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Abstract: We have demonstrated full-color and white-color micro light-emitting diodes (µLEDs) using
InGaN/AlGaN core-shell nanowire heterostructures, grown on silicon substrate by molecular beam
epitaxy. InGaN/AlGaN core-shell nanowire µLED arrays were fabricated with their wavelengths
tunable from blue to red by controlling the indium composition in the device active regions. Moreover,
our fabricated phosphor-free white-color µLEDs demonstrate strong and highly stable white-light
emission with high color rendering index of ~ 94. The µLEDs are in circular shapes with the
diameter varying from 30 to 100 µm. Such high-performance µLEDs are perfectly suitable for the
next generation of high-resolution micro-display applications.
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1. Introduction

A display based on inorganic micro light-emitting diodes (µLEDs) has recently been intensively
investigated due to its great potential for tech gadgets such as Apple watches, smartphone screens,
television screens, billboards, Google glass, and virtual reality devices. Considerable efforts have been
poured into this field to bring the novel standard displays to the market [1–5]. The increasing demand
for µLED displays in tech screens has received much attention from academia and industry since early
last decade. In order to achieve µLEDs displays, it requires several critical stages [6] consisting of
making µLEDs, transferring them to a backplane, and precisely controlling each individual LED [7–9].
The first essential step is to have the right type of red, green, and blue (RGB) µLEDs satisfactory for
the displays. The µLEDs need a long lifespan, superior brightness, high efficiency, and durability.
Besides, different approaches for making RGB and white color µLEDs to form a full-color micro-pixel
in the µLED displays [10–13], the monolithic display based on III-nitride nanowire heterostructure
µLEDs is promising since it allows more direct control of emission wavelengths of the light-emitting
diodes (LEDs). The emission wavelength of nanowire LEDs can be controlled by changing the
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composition of indium in the InGaN active region. This can be done by adjusting the epitaxial growth
conditions including growth temperature and/or In/Ga flux ratios [14–17]. The energy bandgap of
InGaN compounds can be varied from 3.4 eV (GaN) to 0.65 eV (InN) [18], covering the full visible
region for display applications. Therefore, GaN based µLEDs are a potential candidate for developing
novel micro-LED displays [4].

Conventional planar GaN based LEDs have been used in everyday lighting and automotive
headlights. However, their poor operating efficiency and efficiency degradation in the green to red
spectrums have limited their potential achievements. The presence of polarization fields [19,20],
Auger recombination [21,22], poor hole transport [23], defects/dislocations [24,25], and electron
leakage and electron overflow [26–28] are the main causes of these above drawbacks. In this regard,
nanowire heterostructures have been intensively studied as an alternative candidate for high efficiency
light-emitters. Unlike conventional planar structures, nanowires exhibit several distinct advantages,
including dramatically reduced strain-induced polarization fields and dislocation densities due to the
effective lateral stress relaxation. Moreover, the micron-size nanowire-based LEDs can be much more
efficient in heat dissipation due to the reduced current spreading resistance and thereby resulting in
increased injection current levels [29–31]. Thus, the performance of the nanowire LED is expected to be
better than their thin-film counterparts. As compared to organic and inorganic thin-film devices, the
brightness, reliability, energy efficiency and moisture resistance of the nanowire LEDs are predicted to
be far superior [32]. Therefore, nanowire µLEDs have emerged as a promising candidate for general
lighting and display applications. In this context, InGaN/AlGaN nanowire µLEDs in different sizes
have been fabricated and characterized. Such nanowire µLEDs exhibit strong and stable emissions from
blue to red wavelengths. Moreover, phosphor-free white-color µLEDs have also been demonstrated
with highly stable emission.

2. Experiment

Vertically aligned InGaN/AlGaN core-shell nanowire µLEDs were grown by Veeco Gen II
plasma-assisted molecular beam epitaxy (PAMBE) system. Silicon and magnesium dopants were used
to grow n-GaN and p-GaN, respectively. During the epitaxial growth process, the nitrogen flow was
kept at 1 sccm and the plasma power was controlled at 350 W. GaN segments were grown at 750 ◦C,
while InGaN in the active region was grown at lower temperatures, in the range of 580–650 ◦C to
enhance the indium incorporation. Figure 1a presents the schematic structure of a single InGaN/AlGaN
nanowire on a Si substrate. The nanowire µLEDs consist of GaN:Si grown on a silicon substrate and the
GaN:Mg on the top. The ten couples of quantum wells are inserted in the active region. Each quantum
well includes a 3 nm InGaN dot and 3 nm AlGaN barrier. During growth of the AlGaN barrier, the
AlGaN shell is spontaneously formed, enabling unique core-shell layers [33,34]. The emission color of
the µLEDs can be controlled by adjusting the Ga/In flux ratios and the substrate temperature during the
MBE growth. For instance, the peak emission wavelength can be shifted from red to blue by gradually
increasing the growth temperature of the InGaN active region from 580 ◦C to 650 ◦C with ramping rate
of 10 ◦C/min. The nanowire length is controlled by the growth duration. Further information of the
core-shell nanowire structures and MBE growth can be found elsewhere [34–38].

Figure 1b shows a scanning electron microscope (SEM) image of InGaN/AlGaN nanowire LEDs
taken under a 45◦ tilted angle. It shows that the nanowires are relatively uniform across the substrate.
Figure 1c illustrates the microscopic image of the fabricated µLEDs. The µLED’s emissive window has
50 µm in diameter, which is connected with a square electrode pad. The µLEDs were fabricated using
standard photolithography, dry etching and contact metallization techniques, which are described
elsewhere [17,37,39–41]. During the fabrication process, µLEDs with 30 µm to 100 µm in diameter
were defined by standard photolithography. In this paper, the µLEDs with a diameter of 50 µm were
chosen for characterization.
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Figure 1. Schematic structure of a nanowire micro light-emitting diodes (µLED) with ten InGaN/AlGaN
quantum well heterostructures (a); the 45◦ tilted SEM image of InGaN/AlGaN nanowires on Si substrate
(b); and optical image of µLEDs and the electrode pads (c).

3. Results and Discussion

Figure 2 shows the normalized photoluminescence (PL) spectra of the InGaN/AlGaN core-shell
nanowires. The measurement was performed at room temperature with a 405 nm laser excitation
source. It clearly shows that strong red, green, and blue emissions were recorded at 645 nm, 550 nm,
and 475 nm, respectively. The current-voltage characteristics of RGB µLEDs were characterized. The
turn-on voltages increase with the decreasing indium composition in the active region of the nanowires.
The less indium composition, the higher energy bandgap, makes the light emissions shift toward the
blue region. The higher energy bandgap makes turn-on voltages increase [42], as clearly shown in
Figure 3. The turn-on voltages of the red, green and blue µLEDs are approximately 1.6 V, 3.5 V, and 4.6
V, respectively. The I-V characteristics also indicate that the devices with a low resistance and good
fabrication processes have been achieved.
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The electroluminescence (EL) spectra of these µLEDs are presented in Figure 4. The measurements
were conducted at room temperature using pulse biasing conditions from 50 mA to 350 mA to reduce
the heating effect. Strong red, green, and blue emissions were recorded at 475 nm, 550 nm, and 645
nm for blue, green and red µLEDs, respectively. Illustrated in Figure 4a, highly stable emissions with
negligible shift in peak wavelengths were measured for blue µLED with an injection current from 50
mA to 350 mA, attributed to the greatly reduced quantum-confined Stark effect (QCSE) [43] by using
nanowire structures. Shown in Figure 4b,c, the blue-shifts of about 1.5 nm were measured for the green
and 3 nm for the red µLEDs. These values are significantly smaller than those of planar quantum well
LEDs operating in the same spectral regime. Summary of peak wavelength variations of the RGB
µLEDs are shown in Figure 5.
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µLED (c), and the white µLED (d). The corresponding optical images of these µLEDs are presented in
the insets.
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III-nitride based planar LEDs operating in the green or longer wavelengths are prone to a blue
shift with high driving currents due to QCSE [43]. However, using the nanowire structure, the RGB
µLEDs have stable peak wavelengths at 645 nm in red, 550 nm in green, and 475 nm in blue due
to the negligible QCSE, meaning that the lattice mismatch induced strain and efficiency droop are
negligible [44].

We have also demonstrated white-color µLEDs with strong emission by engineering the emission
wavelength of the core-shell nanowire structure. The white light emission covers a long range of
the visible spectrum, which is from 450 nm to 750 nm. Moreover, the white-color µLED exhibits a
stable emission with a small blue-shift of ~4 nm for injection current from 50 mA to 350 mA. The
stable emission characteristics of the phosphor-free white-color µLEDs are further illustrated in the
1931 Commission International l’Eclairage chromaticity diagram in Figure 6. The x and y values are
derived to be in the ranges of ~0.351-0.362 and 0.391-0.398, respectively. The phosphor-free white-color
µLEDs exhibit nearly a neutral white light emission, with correlated color temperature of ~ 4850 K.
Additionally, a relatively high color rendering index (CRI) of ~ 94 was measured for this phosphor-free
white-color µLED, which is extremely difficult to achieve using planar LED structures. Currently,
phosphor-based white LEDs have CRI values in the range of 80–86 [45–48]. With some special design
of phosphor converters, the CRI of these types of white LEDs can be increased up to 90–97 [49–53].
However, the fabrication process of these white LEDs is complex and the device reliability is a major
concern. To the best of our knowledge, up to this moment, the CRI value for white-color µLEDs have
not yet been reported, possibly due to the complexity of the device fabrication for such µLED devices.
In this regard, our phosphor-free full-color and white-color µLEDs are highly desirable for the next
generation µLED display technology.
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4. Conclusions

We have successfully demonstrated µLEDs using InGaN/AlGaN core-shell nanowire
heterostructures grown on silicon substrates by MBE. Strong and stable emission from full-color
and white-color were recorded from these µLEDs. The color properties of the µLEDs can be optimized
by controlling the spectral distribution of the µLEDs. Using nanowire structures, we have achieved
phosphor-free white light with unprecedentedly high CRI of ~ 94. The high performance and stable
operation of the red, green and blue µLEDs show promise in monolithic µLED displays. Generally,
the high cost of current displays is a bottleneck and slows down the market growth. Due to the
progressive demand for electronic devices, it is expected to provide lucrative growth opportunities
for the micro-display market. In this regard, using the selective area growth approach, RGB subpixel
µLEDs can be integrated on the same chip, eliminating the current pick-and-place process, which
requires precisely controlling procedures. Therefore, high efficiency, high color rendering properties,
and low power consumption µLEDs using GaN nanowire heterostructures are perfectly suitable as an
alternative replacement of current display technologies.
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