ISRAEL JOURNAL OF MATHEMATICS 234 (2019), 179-208
DOI: 10.1007/s11856-019-1916-0

THE RADO PATH DECOMPOSITION THEOREM*

BY

PETER A. CHOLAK AND GREGORY IGUSA
Department of Mathematics, University of Notre Dame
Notre Dame, IN 46556-5683, USA
e-mail: Peter.Cholak.1@nd.edu, gregigusa@gmail.com
URL: hitp://www.nd.edu/"cholak

AND

Lupovic PATEY
Institut Camille Jordan, Université Claude Bernard Lyon 1
48 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
e-mail: Ludovic. Patey@computability. fr
URL: hitp://ludovicpatey.com

AND

MARIYA I. SOSKOVA

Department of Mathematics, University of Wisconsin-Madison
480 Lincoln Dr, Madison, WI 53706, USA
e-mail: msoskova@math.wisc.edu
URL: hitp://www.math.wisc.edu/ " msoskova

AND

DAN TURETSKY

Department of Mathematics, Victoria University of Wellington
PO Box 600, Wellington 6140, New Zealand
e-mail: dan.turetsky@uuw.ac.nz
URL: http://tinyurl.com/dturetsky

* This work was partially supported by a grant from the Simons Foundation
(#315283 to Peter Cholak). Igusa was partially supported by EMSW21-RTG-
0838506. Soskova’s research was supported by National Science Fund of Bulgaria
grant #01/18 from 23.07.2017 and by National Science Foundation grant DMS-
1762648.

Received October 4, 2017 and in revised form December 31, 2018

179

180 P. A. CHOLAK ET AL. Isr. J. Math.

ABSTRACT

Let c: [w]?> — r. A path of color j is a listing (possibly empty) of integers
{ao,a1, a2 ...} such that, for alls > 0, if a; 41 exists then c({ai,ai+1}) = j.
A empty list can be a path of any color. A singleton can be a path of any
color. Paths might be finite or infinite. The color is determined for paths
of more than one node. Improving on a result of Erdés, in 1978, Rado
published a theorem which implies:

RADO PATH DECOMPOSITION: Let ¢ : [w]? —r. Then, for each j < r, there
is a path of color j such that these r paths (as sets) partition w (so they
are pairwise disjoint sets and their union is everything).

Here we will provide some results and proofs which allow us to analyze

the effective content of this theorem.

1. Introduction

Fix ¢ : [N]? — 7, an r-coloring of the pairs of natural numbers. An ordered list of
distinct integers, ag, a1, a2, ...0;—1,a;,a;41, ... is a monochromatic path for
color k, if, for all ¢ > 1, ¢({a;—1,a;}) = k. The empty list is considered a path
of any color k. Similarly, the list of one element, ag, is also considered a path
of any color k. For any monochromatic path of length two or more the color is
uniquely determined. Paths can be finite or infinite. Since all paths considered
in this article are monochromatic we will drop the word monochromatic.

Definition 1.1: Let ¢ be an r-coloring of [N]? ([n]?). A path decomposition
for c is a collection of r paths Fy, P,. .., P._1 such that P; is a path of color j
and every integer (less than n) appears on exactly one path.

Improving on an unpublished result of Erdés, Rado [11] published a theorem
which implies:

THEOREM 1.2 (Rado Path Decomposition, RPD, or RPD,.): Every r-coloring
of the pairs of natural numbers has a path decomposition.

In Section 2, we provide three different proofs of this result. The first proof
makes use of an ultrafilter on the natural numbers. This ultrafilter proof is
clearly known but has only recently appeared in print; see Lemma 2.2 of [1].
The remaining proofs are interesting new modifications of the ultrafilter proof.

All of the proofs presented are highly noncomputable. In Section 3, we show
that a noncomputable proof is necessary. A coloring ¢ : [N]> — r is stable if
and only if lim, c({z,y}) exists for every x. We show there is a computable

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 181

stable 2-coloring ¢ of [N]? such that any path decomposition for ¢ computes the
halting set. In Section 4, we give a nonuniform proof of the fact that the halting
set can compute a path decomposition for any computable 2-coloring.

In Section 5 we show that if our primary A9 construction from Section 4 fails,
then it is possible to find a path decomposition which is as simple as possible:
one path is finite and the other computable. But even with this extra knowledge,
we show, in Theorem 5.7, that there is no uniform proof of the fact that the
halting set can compute a path decomposition for any computable 2-coloring.
In Theorem 5.8, we improve this to show no finite set of AJ indices works.

In Section 7 we show that the halting set can also compute a path decompo-
sition for stable colorings with any number of colors. The rest of Section 7 dis-
cusses Rado Path Decomposition within the context of mathematical logic and,
in particular, from the viewpoint of computability theory and reverse mathemat-
ics. In Section 6, we discuss two differences between Rado Path Decomposition
and Ramsey’s Theorem for pairs.

Most of the sections can be read in any order, although Section 5 relies on
Section 4, and Section 7 relies on Section 2.

Our notation is standard. Outside of Sections 1.1 and 7, and possibly Sec-
tion 5, our use of computability theory and mathematic logic is minimal and
very compartmentalized. One needs to be aware of the halting set and the first
few levels of the arithmetic hierarchy. A great reference for this material is
Weber [14]. For more background in reverse mathematics, including all notions
discussed in Sections 1.1 and 7, we suggest Hirschfeldt [6].

Our interest in the RPD was sparked by Soukup [12]. Thanks!

1.1. RPD WITHIN THE FRAMEWORK OF COMPUTABLE COMBINATORICS. In
computable combinatorics we consider combinatorics principles as instances-
solutions pairs and compare the computational power of solutions. With RPD,.,
an instance is an r-coloring and a solution is a path decomposition. With Ram-
sey’s theorem for pairs and r colors, RTE, the instance is an r-coloring and the
solution is a homogenous set; see Remark 2.3. Another classic combinatorics
problem is Weak Konig’s Lemma, WKL, where an instance is an infinite subtree
of 2<¢ and a solution is an infinite path through the tree.

There are many ways one can compare the computational power of solutions.
For example, since the halting set computes an infinite path through every
computable instance of WKL, Theorem 3.1 implies that every solution to a

182 P. A. CHOLAK ET AL. Isr. J. Math.

certain computable instance of RPD, computes a solution to every computable
instance of WKL. By the Low Basis Theorem we know that there are low
solutions to every computable instance of WKL but, again by Theorem 3.1, we
know there are computable instances of RPD,. without low solutions. So RPD,.
is stronger than WKL. While we show RPD,. is strictly stronger than RTf, the
relationship between their solutions is not as straightforward. One can consider
a Turing ideal, Z, an ideal model of a combinatorics principle if every instance
in Z has a solution in Z. Our work shows that every ideal model of RPD,. is a
model of RT? but the converse fails. We also show that solutions to computable
instances of RPDs cannot compute solutions to computable instances of RT?. A
postive answer to Question 7.2 would imply that computable instances of RPD3
can compute solutions to computable instances of RTf.

Another way to measure the strength of these principles is as statements
in second order arithmetic. Here we think of combinatorics principles as set
existence theorems, that is, the combinatorics principle implies that a solution
exists for every instance that exists. Here we show that over RCAq, the system
corresponding to the existence of the computable sets, RPD, is equivalent to
ACA,, the system corresponding to the existence of the arithmetic sets.

There are many more combinatorics principles and ways one can compare the
computational power of combinatorics principles. We cannot discuss them all
here, and again we suggest Hirschfeldt [6] as a starting point.

2. Some proofs of RPD

In this section we will provide several proofs of RPD. We need to start with
some notation and definitions. The union of pairwise disjoint sets is written as
XoUX;U---UX;. Two sets are equal modulo finite, X =* Y, if and only if
their symmetric difference XAY is finite. If Xo U X; U--- U X; =* Z, then
the X;’s are pairwise disjoint and their union is equivalent modulo finite to Z.
If Z =N, then Xo U X; U---U X; almost forms a partition of N, that is, there
is a finite set F' such that FU XU X;U---UX; =N.

Definition 2.1: A collection U of subsets of N is an ultrafilter (on N) if and
only if @ ¢ U, U is closed under superset, U is closed under finite intersections,
and, for all X C N, either X € U or its complement X € Y. An ultrafilter is
nonprincipal if and only if, for all a € N, {a} ¢ U.

We will call a subset X of N large if and only if X € U.

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 183

Remark 2.2: The two key facts that we will need about a nonprincipal ultrafil-
ter U are as follows.

(1) U does not have finite members. (This statement follows by an easy
induction on the size of the finite set.)
(2) If
XoUX,U--UX; =*N,

then exactly one of the X; is large. (No more than one of these sets
can be large, because if X;, and X; are distinct then they have an
empty intersection. Assume that for all j, X; € U. It follows that
ﬂjgi X; =* 0 € Y. But no finite set can be a member of a nonprincipal
ultrafilter, giving us the desired contradiction.)

For the rest of this section a coloring ¢ : [N]?2 — r will be fixed.

2.1. ULTRAFILTER PROOF. The existence of a nonprincipal ultrafilter on the
natural numbers is a strong assumption that unfortunately cannot be shown in
Zermelo Fraenkel set theory, see Feferman [3]; the axiom of choice is sufficient,
see Jech [7]. Nevertheless, we give a proof of RPD that uses this assumption,
because we believe that it provides insight into the combinatorics of this state-
ment. Later in this section we will give alternative proofs of RPD that do not
use a nonprincipal ultrafilter.

Let U be a nonprincipal ultrafilter. We will denote the set of neighbors of m
with color 7 by

N(m,i) ={n:c({m,n}) =i}.

Note that N(m,) is computable in our coloring c. Furthermore, if we fix m,
then the sets N(m,i) where i < r almost form a partition of N, just m is
missing. By Remark 2.2 for every m there is a unique j < r such that N(m, j)
is large. Let

Aj ={m: N(m,j) is large}.
The sets A; where j < r also partition N. If m € A; then we will say that
m has color j. It follows that every natural number is assigned in this way a
unique color.

For any pair of points m < n in A;, N(m,j) N N(n,j) is large. So there are
infinitely many v € N(m,j) N N(n,j). For all such v, ¢(m,v) = c(v,n) = j.
Note that any such v is likely much larger than m and n and not necessarily
in A;.

184 P. A. CHOLAK ET AL. Isr. J. Math.

Construction. We will construct our path decomposition Py, Pi,...,P._1 in
stages. Let Pjo =) for all j < r. The path P;q is the empty path of color j.
Assume that for each j < r, P;, is a finite path of color j such that if P; is
nonempty then its last member is of color j (i.e., in A;). Assume also that every
t < s appears in one of the P; ;. If s already appears in one of the r paths, then
let Pjsy1 = Pjs for all j < r. Otherwise, s has some color k. For j # k, let
Pjs+1 = Pjs. If Py is empty, then let Py 511 = {s}. Otherwise, let e be the
end of the path Py s. There is a v not appearing in any of the finite paths P; s
such that v € N(e,k) N N(s, k). Add v and s to the end of Py, ¢ in that order to
get P s+1. To complete the construction we set P; = lim, P; s for every j < r.
The desired path decomposition is given by Py, Py, ..., Pr_1.

The proof described above is very close to the well known ultrafilter proof of
Ramsey’s theorem for pairs. To illustrate this we include this proof below. An
infinite set H is homogeneous for c if and only if ¢([H]?) is constant. Ramsey’s
theorem for pairs is the statement that every r-coloring of the pairs of natural
numbers has an infinite homogeneous set.

Remark 2.3 (Proof of the existence of a homogeneous set for ¢): Recall that
Ap, Aq,..., A1 gives a partition of N. Fix the unique j such that A; is
large. We can thin A; to get an infinite homogeneous set H of color j as
follows: we build an infinite sequence {hy, }nen of elements in A; by induction
so that H = {ho,h1,...} is as desired. Let ho be the least element of A,;.
Suppose that we have constructed a homogeneous set {ho,...,h;} C A;. Since
A; N Np<; N(hi, j) is the finite intersection of large sets, it is also large and
hence infinite. We define h; 11 to be the least member of A NNy N(hi, 5)
that is larger than h;. -

2.2. COHESIVE PROOF. As noted above, we would like to remove the use of
the nonprincipal ultrafilter from the proof of RPD. For this we will extract the
specific relationship that &/ had with the sets N(m, j).

Remark 2.4: Reflecting on the above construction, we see that the important
things about largeness were that

(1) for every m there is a unique j < r such that N(m,j) is large,
(2) large sets are not finite, and
(3) the intersection of two large sets is large.

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 185

Definition 2.5: An infinite set C' is cohesive with respect to the sequence of
sets { X, }nen if and only if for every n either C C* X, or C C* X,.

LEMMA 2.6: There is a set C' that is cohesive with respect to the sequence
{N(mvj)}j<r,m€N-

Proof. Once again we will use a stagewise construction. We will construct two
sequences of sets: {Cs}seny and {Rs}sen. The first sequence will be increasing
and the second decreasing with respect to the subset relation. Start with Cp = ()
and Ry = N. Fix some indexing of all pairs (m,). Inductively assume that, for
all (m,i) < s, either Ry C N(m,i) or Ry C N(m,i), Cs is finite, R is infinite,
and Cs and R are disjoint. At stage s+ 1, let ¢s be the least element of Rj.
Let Cs11 = Cs U {cs}. Assume that s = (m,i). Since Ry is an infinite set, at
least one of Rs N N(m,i) or Ry N N(m,1) is infinite. If Ry N N(m, 1) is infinite
let Rey1 = (Rs NN(m,i)) —{cs}. Otherwise let Roy1 = (Rs N N(m,4)) — {cs};
C =lim, Cs = {cop,c1,. ..} is the desired cohesive set.

Fix such a set C. We can now redefine largeness by using C instead of
an ultrafilter. Call a set X large if and only if C' C* X. This new notion
of largeness has the three key properties outlined above with respect to the
sets N(m,i): for every m there is a unique j < r such that N(m,j) is large,
because C' cannot be a subset of two disjoint sets, even if we allow a finite error;
large sets are not finite, because C is infinite; and the intersection of two large
sets is large, because if C C* X and C' C* Y then C C* X NY. We can now
repeat the original construction using this notion of largeness to produce a path
decomposition.

2.3. STABLE COLORINGS. Recall that a coloring c is stable if and only if for
every m the limit lim,, ¢({m,n}) exists. Rephrasing this property in terms of
sets of neighbors, we get that there is a unique j < r such that N(m,j) is
cofinite. So to construct a path decomposition for stable colorings we do not
even need a cohesive set. We can redefine large to mean cofinite and use once
again the original construction.

2.4. GENERIC PATH DECOMPOSITIONS. In this section we will provide a
forcing-style construction of a path decomposition. To avoid confusion with
our ultrafilter proof, our construction will use sequences of conditions rather
than poset filters.

186 P. A. CHOLAK ET AL. Isr. J. Math.

Conditions are tuples (Py, P, ..., P,_1, X) such that

(1) X C N is infinite,

(2) P; is a finite path of color j for every j < r,

(3) no integer appears on more than one of the paths, and

(4) if P; is nonempty and e; is its last element, then X C* N(e;, j) (so e;
has color j with respect to X).

It follows that (@, 0, ...,0, N) is a condition, because it trivially satisfies the third
requirement. A condition (150, Pi,...,P_, X) extends (P, P1,...,P—1,X)
if and only if, for all j, P; is an initial subpath of Pj, and X C X. Unlike
Mathais forcing, the new elements of our paths Pj need not be elements of X.

Given a sequence of conditions (C;);en such that for every i, C;11 extends C;,
we think of this sequence as approximating a tuple of paths as follows.

If C; = (P, Pf,...,Pi_;, X"), then the sequence (C;) approximates the tuple
of paths (]30, Py,...P,_y) where

Pj =lim P!

Such a tuple of paths need not be a path decomposition, since it might happen
that some integer does not appear on any of the limit paths. The purpose of
the X values in the conditions will be to ensure that the approximated paths
do form a path decomposition if the sequence (C;) is generic (defined below).

A set of conditions D is dense if every condition is extended by a condition
in D. A sequence (C;) meets D if there is some i such that C; € D.

Given any collection of dense sets, a sequence is (C;) generic for that col-
lection if it meets every D in that collection. Note that if we have a countable
collection of dense sets D;, then it is straightforward to build a generic se-
quence for that collection, by inductively choosing each C;11 to extend C; and
be in D;41.

Let D; be the set of conditions (FPy, P1,..., P.—1,X) such that ¢ is on some
path P;. The lemma below shows that D; is dense. Any generic for {D;} gives
a path decomposition for c.

LEMMA 2.7: For every i the set D; is dense.

Proof. Fix i and a condition (Py, Py, ..., P._1,X). If i is on one of the paths P;
then we are done. Otherwise, X is an infinite set, so there must be a j such that
N(i,j) N X is infinite. If k # j then let P, = Py. Let X = X N N(4,j). If P; is

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 187

empty let]3j be i. Otherwise let e be the end of Py. Since (Py, P1,...,Pr—1,X)
is a condition, there is a v such that v € N(e, j) N N(i,j). Let Pj be P; with v
and i added to the end in that order. It follows that (Py, Py,...P,_1,X) is a
condition in D; extending (P, Pi, ..., P.—1,X).

The generic construction is very much in the style of Rado’s original proof.

3. Path decompositions which compute the halting set

Recall the halting set K = {e|(3s)pe,s(e)l} is the set of codes e for programs
which, when started with input e, halt after finitely many steps. The halting
set was one of the first examples of a set that is not computable. The goal of
this section is to show the following theorem.

THEOREM 3.1: There is a computable stable 2-coloring ¢ of [N]? such that any
path decomposition of ¢ computes the halting set.

We devote the rest of the section to the proof of this theorem. For colors
we will use RED and BLUE. Once again a coloring c is stable if, for all m,
lim,, ¢(m, n) exists.

We will give a computable stagewise construction for ¢. The goal will be to
construct ¢ so that:

(1) The BLUE path in any path decomposition is infinite.

(2) Any path decomposition can compute the elements of K via the fol-
lowing algorithm: If e is a natural number, then the construction will
associate a marker m, to e in a way that is computable from any path
decomposition for c. We enumerate the BLUE and RED paths until all
numbers x < m, have appeared on one of the two paths. Let ¢ be the
next element on the BLUE path. Then e € K if and only if ¢, +(e) is
defined (i.e., p.(e) halts after < ¢ many steps).

Each z € N will have a default color. Initially it will be BLUE. The default
color of a number might be changed once during the construction to RED. At
stage s, we will define c¢({z, s}) for every x < s and we will always set this
value to be the current default color for x. So our construction will produce
a stable coloring. To achieve our first goal, it will be sufficient to ensure that
for all elements of infinitely many intervals [k, 2k + 1] the default color BLUE
is never changed. This is because if all elements in the interval [k, 2k + 1] are

188 P. A. CHOLAK ET AL. Isr. J. Math.

colored BLUE with every greater number, then, in any path decomposition, the
BLUE path must contain a node in this interval: if m is in this interval and on
a RED path, then the next and previous nodes on this RED path must be a
number less than k, so the RED path can only contain at most k of the nodes
in this interval. The length of this interval is k£ + 2, so at least one of the nodes
in this interval must be on the BLUE path. This idea is reflected in the way we
associate markers m, to elements e.

We will say that a number k is fresh at stage s if and only if k is larger
than any number mentioned/used at any stage t where ¢t < s. All markers m,
are initially undefined, i.e., m¢oT. At each stage s before we proceed with the
definition of ¢(z, s) for z < s we first update the markers: for the least e where
Me,s—1 1s not defined, we will select a fresh number k and define m, , = 2k + 2.
(Note that this means that if n is fresh after stage s then n > 2k 4+ 2.) Unless
we say otherwise (see below) at all later stages t we will keep me s = mes. It
will follow that limg m. s = m. exists.

We also update the default colors as follows. For every e < s we check if
Ye,s—1(€) T, pes(€)], and me s is defined. If so we change the default color
of all z € [me,s,s + 1] to RED and make all m; , undefined for all i > e. If
we can show that this construction satisfies our first goal, then we can easily
argue that it also satisfies the second: Fix any path decomposition and assume
that t is the first element on the BLUE path after all numbers x < m,. have
shown up on one of the two paths. Suppose further that ¢.(e) halts in s many
steps. We must show that ¢ > s. If at stage s we have that m. s is not defined,
then ¢ > m, > s. If m. is defined and we assume that ¢ < s 4 1, then the
BLUE path cannot be extended below m. s because everything below m, , has
already been covered by one of the two paths, and it cannot be extended above
s + 1 because everything in the interval [m. s, s + 1] is RED with everything
larger than s + 1. It follows that the BLUE path is finite, contradicting our
assumption.

For every e the value of the marker m. , can be cancelled at most e many
times and then stays constant, so limg me s = m, does exist. It is furthermore
computable from any path decomposition by the following procedure. The
marker for 0 is never cancelled, so mg = mg,;. If we know the value of m,, then
we run the construction until we see the first stage to such that me. = mey,.
It follows that after stage tg we can cancel m.41 only for the sake of e. We
can also figure out if e € K by looking for the first ¢t; on the BLUE path

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 189

after all numbers z < m, have shown up on one of the two paths and checking
whether or not ¢.(e) halts in ¢; steps. Let ¢ = max(to,t1) + 1. We claim that
Met1t = Metp1. If € ¢ K, then mei is not cancelled at any stage greater
than o and is defined by stage t. If e € K, then m.41 can possibly be cancelled
after stage to but no later than at stage ¢; and so once again its final value will
be defined by stage t.

Finally, by induction on e, we will show that there are e intervals [k, 2k + 1]
where the default color BLUE for all x in the interval is never changed
and 2k + 1 < m,. Assume inductively this is true for all ¢/ < e and let s be
the stage when me41,6s = Mey1 is defined. By construction mey; s is defined
as 2ke41 + 2 for some fresh ke > m.. The default color for all in the interval
[ket1,2keq1 + 1] is never changed from BLUE.

4. 2-colorings

As we will see in this section 2-colorings are very special. For this section we
will use BLUE and RED as our colors. Perhaps one of the earliest published
results on path decompositions is the following.

THEOREM 4.1 (Gerencsér and Gyéarfés [4]): Every 2-coloring ¢ of [n]? has a
path decomposition.

Proof. We prove this statement by induction on n. Clearly the statement is
true for [2]%. Assume c is a 2-coloring of [n + 1]?. In particular, ¢ induces a
2-coloring on the subgraph [n]?.

By induction there is a path decomposition of [n]?. So there is a RED
path, P., and a BLUE path, P, such that, if i < n, then ¢ is on exactly
one of P, or P.

If P, is empty, then P, and {n} is a path decomposition for ¢. Similarly if P,
is empty.

Let z, be the end of the RED path and let x; be the end of the BLUE path.
Look at the color of the edge between z, and n. If it is RED, then add n to the
end of P, to get a path decomposition for c. Similarly, if the color of the edge
between x; and n is BLUE, then add n to the end of P,.

Otherwise look at the color of the edge between z,. and xp. If this is RED add
Zp,n (in that order) to the end of the RED path and remove z; from the end of
the BLUE path. We will say that x;, switches to RED. If ¢({z,, z}}) is BLUE,

190 P. A. CHOLAK ET AL. Isr. J. Math.

then add ., n (in that order) to the end of the BLUE path and remove z, from
the end of the RED path. In this case x, switches to BLUE. In all cases
we have obtained a path decomposition of [n + 1]?, thereby completing the
inductive step.

We are going to improve this theorem to the following:

THEOREM 4.2: If ¢ : [N]?2 — 2 then there is a A§ Path Decomposition. In par-
ticular, if ¢ is computable then it has a path decomposition that is computable
from the halting set K.

The rest of this section is devoted to the proof of this theorem. This proof
will be nonuniform. We will also discuss other issues along the way. Our first
goal is to understand why we cannot simply iterate Theorem 4.1 infinitely often
to get such a proof. We need to examine the path constructed in Theorem 4.1

very closely.

Definition 4.3: Suppose P, is a BLUE path and P. a RED path. Then the
pair (P, P,) is a one-step path extension of (P,, P,) if exactly one of the
following holds:

(1) P, is P, with one additional element at the end and P, = P,, or

(2) P, is P, with one additional element at the end and P, = P, or

(3) P, is the path P, with the last element x, removed and P, is P, with
xp and some integer x added in that order at the end (in this case x;
switches to RED), or

(4) P, is the path P, with the last element z, removed and P, is P, with
x, and some integer x added in that order at the end (in this case x,
switches to BLUE).

(Py, P,) is a path extension of (P, P,) if it can be obtained from (P, P,)
by a sequence of one-step path extensions. Also, if (15b,]5,«) is a path extension
of (Py, P,), P, = P,, and z is the last element of P,, then we say that (Pb, PT) is
a BLUE path extension of (P, P,) to x. We similarly define a RED path
extension of (P, P,.) to x.

Note that if x is on one of P, or P, and (Pb, PT) is a path extension, then z
is on one of Pb or PT.
The proof of Theorem 4.1 shows:

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 191

LEMMA 4.4: Given any two finite disjoint paths P, and P, and an integer n not
on either path, we can computably in ¢ find a one-step path extension (15b,]5,«)
such that n appears on exactly one of these paths.

We cannot generalize this lemma for more than 2 colors. In fact, Theorem 4.1
fails for more than 2 colors.

THEOREM 4.5 (Pokrovskiy [10]): Given any r > 2 there are infinitely many m
such that there is an r-coloring ¢ of [m]? without a path decomposition.

As our first attempt to prove Theorem 4.2, we will iterate Lemma 4.4 infinitely
often to build paths P, ; and P, s by stages. Start with P,o = P.o = 0. At
stage s+ 1, apply Lemma 4.4 to P, s and P, s and the least integer not on either
path n to get Py 541 and P, s41. Once we have constructed these sequences, we
need a way to extract from them two paths P, and P, and then try to argue
that they form a path decomposition. We can do this if the position of every
number eventually stabilizes. This idea is captured by the following definition.

Definition 4.6: Suppose that, for every natural number s, Ps = zg,...,z}_ is a
finite BLUE (RED) path. We define the BLUE (RED) path

lim Ps = 29, 21,...,Zn, ...
S

by x, = lims x) as long as lim, 2 exists for all ¢ < n. If there is an ¢ < n for
which lim, z7 does not exist, then we leave z,, undefined.

Given the sequences { P, s} seny and { P, s } sen, we know that every n eventually
appears on one of P, ; and P, at some stage s and remains on either P,
and P, at all stages ¢t > s. So if every n only switches between the two sides
finitely often, then the pair P, and P, is a path decomposition. The limit will
exist, although we might not have an explicit way to compute the limit.

However, it is possible for an n to switch infinitely often. It is, in fact, even
possible to build a ¢ such that every number n switches sides infinitely often.
For such a ¢, it would be the case that limsup, | Py s| = oo but limg Py 5 is empty,
and likewise for P,.

We have to alter our approach. We will still build our path decomposition
as the stagewise limit of path extensions, although they will no longer be one-
step path extensions. At each stage s we will have disjoint finite paths P s
and P, s. The pair (P st1, Prs+1) will be a path extension of (P s, P 5). The

192 P. A. CHOLAK ET AL. Isr. J. Math.

integers x, s and xp s will be the ends of these paths at stage s. When the stage
is clear, we will abuse notation and drop the s in 2, ¢ and x . We will need
the following:

Definition 4.7: Suppose (Py, P,) is a one-step path extension of (Py, P,) obtained
by Case (3) (i.e., x;, switches to RED and is followed by on P,). We say that z;,
strongly switches to RED if there is no BLUE path extension of (P, P;) to .
We similarly define what it means for z, to strongly switch to BLUE.

We say (Py, P,) forms a strong one-step path extension of (P, P,) if the
pair (Py, P,) is a one-step path extension of (Py, P,) via either Cases (1) or (2),
or via Cases (3) or (4) with a strong switch.

We say that (P, P,) forms a strong path extension of (P, P,) if it can be
obtained from (P, P.) by a sequence of strong one-step path extensions.

The following lemma is the key combinatorial property that will provide sta-
bility to constructions that are performed using strong path extensions.

LEMMA 4.8: If n strongly switches to RED, then n can never switch back to
BLUE by a path extension. The RED path up to n is stable.

Before we prove Lemma 4.8, we require a more basic order-preservation lemma
concerning path extensions.

LEMMA 4.9: Assume (Py, P,) is a path extension of (Py, P,). Assume that n
and m are two numbers such that one of the following holds:

e n appears before m in P,.
e m appears before n in P,.
e n appears in P, and m appears in P,.

Then one of the following holds:
e n appears before m in P,.
e m appears before n in P,.
e n appears in P, and m appears in P,.

Proof. The proof is an easy induction argument using the fact that only the
last element of a path can ever switch to the other path. Any time the elements
attempt to switch which path they are on, the latter element must switch before
the earlier element.

We now proceed to prove Lemma 4.8.

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 193

Proof of Lemma 4.8. Assume not. Let (Pyo,Pr0), (Po1,Pr1), (Po2,Pr2),
(Py,3, Pr.3) be pairs of finite paths such that

(1) (Py1,Pr1) is a one-step path extension of (Py,, Pr0) in which n strongly
switches to RED,

(2) (Py2, Pr2) is a path extension of (P 1, Py,1) in which n never switches,

(3) (Ps,3, Pr3)is a one-step path extension of (P, 2, P, 2) in which n switches
to BLUE.

Let m be the element following n in P, ;.

By definition of a strong switch, we have that there is no BLUE path extension
of (Py0, Pro) to m. In particular, there is no BLUE path from n to m that does
not involve any integers (besides n) from Py or Py .

By hypothesis, n is in P, 3, so by Lemma 4.9, m must appear before n in P 3.

But then P, 3 has both » and m in it, and thus there is a BLUE path from n
to m. This provides a contradiction provided that we can prove that this path P
does not involve any integers besides n from P, g or P, g.

To show this, note that n and m are the last two elements of F,.;. In par-
ticular, every element of P, o appears before n in P, ;, and so by Lemma 4.9,
it it is in Py 3, it must appear after n. (This does not happen, although we do
not need this fact for this proof.) Likewise, every element, besides n, of P, ¢ is
in P, ;. Therefore, by Lemma 4.9, it must appear before m in P, 3.

Note that we now have that if n strongly switches to RED, then the RED
path up to n is stable: n can never switch back to BLUE, and so nothing can
be added to or removed from the RED path before n.

Below we will modify the initial construction and require that all switches be
strong. This avoids the problem of instability discussed above. We will from
now on use only strong path extensions.

We note here that if our goal was only to provide another proof of Theorem 1.2
for r = 2, then we would be done. The analogue of Lemma 4.4 is not true
with strong one-step extensions, but it is true with strong extensions, so we
could simply use the initial construction with strong extensions to provide a
path decomposition for c¢. However, this process might not produce a A§ path
decomposition for the following reason.

If there are infinitely many strong RED switches, but only finitely many
BLUE switches, then the RED path is stabilized in a way that allows it to be
computed in a A§ manner, but the BLUE path can only be computed in a A§

194 P. A. CHOLAK ET AL. Isr. J. Math.

manner. It is A§ to recognize a strong switch, but it is A§ to recognize that an
element will never strongly switch in the future. We will discuss this in more
detail in Section 4.4. For now, the key point is that we must sacrifice some of
the simplicity of the construction in order to provide a construction that can
be carried out by a computationally weaker oracle.

We now describe our construction explicitly. As suggested in the above para-
graph, the construction will depend on whether the number of strong BLUE
switches is finite or infinite and similarly for RED. This leads us to a case-by-
case analysis of our path decomposition. In Section 5 we will show that there is
no uniform way to produce a A§ path decomposition, which implies that there
is no way to prove Theorem 4.2 without some sort of case-by-case analysis.

The following allows us to define our cases nicely.

Definition 4.10: For a coloring ¢, we will say that we can always strongly RED

switch if for every pair (P, P,) of disjoint finite BLUE and RED paths, there

is a strong path extension (P, P,) of (Py, P,) such that there was a strong RED

switch at some point during the path extension between (P, P,) and (Pb, P).
We define being able to always strongly BLUE switch similarly.

LEMMA 4.11: If the pair (P, P.) witnesses that we cannot always strongly
RED switch and (13;,,]3T) is a strong path extension of (P, P,.), then (Pb, PT)
also witnesses that we cannot always strongly RED switch.

Proof. Strong path extension is transitive. If there is a path extension of (P, P,)
that includes a strong RED switch, then that same path extension is also a path
extension of (Fy, P,) that includes a strong RED switch.

Our construction of a path decomposition breaks down into three different
procedures depending on whether or not we can always strongly BLUE and
RED switch.

4.1. WE CAN ALWAYS STRONGLY BLUE AND RED swiTcH. We will induc-
tively define (Py s, Py s) by multiple stages at once. For each s, (P st1, Prs+1)
will be a strong path extension of (P s, Py 5).

Start with Pb,O = P’I‘,O = 0.

Let k be the least stage where (P, i, Pr) has yet to be defined. Let z be the
least integer not on either of the paths P, ;1 and P, j_1. If there is a BLUE
path extension to z, let (P, Py) be that path extension. If this fails, try the
same for RED. If both fail, switch either x} or =, as in Lemma 4.4 to get P, j

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 195

and P, . It follows that this switch is a strong switch. Next we stabilize some
initial segment of our paths: Let (P g+1, Prr+1) be a strong path extension
of (Pyk, Pr) that includes a RED switch, and let (Pp ky2, Prg+2) be a strong
path extension of (P g+1, Prr+1) that includes a BLUE switch.

We then repeat for the next integer not yet on either path.

All switches are strong switches, and by Lemma 4.8, the limits of these paths
exist. Since every integer is placed on our paths at some stage, and since every
integer can be switched at most once, we have that every integer is on exactly
one of the two limiting paths.

Therefore this construction gives a path decomposition.

4.2. WE CANNOT ALWAYS STRONGLY RED SwITCH. Let (Py 0, Pro) witness
that we cannot always strongly RED switch, and furthermore assume that
among all such witnesses the length of P, is minimal.

Now consider (Py,s, P s) and = the least number not on these two finite paths.
If there is a BLUE path extension, to z, use that extension for (Py x+1, Pr x+1)-
If this fails try to do the same for RED.

We claim that one of the two options listed above will always work. Towards
a contradiction, suppose that both fail. To add = we must switch (like in The-
orem 4.1). Call the resulting pair (Py, P,). Then (P, P,) is a strong extension
of (Pys, Prs). So if a3, switches to RED then it strongly RED switches. This is
not possible, by our choice of (Py,0, Pr.o).

It follows that c({zp,z,}) = BLUE and z, strongly switches to BLUE. By
Lemma 4.11, since (Pb,PT) is a strong extension of (Pys, Pr), it must also
witness that we cannot always strongly RED switch. Note that P, is shorter
than P, so by the minimality of P, we know that P.s # Pro. So z, was
added to the RED path at some stage t < s.

Hence there is no BLUE path from 3+ to z, which is otherwise disjoint
from Py, and P, ., as otherwise z, would have been added to P, ;.

On the other hand there is a BLUE path from zp ¢ to zp, witnessed by the
fact that z; and zp are both on the BLUE path at stage s. (By induction, our
construction has no switches up to this point, so x ¢ is still on the blue path
at stage s.) We also have that the pair zp, z, is colored BLUE, so there is a
BLUE path from z}+ to z, disjoint from P, ; and P, ., a contradiction.

4.3. WE CANNOT ALWAYS STRONGLY BLUE swiTCH. This case is dealt with
in the same way as the previous one.

196 P. A. CHOLAK ET AL. Isr. J. Math.

4.4. THE USE OF THE ORACLE ¢/. The existence of a path from z to n is
existential in the coloring. The lack of a path from = to n is universal in the
coloring. So deciding if “I5b and]5,« is a one-step path extension of P, and P,
and xp, strongly switches to RED” is universal in the coloring and so computable
in ¢.

As a result, ¢’ can be used as an oracle to implement both of the above con-
structions. In the case where we can always strongly RED and BLUE switch, we
can then use ¢’ to compute both of the paths because both paths are stabilized
by strong switches, and ¢’ can recognize the strong switches. In the case where
we cannot strongly RED (BLUE) switch, we can also use ¢’ to compute both of
the paths because both paths are already stable: no numbers ever switch from
one path to the other.

Note that Definition 4.10 is II3 in the coloring. Our division of cases depends
on the truth of this statement and the witness to its failure. This is finite
information but as a result the proof is not uniform in ¢’. In Theorem 5.7, we
will show that this nonuniformity cannot be removed.

The more naive construction, always greedily adding the next element by
a strong extension with no case-by-case breakdown, can be implemented uni-
formly by ¢/, but the construction could potentially result in infinitely many
RED switches and finitely many BLUE switches (or vice-versa). In this case,
the RED path would be computable from ¢’ because the strong RED switches
would stabilize it. On the other hand, the BLUE path would not necessarily be
computable from ¢’: the statement that an initial segment of the BLUE path
has stabilized is universal in the construction (“for all future steps of the con-
struction, none of these elements ever RED switch”) and so is II in the coloring.
Thus, the naive construction could potentially produce a path decomposition
in which one of the two paths is computable from ¢”, but not ¢'.

In our proof of Theorem 4.2, if we can always switch then both the BLUE and
RED paths are infinite. But if we cannot always switch one of the paths might
be finite. In that case the constructed paths are both computable from the
coloring. In Theorem 5.2, we will see by a more delicate case breakdown that
this actually always happens. Thus, although our strongly switching proof does
not work for all colorings, it does work for all “difficult” colorings: colorings for
which there is no computable solution.

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 197

5. Uniformity

In the above section, we have provided a nonuniform AY construction and a
uniform AY construction of a path decomposition. Furthermore, Theorem 4.2
showed that, in general, we cannot hope for a construction that is simpler
than A9, so the complexity of the construction cannot be reduced. Here we
address the question of whether the nonuniformity of the A construction can
be reduced.

Theorem 5.2 shows that if our primary construction for Theorem 4.2 fails,
then there must be a path decomposition for ¢ in which one of the two paths is
finite and the other is computable from c.

Theorem 5.7 shows that there is no uniform A9 path decomposition. The-
orem 5.8 improves this to show we cannot even get by with a finite set of
possible AJ indices for our path composition. Thus, nonuniformity is unavoid-
able.

In light of this, the result in Theorem 5.2 is the closest possible thing to a
reduction of nonuniformity: All of the noncomputable cases are handled by a
single uniform A9 construction, which cannot have its complexity reduced due
to Theorem 4.2, and all of the nonuniform cases (unavoidable, by Theorem 5.8)
are handled by computable constructions that are as simple as possible, with
one path finite and the other computable.

We should clarify precisely what we mean by a AY path decomposition and
an index for such an object.

Definition 5.1: A AY path decomposition is a pair (P, P,) of partial 0’-com-
putable functions for which the domain of each is an initial segment of N, the
ranges partition N, and such that for every n + 1 € dom Py, ¢{P(n), P(n + 1)}
is BLUE, and similarly for P,.

A AY index for a decomposition is a pair of numbers (i, i,.) with

3 =p, and @Y =P,

Equivalently, by the limit lemma, it is a pair of numbers (jp, jr) such that ¢;,
and ¢;, are total computable functions,

Py(x) = 1i§n w;,(x,s) and Pp(x)= 1i§n w;,.(x,s)

for all « (where the limit does not converge when z is not in the domain).

198 P. A. CHOLAK ET AL. Isr. J. Math.

5.1. WHEN WE CANNOT ALWAYS STRONGLY BLUE aAND RED SwITCH.

THEOREM 5.2: There is a computable function f with the property that for
any e, if e is an index for a computable coloring ¢, then either f(e) is an index
for a AY path decomposition for ¢, or there is a computable path decomposition
for ¢ in which one of the two paths is finite.

Note that this theorem relativizes: there is a uniform way to take a coloring c,
and attempt to produce a A§ path decomposition so that either the attempt
succeeds, or there is a c-computable path decomposition for ¢ in which one of
the two paths is finite.

Proof. The proof hinges on the case analysis from the proof of Theorem 4.2.

In the case where we can always strongly BLUE and RED switch, the proof is
uniform: we alternate between adding the next element, adding a RED switch,
and adding a BLUE switch, and our A§ path decomposition is simply the path
decomposition stabilized by the switches. Our function f will be the function
corresponding to attempting to do that construction.

It remains to show that if we cannot always RED switch, then there is always
a c-computable path decomposition in which one of the two paths is finite. (The
case where we cannot always BLUE switch will follow by symmetry.)

As in the proof of Theorem 4.2, let (P, o, Py o) witness that we cannot always
RED switch, and furthermore assume that among all such witnesses the length
of P is minimal. Let z; and z, be the endpoints of the paths Py o, Pro. We
split our proof into two cases.

CASE 1: Assume that for every n € N, and for every BLUE extension (P, P;.¢)
of (Py0,Prp), if n is not on either P, or P, o, then there is a BLUE path
extension of (Py, P, o) to n.

In this case, we will use P, ¢ as our RED path, and grow our BLUE path to
cover the rest of N. We use a basic greedy algorithm.

At stage s, let (Pys, Pro) be the pair of paths that we have, and let ns be
the smallest number not on either path. We search for a BLUE path extension
of (Py,s, Pro) to ng, and when we find such an extension, we let (P s41,Pr0)
be the first such extension that we find.

By hypothesis, we will always find such an extension, and this algorithm
clearly covers all of N in the limit.

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 199

CASE 2: Assume Case 1 does not hold. Let (P51, P,0) be a BLUE path ex-
tension of (Py g, Pro), and ng € N so that there is no BLUE path extension of
(Pb,la PT,O) to ng.

We claim that in this case, we actually have that for every n € N, and for
every RED extension (P, , P.) of (Py.1, Pro), if n is not on either P, or P,, then
there is a RED path extension of (Py,, P.) to n. Thus we may use the RED
analogue of the previous algorithm. The proof of this claim will be somewhat
circuitous.

First we show that there is no n such that (P 1, P.o) has both a RED ex-
tension to n and a BLUE extension to n. After this we will show that actually
either there is no n such that (P 1, Pro) has a BLUE extension to n or there is
no n such that (P 1, Py o) has a RED extension to n. We will then show that
the first case is true. Finally, from there, we will show that for every n € N, and
for every RED extension (P, , P) of (Py 1, Pro) there is a RED path extension
of (Py,, P) to n.

During these proofs, we will repeatedly use the following facts:

(1) (Py,Pro) is a witness to the fact that we cannot always RED switch.
(2) P, has minimal length among the RED paths of such witnesses.
(3) There is no BLUE path extension of (P, 1, P o) to ng.

The first two facts follow from the fact that (Py 1, Py o) is a BLUE path extension
of (Py, Pro). The third is from our hypothesis in Case 2.

CLAIM 5.3: There is no n such that (P, 1, Pro) has both a RED extension to n
and a BLUFE extension to n.

Proof. Assume not, and let n; be such an n. Replacing n; if necessary, we may
assume that the BLUE path extension to ny and the RED path extension to ny
do not intersect before n;. Consider the edge from n; to ng.

If this edge is BLUE, then we can add ng to the end of the BLUE extension
to ny, creating a BLUE path to ng. This contradicts fact (3).

If the edge is RED, then consider the path extension (ﬁ’b,]5,«) of (Py,1,Prp)
in which P, is created by the BLUE path extension to ni, and P, is created by
the RED path extension to my, but with n; removed from the end. Let = be
the last element of P.. Now we have that the edge from z to ny is RED, the
edge from n; to ng is RED, and there is no BLUE path extension from (Pb, PT)
to ng. So we can strongly switch ny to RED. This contradicts fact (1).

200 P. A. CHOLAK ET AL. Isr. J. Math.

A path extension (Pb, PT) of (Py, P.) is nontrivial if (Pb, PT) # (P, Py).

CLAIM 5.4: Either there is no n such that (Py1, Py o) has a nontrivial BLUE
extension to n or there is no n such that (Py1,Pro) has a nontrivial RED

extension to n.

Proof. Assume not, and let ni,n2 be such that (P, 1, Pro) has a nontrivial
BLUE extension to n; and a nontrivial RED extension to ny. Consider the
edge between ny and ns. If the edge is RED, then we can use it with the RED
path to ny to create a RED path to ni. But then (P 1, P o) has both a RED
extension to n; and a BLUE extension to nj, contradicting Claim 1. If the
edge is BLUE, we can similarly conclude that (P 1, P-o) has both a RED and
a BLUE extension to ng, again contradicting Claim 5.3.

CLAIM 5.5: There is non such that (P, 1, P o) has a nontrivial BLUE extension
to n.

Proof. Again, assume not. Then by Claim 5.4, there is no n such that (P, 1, Py.0)
has a nontrivial RED extension to n. In particular, (P, 1, P, o) does not have
a RED extension to ng. By fact (3), (Pp1,Pr0) also does not have a BLUE
extension to ng. It follows, by Lemma 4.4, that we can add ng by a switch, and
the switch must be a strong switch.

The switch cannot be a strong RED switch by fact (1). Also, the switch
cannot be a strong BLUE switch because if we performed a strong BLUE switch
on (Py1, Pro), it would create a strong path extension in which we decreased the
length of the RED path. This contradicts fact (2), recalling that by Lemma 4.11,
any strong path extension of (Py 1, Pro) must also witness that we cannot always
RED switch.

CLAIM 5.6: For every n € N, and for every RED extension (Py1,P,) of
(Py1, Pro), if n is not on either P, or Py, then there is a RED path extension
of (Pp1, P;) ton.

Proof. Let (Py1, Py) be a RED extension of (P, 1, Pro), and let n; be an element
of N that is on neither P,; nor P.. Assume there is no RED extension of
(Pp1,Pr) to n. By Claim 5.5, there is also no BLUE extension of (P 1, P,)
to n, because extending the RED path cannot make it any easier to find a
BLUE extension. Then, by Lemma 4.4, to add nq to (P1, P-), we must do a
switch, and the switch must be strong.

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 201

We split our proof into two cases:

If (Py1,Pr) = (Pya,Pro), then the proof proceeds exactly as the proof of
Claim 5.5. The switch cannot be a strong RED switch by fact (1), and the
switch cannot be a strong BLUE switch by fact (2).

If (Py1, P) # (P, Pro), then the switch still cannot be a strong RED switch
by fact (1), recalling again that by Lemma 4.11, any strong path extension of
(Py1,Pro) must also witness that we cannot always RED switch. The switch
also cannot be a BLUE switch, because for the switch to be a BLUE switch,
the edge from the end of the P, ; to the end of P, must be BLUE, contradicting
Claim 5.5.

This completes the proof of Theorem 5.2.

Note that if we are in Case 2 of the above construction, we have no way of
knowing whether we will find the we are looking for, so we cannot know when
to switch to the construction for Case 1. This does not concern us. We are only
proving that there is a computable path decomposition with one path finite,
not that the path decomposition can be found uniformly.

5.2. No UNIFORM AJ INDEX.

THEOREM 5.7: There is no partial computable function f such that if e is
an index for a computable coloring c, then f(e) is an index for a AY path
decomposition for c.

This proof is somewhat more complicated than necessary, because it is in-
tended to serve as an introduction to the proof of Theorem 5.8, and so we are
performing a simplified version of the construction found in that proof.

Proof!. Let f be a partial computable function. We create a computable col-
oring with index e such that if f(e) is defined, then f(e) is not an index for
a AY path decomposition for c.

Our construction is in stages. During stage s of the construction, for
every t < s, we color the pair {t,s+ 1}.

By the recursion theorem, we may use an index, e, for the coloring that we
are constructing. We begin computing f(e), and while we wait for it to halt,
we color everything BLUE with everything else.

1 We thank an anonymous reader for pointing out an error in an early version of this proof.

202 P. A. CHOLAK ET AL. Isr. J. Math.

If f(e) halts, then its value provides us a pair of Turing reductions ®;, and ®;_,
and by the limit lemma we may obtain a pair of total computable functions ¢
and ¢, with lim, pp(z, s) = @?b, (x) for all x, and similarly for ¢,. We define

P, = @?;, Py s(x) = pp(x, 5),

and similarly for P, and P, ;. We will assume that Py s(z) < s and P, 5(x) < s
for every = and s.

We will have two strategies, S, and S,., which work to ensure that if (P, P.)
forms a path decomposition for ¢, then P, (respectively P,) is finite. Note
that if both S, and S, achieve their goals, then (P, P.) cannot form a path
decomposition.

One of Sy and S, will have high priority, and the other will have low priority,
but this priority assignment will potentially change over the course of the con-
struction. High priority goes to the strategy whose corresponding first element
has been stable the longest. To make this precise, at stage s, define ¢(b, s) to be
least such that for every ¢ € [¢(b, s), s], P»+(0) = Py +(0), and make the similar
definition for ¢(r, s). Then S, has high priority at stage s if t(b, s) < t(r, s), and
otherwise S, has high priority.

Suppose first that S, has high priority at stage s. Let sg be least such that
so > t(b,s) and S, has high priority at stage so. Note that S, necessarily had
high priority at every stage between sp and s. For every ¢t < sp, we color the
pair {t,s+ 1} RED. This completes the action for Sp.

We now describe the behavior of S, when it is of lower priority at stage s.
We consider whether there are k,{ < s with

ra'nge(Pb,sré) (range(Pr,s fk) ;) [0; SO]

and P, (k) > so. If there are no such k and ¢, we take no action for S, at
stage s. If there are such a k and ¢, we fix the least such. Let s; be least such
that

51> Prs(k), Poile=Posle and Proilpr1= Prslip

for every t € [s1,s]. For every t € (s, s1], we color the pair {t,s + 1} BLUE.
This completes the action for S,.. This is a place where our construction is more
complicated than necessary as it would be enough to color BLUE all relevant
pairs not yet colored RED.

If instead S, has high priority at stage s, we proceed as above, mutatis
mutandis.

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 203

At the end of stage s, for any ¢ < s for which we have not yet colored
{t,s+1}, we assign a color arbitrarily (for definiteness, BLUE). This completes
the construction. We now verify that if f(e) converges, it does not specify a
path decomposition for c.

Assume, towards a contradiction, that (P, P.) form a path decomposition
for ¢. Then at least one of P, and P, is nonempty, and for this path, its value at 0
(the first element of the path) will eventually converge. So eventually one of the
strategies will have high priority for cofinitely many stages with an unchanging
least sg. Without loss of generality, assume this is Sp. Then P,(0) < so, and
by construction ¢{z,y} is RED for every z < sg < y. So P, cannot contain any
elements larger than sgp, and so S, has ensured its requirement by making P
finite.

Since (P, P,) form a path decomposition, in particular their ranges cover N.
So there are some least k& and ¢ with

range(Fy[,) U range(F;[x) 2 [0, so]

and P.(k) > sgo. Let s; < P.(k) be least such that P,[, and P,[x4+1 have con-
verged by stage s1. Then S, will eventually select this &, ¢ and s; for cofinitely
many stages. By construction, ¢{z,y} is BLUE for every 5o < z < $1 < v,
and P.(k) € (so, s1]; Pr cannot contain any elements of [0, so] after P, (k), since
those elements have all either occurred on P, or on P, before P.(k). Thus P, af-
ter P,(k) is entirely contained in (sg, $1], and so S, has ensured its requirement
of making P, finite.

We remark now that the technique of Theorem 5.7 only allows us to build a
coloring ¢ that can defeat any single uniform manner of attempting to produce
a A9 path decomposition from c. For the coloring ¢ that we create, it is not at all
difficult to produce a path decomposition; it is just the case that the f(e)th AY
path decomposition fails to do so.

5.3. NO FINITE SET OF AY INDICES. We show now, by a strengthening of the
argument from Theorem 5.7, that it is impossible to reduce the nonuniformity
to a finite collection of AY indices.

THEOREM 5.8: There is no partial computable function f such that if e is an
index for a computable coloring c, then f(e) is an index for a finite c.e. set Wy,
one of whose elements is an index for a A path decomposition for c.

204 P. A. CHOLAK ET AL. Isr. J. Math.

Proof. Let f be a partial computable function. We create a computable coloring
with index e such that if f(e) is defined, and if Wy, is finite, then no element
of Wy is an index for a AY path decomposition for c.

Our construction is in stages. During stage s of the construction, for every
t <'s, we color the pair {¢, s+ 1}.

As in the proof of Theorem 5.7, we use an index, e, for the coloring that we
are constructing. We begin computing f(e), and while we wait for it to halt,
we color everything BLUE with everything else.

If f(e) halts, then we begin enumerating Wy(). Let Wy , be the stage s
approximation to W ..

For each i in Wy (., let B ; and P,.; be the potential paths given by index 4,
and let P, ;s and P, s be their stage s approximations, as in the proof of
Theorem 5.7. We again assume Py ; (), Pr; s(z) < s for all z.

We will use z as a variable for a color (BLUE or RED), as well as for a letter
for a color (b or r). We will write 1 — 2 to refer to the other color.

For each i € Wy, we will have two strategies S;; and S ;, which will
work to ensure that if (P, ;, P,;) forms a path decomposition for ¢, then P, ;
(respectively P, ;) is finite. Note that if both Sp; and S, ; achieve their goals,
then (P s, Pr;) cannot form a path decomposition for c.

We will again arrange our strategies in a priority ordering based on length
of stability of their first element. That is, at stage s, define ty(z,4,s) to be
least such that for every ¢ € [to(z,1,),], P:,it(0) = P, s(0). From z € {b,r}
and i € Wy, choose a pair (20,40) with to(2,4,s) least (deciding ties by
Godel numbering) to be our strategy of highest priority at stage s, and let
to(s) = to(2o0, t0, 5).

Let sg be least such that sg > to(s) and S,
For every t < sg, we color the pair {¢,s+ 1} with color 1 — zy. This completes

has highest priority at stage sg.

0,%0

the action for S 4.
Next, for every pair (z,i) other than (zp,i9), consider whether there are
k,¢ < s with
range(P; i slk) U range(Pi_, ; s[¢) 2 [0, so
and P, ; s(k) > so. For those pairs for which there are such k and ¢, fix the
least such k and ¢ and let ¢1(z,14, s) be least such that

t1(2,4,8) > Pyis(k), Pi—sitle=Pi—zisle and P.iiles1= Psislkt+1

for every t € [ti(z,1,s), 5].

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 205

From those pairs with ¢1(z,4, s) defined, choose a pair (z1,41) with t1(z,%,)
least (deciding ties by Godel numbering) to be the strategy of next highest pri-
ority at stage s, and let ¢1(s) = t1(21,41, s). Let s1 be least such that s; > t1(s)
and Sy, ;, has second highest priority at stage s;. For every ¢ € (so, $1], we color
the pair {¢,s + 1} with color 1 — z;. This completes the action for S, ;.

We continue in this fashion until we reach a j where t;(z, 1, s) is not defined
for any pair (z,4). We then color {¢,s + 1} BLUE for any remaining ¢ < s and
end the stage. This completes the construction.

We now verify that if Wy is finite, then for every i € Wy, (P4, Pri)
is not a path decomposition for c. Note that for every pair (z,1), t;(2,%,s) is
nondecreasing in s, and if ¢;(z, ¢, s) is undefined, then for all ¢ > s with ¢;(z, ¢, t)
defined, t;(z,1,t) > s. It follows that the same holds for t;(s).

Define m to be greatest such that for all j < m, t; = lim,¢;(s) converges.
Let (zj,1;) be the pair chosen for priority j for cofinitely many stages (the pair
defining t; = t; (2,5, s) for almost every s). The existence of such a pair follows
from the above discussion, along with the assumption that Wy, is finite. Let k;
be the value k chosen for this pair at cofinitely many stages.

The following two claims will complete the proof of the result.

CrLamM 5.9: For j < m, if P,,

EL

is a monochromatic path with color z; and
disjoint from Py_; ;., then it is finite.

Proof. By a simple induction, the values s;_; and s; are eventually chosen the
same at cofinitely many stages s (taking s_; = —1). By construction, c¢{z,y}
is 1 — z; for every s;—1 < < s; < y. By our choice of (z;,1i;), every point
in [0, s;_1] lies either on Py, ;; or is one of P, ;,(0),..., P, ;(k; —1). Also,
P.,i;(kj) € (sj-1,s5]. So after P, ; (k;), P.,, cannot contain any elements
outside of (s;_1,s;], and so must be finite.

Cram 5.10: If i € Wy and (z,i) is not one of the (z;,i;) for any j < m,
then P, ; is finite or range(P, ;) U range(Pi_, ;) is not all of N.

Proof. Suppose not. Since range(P, ;) Urange(Py_, ;) is all of N and P, ; is
infinite, there are k and ¢ with

range(P, ;) Urange(Pi_, i[¢) 2 [0, 8]

and P, ;(k) > sy, where s, is the value chosen for (2,4,) at cofinitely many
stages. At sufficiently large stages, P, ;[x+1 and Pi_, ;[will converge, and i

206 P. A. CHOLAK ET AL. Isr. J. Math.

will have appeared in Wy, and so tm+1(2,1, s) will be defined and unchanging
at sufficiently large s. So t,,+1(s) will be defined and bounded by t,,+1(z,1,s)
at all of these stages. Since t,,41(s) is nondecreasing, it must have a limit,
contrary to our choice of m.

Theorem 5.8 now follows: for any i € Wiieys either P, ; and P,; are both
finite, one of P, ; or P,; fails to be a monochromatic path of the appropriate
color, or there are elements of N which appear on neither or both paths. In all
cases, (P4, Pr;) is not a path decomposition for c.

6. RPD compared to Ramsey’s Theorem for pairs

One fact about (infinite) Ramsey’s Theorem that is regularly used is that for
every coloring ¢ : [N]? — r and every infinite set X, there is an infinite homo-
geneous set H C X. However, a path decomposition of a set X C N for the
restricted coloring ¢ : [X]? — r does not help us to find a path decomposition
for the unrestricted coloring ¢ : [N]? — r.

There is a proof which uses compactness to show the infinite version of Ram-
sey’s theorem implies the finite version. For example, see Graham et al. [5]. By
Theorem 4.5, we know this compactness argument fails for the Rado Path De-
composition Theorem. A compactness argument breaks down since the paths
linking numbers below m might also involve numbers larger than m.

7. Corollaries in mathematical logic

For a reference for the terms used in this section we suggest Hirschfeldt [6].
The existence of a nonprincipal ultrafilter on the natural numbers is a strong
assumption that unfortunately cannot be shown in Zermelo Fraenkel set theory,
see Feferman [3]; the axiom of choice is sufficient, see Jech [7]. By independent
results of Towsner [13], Enayat [2], and Kreuzer [9], the ultrafilter proof of Rado
Path Decomposition implies that for every r-coloring ¢ of [N]? there is a path
decomposition arithmetical in ¢, and as a statement of second order arithmetic
the Rado Path Decomposition Theorem holds in ACA,.

The same result can be obtained by an examination of the cohesive proof in
Section 2.2. In fact, that proof can give us more. A careful analysis shows that
a path decomposition can always be found in the jump of the cohesive set C’.
The key issue is that exactly one N(m, j) is large (with respect to our cohesive
set C). Tt is A (but not computable in C') to determine which one.

Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 207

Jockusch and Stephan [8] have showed that d is PA over 0’ if and only if
there is a C which is cohesive with respect to the collection of all computable
sets and C" <7 d. As there is a d which is PA over 0’ with d’ = 0”, it follows
that there is always a path decomposition whose jump is bounded by ¢”.

For 2-colorings, Theorem 4.2 shows this bound can be improved to A§. For
stable colorings the bound can also be improved to A§. (Use the stable proof
of RPD and note that determining m’s color is A§.)

Theorem 3.1 shows that we cannot expect to do better than A§. So for stable
and 2-coloring the bound of A§ is tight.

For more than two colors, we do not have an exact calibration of the effectivity
of path decomposition.

Question 7.1: Does every 3-coloring ¢ have a A§ path decomposition?

Question 7.2: Is there an unstable 3-coloring ¢ such that every path decompo-
sition is PA over 0'?

Question 7.3: Does increasing the number of colors past 3 have any effect on
the above two questions?

Theorem 3.1 shows that as a statement of second order arithmetic the Rado
Path Decomposition Theorem implies ACAy over RCAg. One can observe that
the only induction used is ¥¢ and hence available in RCA.

One might wonder why we cannot use the generic construction to answer
Question 7.2 by building a path decomposition that avoids the cone of degrees
above 0’. The problem is that forcing ©§ statements (like does ®(w)]) is L
not X. The ends of finite paths P; must have color j and determining this is
not L.

References

[1] M. Elekes, D. T. Soukup, L. Soukup and Z. Szentmikléssy, Decompositions of edge-
colored infinite complete graphs into monochromatic paths, Discrete Mathematics 340
(2017), 2053-2069.

[2] A. Enayat, From bounded arithmetic to second order arithmetic via automorphisms, in
Logic in Tehran, Lecture Notes in Logic, Vol. 26, Association of Symbolic Logic, La Jolla,
CA, 2006, pp. 87-113.

[3] S. Feferman, Some applications of the notions of forcing and generic sets, Fundamenta
Mathematicae 56 (1964/1965), 325-345.

208

(4]

5]
6]
7
]
9]

[10]

[11]

[12]

[13]

(14]

P. A. CHOLAK ET AL. Isr. J. Math.

L. Gerencsér and A. Gyarfds, On Ramsey-type problems, Annales Universitatis Scien-
tiarum Budapestinensis de Rolando E6tvés Nominatae. Sectio Mathematica 10 (1967),
167-170.

R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, Wiley-Interscience
Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1990.
D. R. Hirschfeldt, Slicing the Truth, Lecture Notes Series. Institute for Mathematical
Sciences. National University of Singapore, Vol. 28, World Scientific, Hackensack, NJ,
2015.

T. Jech, Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003.

C. G. Jockusch, Jr. and F. Stephan, A cohesive set which is not high, Mathematical
Logic Quarterly 39 (1993), 515-530.

A. P. Kreuzer, Non-principal ultrafilters, program extraction and higher-order reverse
mathematics, Journal of Mathematical Logic 12 (2012), Article no. 1250002.

A. Pokrovskiy, Partitioning edge-coloured complete graphs into monochromatic cycles
and paths, Journal of Combinatorial Theory. Series B 106 (2014), 70-97.

R. Rado, Monochromatic paths in graphs, Annals of Discrete Mathematics 3 (1978),
191-194.

D. T. Soukup, Decompositions of edge-coloured infinite complete graphs into monochro-
matic paths II, Israel Journal of Mathematics 221 (2017), 235-273.

H. Towsner, Ultrafilters in reverse mathematics, Journal of Mathematical Logic 14
(2014), Article no. 1450001.

R. Weber, Computability Theory, Student Mathematical Library, Vol. 62, American
Mathematical Society, Providence, RI, 2012.

