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ABSTRACT

Let c : [ω]2 → r. A path of color j is a listing (possibly empty) of integers

{a0, a1, a2 . . .} such that, for all i ≥ 0, if ai+1 exists then c({ai, ai+1}) = j.

A empty list can be a path of any color. A singleton can be a path of any

color. Paths might be finite or infinite. The color is determined for paths

of more than one node. Improving on a result of Erdős, in 1978, Rado

published a theorem which implies:

Rado Path Decomposition: Let c : [ω]2→r. Then, for each j < r, there

is a path of color j such that these r paths (as sets) partition ω (so they

are pairwise disjoint sets and their union is everything).

Here we will provide some results and proofs which allow us to analyze

the effective content of this theorem.

1. Introduction

Fix c : [N]2 → r, an r-coloring of the pairs of natural numbers. An ordered list of

distinct integers, a0, a1, a2, . . . ai−1, ai, ai+1, . . . is a monochromatic path for

color k, if, for all i ≥ 1, c({ai−1, ai}) = k. The empty list is considered a path

of any color k. Similarly, the list of one element, a0, is also considered a path

of any color k. For any monochromatic path of length two or more the color is

uniquely determined. Paths can be finite or infinite. Since all paths considered

in this article are monochromatic we will drop the word monochromatic.

Definition 1.1: Let c be an r-coloring of [N]2 ([n]2). A path decomposition

for c is a collection of r paths P0, P1, . . . , Pr−1 such that Pj is a path of color j

and every integer (less than n) appears on exactly one path.

Improving on an unpublished result of Erdős, Rado [11] published a theorem

which implies:

Theorem 1.2 (Rado Path Decomposition, RPD, or RPDr): Every r-coloring

of the pairs of natural numbers has a path decomposition.

In Section 2, we provide three different proofs of this result. The first proof

makes use of an ultrafilter on the natural numbers. This ultrafilter proof is

clearly known but has only recently appeared in print; see Lemma 2.2 of [1].

The remaining proofs are interesting new modifications of the ultrafilter proof.

All of the proofs presented are highly noncomputable. In Section 3, we show

that a noncomputable proof is necessary. A coloring c : [N]2 → r is stable if

and only if limy c({x, y}) exists for every x. We show there is a computable
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stable 2-coloring c of [N]2 such that any path decomposition for c computes the

halting set. In Section 4, we give a nonuniform proof of the fact that the halting

set can compute a path decomposition for any computable 2-coloring.

In Section 5 we show that if our primary Δ0
2 construction from Section 4 fails,

then it is possible to find a path decomposition which is as simple as possible:

one path is finite and the other computable. But even with this extra knowledge,

we show, in Theorem 5.7, that there is no uniform proof of the fact that the

halting set can compute a path decomposition for any computable 2-coloring.

In Theorem 5.8, we improve this to show no finite set of Δ0
2 indices works.

In Section 7 we show that the halting set can also compute a path decompo-

sition for stable colorings with any number of colors. The rest of Section 7 dis-

cusses Rado Path Decomposition within the context of mathematical logic and,

in particular, from the viewpoint of computability theory and reverse mathemat-

ics. In Section 6, we discuss two differences between Rado Path Decomposition

and Ramsey’s Theorem for pairs.

Most of the sections can be read in any order, although Section 5 relies on

Section 4, and Section 7 relies on Section 2.

Our notation is standard. Outside of Sections 1.1 and 7, and possibly Sec-

tion 5, our use of computability theory and mathematic logic is minimal and

very compartmentalized. One needs to be aware of the halting set and the first

few levels of the arithmetic hierarchy. A great reference for this material is

Weber [14]. For more background in reverse mathematics, including all notions

discussed in Sections 1.1 and 7, we suggest Hirschfeldt [6].

Our interest in the RPD was sparked by Soukup [12]. Thanks!

1.1. RPD within the framework of computable combinatorics. In

computable combinatorics we consider combinatorics principles as instances-

solutions pairs and compare the computational power of solutions. With RPDr,

an instance is an r-coloring and a solution is a path decomposition. With Ram-

sey’s theorem for pairs and r colors, RT2
r, the instance is an r-coloring and the

solution is a homogenous set; see Remark 2.3. Another classic combinatorics

problem is Weak König’s Lemma, WKL, where an instance is an infinite subtree

of 2<ω and a solution is an infinite path through the tree.

There are many ways one can compare the computational power of solutions.

For example, since the halting set computes an infinite path through every

computable instance of WKL, Theorem 3.1 implies that every solution to a
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certain computable instance of RPDr computes a solution to every computable

instance of WKL. By the Low Basis Theorem we know that there are low

solutions to every computable instance of WKL but, again by Theorem 3.1, we

know there are computable instances of RPDr without low solutions. So RPDr

is stronger than WKL. While we show RPDr is strictly stronger than RT2
r, the

relationship between their solutions is not as straightforward. One can consider

a Turing ideal, I, an ideal model of a combinatorics principle if every instance

in I has a solution in I. Our work shows that every ideal model of RPDr is a

model of RT2
r but the converse fails. We also show that solutions to computable

instances of RPD2 cannot compute solutions to computable instances of RT2
r . A

postive answer to Question 7.2 would imply that computable instances of RPD3

can compute solutions to computable instances of RT2
r.

Another way to measure the strength of these principles is as statements

in second order arithmetic. Here we think of combinatorics principles as set

existence theorems, that is, the combinatorics principle implies that a solution

exists for every instance that exists. Here we show that over RCA0, the system

corresponding to the existence of the computable sets, RPDr is equivalent to

ACA0, the system corresponding to the existence of the arithmetic sets.

There are many more combinatorics principles and ways one can compare the

computational power of combinatorics principles. We cannot discuss them all

here, and again we suggest Hirschfeldt [6] as a starting point.

2. Some proofs of RPD

In this section we will provide several proofs of RPD. We need to start with

some notation and definitions. The union of pairwise disjoint sets is written as

X0 � X1 � · · · �Xi. Two sets are equal modulo finite, X =∗ Y , if and only if

their symmetric difference X�Y is finite. If X0 � X1 � · · · � Xi =∗ Z, then

the Xj’s are pairwise disjoint and their union is equivalent modulo finite to Z.

If Z = N, then X0 �X1 � · · · �Xi almost forms a partition of N, that is, there

is a finite set F such that F �X0 �X1 � · · · �Xi = N.

Definition 2.1: A collection U of subsets of N is an ultrafilter (on N) if and

only if ∅ /∈ U , U is closed under superset, U is closed under finite intersections,

and, for all X ⊆ N, either X ∈ U or its complement X ∈ U . An ultrafilter is

nonprincipal if and only if, for all a ∈ N, {a} /∈ U .
We will call a subset X of N large if and only if X ∈ U .
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Remark 2.2: The two key facts that we will need about a nonprincipal ultrafil-

ter U are as follows.

(1) U does not have finite members. (This statement follows by an easy

induction on the size of the finite set.)

(2) If

X0 �X1 � · · · �Xi =
∗
N,

then exactly one of the Xj is large. (No more than one of these sets

can be large, because if Xj0 and Xj1 are distinct then they have an

empty intersection. Assume that for all j, Xj ∈ U . It follows that
⋂

j≤i Xj =
∗ ∅ ∈ U . But no finite set can be a member of a nonprincipal

ultrafilter, giving us the desired contradiction.)

For the rest of this section a coloring c : [N]2 → r will be fixed.

2.1. Ultrafilter proof. The existence of a nonprincipal ultrafilter on the

natural numbers is a strong assumption that unfortunately cannot be shown in

Zermelo Fraenkel set theory, see Feferman [3]; the axiom of choice is sufficient,

see Jech [7]. Nevertheless, we give a proof of RPD that uses this assumption,

because we believe that it provides insight into the combinatorics of this state-

ment. Later in this section we will give alternative proofs of RPD that do not

use a nonprincipal ultrafilter.

Let U be a nonprincipal ultrafilter. We will denote the set of neighbors of m

with color i by

N(m, i) = {n : c({m,n}) = i}.
Note that N(m, i) is computable in our coloring c. Furthermore, if we fix m,

then the sets N(m, i) where i < r almost form a partition of N, just m is

missing. By Remark 2.2 for every m there is a unique j < r such that N(m, j)

is large. Let

Aj = {m : N(m, j) is large}.
The sets Aj where j < r also partition N. If m ∈ Aj then we will say that

m has color j. It follows that every natural number is assigned in this way a

unique color.

For any pair of points m < n in Aj , N(m, j) ∩N(n, j) is large. So there are

infinitely many v ∈ N(m, j) ∩ N(n, j). For all such v, c(m, v) = c(v, n) = j.

Note that any such v is likely much larger than m and n and not necessarily

in Aj .
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Construction. We will construct our path decomposition P0, P1, . . . , Pr−1 in

stages. Let Pj,0 = ∅ for all j < r. The path Pj,0 is the empty path of color j.

Assume that for each j < r, Pj,s is a finite path of color j such that if Pj,s is

nonempty then its last member is of color j (i.e., in Aj). Assume also that every

t < s appears in one of the Pj,s. If s already appears in one of the r paths, then

let Pj,s+1 = Pj,s for all j < r. Otherwise, s has some color k. For j 
= k, let

Pj,s+1 = Pj,s. If Pk,s is empty, then let Pk,s+1 = {s}. Otherwise, let e be the

end of the path Pk,s. There is a v not appearing in any of the finite paths Pj,s

such that v ∈ N(e, k)∩N(s, k). Add v and s to the end of Pk,s in that order to

get Pk,s+1. To complete the construction we set Pj = lims Pj,s for every j < r.

The desired path decomposition is given by P0, P1, . . . , Pr−1.

The proof described above is very close to the well known ultrafilter proof of

Ramsey’s theorem for pairs. To illustrate this we include this proof below. An

infinite set H is homogeneous for c if and only if c([H ]2) is constant. Ramsey’s

theorem for pairs is the statement that every r-coloring of the pairs of natural

numbers has an infinite homogeneous set.

Remark 2.3 (Proof of the existence of a homogeneous set for c): Recall that

A0, A1, . . . , Ar−1 gives a partition of N. Fix the unique j such that Aj is

large. We can thin Aj to get an infinite homogeneous set H of color j as

follows: we build an infinite sequence {hn}n∈N of elements in Aj by induction

so that H = {h0, h1, . . .} is as desired. Let h0 be the least element of Aj .

Suppose that we have constructed a homogeneous set {h0, . . . , hi} ⊆ Aj . Since

Aj ∩
⋂

k≤i N(hk, j) is the finite intersection of large sets, it is also large and

hence infinite. We define hi+1 to be the least member of Aj ∩
⋂

k≤i N(hk, j)

that is larger than hi.

2.2. Cohesive proof. As noted above, we would like to remove the use of

the nonprincipal ultrafilter from the proof of RPD. For this we will extract the

specific relationship that U had with the sets N(m, j).

Remark 2.4: Reflecting on the above construction, we see that the important

things about largeness were that

(1) for every m there is a unique j < r such that N(m, j) is large,

(2) large sets are not finite, and

(3) the intersection of two large sets is large.
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Definition 2.5: An infinite set C is cohesive with respect to the sequence of

sets {Xn}n∈N if and only if for every n either C ⊆∗ Xn or C ⊆∗ Xn.

Lemma 2.6: There is a set C that is cohesive with respect to the sequence

{N(m, j)}j<r,m∈N.

Proof. Once again we will use a stagewise construction. We will construct two

sequences of sets: {Cs}s∈N and {Rs}s∈N. The first sequence will be increasing

and the second decreasing with respect to the subset relation. Start with C0 = ∅
and R0 = N. Fix some indexing of all pairs 〈m, i〉. Inductively assume that, for

all 〈m, i〉 < s, either Rs ⊆ N(m, i) or Rs ⊆ N(m, i), Cs is finite, Rs is infinite,

and Cs and Rs are disjoint. At stage s + 1, let cs be the least element of Rs.

Let Cs+1 = Cs ∪ {cs}. Assume that s = 〈m, i〉. Since Rs is an infinite set, at

least one of Rs ∩N(m, i) or Rs ∩N(m, i) is infinite. If Rs ∩N(m, i) is infinite

let Rs+1 = (Rs ∩N(m, i))−{cs}. Otherwise let Rs+1 = (Rs ∩N(m, i))− {cs};
C = lims Cs = {c0, c1, . . .} is the desired cohesive set.

Fix such a set C. We can now redefine largeness by using C instead of

an ultrafilter. Call a set X large if and only if C ⊆∗ X . This new notion

of largeness has the three key properties outlined above with respect to the

sets N(m, i): for every m there is a unique j < r such that N(m, j) is large,

because C cannot be a subset of two disjoint sets, even if we allow a finite error;

large sets are not finite, because C is infinite; and the intersection of two large

sets is large, because if C ⊆∗ X and C ⊆∗ Y then C ⊆∗ X ∩ Y . We can now

repeat the original construction using this notion of largeness to produce a path

decomposition.

2.3. Stable colorings. Recall that a coloring c is stable if and only if for

every m the limit limn c({m,n}) exists. Rephrasing this property in terms of

sets of neighbors, we get that there is a unique j < r such that N(m, j) is

cofinite. So to construct a path decomposition for stable colorings we do not

even need a cohesive set. We can redefine large to mean cofinite and use once

again the original construction.

2.4. Generic path decompositions. In this section we will provide a

forcing-style construction of a path decomposition. To avoid confusion with

our ultrafilter proof, our construction will use sequences of conditions rather

than poset filters.
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Conditions are tuples (P0, P1, . . . , Pr−1, X) such that

(1) X ⊆ N is infinite,

(2) Pj is a finite path of color j for every j < r,

(3) no integer appears on more than one of the paths, and

(4) if Pj is nonempty and ej is its last element, then X ⊆∗ N(ej , j) (so ej

has color j with respect to X).

It follows that (∅, ∅, . . . , ∅,N) is a condition, because it trivially satisfies the third
requirement. A condition (P̂0, P̂1, . . . , P̂r−1, X̂) extends (P0, P1, . . . , Pr−1, X)

if and only if, for all j, Pj is an initial subpath of P̂j , and X̂ ⊆ X . Unlike

Mathais forcing, the new elements of our paths P̂j need not be elements of X .

Given a sequence of conditions 〈Ci〉i∈N such that for every i, Ci+1 extends Ci,

we think of this sequence as approximating a tuple of paths as follows.

If Ci = (P i
0 , P

i
1, . . . , P

i
r−1, X

i), then the sequence 〈Ci〉 approximates the tuple

of paths (P̃0, P̃1, . . . P̃r−1) where

P̃j = lim
i

P i
j .

Such a tuple of paths need not be a path decomposition, since it might happen

that some integer does not appear on any of the limit paths. The purpose of

the X values in the conditions will be to ensure that the approximated paths

do form a path decomposition if the sequence 〈Ci〉 is generic (defined below).

A set of conditions D is dense if every condition is extended by a condition

in D. A sequence 〈Ci〉 meets D if there is some i such that Ci ∈ D.

Given any collection of dense sets, a sequence is 〈Ci〉 generic for that col-

lection if it meets every D in that collection. Note that if we have a countable

collection of dense sets Di, then it is straightforward to build a generic se-

quence for that collection, by inductively choosing each Ci+1 to extend Ci and

be in Di+1.

Let Di be the set of conditions (P0, P1, . . . , Pr−1, X) such that i is on some

path Pj . The lemma below shows that Di is dense. Any generic for {Di} gives

a path decomposition for c.

Lemma 2.7: For every i the set Di is dense.

Proof. Fix i and a condition (P0, P1, . . . , Pr−1, X). If i is on one of the paths Pj

then we are done. Otherwise, X is an infinite set, so there must be a j such that

N(i, j) ∩X is infinite. If k 
= j then let P̃k = Pk. Let X̃ = X ∩N(i, j). If Pj is



Vol. 234, 2019 RADO PATH DECOMPOSITION THEOREM 187

empty let P̃j be i. Otherwise let e be the end of Pk. Since (P0, P1, . . . , Pr−1, X)

is a condition, there is a v such that v ∈ N(e, j) ∩N(i, j). Let P̃j be Pj with v

and i added to the end in that order. It follows that (P̃0, P̃1, . . . P̃r−1, X̃) is a

condition in Di extending (P0, P1, . . . , Pr−1, X).

The generic construction is very much in the style of Rado’s original proof.

3. Path decompositions which compute the halting set

Recall the halting set K = {e|(∃s)ϕe,s(e)↓} is the set of codes e for programs

which, when started with input e, halt after finitely many steps. The halting

set was one of the first examples of a set that is not computable. The goal of

this section is to show the following theorem.

Theorem 3.1: There is a computable stable 2-coloring c of [N]2 such that any

path decomposition of c computes the halting set.

We devote the rest of the section to the proof of this theorem. For colors

we will use RED and BLUE. Once again a coloring c is stable if, for all m,

limn c(m,n) exists.

We will give a computable stagewise construction for c. The goal will be to

construct c so that:

(1) The BLUE path in any path decomposition is infinite.

(2) Any path decomposition can compute the elements of K via the fol-

lowing algorithm: If e is a natural number, then the construction will

associate a marker me to e in a way that is computable from any path

decomposition for c. We enumerate the BLUE and RED paths until all

numbers x ≤ me have appeared on one of the two paths. Let t be the

next element on the BLUE path. Then e ∈ K if and only if ϕe,t(e) is

defined (i.e., ϕe(e) halts after ≤ t many steps).

Each x ∈ N will have a default color. Initially it will be BLUE. The default

color of a number might be changed once during the construction to RED. At

stage s, we will define c({x, s}) for every x < s and we will always set this

value to be the current default color for x. So our construction will produce

a stable coloring. To achieve our first goal, it will be sufficient to ensure that

for all elements of infinitely many intervals [k, 2k + 1] the default color BLUE

is never changed. This is because if all elements in the interval [k, 2k + 1] are
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colored BLUE with every greater number, then, in any path decomposition, the

BLUE path must contain a node in this interval: if m is in this interval and on

a RED path, then the next and previous nodes on this RED path must be a

number less than k, so the RED path can only contain at most k of the nodes

in this interval. The length of this interval is k+2, so at least one of the nodes

in this interval must be on the BLUE path. This idea is reflected in the way we

associate markers me to elements e.

We will say that a number k is fresh at stage s if and only if k is larger

than any number mentioned/used at any stage t where t ≤ s. All markers me

are initially undefined, i.e., me,0↑. At each stage s before we proceed with the

definition of c(x, s) for x < s we first update the markers: for the least e where

me,s−1 is not defined, we will select a fresh number k and define me,s = 2k+2.

(Note that this means that if n is fresh after stage s then n > 2k + 2.) Unless

we say otherwise (see below) at all later stages t we will keep me,t = me,s. It

will follow that lims me,s = me exists.

We also update the default colors as follows. For every e < s we check if

ϕe,s−1(e)↑, ϕe,s(e)↓, and me,s is defined. If so we change the default color

of all x ∈ [me,s, s + 1] to RED and make all mi,s undefined for all i > e. If

we can show that this construction satisfies our first goal, then we can easily

argue that it also satisfies the second: Fix any path decomposition and assume

that t is the first element on the BLUE path after all numbers x ≤ me have

shown up on one of the two paths. Suppose further that ϕe(e) halts in s many

steps. We must show that t > s. If at stage s we have that me,s is not defined,

then t > me > s. If me,s is defined and we assume that t < s + 1, then the

BLUE path cannot be extended below me,s because everything below me,s has

already been covered by one of the two paths, and it cannot be extended above

s + 1 because everything in the interval [me,s, s + 1] is RED with everything

larger than s + 1. It follows that the BLUE path is finite, contradicting our

assumption.

For every e the value of the marker me,s can be cancelled at most e many

times and then stays constant, so lims me,s = me does exist. It is furthermore

computable from any path decomposition by the following procedure. The

marker for 0 is never cancelled, so m0 = m0,1. If we know the value of me, then

we run the construction until we see the first stage t0 such that me = me,t0 .

It follows that after stage t0 we can cancel me+1 only for the sake of e. We

can also figure out if e ∈ K by looking for the first t1 on the BLUE path
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after all numbers x ≤ me have shown up on one of the two paths and checking

whether or not ϕe(e) halts in t1 steps. Let t = max(t0, t1) + 1. We claim that

me+1,t = me+1. If e /∈ K, then me+1 is not cancelled at any stage greater

than t0 and is defined by stage t. If e ∈ K, then me+1 can possibly be cancelled

after stage t0 but no later than at stage t1 and so once again its final value will

be defined by stage t.

Finally, by induction on e, we will show that there are e intervals [k, 2k + 1]

where the default color BLUE for all x in the interval is never changed

and 2k + 1 ≤ me. Assume inductively this is true for all e′ ≤ e and let s be

the stage when me+1,s = me+1 is defined. By construction me+1,s is defined

as 2ke+1+2 for some fresh ke+1 > me. The default color for all x in the interval

[ke+1, 2ke+1 + 1] is never changed from BLUE.

4. 2-colorings

As we will see in this section 2-colorings are very special. For this section we

will use BLUE and RED as our colors. Perhaps one of the earliest published

results on path decompositions is the following.

Theorem 4.1 (Gerencsér and Gyárfás [4]): Every 2-coloring c of [n]2 has a

path decomposition.

Proof. We prove this statement by induction on n. Clearly the statement is

true for [2]2. Assume c is a 2-coloring of [n + 1]2. In particular, c induces a

2-coloring on the subgraph [n]2.

By induction there is a path decomposition of [n]2. So there is a RED

path, Pr, and a BLUE path, Pb, such that, if i < n, then i is on exactly

one of Pr or Pb.

If Pr is empty, then Pb and {n} is a path decomposition for c. Similarly if Pb

is empty.

Let xr be the end of the RED path and let xb be the end of the BLUE path.

Look at the color of the edge between xr and n. If it is RED, then add n to the

end of Pr to get a path decomposition for c. Similarly, if the color of the edge

between xb and n is BLUE, then add n to the end of Pb.

Otherwise look at the color of the edge between xr and xb. If this is RED add

xb, n (in that order) to the end of the RED path and remove xb from the end of

the BLUE path. We will say that xb switches to RED. If c({xr, xb}) is BLUE,
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then add xr , n (in that order) to the end of the BLUE path and remove xr from

the end of the RED path. In this case xr switches to BLUE. In all cases

we have obtained a path decomposition of [n + 1]2, thereby completing the

inductive step.

We are going to improve this theorem to the following:

Theorem 4.2: If c : [N]2 → 2 then there is a Δc
2 Path Decomposition. In par-

ticular, if c is computable then it has a path decomposition that is computable

from the halting set K.

The rest of this section is devoted to the proof of this theorem. This proof

will be nonuniform. We will also discuss other issues along the way. Our first

goal is to understand why we cannot simply iterate Theorem 4.1 infinitely often

to get such a proof. We need to examine the path constructed in Theorem 4.1

very closely.

Definition 4.3: Suppose P̃b is a BLUE path and P̃r a RED path. Then the

pair (P̃b, P̃r) is a one-step path extension of (Pb, Pr) if exactly one of the

following holds:

(1) P̃b is Pb with one additional element at the end and P̃r = Pr, or

(2) P̃r is Pr with one additional element at the end and P̃b = Pb, or

(3) P̃b is the path Pb with the last element xb removed and P̃r is Pr with

xb and some integer x added in that order at the end (in this case xb

switches to RED), or

(4) P̃r is the path Pr with the last element xr removed and P̃b is Pb with

xr and some integer x added in that order at the end (in this case xr

switches to BLUE).

(P̃b, P̃r) is a path extension of (Pb, Pr) if it can be obtained from (Pb, Pr)

by a sequence of one-step path extensions. Also, if (P̃b, P̃r) is a path extension

of (Pb, Pr), P̃r = Pr, and x is the last element of P̃b, then we say that (P̃b, P̃r) is

a BLUE path extension of (Pb, Pr) to x. We similarly define a RED path

extension of (Pb, Pr) to x.

Note that if x is on one of Pb or Pr and (P̃b, P̃r) is a path extension, then x

is on one of P̃b or P̃r.

The proof of Theorem 4.1 shows:
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Lemma 4.4: Given any two finite disjoint paths Pb and Pr and an integer n not

on either path, we can computably in c find a one-step path extension (P̃b, P̃r)

such that n appears on exactly one of these paths.

We cannot generalize this lemma for more than 2 colors. In fact, Theorem 4.1

fails for more than 2 colors.

Theorem 4.5 (Pokrovskiy [10]): Given any r > 2 there are infinitely many m

such that there is an r-coloring c of [m]2 without a path decomposition.

As our first attempt to prove Theorem 4.2, we will iterate Lemma 4.4 infinitely

often to build paths Pb,s and Pr,s by stages. Start with Pb,0 = Pr,0 = ∅. At

stage s+1, apply Lemma 4.4 to Pb,s and Pr,s and the least integer not on either

path n to get Pb,s+1 and Pr,s+1. Once we have constructed these sequences, we

need a way to extract from them two paths Pb and Pr and then try to argue

that they form a path decomposition. We can do this if the position of every

number eventually stabilizes. This idea is captured by the following definition.

Definition 4.6: Suppose that, for every natural number s, Ps = xs
0, . . . , x

s
ks

is a

finite BLUE (RED) path. We define the BLUE (RED) path

lim
s

Ps = x0, x1, . . . , xn, . . .

by xn = lims x
s
n as long as lims x

s
i exists for all i ≤ n. If there is an i ≤ n for

which lims x
s
i does not exist, then we leave xn undefined.

Given the sequences {Pb,s}s∈N and {Pr,s}s∈N, we know that every n eventually

appears on one of Pb,s and Pr,s at some stage s and remains on either Pb,t

and Pr,t at all stages t > s. So if every n only switches between the two sides

finitely often, then the pair Pb and Pr is a path decomposition. The limit will

exist, although we might not have an explicit way to compute the limit.

However, it is possible for an n to switch infinitely often. It is, in fact, even

possible to build a c such that every number n switches sides infinitely often.

For such a c, it would be the case that lim sups |Pb,s| = ∞ but lims Pb,s is empty,

and likewise for Pr.

We have to alter our approach. We will still build our path decomposition

as the stagewise limit of path extensions, although they will no longer be one-

step path extensions. At each stage s we will have disjoint finite paths Pb,s

and Pr,s. The pair (Pb,s+1, Pr,s+1) will be a path extension of (Pb,s, Pr,s). The
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integers xr,s and xb,s will be the ends of these paths at stage s. When the stage

is clear, we will abuse notation and drop the s in xr,s and xb,s. We will need

the following:

Definition 4.7: Suppose (P̃b, P̃r) is a one-step path extension of (Pb, Pr) obtained

by Case (3) (i.e., xb switches to RED and is followed by x on P̃r). We say that xb

strongly switches to RED if there is no BLUE path extension of (Pb, Pr) to x.

We similarly define what it means for xr to strongly switch to BLUE.

We say (P̃b, P̃r) forms a strong one-step path extension of (Pb, Pr) if the

pair (P̃b, P̃r) is a one-step path extension of (Pb, Pr) via either Cases (1) or (2),

or via Cases (3) or (4) with a strong switch.

We say that (P̃b, P̃r) forms a strong path extension of (Pb, Pr) if it can be

obtained from (Pb, Pr) by a sequence of strong one-step path extensions.

The following lemma is the key combinatorial property that will provide sta-

bility to constructions that are performed using strong path extensions.

Lemma 4.8: If n strongly switches to RED, then n can never switch back to

BLUE by a path extension. The RED path up to n is stable.

Before we prove Lemma 4.8, we require a more basic order-preservation lemma

concerning path extensions.

Lemma 4.9: Assume (P̃b, P̃r) is a path extension of (Pb, Pr). Assume that n

and m are two numbers such that one of the following holds:

• n appears before m in Pr.

• m appears before n in Pb.

• n appears in Pr and m appears in Pb.

Then one of the following holds:

• n appears before m in P̃r.

• m appears before n in P̃b.

• n appears in P̃r and m appears in P̃b.

Proof. The proof is an easy induction argument using the fact that only the

last element of a path can ever switch to the other path. Any time the elements

attempt to switch which path they are on, the latter element must switch before

the earlier element.

We now proceed to prove Lemma 4.8.
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Proof of Lemma 4.8. Assume not. Let (Pb,0, Pr,0), (Pb,1, Pr,1), (Pb,2, Pr,2),

(Pb,3, Pr,3) be pairs of finite paths such that

(1) (Pb,1, Pr,1) is a one-step path extension of (Pb,0, Pr,0) in which n strongly

switches to RED,

(2) (Pb,2, Pr,2) is a path extension of (Pb,1, Pr,1) in which n never switches,

(3) (Pb,3, Pr,3) is a one-step path extension of (Pb,2, Pr,2) in which n switches

to BLUE.

Let m be the element following n in Pr,1.

By definition of a strong switch, we have that there is no BLUE path extension

of (Pb,0, Pr,0) to m. In particular, there is no BLUE path from n to m that does

not involve any integers (besides n) from Pb,0 or Pr,0.

By hypothesis, n is in Pb,3, so by Lemma 4.9, m must appear before n in Pb,3.

But then Pb,3 has both n and m in it, and thus there is a BLUE path from n

to m. This provides a contradiction provided that we can prove that this path P

does not involve any integers besides n from Pb,0 or Pr,0.

To show this, note that n and m are the last two elements of Pr,1. In par-

ticular, every element of Pr,0 appears before n in Pr,1, and so by Lemma 4.9,

if it is in Pb,3, it must appear after n. (This does not happen, although we do

not need this fact for this proof.) Likewise, every element, besides n, of Pb,0 is

in Pb,1. Therefore, by Lemma 4.9, it must appear before m in Pb,3.

Note that we now have that if n strongly switches to RED, then the RED

path up to n is stable: n can never switch back to BLUE, and so nothing can

be added to or removed from the RED path before n.

Below we will modify the initial construction and require that all switches be

strong. This avoids the problem of instability discussed above. We will from

now on use only strong path extensions.

We note here that if our goal was only to provide another proof of Theorem 1.2

for r = 2, then we would be done. The analogue of Lemma 4.4 is not true

with strong one-step extensions, but it is true with strong extensions, so we

could simply use the initial construction with strong extensions to provide a

path decomposition for c. However, this process might not produce a Δc
2 path

decomposition for the following reason.

If there are infinitely many strong RED switches, but only finitely many

BLUE switches, then the RED path is stabilized in a way that allows it to be

computed in a Δc
2 manner, but the BLUE path can only be computed in a Δc

3
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manner. It is Δc
2 to recognize a strong switch, but it is Δc

3 to recognize that an

element will never strongly switch in the future. We will discuss this in more

detail in Section 4.4. For now, the key point is that we must sacrifice some of

the simplicity of the construction in order to provide a construction that can

be carried out by a computationally weaker oracle.

We now describe our construction explicitly. As suggested in the above para-

graph, the construction will depend on whether the number of strong BLUE

switches is finite or infinite and similarly for RED. This leads us to a case-by-

case analysis of our path decomposition. In Section 5 we will show that there is

no uniform way to produce a Δc
2 path decomposition, which implies that there

is no way to prove Theorem 4.2 without some sort of case-by-case analysis.

The following allows us to define our cases nicely.

Definition 4.10: For a coloring c, we will say that we can always strongly RED

switch if for every pair (Pb, Pr) of disjoint finite BLUE and RED paths, there

is a strong path extension (P̃b, P̃r) of (Pb, Pr) such that there was a strong RED

switch at some point during the path extension between (Pb, Pr) and (P̃b, P̃r).

We define being able to always strongly BLUE switch similarly.

Lemma 4.11: If the pair (Pb, Pr) witnesses that we cannot always strongly

RED switch and (P̃b, P̃r) is a strong path extension of (Pb, Pr), then (P̃b, P̃r)

also witnesses that we cannot always strongly RED switch.

Proof. Strong path extension is transitive. If there is a path extension of (P̃b, P̃r)

that includes a strong RED switch, then that same path extension is also a path

extension of (Pb, Pr) that includes a strong RED switch.

Our construction of a path decomposition breaks down into three different

procedures depending on whether or not we can always strongly BLUE and

RED switch.

4.1. We can always strongly BLUE and RED switch. We will induc-

tively define (Pb,s, Pr,s) by multiple stages at once. For each s, (Pb,s+1, Pr,s+1)

will be a strong path extension of (Pb,s, Pr,s).

Start with Pb,0 = Pr,0 = ∅.
Let k be the least stage where (Pb,k, Pr,k) has yet to be defined. Let x be the

least integer not on either of the paths Pb,k−1 and Pr,k−1. If there is a BLUE

path extension to x, let (Pb,k, Pr,k) be that path extension. If this fails, try the

same for RED. If both fail, switch either xb or xr as in Lemma 4.4 to get Pb,k
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and Pr,k. It follows that this switch is a strong switch. Next we stabilize some

initial segment of our paths: Let (Pb,k+1, Pr,k+1) be a strong path extension

of (Pb,k, Pr,k) that includes a RED switch, and let (Pb,k+2, Pr,k+2) be a strong

path extension of (Pb,k+1, Pr,k+1) that includes a BLUE switch.

We then repeat for the next integer not yet on either path.

All switches are strong switches, and by Lemma 4.8, the limits of these paths

exist. Since every integer is placed on our paths at some stage, and since every

integer can be switched at most once, we have that every integer is on exactly

one of the two limiting paths.

Therefore this construction gives a path decomposition.

4.2. We cannot always strongly RED switch. Let (Pb,0, Pr,0) witness

that we cannot always strongly RED switch, and furthermore assume that

among all such witnesses the length of Pr,0 is minimal.

Now consider (Pb,s, Pr,s) and x the least number not on these two finite paths.

If there is a BLUE path extension, to x, use that extension for (Pb,k+1, Pr,k+1).

If this fails try to do the same for RED.

We claim that one of the two options listed above will always work. Towards

a contradiction, suppose that both fail. To add x we must switch (like in The-

orem 4.1). Call the resulting pair (P̃b, P̃r). Then (P̃b, P̃r) is a strong extension

of (Pb,s, Pr,s). So if xb switches to RED then it strongly RED switches. This is

not possible, by our choice of (Pb,0, Pr,0).

It follows that c({xb, xr}) = BLUE and xr strongly switches to BLUE. By

Lemma 4.11, since (P̃b, P̃r) is a strong extension of (Pb,s, Pr,s), it must also

witness that we cannot always strongly RED switch. Note that P̃r is shorter

than Pr,s, so by the minimality of Pr,0, we know that Pr,s 
= Pr,0. So xr was

added to the RED path at some stage t ≤ s.

Hence there is no BLUE path from xb,t to xr which is otherwise disjoint

from Pb,t and Pr,t, as otherwise xr would have been added to Pb,t.

On the other hand there is a BLUE path from xb,t to xb, witnessed by the

fact that xb,t and xb are both on the BLUE path at stage s. (By induction, our

construction has no switches up to this point, so xb,t is still on the blue path

at stage s.) We also have that the pair xb, xr is colored BLUE, so there is a

BLUE path from xb,t to xr disjoint from Pb,t and Pr,t, a contradiction.

4.3. We cannot always strongly BLUE switch. This case is dealt with

in the same way as the previous one.



196 P. A. CHOLAK ET AL. Isr. J. Math.

4.4. The use of the oracle c′. The existence of a path from x to n is

existential in the coloring. The lack of a path from x to n is universal in the

coloring. So deciding if “P̃b and P̃r is a one-step path extension of Pb and Pr

and xb strongly switches to RED” is universal in the coloring and so computable

in c′.
As a result, c′ can be used as an oracle to implement both of the above con-

structions. In the case where we can always strongly RED and BLUE switch, we

can then use c′ to compute both of the paths because both paths are stabilized

by strong switches, and c′ can recognize the strong switches. In the case where

we cannot strongly RED (BLUE) switch, we can also use c′ to compute both of

the paths because both paths are already stable: no numbers ever switch from

one path to the other.

Note that Definition 4.10 is Π3 in the coloring. Our division of cases depends

on the truth of this statement and the witness to its failure. This is finite

information but as a result the proof is not uniform in c′. In Theorem 5.7, we

will show that this nonuniformity cannot be removed.

The more naive construction, always greedily adding the next element by

a strong extension with no case-by-case breakdown, can be implemented uni-

formly by c′, but the construction could potentially result in infinitely many

RED switches and finitely many BLUE switches (or vice-versa). In this case,

the RED path would be computable from c′ because the strong RED switches

would stabilize it. On the other hand, the BLUE path would not necessarily be

computable from c′: the statement that an initial segment of the BLUE path

has stabilized is universal in the construction (“for all future steps of the con-

struction, none of these elements ever RED switch”) and so is Π2 in the coloring.

Thus, the naive construction could potentially produce a path decomposition

in which one of the two paths is computable from c′′, but not c′.
In our proof of Theorem 4.2, if we can always switch then both the BLUE and

RED paths are infinite. But if we cannot always switch one of the paths might

be finite. In that case the constructed paths are both computable from the

coloring. In Theorem 5.2, we will see by a more delicate case breakdown that

this actually always happens. Thus, although our strongly switching proof does

not work for all colorings, it does work for all “difficult” colorings: colorings for

which there is no computable solution.
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5. Uniformity

In the above section, we have provided a nonuniform Δ0
2 construction and a

uniform Δ0
3 construction of a path decomposition. Furthermore, Theorem 4.2

showed that, in general, we cannot hope for a construction that is simpler

than Δ0
2, so the complexity of the construction cannot be reduced. Here we

address the question of whether the nonuniformity of the Δ0
2 construction can

be reduced.

Theorem 5.2 shows that if our primary construction for Theorem 4.2 fails,

then there must be a path decomposition for c in which one of the two paths is

finite and the other is computable from c.

Theorem 5.7 shows that there is no uniform Δ0
2 path decomposition. The-

orem 5.8 improves this to show we cannot even get by with a finite set of

possible Δ0
2 indices for our path composition. Thus, nonuniformity is unavoid-

able.

In light of this, the result in Theorem 5.2 is the closest possible thing to a

reduction of nonuniformity: All of the noncomputable cases are handled by a

single uniform Δ0
2 construction, which cannot have its complexity reduced due

to Theorem 4.2, and all of the nonuniform cases (unavoidable, by Theorem 5.8)

are handled by computable constructions that are as simple as possible, with

one path finite and the other computable.

We should clarify precisely what we mean by a Δ0
2 path decomposition and

an index for such an object.

Definition 5.1: A Δ0
2 path decomposition is a pair (Pb, Pr) of partial 0′-com-

putable functions for which the domain of each is an initial segment of N, the

ranges partition N, and such that for every n+ 1 ∈ domPb, c{P (n), P (n+ 1)}
is BLUE, and similarly for Pr.

A Δ0
2 index for a decomposition is a pair of numbers (ib, ir) with

Φ∅′
ib

= Pb and Φ∅′
ir = Pr .

Equivalently, by the limit lemma, it is a pair of numbers (jb, jr) such that ϕjb

and ϕjr are total computable functions,

Pb(x) = lim
s

ϕjb(x, s) and Pr(x) = lim
s

ϕjr (x, s)

for all x (where the limit does not converge when x is not in the domain).
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5.1. When we cannot always strongly BLUE and RED switch.

Theorem 5.2: There is a computable function f with the property that for

any e, if e is an index for a computable coloring c, then either f(e) is an index

for a Δ0
2 path decomposition for c, or there is a computable path decomposition

for c in which one of the two paths is finite.

Note that this theorem relativizes: there is a uniform way to take a coloring c,

and attempt to produce a Δc
2 path decomposition so that either the attempt

succeeds, or there is a c-computable path decomposition for c in which one of

the two paths is finite.

Proof. The proof hinges on the case analysis from the proof of Theorem 4.2.

In the case where we can always strongly BLUE and RED switch, the proof is

uniform: we alternate between adding the next element, adding a RED switch,

and adding a BLUE switch, and our Δc
2 path decomposition is simply the path

decomposition stabilized by the switches. Our function f will be the function

corresponding to attempting to do that construction.

It remains to show that if we cannot always RED switch, then there is always

a c-computable path decomposition in which one of the two paths is finite. (The

case where we cannot always BLUE switch will follow by symmetry.)

As in the proof of Theorem 4.2, let (Pb,0, Pr,0) witness that we cannot always

RED switch, and furthermore assume that among all such witnesses the length

of Pr,0 is minimal. Let xb and xr be the endpoints of the paths Pb,0, Pr,0. We

split our proof into two cases.

Case 1: Assume that for every n ∈ N, and for every BLUE extension (Pb, Pr,0)

of (Pb,0, Pr,0), if n is not on either Pb or Pr,0, then there is a BLUE path

extension of (Pb, Pr,0) to n.

In this case, we will use Pr,0 as our RED path, and grow our BLUE path to

cover the rest of N. We use a basic greedy algorithm.

At stage s, let (Pb,s, Pr,0) be the pair of paths that we have, and let ns be

the smallest number not on either path. We search for a BLUE path extension

of (Pb,s, Pr,0) to ns, and when we find such an extension, we let (Pb,s+1, Pr,0)

be the first such extension that we find.

By hypothesis, we will always find such an extension, and this algorithm

clearly covers all of N in the limit.
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Case 2: Assume Case 1 does not hold. Let (Pb,1, Pr,0) be a BLUE path ex-

tension of (Pb,0, Pr,0), and n0 ∈ N so that there is no BLUE path extension of

(Pb,1, Pr,0) to n0.

We claim that in this case, we actually have that for every n ∈ N, and for

every RED extension (Pb1 , Pr) of (Pb,1, Pr,0), if n is not on either Pb1 or Pr, then

there is a RED path extension of (Pb1 , Pr) to n. Thus we may use the RED

analogue of the previous algorithm. The proof of this claim will be somewhat

circuitous.

First we show that there is no n such that (Pb,1, Pr,0) has both a RED ex-

tension to n and a BLUE extension to n. After this we will show that actually

either there is no n such that (Pb,1, Pr,0) has a BLUE extension to n or there is

no n such that (Pb,1, Pr,0) has a RED extension to n. We will then show that

the first case is true. Finally, from there, we will show that for every n ∈ N, and

for every RED extension (Pb1 , Pr) of (Pb,1, Pr,0) there is a RED path extension

of (Pb1 , Pr) to n.

During these proofs, we will repeatedly use the following facts:

(1) (Pb,1, Pr,0) is a witness to the fact that we cannot always RED switch.

(2) Pr,0 has minimal length among the RED paths of such witnesses.

(3) There is no BLUE path extension of (Pb,1, Pr,0) to n0.

The first two facts follow from the fact that (Pb,1, Pr,0) is a BLUE path extension

of (Pb,0, Pr,0). The third is from our hypothesis in Case 2.

Claim 5.3: There is no n such that (Pb,1, Pr,0) has both a RED extension to n

and a BLUE extension to n.

Proof. Assume not, and let n1 be such an n. Replacing n1 if necessary, we may

assume that the BLUE path extension to n1 and the RED path extension to n1

do not intersect before n1. Consider the edge from n1 to n0.

If this edge is BLUE, then we can add n0 to the end of the BLUE extension

to n1, creating a BLUE path to n0. This contradicts fact (3).

If the edge is RED, then consider the path extension (P̃b, P̃r) of (Pb,1, Pr,0)

in which P̃b is created by the BLUE path extension to n1, and P̃r is created by

the RED path extension to n1, but with n1 removed from the end. Let x be

the last element of P̃r. Now we have that the edge from x to n1 is RED, the

edge from n1 to n0 is RED, and there is no BLUE path extension from (P̃b, P̃r)

to n0. So we can strongly switch n1 to RED. This contradicts fact (1).
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A path extension (P̃b, P̃r) of (Pb, Pr) is nontrivial if (P̃b, P̃r) 
= (Pb, Pr).

Claim 5.4: Either there is no n such that (Pb,1, Pr,0) has a nontrivial BLUE

extension to n or there is no n such that (Pb,1, Pr,0) has a nontrivial RED

extension to n.

Proof. Assume not, and let n1, n2 be such that (Pb,1, Pr,0) has a nontrivial

BLUE extension to n1 and a nontrivial RED extension to n2. Consider the

edge between n1 and n2. If the edge is RED, then we can use it with the RED

path to n2 to create a RED path to n1. But then (Pb,1, Pr,0) has both a RED

extension to n1 and a BLUE extension to n1, contradicting Claim 1. If the

edge is BLUE, we can similarly conclude that (Pb,1, Pr,0) has both a RED and

a BLUE extension to n2, again contradicting Claim 5.3.

Claim 5.5: There is no n such that (Pb,1, Pr,0) has a nontrivial BLUE extension

to n.

Proof. Again, assume not. Then by Claim 5.4, there is no n such that (Pb,1, Pr,0)

has a nontrivial RED extension to n. In particular, (Pb,1, Pr,0) does not have

a RED extension to n0. By fact (3), (Pb,1, Pr,0) also does not have a BLUE

extension to n0. It follows, by Lemma 4.4, that we can add n0 by a switch, and

the switch must be a strong switch.

The switch cannot be a strong RED switch by fact (1). Also, the switch

cannot be a strong BLUE switch because if we performed a strong BLUE switch

on (Pb,1, Pr,0), it would create a strong path extension in which we decreased the

length of the RED path. This contradicts fact (2), recalling that by Lemma 4.11,

any strong path extension of (Pb,1, Pr,0) must also witness that we cannot always

RED switch.

Claim 5.6: For every n ∈ N, and for every RED extension (Pb,1, Pr) of

(Pb,1, Pr,0), if n is not on either Pb,1 or Pr , then there is a RED path extension

of (Pb,1, Pr) to n.

Proof. Let (Pb,1, Pr) be a RED extension of (Pb,1, Pr,0), and let n1 be an element

of N that is on neither Pb,1 nor Pr. Assume there is no RED extension of

(Pb,1, Pr) to n. By Claim 5.5, there is also no BLUE extension of (Pb,1, Pr)

to n, because extending the RED path cannot make it any easier to find a

BLUE extension. Then, by Lemma 4.4, to add n1 to (Pb,1, Pr), we must do a

switch, and the switch must be strong.
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We split our proof into two cases:

If (Pb,1, Pr) = (Pb,1, Pr,0), then the proof proceeds exactly as the proof of

Claim 5.5. The switch cannot be a strong RED switch by fact (1), and the

switch cannot be a strong BLUE switch by fact (2).

If (Pb,1, Pr) 
= (Pb,1, Pr,0), then the switch still cannot be a strong RED switch

by fact (1), recalling again that by Lemma 4.11, any strong path extension of

(Pb,1, Pr,0) must also witness that we cannot always RED switch. The switch

also cannot be a BLUE switch, because for the switch to be a BLUE switch,

the edge from the end of the Pb,1 to the end of Pr must be BLUE, contradicting

Claim 5.5.

This completes the proof of Theorem 5.2.

Note that if we are in Case 2 of the above construction, we have no way of

knowing whether we will find the x we are looking for, so we cannot know when

to switch to the construction for Case 1. This does not concern us. We are only

proving that there is a computable path decomposition with one path finite,

not that the path decomposition can be found uniformly.

5.2. No Uniform Δ0
2 index.

Theorem 5.7: There is no partial computable function f such that if e is

an index for a computable coloring c, then f(e) is an index for a Δ0
2 path

decomposition for c.

This proof is somewhat more complicated than necessary, because it is in-

tended to serve as an introduction to the proof of Theorem 5.8, and so we are

performing a simplified version of the construction found in that proof.

Proof 1. Let f be a partial computable function. We create a computable col-

oring with index e such that if f(e) is defined, then f(e) is not an index for

a Δ0
2 path decomposition for c.

Our construction is in stages. During stage s of the construction, for

every t ≤ s, we color the pair {t, s+ 1}.
By the recursion theorem, we may use an index, e, for the coloring that we

are constructing. We begin computing f(e), and while we wait for it to halt,

we color everything BLUE with everything else.

1 We thank an anonymous reader for pointing out an error in an early version of this proof.
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If f(e) halts, then its value provides us a pair of Turing reductions Φib and Φir ,

and by the limit lemma we may obtain a pair of total computable functions ϕb

and ϕr with lims ϕb(x, s) = Φ∅′
ib
(x) for all x, and similarly for ϕr . We define

Pb = Φ∅′
ib
, Pb,s(x) = ϕb(x, s),

and similarly for Pr and Pr,s. We will assume that Pb,s(x) ≤ s and Pr,s(x) ≤ s

for every x and s.

We will have two strategies, Sb and Sr, which work to ensure that if (Pb, Pr)

forms a path decomposition for c, then Pb (respectively Pr) is finite. Note

that if both Sb and Sr achieve their goals, then (Pb, Pr) cannot form a path

decomposition.

One of Sb and Sr will have high priority, and the other will have low priority,

but this priority assignment will potentially change over the course of the con-

struction. High priority goes to the strategy whose corresponding first element

has been stable the longest. To make this precise, at stage s, define t(b, s) to be

least such that for every t ∈ [t(b, s), s], Pb,t(0) = Pb,s(0), and make the similar

definition for t(r, s). Then Sb has high priority at stage s if t(b, s) ≤ t(r, s), and

otherwise Sr has high priority.

Suppose first that Sb has high priority at stage s. Let s0 be least such that

s0 ≥ t(b, s) and Sb has high priority at stage s0. Note that Sb necessarily had

high priority at every stage between s0 and s. For every t ≤ s0, we color the

pair {t, s+ 1} RED. This completes the action for Sb.

We now describe the behavior of Sr when it is of lower priority at stage s.

We consider whether there are k, � ≤ s with

range(Pb,s��) � range(Pr,s�k) ⊇ [0, s0]

and Pr,s(k) > s0. If there are no such k and �, we take no action for Sr at

stage s. If there are such a k and �, we fix the least such. Let s1 be least such

that

s1 ≥ Pr,s(k), Pb,t��= Pb,s�� and Pr,t�k+1= Pr,s�k+1

for every t ∈ [s1, s]. For every t ∈ (s0, s1], we color the pair {t, s + 1} BLUE.

This completes the action for Sr. This is a place where our construction is more

complicated than necessary as it would be enough to color BLUE all relevant

pairs not yet colored RED.

If instead Sr has high priority at stage s, we proceed as above, mutatis

mutandis.
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At the end of stage s, for any t ≤ s for which we have not yet colored

{t, s+1}, we assign a color arbitrarily (for definiteness, BLUE). This completes

the construction. We now verify that if f(e) converges, it does not specify a

path decomposition for c.

Assume, towards a contradiction, that (Pb, Pr) form a path decomposition

for c. Then at least one of Pb and Pr is nonempty, and for this path, its value at 0

(the first element of the path) will eventually converge. So eventually one of the

strategies will have high priority for cofinitely many stages with an unchanging

least s0. Without loss of generality, assume this is Sb. Then Pb(0) ≤ s0, and

by construction c{x, y} is RED for every x ≤ s0 < y. So Pb cannot contain any

elements larger than s0, and so Sb has ensured its requirement by making Pb

finite.

Since (Pb, Pr) form a path decomposition, in particular their ranges cover N.

So there are some least k and � with

range(Pb��) � range(Pr�k) ⊇ [0, s0]

and Pr(k) > s0. Let s1 ≤ Pr(k) be least such that Pb�� and Pr�k+1 have con-

verged by stage s1. Then Sr will eventually select this k, � and s1 for cofinitely

many stages. By construction, c{x, y} is BLUE for every s0 < x ≤ s1 < y,

and Pr(k) ∈ (s0, s1]; Pr cannot contain any elements of [0, s0] after Pr(k), since

those elements have all either occurred on Pb or on Pr before Pr(k). Thus Pr af-

ter Pr(k) is entirely contained in (s0, s1], and so Sr has ensured its requirement

of making Pr finite.

We remark now that the technique of Theorem 5.7 only allows us to build a

coloring c that can defeat any single uniform manner of attempting to produce

a Δ0
2 path decomposition from c. For the coloring c that we create, it is not at all

difficult to produce a path decomposition; it is just the case that the f(e)th Δ0
2

path decomposition fails to do so.

5.3. No finite set of Δ0
2 indices. We show now, by a strengthening of the

argument from Theorem 5.7, that it is impossible to reduce the nonuniformity

to a finite collection of Δ0
2 indices.

Theorem 5.8: There is no partial computable function f such that if e is an

index for a computable coloring c, then f(e) is an index for a finite c.e. set Wf(e)

one of whose elements is an index for a Δ0
2 path decomposition for c.
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Proof. Let f be a partial computable function. We create a computable coloring

with index e such that if f(e) is defined, and if Wf(e) is finite, then no element

of Wf(e) is an index for a Δ0
2 path decomposition for c.

Our construction is in stages. During stage s of the construction, for every

t ≤ s, we color the pair {t, s+ 1}.
As in the proof of Theorem 5.7, we use an index, e, for the coloring that we

are constructing. We begin computing f(e), and while we wait for it to halt,

we color everything BLUE with everything else.

If f(e) halts, then we begin enumerating Wf(e). Let Wf(e),s be the stage s

approximation to Wf(e).

For each i in Wf(e), let Pb,i and Pr,i be the potential paths given by index i,

and let Pb,i,s and Pr,i,s be their stage s approximations, as in the proof of

Theorem 5.7. We again assume Pb,i,s(x), Pr,i,s(x) ≤ s for all x.

We will use z as a variable for a color (BLUE or RED), as well as for a letter

for a color (b or r). We will write 1− z to refer to the other color.

For each i ∈ Wf(e), we will have two strategies Sb,i and Sr,i, which will

work to ensure that if (Pb,i, Pr,i) forms a path decomposition for c, then Pb,i

(respectively Pr,i) is finite. Note that if both Sb,i and Sr,i achieve their goals,

then (Pb,i, Pr,i) cannot form a path decomposition for c.

We will again arrange our strategies in a priority ordering based on length

of stability of their first element. That is, at stage s, define t0(z, i, s) to be

least such that for every t ∈ [t0(z, i, s), s], Pz,i,t(0) = Pz,i,s(0). From z ∈ {b, r}
and i ∈ Wf(e),s, choose a pair (z0, i0) with t0(z, i, s) least (deciding ties by

Gödel numbering) to be our strategy of highest priority at stage s, and let

t0(s) = t0(z0, i0, s).

Let s0 be least such that s0 ≥ t0(s) and Sz0,i0 has highest priority at stage s0.

For every t ≤ s0, we color the pair {t, s+ 1} with color 1− z0. This completes

the action for Sz0,i0 .

Next, for every pair (z, i) other than (z0, i0), consider whether there are

k, � ≤ s with

range(Pz,i,s�k) � range(P1−z,i,s��) ⊇ [0, s0]

and Pz,i,s(k) > s0. For those pairs for which there are such k and �, fix the

least such k and � and let t1(z, i, s) be least such that

t1(z, i, s) ≥ Pz,i,s(k), P1−z,i,t��= P1−z,i,s�� and Pz,i,t�k+1= Pz,i,s�k+1

for every t ∈ [t1(z, i, s), s].
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From those pairs with t1(z, i, s) defined, choose a pair (z1, i1) with t1(z, i, s)

least (deciding ties by Gödel numbering) to be the strategy of next highest pri-

ority at stage s, and let t1(s) = t1(z1, i1, s). Let s1 be least such that s1 ≥ t1(s)

and Sz1,i1 has second highest priority at stage s1. For every t ∈ (s0, s1], we color

the pair {t, s+ 1} with color 1− z1. This completes the action for Sz1,i1 .

We continue in this fashion until we reach a j where tj(z, i, s) is not defined

for any pair (z, i). We then color {t, s+ 1} BLUE for any remaining t ≤ s and

end the stage. This completes the construction.

We now verify that if Wf(e) is finite, then for every i ∈ Wf(e), (Pb,i, Pr,i)

is not a path decomposition for c. Note that for every pair (z, i), tj(z, i, s) is

nondecreasing in s, and if tj(z, i, s) is undefined, then for all t > s with tj(z, i, t)

defined, tj(z, i, t) > s. It follows that the same holds for tj(s).

Define m to be greatest such that for all j < m, tj = lims tj(s) converges.

Let (zj , ij) be the pair chosen for priority j for cofinitely many stages (the pair

defining tj = tj(zj , ij, s) for almost every s). The existence of such a pair follows

from the above discussion, along with the assumption that Wf(e) is finite. Let kj

be the value k chosen for this pair at cofinitely many stages.

The following two claims will complete the proof of the result.

Claim 5.9: For j < m, if Pzj ,ij is a monochromatic path with color zj and

disjoint from P1−zj ,ij , then it is finite.

Proof. By a simple induction, the values sj−1 and sj are eventually chosen the

same at cofinitely many stages s (taking s−1 = −1). By construction, c{x, y}
is 1 − zj for every sj−1 < x ≤ sj < y. By our choice of (zj , ij), every point

in [0, sj−1] lies either on P1−zj ,ij or is one of Pzj ,ij (0), . . . , Pzj ,ij (kj − 1). Also,

Pzj ,ij (kj) ∈ (sj−1, sj ]. So after Pzj ,ij (kj), Pzj ,ij cannot contain any elements

outside of (sj−1, sj ], and so must be finite.

Claim 5.10: If i ∈ Wf(e) and (z, i) is not one of the (zj , ij) for any j < m,

then Pz,i is finite or range(Pz,i) � range(P1−z,i) is not all of N.

Proof. Suppose not. Since range(Pz,i) � range(P1−z,i) is all of N and Pz,i is

infinite, there are k and � with

range(Pz,i�k) � range(P1−z,i��) ⊇ [0, sm]

and Pz,i(k) > sm, where sm is the value chosen for (zm, im) at cofinitely many

stages. At sufficiently large stages, Pz,i�k+1 and P1−z,i�k will converge, and i
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will have appeared in Wf(e), and so tm+1(z, i, s) will be defined and unchanging

at sufficiently large s. So tm+1(s) will be defined and bounded by tm+1(z, i, s)

at all of these stages. Since tm+1(s) is nondecreasing, it must have a limit,

contrary to our choice of m.

Theorem 5.8 now follows: for any i ∈ Wf(e), either Pb,i and Pr,i are both

finite, one of Pb,i or Pr,i fails to be a monochromatic path of the appropriate

color, or there are elements of N which appear on neither or both paths. In all

cases, (Pb,i, Pr,i) is not a path decomposition for c.

6. RPD compared to Ramsey’s Theorem for pairs

One fact about (infinite) Ramsey’s Theorem that is regularly used is that for

every coloring c : [N]2 → r and every infinite set X , there is an infinite homo-

geneous set H ⊆ X . However, a path decomposition of a set X ⊆ N for the

restricted coloring c : [X ]2 → r does not help us to find a path decomposition

for the unrestricted coloring c : [N]2 → r.

There is a proof which uses compactness to show the infinite version of Ram-

sey’s theorem implies the finite version. For example, see Graham et al. [5]. By

Theorem 4.5, we know this compactness argument fails for the Rado Path De-

composition Theorem. A compactness argument breaks down since the paths

linking numbers below m might also involve numbers larger than m.

7. Corollaries in mathematical logic

For a reference for the terms used in this section we suggest Hirschfeldt [6].

The existence of a nonprincipal ultrafilter on the natural numbers is a strong

assumption that unfortunately cannot be shown in Zermelo Fraenkel set theory,

see Feferman [3]; the axiom of choice is sufficient, see Jech [7]. By independent

results of Towsner [13], Enayat [2], and Kreuzer [9], the ultrafilter proof of Rado

Path Decomposition implies that for every r-coloring c of [N]2 there is a path

decomposition arithmetical in c, and as a statement of second order arithmetic

the Rado Path Decomposition Theorem holds in ACA0.

The same result can be obtained by an examination of the cohesive proof in

Section 2.2. In fact, that proof can give us more. A careful analysis shows that

a path decomposition can always be found in the jump of the cohesive set C′.
The key issue is that exactly one N(m, j) is large (with respect to our cohesive

set C). It is ΔC
2 (but not computable in C) to determine which one.
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Jockusch and Stephan [8] have showed that d is PA over 0′ if and only if

there is a C which is cohesive with respect to the collection of all computable

sets and C′ ≤T d. As there is a d which is PA over 0′ with d′ = 0′′, it follows
that there is always a path decomposition whose jump is bounded by c′′.
For 2-colorings, Theorem 4.2 shows this bound can be improved to Δc

2. For

stable colorings the bound can also be improved to Δc
2. (Use the stable proof

of RPD and note that determining m’s color is Δc
2.)

Theorem 3.1 shows that we cannot expect to do better than Δc
2. So for stable

and 2-coloring the bound of Δc
2 is tight.

For more than two colors, we do not have an exact calibration of the effectivity

of path decomposition.

Question 7.1: Does every 3-coloring c have a Δc
2 path decomposition?

Question 7.2: Is there an unstable 3-coloring c such that every path decompo-

sition is PA over 0′?

Question 7.3: Does increasing the number of colors past 3 have any effect on

the above two questions?

Theorem 3.1 shows that as a statement of second order arithmetic the Rado

Path Decomposition Theorem implies ACA0 over RCA0. One can observe that

the only induction used is Σ0
1 and hence available in RCA0.

One might wonder why we cannot use the generic construction to answer

Question 7.2 by building a path decomposition that avoids the cone of degrees

above 0′. The problem is that forcing ΣG
1 statements (like does ΦG(w)↓) is ΣX

2

not ΣX
1 . The ends of finite paths Pj must have color j and determining this is

not ΣX
1 .
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