified Best Views

Compared to the brute-force best view searching strategy, the adaptive view
selection method covers a much smaller number of viewpoints and can still
obtain an approximate optimal projection value globally. Since the search does
not cover the complete searching space, we cannot use the same comparison
strategy to select the one that is best aligned to the original diagram. In order
to provide the desired visual continuity, we apply a rigid transformation to
“re-align” between the diagrams in the final visualization sequence.

We use a homogenous transform [5] method to align two resultant dia-
grams. Given two diagrams P4 and Pp, a homogeneous transformation can
be provided with an augmented transformation matrix, that contains the ro-
tation and translation between two the coordinates of two projections (see Eq.

5).
-5

where R = |ryy Tyy 7y |, T = [tm,ty,tz]t.
Tza Tzy Tzz

In the transformation matrix, R represents the rotations, 7" is the transla-
tion between the two frames. The second row is an orthonormal perspective
and homogeneous scaling factor.

With a linear regression to minimize the square of the residual, a volume
matrix A is obtained (Eq.6) to generate each column of the transformation
matrix (Eq. 7 - Eq.9).

(%) Yo(waiyai) Yo(raizai) Yo (Tai)
o | 2Eaya) Xyh) X(Waiza) 2(vai) (6)
So(zaizai) Y(yaizai)  Yo(24;)  2o(2a4)

Yo(xai)  do(yai) Y o(2ai) n
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where i € [1,n].

Tox %((mBil'Az;
Tey | _ -1 TBiYAi
rr| = A Sz @

te L 2 (@)

Tyx %EszmAz;

Tyy | _ [ 41-1 YBiYAi

Tyz N [A] Z(szZAz) (8)
Lty | L > (yBi)

_rzz_ _Z(ZBifL'Ai>_

T2y _ [A]fl Z(ZBzyA'L) (9)

T2z > (2Bizai)
| T2 ] | > (2B4)

We note that the best projections are all generated in xy plane. Since all
data points are in the same plane, A is not invertible. Here the pseudo-inverse
is used to replace the real inverse matrix. A general solution called Moore-
Penrose method is used [19] and an approximate inverse is generated through
SVD procedure. When the valid transformation is acquired, an accurate trans-
formation matrix can further produce the rotation angle. More derivation and
proof can be found in [5].

(a) (b) (c) (d) (e)
SR
1L ) LD

() (2) (h) (i)

Fig. 12: The critical changes extracted from the “monster” unknot’s deforma-

tion, using the adaptive viewpoint selection method.

With the best matching rotation angle, we find the optimal match between
the current key moment and last key frame, then rotate the current key mo-
ment in xy plane to approach the last key moment. In this way, the sequence
of visually continuous frames can provide a summary of the long knot defor-
mation. Figure 13 shows the improved key moment extraction where the least
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(a) (b) (©) (d) (e)

sl @
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Fig. 13: The critical changes extracted and aligned from the “monster” un-
knot’s deformation, compared to Figure 12.

2l &
L& Gl &L
(a) (b)

(c) (d) (e)

Fig. 14: The relaxation for Knot: with adaptive best projection presentation.

(a) (b)

(c) (d) (e)

Fig. 15: The relaxation for Knot} with improved aligning adaptive best pro-
jection.

interruptions are introduced in each of the snapshot with visual continuity
maintained across snapshots. Figure 14 and Figure 15 give the similar results
for Knot}.

6.3 Performance Evaluation

In order to validate performance improvement, we have tested the same set of
curves and make the comparison between brute-force and the adaptive view se-
lection method. Table 1 shows our results: the searching space for the adaptive
method is far less than the brute-force, thus it significantly reduces the time
complexity of the algorithm with significant speed-ups. We also observe that
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Table 1: Performance comparison between parallel brute-force and the adap-
tive view selection method

Parallel .
Vertex Number  Brute-Force Method Adaptive Method Speed-up
. Execute Time(s)
Execute Time (s)
46 6.031 0.219 27.54
65 10.391 0.25 41.56
87 16.969 0.766 22.15
96 21.031 0.578 36.39
200 68.641 2.078 33.03
300 145.688 3.5 41.63
400 253.063 6.032 41.95
500 427.187 9.281 46.03
600 603.922 13.422 44.99
700 804.61 19.719 40.8
800 1070 22.453 47.66
900 1370 29.281 46.79
1000 1680 36.703 45.77

knot diagram with large number of vertices will gain better speed-ups with
adaptive view selection method, which means the method will be particularly
beneficial for large and complicated diagrams.

%%
(e)

BHF 4% |

() (2) (h) (i) )

Fig. 16: The relaxation for complex unknot with adaptive best projection
presentation.

To further benchmark our algorithms, we introduce a complex knotted
curve (which is an unknot if untangled) and execute a complete topological
relaxation with both parallel brute-force algorithm and adaptive view selection
method. The resultant key frames are presented in Figure 16 and Figure 17
respectively. The result in these two figures shows that the adaptive view
selection method only need to examine a much smaller number of viewpoints,
while obtaining the same visual effects comparable with those from the brute-
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Fig. 17: The relaxation for complex unknot with improved aligning adaptive
best projection presentation.

force method and dramatically reducing the processing time to nearly real-time
fashion.

7 Conclusions and Future Work

Our ultimate goal is to facilitate our understanding of mathematical knots
and their topological refinement. In order to achieve this goal, we have pro-
posed a family of interactive methods and their parallelized counterparts to
simulate and visualize mathematical knot deformation with an energy based
model. To extract the critical changes and the moments associated with these
changes from the long sequence of deformation, we have proposed an innova-
tive method to computationally identify the critical changes that has occurred
in knot deformation, and capture them to visually communicate the entire
deformation.

Our future direction includes integrating with high performance computing
in the back-end to accelerate the mathematical knot deformation, and a user
interface for end users to easily interact with high performance computing re-
sources. Beginning with this primary framework, we plan to extend to attack
more complicated mathematical entities such as surfaces and manifolds em-
bedded in 4-dimensional space to understand and visualize their deformation
in a more effective parallelizing means.
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