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Abstract

We present a novel defocusing particle tracking velocimetry (PTV) method for microfluidic systems. This
method delivers 3-dimensional 3-component (3D3C) flow measurements, and does not require an additional
calibration procedure to obtain the relationship between particle out-of-plane position and its diameter\intensity. A
microfluidic device is mounted on a nano-positioning piezo stage that sweeps periodically in the out-of-plane
direction. A high-speed camera is synchronized with the stage to capture oversampled two-dimensional microscopy
images at different out-of-plane positions. 3D intensity volume is formed by stacking those 2D images. Flow
tracers are identified from the intensity volume by a 3D Hessian filter, and segmented by erosion-dilation dynamic
thresholding. Fitting of each identified-particle to a defocusing intensity model gives the parameters used in the
hybrid algorithm of particle image velocimetry (PIV) and a generalized multi-parametric PTV. Artificial image data,
generated from direct numerical simulations (DNS) of flow through porous media, are used for error analysis.
When compared with classic nearest neighbor tracking our method shows improvements on tracking reliability by
2.5%-12%, with seeding density as high as 1.6e-3 particles per voxel. Both mean and rms errors are improved by
80%-95% and 49%-74%, respectively. An application to micro-fluidic devices is presented by measuring the
steady-state flow through a refractive-index-matched randomly-packed glass bead channel. The presented method

will serve as a powerful tool for probing flow physics in microfluidics with complex geometries.
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1. Introduction

Microscale particle tracking velocimetry (uPTV) is ubiquitous in flow measurements for micro-fluidic
systems. To resolve the particle positions and track the 3-dimensional 3-component (3D3C) motion, multi-camera
systems with volumetric reconstruction, and single-camera systems with rotating pinhole scanning or astigmatic
lenses, have both been developed (Chen et al. 2009; Cierpka et al. 2010; Goesch et al. 2000; Ismagilov et al. 2000;
Kumar et al. 2011; Yoon and Kim 2006). However, these methods are difficult to implement and typically require a
complicated lens alignment or calibration procedure. A review of these techniques can be found in the paper by

Cierpka and Kéhler (2012).

Table 1 Details of recent defocusing PTV works for micro-fluidics

. Reported out-of-plane
. . Estimated .
Out-of-plane Requires |[Particle . uncertainty\error
Author o L particle - :
position based on |calibration | model . * Particle  |Displacement
density (ppp ) o
position |measurement
Winer et al. .
(2014) Image diameter Yes Yes 3.6¢-6 2 um N/A
Cross-correlation
Barnkob et al. with calibration Yes No 4.1e-6 1.9 ~4 um 1 ~2pum
(2015) .
1image set
Fuchs et al. Image diameter Yes Yes 1.0e-4 N/A 9 um
(2016) '
C}gr(l)le ;)a L Image sharpness No No 6.6¢e-4 50 um N/A

" the unit for estimated particle density is ppp, which stands for particles per pixel.

On the contrary, single-camera defocusing PTV receives less attention in the micro-fluids community
despite its simpler implementation, partially due to its limitation of low seeding densities and large out-of-plane (z)
measurement uncertainties. Pioneering works in this field include an approach with deconvolution microscopy
(Park and Kihm 2006) where the out-of-plane particle positions are obtained from their diffraction fringe radius, and
this method has been demonstrated by measuring the 3D Brownian motion of suspended nanoparticles (Park et al.
2005). In recent years, Winer ef al. (2014) proposed a calibration-based method that tracks cell-sized particles in
microscale flows. This method was only demonstrated at a seeding density of about 20 particles/image, and the
calibration procedure introduced a human-factor particle position uncertainty (about 2 pm) in the out-of-plane
direction. Barnkob et al. (2015) developed a method based on cross-correlation between experimental images and a
calibration image set with known out-of-plane positions. This method was demonstrated with distorted particles and
arbitrarily-shaped cells. The estimated mean errors for out-of-plane particle position (z) and out-of-plane
displacement measurement (w) were on the order of 1.9 ~ 4 um and 1 ~ 2 um, respectively. Fuchs et al. (2016)
reported a technique using experimental images for in situ calibration of the out-of-plane position based on the
particle image diameter, where the rms error of the out-of-plane displacement measurement (w) was estimated to be
9 um. This approach can only be applied to thin domains with flow confined within the imaging plane. However,

this is not the case for micro-fluidic channels with complex geometry, where all three dimensions are on the same

order of magnitude and flow is 3-dimensional. Chen et al. (2017) used a tunable acoustic gradient index (TAG) lens
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to obtain over-sampled 2D defocused particle images, and 3D PTV measurement was demonstrated in a T-junction
at low seeding density. The out-of-plane particle positions were determined by image sharpness estimation. While
the 50-pum-uncertainty of the particle position could be improved by reducing the finite scanning step size, their
algorithm does not allow sub-step-size position refinement. All aforementioned approaches suffer from either a low

achievable seeding density, or a large out-of-plane measurement uncertainty\error, as summarized in Table 1.

In this paper, we developed a novel experimental method for tracking particles in micro-fluidic channels
with complex geometry where the flow is highly three-dimensional. This method is based on a new particle
defocusing model, which captures both the out-of-plane and in-plane particle behaviors in an intensity volume. The
intensity volume is formed by stacking 2D images captured using a nano-positioning piezo stage. Micron-sized
particles are iteratively recovered and removed from the intensity volume by Hessian-based object identification,
which suppresses non-particle structures and speeds up the segmentation. A least-square fitting of the particle
model directly gives the 3D particle position with sub-voxel resolution, and consequently an additional particle
diameter\intensity calibration, which is commonly required by other defocusing PTV methods, is no longer
necessary. Unlike traditional defocusing PTV where particles are matched solely based on vicinity, velocity
measurements in this paper are obtained by multi-parametric PTV algorithm (Cardwell et al. 2011), which uses all
fitting parameters including particle positions to draw correspondence between frames. The information of local
coherence of particle motion (Fuchs et al. 2017) is also taken into consideration in the particle matching process.
Traditional defocusing PTV papers usually use a 2D simple Poiseuille flow with zero out-of-plane fluid motion for
error analysis, which prevents the performance evaluation of the out-of-plane velocity component, and contradicts
the purpose of 3D flow measurement. In this paper we utilize a highly 3D flow through porous media for a full error
analysis and evaluation of algorithm performance over seeding densities at least 10 times higher than the current
state-of-the-art defocusing PTV works. The proposed method has the advantage of easy implementation, and high

accuracy in the out-of-plane direction.
2. Experimental method

2.1 Particle defocusing model

The original model describing the defocusing particle intensity behavior was proposed by Olsen & Adrian
(2000). The model assumes a 2D Gaussian distribution for in-plane particle image brightness, and the integrated
intensity over the particle image to be invariant when imaging at different out-of-plane positions. This model has
been used by previous researchers to determine particle out-of-plane locations (Nguyen et al. 2012). After re-

grouping terms, we re-write the particle intensity model in Cartesian coordinates as in Equation (1),

I(X’ y7 Z) = kl + Ipeak (Z)]in—plane ('x’ y)
(z—kg)’ (x—ks ) +(r—kr )’ (1)

_ 2k 2Aks /4y ?
=k +|k,+ke ™ e ’
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where (x, y, z) represents voxel coordinates in the intensity volume with z as the out-of-plane direction. I;, . is the
in-plane particle intensity distribution, and /.. is the particle peak intensity in different imaging planes, which can
be approximated as 1D Gaussian (Adrian and Yao 1985). Parameters from k; to kg fully capture the particle
behavior in the imaging volume, and their physical meanings are shown in Table 2. For current study, those
parameters are particle-specific and determined from model fitting for each experimental particle individually from
the intensity volume. Therefore, they can be used to distinguish particles and draw correspondence between frames

in PTV in this study.

Table 2 Defocusing intensity model parameters

Parameters Physical meaning
ki, k> Background intensity level due to local illumination condition
ks, kg, ks Gaussian shape factor associated with physical particle size
ks, k7, kg Particle centroid in the intensity volume as (xy, vy, zy)

In-plane peak intensity
Fitted profile

Averaged profile by 1098 particles
One standard deviation

In-plane diameter

Field of focus |p.=kf|1 ............ Fitted z-centroid 2
55 . 55 S5 154
1t
50 = 50
_ _ _ 08
£ E = =
= 25 07 = Nl
N s 2 Nas =
0.5}
40 At
40+ f}%‘ § 40 15l
% y 1210 10 12 g 0.4 I A I 1 2 !
0 5 10 (um) 8 8 “x(um) 0 02 04 06 08 1 0 02040608 1 12
a b Yy c d
(@) d (um) ®) ©) loeu255 @ Toesilnee

Fig. 1 Example of micron-sized defocusing particles. (a) Particle in-plane diameter as a function of
zZ, (b) particle shown with diameter and peak intensity for each plane, (¢) particle peak intensity at
different z planes, (d) averaged intensity profile from 1098 experimental particles after model
fitting and standardization

To demonstrate that this model describes the defocusing behavior of real particles, 1-um fluorescent
particles were embedded in a polydimethylsiloxane (PDMS) target, and the intensity volume was recorded using the
experimental setup described in later sections, with a step size in the out-of-plane direction (z) of 0.1 um. Fig. 1 (a)
to (¢) shows an example particle from the volume. At each z, the in-plane diameter and peak intensity were
determined by least-square fitting to /;,.,..(x, y), and the peak intensity profile was then fitted to /,..(z). To obtain
the averaged profile in Fig. 1 (d), the peak intensity profiles of 1098 experimental particles were fitted individually
t0 Iyeqi(2). For each profile, the out-of-plane position was standardized by (z - z9)/o with z, = kg and o = k4 from each

fitting, and the peak intensity of each plane was normalized by I« = I(xy, vy, z9) = k1 + ko + k;. Finally, the
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standardized profiles were overlaid, and at each (z - zy)/o position the mean and standard deviation of the normalized
intensities were calculated and plotted. The intensity profiles of over 1000 particles collapse after standardization by
parameters from the proposed model, as indicated by the narrow standard deviation band, and this confirms that the

model is able to capture the behaviors of the particles to be used in the flow measurement.
2.2 Overview of processing algorithm

The data processing algorithm is illustrated in Fig. 2. For each intensity volume formed by stacking 2D
microscopic images, a Hessian filter identifies bright tubular structures as particle cores. Then a connected-
component analysis starting from identified cores segments the volume by erosion-dilation dynamic thresholding
(Cardwell et al. 2011). Least square fitting (LSF) of each segmented region to the defocusing model gives
parameters for particle intensity removal and later particle tracking. Model-fitted intensities of reconstructed
particles then are removed from the volume. The particle reconstruction is done iteratively until all desirable
particles are recovered. Finally, reconstructed particles are fed into our in-house 3D hybrid PIV-PTV algorithm for

flow measurement.

3D particle

. . PIV predictor
image velocimetry
Particle removal
from intensity volume
Hessian filtering and Multi-parametric Coherent
Image-stacked ) nng 3D least-square p . .
. . erosion/dilation . . reconstructed multi-parametric
intensity volume . particle model fitting . . R
segmentation particles particle tracking

+ Most-probable
| displacement

Fig. 2 Flow chart for the data processing algorithm

The detailed algorithms for particle reconstruction and tracking will be elaborated in the following sections,
with summaries of performance evaluation by numerical experiments using artificial images. The details of the

numerical experiments and a full error analysis are documented in Section 2 in the supplementary materials.
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2.3 Particle reconstruction method
2.3.1.  Particle segmentation and model fitting

Object detection by Hessian matrix is ubiquitous in image processing (Hsu et al. 2017; Klette 2014;
Lakemond et al. 2012; Leibe et al. 2008; Liu et al. 2010; Niemeijer et al. 2005), which speeds up segmentation by
suppressing false intensity peaks. For each voxel with intensity I(x, y, z), the Hessian matrix is composed by 2™

order central differences as in Equation (2),

ot T O
ox* 0xOy Ox0z
0’1 o1 oI
oyox 0y Oyvoz
o o S |

| 0zOox  0z0y 0z |

H(x, y,z) = (2)

Structures of interest such as sheets, blobs, and tubes can be identified by the eigenvalues and eigenvectors
of H(x, y, z) describing the principle directions of intensity change. When sorted in ascending order, the eigenvalues
(I41] £ 142 £145)) and corresponding structures are shown in Table 3, and stacked defocusing particle images contain a

core region that resembles a bright tube.

Table 3 Eigenvalues and corresponding structures

Al | Sign(4) | || | Sign(h) | 4] | Sign(4;) | Structure
Small + Small + Small + Noise
Small + Small + Large - Bright sheet
Small + Small + Large + Dark sheet
Small e Large - Large - Bright tube
Small + Large + Large + Dark tube
Large - Large - Large - Bright blob
Large + Large + Large + Dark blob

The voxels in the intensity volume with one small eigenvalue (0.2 |Amn.x) and two large negative
eigenvalues (-0.4 |A|max) are labeled as particle cores (yellow contours in Fig. 3a-b). The segmentation is performed
by first identifying all peak-intensity voxels among particle cores via dynamic erosion process. Then two separate
dilation procedures are performed starting from identified peak intensity voxels using the 26-neighborhood
connectivity as follows: a) Grouping only core voxels (yellow contours in Fig. 3c). The intensity weighted centroid
(IWC) and the span of this region serve as the initial values and the limits in least square fitting (LSF) procedure for
(ks, k7, kg). b) Grouping all bright voxels from original volume that belong to this particle, ensuring the maximum
amount of information is available for LSF. The particle centroid (ks, k7, k3) with sub-voxel resolution is obtained

by the LSF to the particle model in Equation (1), together with other five parameters (k;,345) that fully characterize

6
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the particles. In practice, the performance of the LSF depends heavily on the boundaries of parameter values, the
maximum iteration limit, the advancing step sizes, the termination criterion, etc. For a specific type of particle,
tunings of those options are recommended via some pilot testing before actual experiments. Fig. 3 shows the

segmentation and model fitting of one artificial particle.

{a) Hessian matrix (b] Hessian matrix (C) (d]

Eigenvalue A S WL Intensity volume

Eigenvalue A, &,/ Centerline intensity

Zlmax

ilrmx
1 1

O BRaw [
0.5 —— Fitted _ o)
- - - Centroid
2
L)
= 0
o
O
[
0.5
1
% (voxel)
1 = -
1
> : o
w
= X 1
g =05 - !
(%3] £ 1
= (o)
s dﬂoo
i : OQX)
. | "
" % 10 20
z (voxel)

Fig. 3 Particle segmentation and model fitting. Top view is the central x-y plane, while side view is
the central x-z plane. (a)-(b) Eigenmaps of the Hessian matrix for 4, and 4;. (¢) Intensity volume and
the identified core region. (d) Results of model fitting along the centerlines

2.3.2.  Particle intensity removal

Due to oversampling, each particle appears in multiple image planes. This leads to an increased probability
of particle overlapping compared with a regular PTV\PIV volume. To recover more overlapping particles, the
reconstruction operates iteratively as described in Fig. 2. In each iteration, only the “particles” whose intensities can
be well represented by the defocusing model are added to the list of successfully reconstructed particles, and the
model-fitted intensities are subtracted at each voxel. The degree of how well the intensities are described by the
model is quantified by coefficients of determination (R*). The R threshold depends on the experimental setup and
image quality, and is set to 0.90 for this study based on visual inspection. A lower threshold recovers more particles,
but risks allowing less ideal flow tracers, like particle clusters or non-particle impurities, to enter the particle

tracking process and results in erroneous flow measurements.
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Fig. 4 Example of removing particle intensity. (a) Side view (central x-z plane) of the volume. (b)-(c)
centerline fitting results of the left particle in x and z direction, respectively

The intensity removing procedure and the improvement of position estimation are demonstrated by the twin
artificial particles in Fig. 4. The right particle is first recovered and removed from the volume, which leaves the left
particle in an isolated environment. When the intensity values from the neighboring particle are removed, the
position estimation errors of the left particle are reduced from 0.06 voxel to 0.01 voxel in x direction, and from 0.02
voxel to 0.00 voxel in z direction. In general, when a particle is farther away from other particles, the model fitting

results in a higher R” value with a lower position error.
2.3.3. Performance evaluation of particle reconstruction

To evaluate the performance of the particle reconstruction algorithm, numerical experiments were
performed using artificial images at 9 seeding densities (c,,,) from le-4 to 1.6e-3 particles per voxel (ppv), or
equivalently c,,, from 2e-3 to 3.2e-2 particles per pixel (ppp), since each particle appears in about 20 image planes
across the out-of-plane direction. The artificial images of particles that follow the Olsen & Adrian (2000)
defocusing model were generated by our in-house MATLAB code, and then were analyzed by several particle
reconstruction algorithms with two of them presented in Table 4: 1) FT-IWC, simple segmentation by fixed-
intensity-value threshold (FT), with particle position estimation by intensity weighted centroid (IWC); 2) HeDT-
LSF-IPR, the proposed segmentation by Hessian-aided dynamic thresholding (HeDT), with position estimation by
least square fitting (LSF) of particle model, and an iterative particle removal (IPR) scheme. Performance measures

include particle yield rates (1), mean (e,..,,) and R.M.S. (e,,,) of particle position errors as
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ei,rec - (xi,rec xi,gen) (yi,rec yi,gen) (Zi,rec Zi,gen)

1 Nye » (3)
e =— E e.
mean 1,rec
Nrec i=1

1 Niyec 5
erms = N Z (ei ,rec - emean )

rec i=l

where N, and N,.. represents the numbers of particles generated in and reconstructed from the intensity volume,
respectively. And for each reconstructed particle (x, y, z); .., the corresponding true position is (X, ¥, 2);gen. A

detailed error analysis could be found in Section 2.4 in the supplementary materials.

Table 4 Summary of performance improvement

Conm FT-IWC | HeDT-LSF-IPR
1.0e-4 80.67% 98.33%
" 1.6e-3 69.58% 61.27%
o cvoxcl) 1.0e-4 0.56 0.05
mean 1.6e-3 0.97 0.32
o (voxe]) 1.0e-4 0.39 0.17
rms 1.6e-3 0.79 0.46

For position estimation errors, e, and e,,; of FT-IWC are consistently higher than our proposed method
for all seeding densities. With Hessian filtering and model fitting, our algorithm rejects “particles” that overlap too
much when there is no bright tubular structure, or when R? falls below the threshold. As a result, our method
reduces e,,.., by 91% at ¢ = le-4 ppv, and 67% at ¢ = 1.6e-3 ppv. The e,,, reduction is not as significant, but our
method still delivers a more robust position estimation. As for particle yield rates, the FT-IWC method recovers
about 70%~80% of the particles in the volume regardless of seeding densities. Our method recovers 22% more
particles than FT-IWC at ¢ = le-4 ppv. For higher seeding densities, overlapping particles form intensity clumps,
inside which the position of each particle cannot be determined accurately. When c,,, goes beyond 1.6e-3, our
method is likely to fail in keeping errors below 0.5 voxel, and the improvement of particle yield rate is not as

rewarding. This indicates seeding densities above 1.6e-3 ppv should be avoided in real experiments.
2.4 Particle tracking algorithm

As described in Fig. 2, the flow measurement is achieved by a hybrid PIV/PTV algorithm. PIV predictors
are obtained by two passes of robust phase correlation (RPC) (Eckstein et al. 2008; Eckstein and Vlachos 2009) with
75%-overlapping interrogation windows of 64 x 64 x 64 voxels and 32 x 32 x 32 voxels, respectively. Depending
on the PTV algorithm, the PIV velocity field is used either to predict particle positions in the second frame, or to

indicate the search radius for displacement histogram construction, as further elaborated below.
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2.4.1.  Generalized multi-parametric PTV

The idea of multi-parametric PTV utilizes particle properties or features besides their locations to draw
correspondence of particles between frames. In the original MP3-PTV method (Cardwell et al. 2011), only the
diameter and intensity of each particle are used for tracking. For current study, we expand the MP3-PTV to
arbitrary number of tracking parameters, as long as those parameters help distinguish particles. We introduce a new
generalized particle with spatial coordinates (x, y, z), which vary as a function of time, and a list of properties
(P123...m), which only change slightly over frames. These properties could be diameter, peak intensity, or size,
aspect ratio, and fluorescence color. The tracking is then performed in the (M+1)-dimensional particle feature space.
We utilize the relatively stable properties (P12, m), together with spatial information from (x, y, z), to find the most
probable matching between particles. Among all possible matching particles j with (x;, y;, z) in the second volume,
the pairing particle k is chosen as the one with the minimum weighted deviation from particle i in the first volume by

Equation (4).

\/(x_/.—x".)2+(yj—y’,.)2+(zj—z‘i)2 Mo |P . —P,.
X x)’z+;7|P j—Pm,min

m,max

e, 4

search

k=argmin i
€8 W,\'vz +Z Wm

m=1

where S is a searching neighborhood within a user-defined radius (Ryearen) around the PIV-predicted position (x;, ¥,

z’;) in the second frame of particle i, and w,,,. and w,, are the associated weights.

2.4.2.  Coherent multi-parametric PTV

The legacy usage of the nearest neighbor term (\/(x, _x'_)z (v, _y'_)z +(z, _Zv_)z ) in Equation (4) usually
i i Jj i Jj i

leads to erroneous measurement. The right pairing is not necessarily the matching between closest particles, but
should yield a displacement that follow the flow trend coherently in its neighborhood. Inspired by the tracking

approach proposed by Fuchs et al (2017), here we define a coherence deviation as in Equation (5),

2

Py =[x =3) =% ] +[ (3, 3)-05 ] +[(,-2) -2z ] - (5)

for all possible pairs (i-j) between two frames. Here (4x;, 4y;, 4z;) indicates the most probable displacement in a
neighborhood (S) centered at particle (x;, y;, z;) in the first frame. Within S, all particles in the first frame have
possible matchings to all particles in the second frame, and displacement histograms for (4x, 4y, 4z) are constructed
using those possible matchings. The most-probable displacement (4x;, 4y;, 4z;) is obtained as the displacement

corresponding to the histogram peaks, as explained in details in Fuchs et al (2017).

In this study, PIV predictors are used to guide the histogram construction. For example, given a particle (x;,

Vi, z;) in the first frame, only matchings that yield displacements with each component less than 5 voxels off the

10
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interpolated PIV displacement at (x;, y;, z;) are considered in the histogram construction. Finally, the coherence
deviation replaces the nearest neighbor term in Equation (4) as the information from spatial coordinates (x, y, z),

then we come to the final form of Equation (6),

o P =F]
T XW, +z XW,
b co,max - L’() min | m,max - m mm b (6)
k=argmin
/<8 Wca +z Wm

where for this study, the model fitting parameters k3 s are taken as particles properties Py,5 5. The sensitivity
analysis of the weights (w., w;, ;. s) associated with each tracking parameter is not included in this study, and the

weights are set to be equal for simplicity.

2.4.3. Performance evaluation of tracking algorithms

Numerical experiments using artificial images were performed to evaluate the performance of the particle
tracking algorithms. The Hagen—Poiseuille flow through a rectangular duct was chosen by previous researchers
(Barnkob et al. 2015; Winer et al. 2014) to quantify defocusing PTV measurement error due to its simplicity.
However, the out-of-plane velocity component of Hagen—Poiseuille flow is zero, which limits the corresponding
error evaluation. In current study, the benchmark field used to synthesize artificial images was generated by direct
numerical simulation (DNS) of flow through randomly-packed beads of diameter D (Aramideh et al. 2018), as
summarized in Fig. 5. This flow filed is highly 3-dimensional with a large dynamic range as shown in the
probability density functions (PDFs) of velocity magnitude and orientation. Performance measures include standard
track yield rates (Ey), track reliability (£z), mean (e..;) and R.M.S. (e,,s) of velocity measurement errors. See
details of the artificial image generation and full error analysis in Section 2.5 in the supplementary materials. Please
note that the random motion of particles due to Brownian effect was not simulated in the numerical experiments, and

consequently the associated bias error is not captured in the performance measures for all PTV methods evaluated.

(a) PDF of velocity magnitude (b)
10° : 109

PDF of velocity orientations  (C) Cropped cube of 3Dx3Dx 3D (d) Cross-sectional view of midplane

1072 ] 102!
— L
Q a
a o
107} { 104}
—— Azimuth ¢
- - - Elevation 8
& | e I
10
%% 2 4 6 -mo-m2 0 w2 om
Unag’Yavg ¢,0/radians

Fig. 5 The benchmark flow field used to evaluate PTV performance. (a) the velocity magnitude PDF,
(b) the velocity orientation PDFs, (¢) the 3D rendering of packed beads, and (d) a cross-sectional
view of the mid-plane
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Performance of particle matching

The total number of particle pairs generated in the original volume is Ny. And N, represents the number of

particle pairs remaining in the volume after particle reconstruction. The ratio of those two

N,
B, == (7)
NV

quantifies the particle reconstruction efficiency, and sets the upper limit of tracking yield rate, which is defined as

N,
Y (8)

where Np is the number of tracks yielded from particle tracking without validation. The tracking reliability is

evaluated by checking if each track represents one of the actual particle pairs in the original volume,

E,=—= 9)

where Ny is the number of validated tracks, and this quantifies to what degree yielded vectors from a tracking

method can be trusted.
Performance of flow measurement

The measurement error of each track (u, v, w); was quantified by comparison with the spline-interpolated

DNS velocities (u, v, w); pys at measurement position (x, y, z); by

€= \/(ul ~U; s )2 + (Vi —Vi.DNs )2 + (Wz — W, bas )2 (10)

where the measurement position was the track mid-point. Low velocity measurement errors require both a high

vector reliability and low particle position errors. Then the mean and R.M.S. errors were calculated over the entire

domain by
1 e
emean = N_ el
i=1
2 (11)
Np
1 2
erms a0 el - emean )
\/ND i=1

Overall PTV performance

A new performance measure as defined in Equation (12), is introduced to capture the overall performance:
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&= EOverall X (1 - etotal,% ) H (12)

where £, captures the overall matching performance, and e, o is the total percentage error with respect to the

maximum velocity magnitude (u,,,) in the field as defined in Equation (13),

EOverall = EY x ER
2 2
e +e (13)
_ mean rms 0
Cootal e = — x100%

max

Summary of performance improvements

The performance of the PIV predictor, together with two PTV algorithms at two extreme seeding densities
(le-4 and 1.6e-3 ppv or equivalently 2e-3 and 3.2e-2 ppp) are presented in Table 5: 1) NN, a classical nearest
neighbor tracking of FT-IWC particles (Barnkob et al. 2015; Fuchs et al. 2016; Winer et al. 2014), using PIV
predictors and a fixed search radius (5% of D) as a baseline; 2) CoMp, our proposed coherent multi-parametric

method tracking HeDT-LSF-IPR particles with a PIV-aided histogram construction.

Table 5 Summary of performance improvements

Copy PIV NN [ CoMp
1.0e-4 | 305% | 47.8% | 90.9%

Ey 1.6e-3 1.9% 48.4% | 49.6%

£ 1.0e-4 | 51.4% | 99.1% | 99.8%

R 1.6e-3 | 53.3% | 853% | 95.7%
e (voxel) 1.0e-4 0.92 0.86 0.04
mean 1.6e-3 0.92 1.46 0.29
0., (voxel) 1.0e-4 0.66 0.70 0.18
rms 1.6e-3 0.72 1.87 0.96
. 1.0e-4 0.14 0.42 0.89
1.6e-3 0.01 0.32 0.43

In terms of tracking performance, at c,,y = le-4 our proposed method shows improvement of £y by about
90% over the NN method, thanks to the ability of recovering more particles by HeDT-LSF-IPR. And at ¢, = 1.6e-
3, our method shows improvement of £ by 12% over the NN method, since the particles are better distinguished
with more tracking paramters. As for velocity measurement, the reduction of both e, and e, are 95%, 74%
respectively at ¢,y = le-4, and 80%, 49% respectively at c,,, = 1.6e-3, when compared with NN method. As a
conclusion, our proposed method delivers more reliable measurements with lower errors when compared with PIV
predictor and nearest neighbor tracking, as captured by the highest value of e. Note that the introduced measurement

¢ is bounded in [0,1], where 1 corresponds to the best performance possible.

13
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3. Experimental demonstration: flow through a glass bead channel

3.1 Experimental setup

A schematic drawing of the experimental setup is shown in Fig. 6(a). A microfluidic channel is mounted
on a 100-um-range piezo stage (Nano-Z100-N, Mad City Labs Inc.). Integrated with an inverted microscope
(Eclipse Ti-E, Nikon Instruments Inc.), the piezo stage position control and the camera synchronization are realized
via a DAQ board (USB-6363, National Instruments) with Data Acquisition Toolbox (MATLAB, The MathWorks
Inc.). For recording each volume, the stage moves in a step-wise manner from z =0 pm to 100 pm to volumetrically
scan the flow field at a maximum out-of-plane speed of 1 pum/ps, as illustrated in Fig. 6(b) (five steps shown for
simplicity). This scanning speed should be determined according to the scanning depth and recording time by us.a, =
(Zmax — Zmin)/ Tree- The recording time (7,..) should be adjusted by performing pilot testing before actual experiments,
in order to restrict the maximum inter-plane particle displacements within the same volume to less than 1 voxel. If
the particle intensities in the recorded volume seems skewed towards the flow direction, 7,.. need to be reduced such
that with sufficiently high u.,, the particles are ‘frozen’ in their places while the instantaneous scans are being
recorded by the camera. On the other hand, the idle time (7};) should allow the flow to develop before capturing
next volume, and the ideal inter-volume particle displacements is about 10 voxels. At each z step, the camera is
triggered once to capture one image. After the entire volume is recorded, the stage returns to z = 0 um. The stage
has an internal position sensor with sub-nanometer resolution that sends a feedback signal, which is recorded to
ensure the images are captured at desired elevations. For a step size (4z) of 1 um, the repeatability of the stage is
experimentally estimated to be on the order of 30 nm (or 3% of 4z, see Section 1.1 in the supplementary materials

for details), which ensures low uncertainty of the particle z positions without calibration.

(@) Excitation LED Micro-fluidic (b) T T AT
channel : T .
I Piezo stage [dz
= Particle ) position
. | emission light Pi€zo : |
: stage : : Zmin
E Stage Microscope Camera nnnt
E control triggering _IU_UL i UJLUL

Camera
Triggering™ Ol =] "R
signal -
C—JO=sssssssnmnmnnss= = B Dlgna 1------

Reservoir Intensity Volume N Intensity Volume N+1

Fig. 6 (a) Schematic drawing of the experimental setup. (b) Camera-stage synchronization and
data recording (five steps shown for simplicity)

To demonstrate flow measurement in microfluidics with complex geometry, a flow channel was fabricated
using rectangular borosilicate glass tube (LRT-060-6-40, F&D Glass) with inner dimensions 50 mm x 6 mm % 0.6
mm (length x width x depth). This channel was fully packed with 200-um-diameter borosilicate glass beads
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(BSGMS-2.2 180-212um, Cospheric LLC), which gave 3 to 4 layers of beads across channel depth. To eliminate
trapped air in unconnected pores, empty glass tube was first saturated with working fluid, and then glass beads were
deposited freely into the tube. The channel was then assembled with 3D-printed flow inlet/outlet and sealed by
epoxy binding agents. From scans obtained by a pCT microscope (Zeiss Xradia 510), the porosity (void fraction)
was estimated by Otsu’s binarization (Otsu 1979) to be around 0.34, which is close to the maximally random
jammed (MRJ) monodispersed sphere packings (Klatt and Torquato 2016) where the mean pore size is around 0.063

bead diameter, or 12.6 um for current study.

The reservoir was open to atmosphere, and the flow was generated by a syringe pump (PHD ULTRA,
Harvard Apparatus) at a volumetric flow rate of 1.0 uL/min, which resulted in an estimated Reynolds number of
0.0015 based on bead diameter, or 0.0001 based on the mean pore size. The working fluid was a mixture of distilled
water (7% weight) and dimethyl sulfoxide (W387520, Sigma-Aldrich), which matched the refractive index (nD) of
the glass beads at nD = 1.468. The tracer particles were 1 pm carboxylate-modified Nilered fluorescent particles
(excitation/emission maxima at 535/575 nm, FluoSpheres F8819, Invitrogen) and were excited by a green
continuous LED light source (550/15 nm, 260 mW, SPECTRA X Light Engine, Lumencor Inc.). The particle-
emitted light went through a 10 X objective lens (CFI Plan Fluor, Nikon Instruments Inc., NA = 0.3, W.D. = 16 mm)
and a polychroic and a CFP/YFP/M-Cherry bandpass filter cubes (440/30 nm, 510/10 nm, 575/25 nm, Lumencor
Inc.), then was captured by a CMOS camera (Phantom Miro M340, Vision Research, 10 pm pixel size). The
combined magnification ratio (M,,) was 1 um/pixel, and the depth-of-focus was estimated to be around 6.72 pum.
Fifty 100-image stacks (Az = 1 pm) were captured with a temporal resolution of 1 second between volumes. The
image size was 1000 X 1000 pixels, resulting in a measurement domain of 1000 X 1000 X 100 pum’ near the
channel center. For each voxel (x, y, 2);g in the imaged volume, corresponding world coordinates (X, Y, Z), is

obtained via simple relationships in Equation (14),

(X_X()’Y_},())Uly‘ :Mxyx(x_XO’y_yO)img
(2-2,), =Azx(z-z)) ’

img

(14)
obj
where (X, Yo, Zo)or; and (xg, yo, zp)img correspond to the same reference point in the channel, and this correspondence
need to be calibrated prior to the experiment by adjusting the dial for stage vertical offset level on the microscope,
and bringing the reference point well into focus. The reference point could be a feature structure of measurement
interest, e.g. the top\bottom of the channel, the intersection of a Y junction, or the midpoint of a backward facing

step. For current study, due to random packing this reference point was arbitrarily chosen as the surface of one glass

bead.

See details of the refractive index matching, porosity estimation, stage repeatability estimation, and a
detailed walk-through of the procedure for choosing T, and T} in Section 1 of the supplementary materials. Flow
measurements were obtained by three methods separately: 1) PIV, direct cross-correlation of intensity volumes, 2)
PTV-NN, nearest neighbor tracking of FT-IWC particles, and 3) PTV-CoMp, our proposed method tracking HeDT-
LSF-IPR particles. The measured fields were validated by local median filters.
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3.2 Experimental result

A visualization of flow tracers going around glass beads in a 250 um X250 um X100 pm cropped region
around the measurement domain center is shown in Fig 7. This region consists four contacting glass beads forming
one pore body and four pore throats. The glass bead positions were estimated by overlaying raw 2D particle images
of each imaging plane over time sequence, and the overlaid particle images of the z = 100 um imaging plane is
shown in Fig 7(a) as an example. The bulk flow was along the positive X direction (from left to right). Out of total
1974 Lagrangian PTV tracks over 50 seconds, only 86 are shown for better visual presentation without few track
overlappings in Fig 7(b). Each color represents a unique Lagrangian track, and the time lag between two adjacent

points on the same track is 1 second. The 3D visualization of the beads and tracks are shown in Fig 7(c).

(a) Overlaid particle images (b) Top view (c) 3D view
BRENTN B O
200
- 100
E — . _—
X 150 £
s 1S EA
> - > 100 N ol
250
200

150 - 200
\ S Y (um) 1% S 100
X (voxel) 0 50 ;{()tzpn:so 200 250 0 0 X (um)

(e) Right view

=

(d) Front view

B - - 100
A B R

Es0 £ 50}
N | N
Gn

0 50 100 150 200 250 00 50 . 150 200 250
X (um) Y (um)
Fig 7 Visualization of PTV results of the center domain. (a) The overlaid particle images for the z =

100 pm plane over the entire time sequence. (b-e) PTV tracks going around four contacting spheres
shown in the top view, the 3D view, and two side views.

Furthermore, Fig 7(b) shows that the particle tracks follow the bead curvature. And the closer the tracks to
bead surfaces, the distance between the adjacent two points on the same track is shorter, indicating a lower flow
velocity near the boundaries. The typical reasons for track termination include particle reconstruction failure due to
image quality of some of the frames, and particles moving out of the 100 um vertical scanning range (see tracks near
the top plane with the tread of going “into” the cut-out part of the beads). This implies although the current flow
channel has a large aspect ratio (width/height = 10) and there are only about 4 beads across channel height, the out-

of-plane motion of the flow is not negligible.

To characterize the measured flow field and show comparison with baseline methods, the PDFs of velocity
magnitude (U,q), azimuth angle (¢), and elevation angle (6) over the entire measurement domain and time sequence

are constructed and plotted in Fig. 8. The PDFs for PIV were constructed after masking out the measurements in the
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solid phase, based on overlaid particle images over the entire time sequence similar to Fig 7(a). The velocity
magnitude is non-dimensionalized by the average velocity magnitude (U,,), which is estimated from the
measurement to be around 6.30 pm/s, or 6.30 voxels/frame. With an interrogation windows of 64 x 64 x 64 voxels
on the first pass for the PIV predictor, the maximum displacement that was captured was around 10U,,,. However,
since only a small portion of the flow channel was measured (half bead diameter in the out-of-plane direction), this
U,y should not be interpreted as the characteristic velocity of flow through porous media. The results of PTV-
CoMp show qualitative agreements with previous studies (Aramideh et al. 2018; Datta et al. 2013; Matyka et al.
2016). The U, PDF peak lies in the low range (U,u,e < U,y,), which implies that very low flow velocity occurs in
most of the domain. The PDF decays in a similar manner as Fig. 5(a), but only up to U,,e/U,,,=4. This might be
due to the fact that higher velocities did not occur in the narrow scanning volume, or the estimated U, is higher
than the actual characteristic velocity for the entire channel. The PDFs of PTV-NN and PIV follow the PTV-CoMp

in the middle range but deviate for both small and large values of U,/ U,y

1((?2 PDF of magnitude (?2)0 PDF of azimuth angle ¢ (1CO)G PDF of elevation angle @
o S
| QOOBE & 1270
107 ¥ > 98, {107} _¢° % L 107} 8 8,
0 % o ) 8 f o° %
L s O@ e s o 80 | w , O (&)
2107 | Q 2102 | o 910 o o
vOo go 0
10% o 10° 107 | ¥
¢ o t ¢ PTV-CoMp
O PTV-NN
0 PIV
-4 . -4 . -4
e v 2 3 a4 Wr w2 0 w2 x Wrom2 0 a2 o«
Umag/Uavg @/radians Q/radians

Fig. 8 Normalized probability density functions (PDFs) of (a) velocity magnitude, (b) velocity
azimuth angle, and (c) velocity elevation angle for PTV-CoMp, PTV-NN, and PIV measurements.

As for velocity directions, both PDFs of PTV-CoMp have peaks located at 0 radians. This implies that the
flow is mostly along positive X, which is the pump-exerted flow direction. Both PDFs decay and remain symmetric
with respect to zero, in similar patterns as Fig. 5(b). The fact that a small portion of the azimuth angle (p) PDF lies
outside the [- n/2, + m/2] range implies that a reversing flow occurs around the beads. This has been observed and
reported by previous works (Aramideh et al. 2018; Datta et al. 2013; Matyka et al. 2016). The PDF of azimuth
angle (¢) from PIV seems to deviate severely from the trend observed in both PTV-CoMp and DNS from Fig. 5(b),
confirming that it is not suitable for flow measurement in complex geometries due to bias error near frequent solid-
liquid interfaces. The PDFs for PTV-NN show approximately same trends as PTV-CoMp, but with more
fluctuations when |g| is larger than w/2. Among the three measurement methods, our proposed PTV-CoMp method
shows the best capability of resolving the highly three-dimensional flow field over a large dynamic range in the

glass bead channel.
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4. Conclusion and discussion

A new 3D defocusing model was proposed which captures the particle behavior in intensity volumes
formed by stacking 2D defocusing microscopy images. Micron-sized particles are reconstructed from the intensity
volume by a Hessian-aided dynamic segmentation and least-square fittings to the proposed model. An iterative
particle removal regime was implemented to accommodate high seeding density up to 1.6e-3 ppv (3.2e-2 ppp). The
model fitting directly gives 3D particle positions and does not need a separate particle diameter\intensity calibration
process in the out-of-plane direction, owning to high repeatability of the piezo stage. However, since the current
particle model assumes depth-wise symmetric intensity profile with respect to particle location, the estimation of
particle out-of-plane position is subject to bias error. Replacing the current defocusing model with one that
faithfully captures the depth-wise asymmetry of the fluorescent particles could potentially lead to better flow

measurement accuracy.

The model fitting also gives parameters that distinguish particles, and are used as tracking properties in
hybrid PIV-PTV algorithm for flow measurement. The effect of parameter weights on tracking accuracy is not
quantified in the current study. In practice the authors recommend heavier weights on the parameters with larger
variance over all particles. However, for applications where the properties of the seeding particles are rather
uniform with little variations and the background illumination is absolutely uniform, there will be no additional
information available to distinguish them based on those parameters (k; to ks). Those parameters could then

potentially be obtained by a pilot testing, and tabulated for future usage.

By error analysis using artificial data set, the proposed method shows improvements over other defocusing
particle tracking methods, in terms of achievable seeding density, particle position accuracy, and particle tracking
performance. In the numerical experiments, the effect of stage scanning speed was not simulated in the data set, and
the intensity volume was assumed to be recorded instantly. To have a similar performance of the data processing
algorithm when applied to real experimental data set, the stage scanning speed need to be sufficiently high such that
the particles are ‘frozen’ in their places while the scans are being recorded by the camera. Another limitation is the
bias error associated with Brownian effect, which is not accounted for in the numerical experiments. When applying
the proposed method to sub-micron particles, magnitude of Brownian motion needs to be estimated and considered,

which should affect the accuracy of the proposed method.

A proof-of-concept experiment of flow through porous media shows qualitative agreement with both
numerical and experimental results in the literature. In order to provide a full quantitative comparison between
experiment result and DNS result, flow measurement and simulation under the same flow condition and exact
packing geometry are necessary. However, this is beyond the scope of the current methodology work, which

necessitates future efforts dedicated to the investigation of the flow physics and transport phenomena at pore-scale.

The influence of the relative ratios between out-of-plane scanning step size, depth-of-focus (DOF), and
particle diameter on measurement performance is not systematically investigated. However, for actual application

the scanning step size and particle size selection need to be optimized according to the DOF based on the specific
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optical setup and application needs, such that: 1) within each xy-plane, size of in-focus particle images should be at
least 3 pixels in diameter, similar to regular planer PIV\PTV applications (Brady et al. 2009); and 2) in the out-of-
plane direction, there are at least five scans of one particle within the DOF to accurately determine the particle

position in z.

In the proposed method, the piezo stage scanning speed (~ 1 volumes per second) is limited by the stage
inertia and the precaution that the flow within the channel should not be affected by the stage scanning motion. Due
to similar scanning procedure and data structure, by replacing our piezo stage with a piezo-actuated objective lens or
an inertia-free axial-scanning tunable acoustic gradient index (TAG) lens (Chen et al. 2017; Shain et al. 2018),
similar intensity volumes can be obtained. With the same data recording scheme, our particle recovery and tracking

algorithms then can be directly applied for flow measurement at higher temporal resolution.
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