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ABSTRACT

The continuous degrees measure the computability-theoretic content of

elements of computable metric spaces. They properly extend the Turing

degrees and naturally embed into the enumeration degrees. Although

nontotal (i.e., non-Turing) continuous degrees exist, they are all very close

to total: joining a continuous degree with a total degree that is not below

it always results in a total degree. We call this property almost totality.

We prove that the almost total degrees coincide with the continuous

degrees. Since the total degrees are definable in the partial order of enu-

meration degrees [1], we see that the continuous degrees are also definable.

Applying earlier work on the continuous degrees [10], this shows that the

relation “PA above” on the total degrees is definable in the enumeration

degrees.

In order to prove that every almost total degree is continuous, we pass

through another characterization of the continuous degrees that slightly

simplifies one of Kihara and Pauly [7]. We prove that the enumeration

degree of A is continuous if and only if A is codable, meaning that A is

enumeration above the complement of an infinite tree, every path of which

enumerates A.

1. Introduction

The continuous degrees were introduced by Miller [10] as a natural measure of

the computability-theoretic content of elements of computable metric spaces.

A computable metric space M is a metric space with a distinguished countable

dense sequence QM={qMn }n∈ω⊆M on which the metric is computable, mean-

ing that there is an effective way to approximate the distance between any two

elements in the sequence with arbitrary precision. Common separable metric

spaces can usually be given a computable structure. As a simple example, the

real line R with the usual metric and QR=Q is a computable metric space. For

C[0, 1], the space of continuous functions on the unit interval under the uniform

metric, we can take QC[0,1] to consist of all rational polynomials on the unit

interval.

If M is a computable metric space, a name for a point x ∈ M is a function

that takes as input a rational number ε and outputs the index of a member

of the sequence QM that is within distance ε of x. Note that names are dis-

crete objects; they fall within the scope of classical computability theory. By

naming points in computable metric spaces, we can compare the computability-

theoretic content of points from different spaces: a point x in one computable
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metric space has at least as much computability-theoretic content as a point y

in some (possibly different) computable metric space if every name for x com-

putes a name for y. Miller [10] observed that every point in a computable metric

space is equivalent to a point in C[0, 1]. For this reason, he called the induced

degree structure the continuous degrees. We write Dr for the structure of the

continuous degrees.

The Turing degrees embed into the continuous degrees; they are the continu-

ous degrees of points in R, or more naturally, Cantor space with an appropriate

metric and computable structure. On the other hand, the continuous degrees

embed into the enumeration degrees. An enumeration reduction determines

the positive information about one set from the positive information about an-

other. It is closely connected to the idea of computing with partial oracles.

Equivalent forms of this reducibility have been introduced several times over

the years: Kleene [8] and Myhill [11] in the partial oracles version, Friedberg

and Rogers [3] and Selman [13] in the version we discuss here. For sets of natu-

ral numbers A and B, we say that A is enumeration reducible to B (A ≤e B) if

every function that enumerates A (uniformly) computes an enumeration of B.

The enumeration degrees De arise from enumeration reducibility in the standard

way. Thus, we have three structures:

DT ↪→ Dr ↪→ De.

The copy of DT in the enumeration degrees is the set of total enumeration

degrees and the copy of Dr in the enumeration degrees is the set of continuous

enumeration degrees. Miller [10] proved that each of the embeddings is proper:

there are nontotal continuous degrees and there are noncontinuous enumeration

degrees.

The continuous degrees are, however, in some sense very close to total enu-

meration degrees.

Definition 1.1: We say that an enumeration degree a is almost total if when-

ever b � a is total, a ∨ b is also total.

In words, an enumeration degree is almost total if adding any new total

information takes it to a total degree. This is true of total degrees because the

join of any two total degrees is total; it is much harder to see that there is a

nontotal enumeration degree with this property. In 2014, Cai, Lempp, Miller

and Soskova (unpublished) observed that continuous enumeration degrees are
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almost total (see Section 3 for a proof). Together with the fact that there are

nontotal continuous degrees, which is itself nontrivial [10], this proves that there

are nontotal almost total enumeration degrees. Surprisingly, we show that this

is the only possible source of examples: an enumeration degree is almost total

if and only if it is continuous.

Remark 1.2: It is worth saying a few words about the known proofs that

nontotal continuous degrees exist. Miller’s [10] proof relies on a generaliza-

tion of Brouwer’s fixed point theorem for multivalued functions on [0, 1]ω, the

Hilbert cube. Day and Miller [2] noted that Levin’s [9] neutral measures (infor-

mally, measures relative to which every sequence is Martin–Löf random) must

have nontotal continuous degree. Levin constructed a neutral measure using

Sperner’s lemma, which is a combinatorial version of Brouwer’s fixed point the-

orem (see Gács [4] for the construction). Finally, Kihara and Pauly [7] and,

independently, Mathieu Hoyrup (unpublished) realized that the existence of

nontotal continuous degrees follows from the fact that the Hilbert cube [0, 1]ω

is strongly infinite-dimensional, hence not a countable union of zero-dimensional

subspaces. It is unlikely to be a coincidence that every known proof that

nontotal continuous degrees exist—hence, that nontotal almost total degrees

exist—has a nontrivial topological component. However, we do not know how

to formalize this observation into a conjecture.

In order to prove that every almost total degree is continuous, we establish

a couple of other characterizations of the continuous degrees. In Section 4, we

introduce codable sets. A set A is codable if it is enumeration above the com-

plement of an infinite tree, every path of which computes an enumeration of A.

Kihara and Pauly [7] introduced a very similar, but slightly more complicated

notion and showed that it is equivalent to having continuous degree. We prove

that codability is equivalent to its uniform version, and that if A has almost

total enumeration degree, then it is uniformly codable. In Section 5, we define

holistic sets, which are subsets of ω<ω with special combinatorial properties.

We prove that the enumeration degrees of holistic sets and the enumeration

degrees of uniformly codable sets coincide. In Section 6, we introduce a topol-

ogy on the set of holistic sets, giving rise to the holistic space, a computable

second countable Hausdorff space. Schröder [12] proved an effective version of
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Urysohn’s metrization theorem.1We show that the holistic space is computably

regular, which allows us to apply Schröder’s theorem and conclude that the

holistic space is a computable metric space. This gives us the final link in our

chain of characterizations: we prove that holistic sets have continuous enumer-

ation degree.

In Section 3, we also consider a uniform version of almost totality and give a

short proof that uniformly almost total enumeration degrees are continuous. It

should be noted that this uniform version could be avoided in the proof that al-

most total degrees are continuous, as could the nonuniform version of codability.

We include both for completeness. Summarizing all of our characterizations:

Theorem 1.3: Let a be an enumeration degree. The following are equivalent:

(1) a is (uniformly) almost total,

(2) the sets in a are (uniformly) codable,

(3) a contains a holistic set,

(4) a is continuous.

The equivalence of the first and last statements has an important consequence

for the structure of the enumeration degrees. In recent years, there has been a

sequence of advances in understanding which relations are first order definable

in De (as a partial order). There is a natural jump operator in the enumeration

degrees that agrees with the Turing jump operator under the embedding of

DT into De. Kalimullin [6] proved that the enumeration jump operator is first

order definable in the enumeration degrees by a very simple structural property.

Building on this work, Cai, Ganchev, Lempp, Miller and Soskova [1] proved that

the total enumeration degrees are first order definable. This, combined with the

characterization of the continuous enumeration degrees as almost total, gives

us a new first order definable class of enumeration degrees.

Theorem 1.4: The property “a is a continuous enumeration degree” is first

order definable in De.

Miller [10] studied the structural relationship between total and nontotal

continuous degrees. He proved that nontotal continuous degrees can be used to

characterize the relation “PA above” between (pre-images of) total enumeration

degrees. For Turing degrees x and y, we say that y is PA above x (x � y)

1 See [5] for an outline of the proof of Schröder’s theorem.
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if every infinite tree computable in x has a path computable in y. We transfer

the relation “PA above” to total enumeration degrees in a natural way: the

enumeration degree b is PA above the enumeration degree a (a � b) if a

and b are the images of Turing degrees x and y such that x � y. Miller

showed that a � b if and only if a and b are total and there is a nontotal

continuous enumeration degree c, such that a < c < b. Thus, we have another

definable relation in the enumeration degrees.

Theorem 1.5: The relation “a � b” is first order definable in De.

This nicely complements a result by Cai et al. [1] that shows that if we transfer

the relation “c.e. in” from pairs of Turing degrees to pairs of total enumeration

degrees, then once again we obtain a first order definable relation. Definable re-

lations are natural obstacles to nontrivial automorphisms. The question about

the existence of a nontrivial automorphism in the Turing degrees has remained

impenetrable, in part due to the lack of many examples of definable relations.

Neither “c.e. in”, nor “PA above” are known to be first order definable re-

lations in the Turing degrees. The total enumeration degrees are a definable

automorphism base for the enumeration degrees. This means that a nontrivial

automorphism of De would induce a nontrivial automorphism of DT . We now

know that this automorphism must preserve the jump, the relation “c.e. in”,

and the relation “PA above”. Could such an automorphism be nontrivial?

2. Preliminaries

Enumeration degrees. Enumeration reducibility captures the notion of rel-

ative enumerability between sets of natural numbers. We present it in the form

first given by Friedberg and Rogers [3]. Let {Dv}v∈ω be a computable listing

of all finite sets.

Definition 2.1: A set A ⊆ ω is enumeration reducible to a set B ⊆ ω

(A ≤e B) if there is a c.e. set W such that

A = {x : (∃v) 〈x, v〉 ∈ W and Dv ⊆ B}.
A c.e. set W can, in this sense, be treated as an operator mapping sets of

natural numbers to sets of natural numbers. We write A = W (B) and call W

an enumeration operator. The notation A = WB is reserved to mean that A

is c.e. in B via the c.e. operator W . Enumeration reducibility and the relation
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“c.e. in” are closely connected. In particular, the relation “c.e. in” can be

expressed using enumeration reducibility.

Proposition 2.2: Let A and B be sets of natural numbers.

(1) A is c.e. in B if and only if A ≤e B ⊕B.

(2) A ≤T B if and only if A⊕A ≤e B ⊕B.

In both cases, there is a uniform way to compute an index for the operator

witnessing one relation from an index witnessing the other.

On the other hand, Selman [13] proved that enumeration reducibility can be

captured in terms of the relation “c.e. in”.

Theorem 2.3 (Selman 1971): If A and B be sets of natural numbers, then

A ≤e B if and only if (∀X)[B is c.e. in X ⇒ A is c.e. in X ].

We associate a degree structure to enumeration reducibility in the standard

way: A is enumeration equivalent to B (A ≡e B) if A ≤e B and B ≤e A.

The enumeration degree of A is the equivalence class of A under enumeration

equivalence; we write it as de(A). The enumeration degrees inherit an order from

the reduction: we let de(A) ≤ de(B) if and only if A ≤e B. The disjoint union

of two sets A⊕B gives rise to a least upper bound operation

de(A) ∨ de(B) = de(A⊕B).

The resulting upper semilattice is the structure of the enumeration degrees De.

Part (2) of Proposition 2.2 implies that the map taking dT (A) to de(A⊕A),

for all A ⊆ ω, is an embedding of the Turing degrees into the enumeration

degrees. Its range is an important class of degrees.

Definition 2.4: A set A ⊆ ω is total if A ≤e A. An enumeration degree is total

if it contains a total set.

Examples of total sets include graphs of total functions, sets of the form

A ⊕ A, and for every X ∈ 2ω the set (X)� = {σ ∈ 2<ω : σ � X}. It is easy

to see that an enumeration degree is total if and only if it contains a set of the

form A⊕A, so the total degrees are an embedded copy of the Turing degrees.

Selman’s theorem tells us that we can view the enumeration degree of a set A

as the collection of Turing degrees that can enumerate A. It turns out that an

enumeration degree is total if and only if this set of degrees has a least element.

If A is total, then every Turing degree that enumerates A also enumerates A,
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hence computes A. So dT (A) is the least Turing degree that enumerates A. For

the other direction, if there is a least Turing degree x that enumerates A, then

fix X ∈ x. We know that A is c.e. in X , and so A ≤e X ⊕ X. On the other

hand, every Turing degree that enumerates A computes X , and so enumerates

X ⊕X. By Selman’s theorem, X ⊕X ≤e A, hence A is of total degree.

Continuous degrees. The continuous degrees were introduced by Miller [10].

As we noted in the introduction, a computable metric space2 is a metric

space M together with a countable dense sequence QM = {qMn }n∈ω ⊆ M on

which the metric is computable, meaning that there is a computable function

f : N× N×Q+ → Q+ such that for all n,m, ε ∈ N× N×Q+,

|dM(qMn , qMm )− f(n,m, ε)| < ε.

Definition 2.5: A name for a point x in a computable metric space M is a

function λ : Q+ → N, such that dM(x, qMλ(ε)) < ε for every ε ∈ Q+.

If x is a point in a computable metric spaceM and y is a point in a computable

metric space N , then x is representation reducible to y (x ≤r y) if every name

for y computes a name for x.

Representation reducibility induces a degree structure in the same way that

enumeration reducibility does. We call this structure the continuous de-

grees Dr. The continuous degree of a point x in a computable metric space can,

in this case as well, be viewed as a set of Turing degrees: the Turing degrees of

names for x.

Once again, the continuous degrees that correspond to Turing cones form an

isomorphic copy of DT in Dr. Recall our first example of a computable metric

space: R with QR = Q. We map the Turing degree of a set A to the continuous

degree of real rA ∈ [0, 1] whose binary expansion is given by A. A real number r

can be identified with its left Dedekind cut Lr = {q ∈ Q : q < r}. Any name

for r computes Lr and the set Lr computes a name for r, so the continuous

degree of r corresponds to Turing cone above dT (Lr). Of course, for every set A

2 In [10], Miller includes the nonstandard requirement that M is a complete metric space.

Since every metric space has a unique completion, this does not limit the collection

of continuous degrees. On the other hand, by requiring completeness, the computable

structure determines the underlying metric space, so there are only countably many

computable metric spaces. Under the standard definition, which we use in this paper,

there are 22
ℵ0 computable metric spaces.
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we have LrA ≡T A, so the mapping we defined is, in fact, an embedding. We

could have used the right Dedekind cut Rr = {q ∈ Q : q > r} instead of the

left. The sets Lr and Rr are Turing equivalent. In fact, if r is not a rational

then Lr = Rr and if r is rational then Lr = Rr � {r}.
Another example of a computable metric space is the Hilbert cube [0, 1]ω

under the metric given by

d(α, β) =
∑

n∈ω

|α(n)− β(n)|/2n.

In this case, we can take Q[0,1]ω to be a listing of the set of finitely nonzero

sequences of rationals in the interval [0, 1]. Miller [10] proved that every con-

tinuous degree contains an element of Hilbert cube. This allowed him to embed

the continuous degrees into the enumeration degrees. Let α ∈ [0, 1]ω and let

Cα =
⊕

n∈ω

[Lα(n) ⊕Rα(n)].

Every name for α can enumerate the set Cα, and conversely, any set that can

enumerate Cα can compute a name for α. Therefore, by Selman’s theorem

(Theorem 2.3), the mapping that sends the continuous degree of α to the enu-

meration degree of Cα is an embedding of Dr into De.

Definition 2.6: An enumeration degree a is continuous if it contains the set Cα

for some sequence α ∈ [0, 1]ω.

We now have two ways to embed the Turing degrees into the enumeration

degrees: directly, mapping dT (A) to de(A ⊕ A), or via the continuous degrees.

It is straightforward to see that, for every set A, the continuous degree of rA

is mapped to the enumeration degree of LrA ⊕ RrA ≡e A ⊕ A. Thus the two

methods of embedding the Turing degrees produce the same result.

3. Almost totality

As we have defined above, an enumeration degree a is almost total if whenever

b � a is total, a∨b is also total. In this section, we show that continuous degrees

are almost total. In fact, we will see that the almost totality of continuous

degrees is witnessed uniformly. It turns out to be easy to show that this uniform

version of almost totality is equivalent to being continuous. We provide this

proof, even though we are primarily interested in the nonuniform version.
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Definition 3.1: A set A ⊆ ω is uniformly almost total if there is an enumer-

ation operator Γ and a c.e. operator W such that

(∀X ⊆ ω)[X ⊕X �e A ⇒ (∃Y ⊆ ω)[Γ(A⊕X ⊕X) = Y ⊕ Y and WY = A]].

Note first that uniform almost totality is an enumeration degree notion. It is

also not hard to see that it implies almost totality: we could require, without

strengthening the property, that Γ preserve X⊕X as part of its output, so that

A⊕X ⊕X ≡e Y ⊕ Y .

Lemma 3.2: Continuous enumeration degrees are uniformly almost total.

Proof. Fix a and let α be a sequence of real numbers such that Cα ∈ a. Let X

be the binary expansion of a real number rX ∈ [0, 1]. Consider the sequence β,

defined by β(n) = (α(n) + rX)/2. Addition on real numbers is a computable

operation, as is division by 2, so from any name for α and any name for rX ,

we can compute a name for β. To be explicit: if q1 < α(n) and q2 < rX , then

(q1 + q2)/2 < β(n), and if q1 > α(n) and q2 > rX , then (q1 + q2)/2 > β(n).

So from an enumeration of Cα and LrX ⊕ RrX , we can uniformly compute an

enumeration of Cβ . It follows that Cβ ≤e Cα⊕X⊕X. The choice of X did not

matter to our enumeration procedure, so there is an enumeration operator Γ

that works for all X .

If β(n) is a rational number qX , then rX ≤r α(n). To see this, note that if

d(α, {qn}n∈ω) < ε/2n, then d(α(n), qn) = |α(n) − qn| < ε, and so

|rX − (2qX − qn)| = |(2qX − α(n)) − (2qX − qn)| < ε.

Thus we can compute a name for rX from a name for α. So if X ⊕X �e Cα,

then Cβ is a total set: for every n, the real β(n) is not rational and hence

Rβ(n) = Lβ(n).

To complete the proof, we modify the operator Γ, as described above, so that

Γ(Cα ⊕X ⊕X) = Y ⊕ Y ,

where Y ⊕ Y is obtained by rearranging the set Cβ ⊕ (X ⊕X). This rearrange-

ment is, of course, computable and uniform. Finally, we use the fact α = 2β−rX

to obtain a c.e. operator W such that Cα = WY . This shows that Cα, and

hence a, is uniformly almost total.
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Proposition 3.3: A set A ⊆ ω is uniformly almost total if and only if it has

continuous degree.

Proof. One direction was proved above. So now assume that A ⊆ ω is uniformly

almost total as witnessed by Γ and W . Furthermore, assume without loss of

generality that A is nonempty. Note that

μ{X ∈ 2ω : X ⊕X ≤e A} = 0,

where μ is Lebesgue measure. Thus, for almost all X , we have

WY = A,

where Γ(A⊕X ⊕X) = Y ⊕ Y .

The power of uniform almost totality is that, by combining Γ and W , we can

take a total set X ⊕X �e A and any enumeration of A to a fixed enumeration

of A that only depends on X . To make this more explicit, fix a Turing func-

tional Φ such that ΦY : ω → ω has range WY and is total as long as WY �= ∅.
We define a sequence of reals α ∈ [0, 1]ω as follows. Let

α(〈k, n〉) = μ{X ∈ 2ω : ΦY (k) = n, where Γ(A⊕X ⊕X) = Y ⊕ Y }.

Note that we can uniformly compute α from any enumeration of A: to approx-

imate α(〈k, n〉) to within ε, it is enough to wait for a stage when we see

μ{X ∈ 2ω : ΦY (k) ↓ , where Γ(A⊕X ⊕X) = Y ⊕ Y } > 1− ε.

Finally, we claim that it is easy to enumerate A from (a name for) α. Note

that if n ∈ A, then
∑

k∈ω α(〈k, n〉) ≥ 1. On the other hand, if n /∈ A, then∑
k∈ω α(〈k, n〉) = 0. So n ∈ A if and only if there is a k ∈ ω such that

α(〈k, n〉) > 0, which proves the claim. Therefore, A has continuous degree; it

has the same degree as α.

In what follows, we will work considerably harder to show that every (not

necessarily uniformly) almost total degree is continuous. We do not have a

direct proof that uniform almost totality and almost totality are equivalent.

One reason for our specific interest in almost totality, as opposed to its uniform

version, was mentioned in the introduction: it provides a definition of the con-

tinuous degrees in the partial order of enumeration degrees. This is immediate

from the fact that the total degrees are definable [1].
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4. Codability

In order to prove that almost total degrees are continuous, we pass through

another property that turns out to be a characterization of the continuous

degrees. We start by relativizing the notion of “Π0
1-class” to an enumeration

oracle. We use 〈A〉 to signify that we are treating A as an enumeration oracle,

rather than a Turing oracle.

Definition 4.1: Let A ⊆ ω. Call U ⊆ 2ω a Σ0
1〈A〉-class if there is a set W ≤e A,

such that

U = [W ]≺ = {X ∈ 2ω : (∃σ ∈ W ) X � σ}.

A Π0
1〈A〉-class is the complement of a Σ0

1〈A〉-class.
Note that a Π0

1〈A⊕A〉-class is just a Π0
1[A] class in the usual sense.

Definition 4.2: A set A ⊆ ω is codable if there is a nonempty Π0
1〈A〉-class

P ⊆ 2ω such that for every X ∈ P , A is c.e. relative to X . If there is a

c.e. operator W such that A = WX for every X ∈ P , then A is uniformly

codable.

First note that codable and uniformly codable are enumeration degree prop-

erties. It should also be clear that every total degree is uniformly codable;

indeed, {A⊕A} is a Π0
1〈A⊕A〉-class.

Remark 4.3: Uniform codability first arose as a potentially interesting property

in a 2014 attempt by Mingzhong Cai, Steffen Lempp, Miller and Soskova to

understand almost totality. They proved that if A has almost total degree

and there is a nonempty Π0
1〈A〉-class Q such that no path in Q is below the

enumeration degree of A, then A is uniformly codable. The proof was never

published.

Uniform codability can also be found in a characterization of the continuous

degrees that was recently given by Kihara and Pauly [7, Section 7.1]. In fact,

their result motivated us to revisit almost totality. Translating from their no-

tation, they prove that A has continuous degree if and only if A is uniformly

codable via the Π0
1〈A〉-class P and there is a uniform way to compute a path

in P from an enumeration of A. It should be noted that it is not clear that

they use the extra hypothesis in an essential way, and in light of our results, we

expect that their proof can be modified to do without it.
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We will prove in Lemma 4.5 that if A has almost total enumeration degree,

then it is uniformly codable. So for the other results in this paper, we could

avoid the nonuniform version of codability altogether. However, it is simple

enough to prove that codability implies uniform codability.

Proposition 4.4: If A ⊆ ω is codable, then it is uniformly codable.

Proof. We prove the contrapositive. Assume that A is not uniformly codable

and let P ⊆ 2ω be a nonempty Π0
1〈A〉-class. We will construct an X ∈ P that

does not enumerate A. Since P is arbitrary, this proves that A is not codable.

We construct X by “forcing with Π0
1〈A〉-classes”. In other words, we let P0 = P

and construct a sequence P0 ⊇ P1 ⊇ P2 ⊇ · · · of nonempty Π0
1〈A〉-classes such

that any X ∈ ⋂
e∈ω Pe is sufficient.

Say that we have constructed Pe. Let We be the eth c.e. operator; we want

to ensure that A �= WX
e . Since A is not uniformly codable, there is a Z ∈ Pe

such that A �= WZ
e . There are two possibilities.

Case 1. If there is an n ∈ WZ
e � A, then let σ ≺ Z be long enough that

n ∈ W σ
e . Set

Pe+1 = Pe ∩ [σ]≺.

So if X ∈ Pe+1, we have n ∈ WX
e �A, hence A �= WX

e .

Case 2. If there is an n ∈ A�WZ
e , then let

Pe+1 = {Z ∈ Pe : n /∈ WZ
e }.

By assumption, Pe+1 is nonempty. Also, if X ∈ Pe+1, we have A �= WX
e .

As promised, almost total degrees consist of uniformly codable sets.

Lemma 4.5: If A ⊆ ω has almost total enumeration degree, then it is uniformly

codable.

Proof. Assume that A has almost total enumeration degree. The proof of this

lemma consists of two parts: we first use a failed forcing argument to construct

an enumeration operator Γ with specific properties. We then use this operator

to define a Π0
1〈A〉-class, witnessing that A is uniformly codable.

Recall that

(X)� = {σ ∈ 2<ω : σ � X}
was one of our examples of a total set. In this proof, it is convenient to use

(X)� instead of the enumeration equivalent set X ⊕X. We will also use (τ)�,
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for τ ∈ 2<ω, to denote the set {σ ∈ 2<ω : σ � τ}. We want to build an enumer-

ation operator Γ such that if X ∈ 2ω is sufficiently generic, then Γ(A ⊕ (X)�)
is the graph of an enumeration of A. In particular, the operator Γ will have the

following properties:

(1) If σ ∈ 2<ω, then Γ(A ⊕ (σ)�) is the graph of a partial function with

range contained in A.

(2) For every n ∈ N and every σ ∈ 2<ω, there is an extension τ � σ such

that the domain of Γ(A⊕ (τ)�) contains n.
(3) For every a ∈ A and every σ ∈ 2<ω, there is an extension τ � σ such

that the range of Γ(A⊕ (τ)�) contains a.

To find such an enumeration operator, we consider the following attempt to

construct an element X ∈ 2ω that witnesses that A is not almost total.

Construction: We build X by initial segments as
⋃

s∈ω

σs.

Let σ0 = ∅. We use even stages to ensure that (X)� �e A. At stage s = 2e, we

diagonalize against Γe(A). If σ�
s 0 ∈ Γe(A), then let σs+1 = σ�

s 1. Otherwise,

σs+1 = σ�
s 0. Since only one of σ�

s 0 or σ�
s 1 is in (X)�, this ensures that

Γe(A) �= (X)�.

At the odd stage s = 2e + 1, we want to ensure that Γe(A ⊕ (X)�) is not

an enumeration of A. There are several ways in which this could be achieved.

It might be possible to extend σs appropriately so that Γe(A⊕ (σs+1)�) is not
the graph of a function: for some n we have two different elements a �= b such

that 〈n, a〉 and 〈n, b〉 are both in Γe(A ⊕ (σs+1)�). It might be that we can

extend σs so that Γe(A ⊕ (σs+1)�) does not have range contained in A: for

some b /∈ A and some natural number n we have that 〈n, b〉 ∈ Γe(A⊕ (σs+1)�).
If these two attempts at achieving our goal fail, then there is still the possibility

that we could find an extension σs+1 of σs that forces Γe(A ⊕ (X)�) to not

be a total function or to only enumerate a proper subset of A. In the first

case, there would be an n for which there is no extension τ � σs+1 such that n

is in the domain of Γe(A ⊕ (τ)�). In the second, there would be an element

a ∈ A for which there is no extension τ � σs+1 such that a is in the range of

Γe(A⊕(τ)�). If none of these options are possible, we say that the construction

fails at stage s. �
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The proposed construction must fail at some finite stage. Otherwise, we

would build an X ∈ 2ω such that X ⊕ X ≡e (X)� �e A and such that no

enumeration of A is enumeration reducible to A ⊕ (X)� ≡e A ⊕X ⊕X. This

contradicts the assumption that A has almost total degree. Even stages cannot

cause any problems, so the failure must be at an odd stage, say s = 2e + 1,

giving us an e-operator Γe that works as requested for every τ � σs. To get Γ,

we hardcode σs, i.e., Γ consists of the axioms 〈n,DA ⊕DX〉 in Γe such that DX

only contains strings that are comparable with σs.

Next, using the operator Γ we define a Π0
1〈A〉-class P such that every path

in P uniformly enumerates A. If B is a superset of A and X is sufficiently

generic, then Γ(B⊕(X)�) ⊆ Γ(A⊕(X)�), which is the graph of an enumeration

of A. Of course, Γ(B ⊕ (X)�) may fail to be a function: there may be some n

for which there are two numbers a �= b such that 〈n, a〉 and 〈n, b〉 are both in

Γ(B ⊕ (X)�). We will let P ⊆ 2ω be the set of all B such that A ⊆ B and B

is small enough so that there is no X ∈ 2ω that causes Γ(B ⊕ (X)�) to be a

proper multifunction. The set P is a Π0
1〈A〉-class because it is the complement

of the Σ0
1〈A〉-class generated by all β ∈ 2<ω such that

(∃n)[β(n) = 0 and n ∈ A], or

(∃σ ∈ 2<ω)(∃n)(∃a)(∃b)[a �= b and {〈n, a〉, 〈n, b〉} ⊆ Γ({x : β(x) = 1} ⊕ (σ)�)].

Note that P is nonempty because it contains A.

Finally, to prove that A is uniformly codable, we must explain how to enu-

merate A from any B ∈ P . This is simple, because A is exactly the set of

elements that appear in the range of Γ(B ⊕ (σ)�), as σ ranges over 2<ω.

5. Holistic sets

We have shown that every almost total degree is uniformly codable. The next

step in our proof that these degrees are continuous is to introduce a concrete

combinatorial property that guarantees that a set is uniformly codable. Then

we will prove that every uniformly codable degree contains such a set.

Definition 5.1: Say S ⊆ ω<ω is holistic if for every σ ∈ ω<ω,

(1) (∀n) σ�(2n) and σ�(2n+ 1) are not both in S,

(2) if σ /∈ S, then (∀n) σ�(2n) ∈ S,

(3) if σ ∈ S, then (∃n) σ�(2n+ 1) ∈ S.



758 U. ANDREWS ET AL. Isr. J. Math.

Proposition 5.2: If S ⊆ ω<ω is holistic, then it is uniformly codable.

Proof. We build a tree T ⊆ 2<ω. Every level of this tree corresponds to a

specific pair (σ�(2n), σ�(2n + 1)), where σ ∈ ω<ω. If τ ∈ T and τ is of a

level that corresponds to (σ�(2n), σ�(2n + 1)), then τ�0 ∈ T if and only

if σ�(2n) /∈ S and τ�1 ∈ T if and only if σ�(2n + 1) /∈ S. Clearly T ≤e S,

and so T defines a Π0
1〈S〉 class P . As σ�(2n) and σ�(2n+1) cannot both be S

by the first property of holistic sets, it follows that T has no dead ends and so

P �= ∅. Every X ∈ P can enumerate S using the following procedure:

If X(k) = 0 and level k corresponds to (σ�(2n), σ�(2n + 1)),

then enumerate σ.

We claim that this procedure works. If X(k) = 0, then by definition of T we

have σ�(2n) /∈ S, and hence σ ∈ S by the second property of holistic sets. On

the other hand, if σ ∈ S, then by the third property of holistic sets there is an n

such that σ�(2n+1) ∈ S (and hence σ�(2n) /∈ S). If level k of T corresponds

to the pair (σ�(2n), σ�(2n + 1)), then X(k) must be 0, and hence X will

enumerate σ.

Holistic sets are not hard to construct. Consider the following easy examples

of computable holistic sets, Sout and Sin. The first, Sout, does not contain the

empty string and is defined inductively as follows: for every σ ∈ ω<ω and every

n ∈ ω, if σ /∈ Sout, then σ�(2n) ∈ Sout and σ�(2n+1) /∈ Sout; if σ ∈ Sout, then

σ�(2n) /∈ Sout and σ�(2n+ 1) ∈ Sout. The set Sin contains the empty string,

but otherwise follows the same inductive definition. With a little more work,

we can define an infinite family of computable holistic sets, with all possible

finite restrictions. This will be useful in Section 6.

Lemma 5.3: The set of finite sets D ⊆ ω<ω such that D can be extended to

a holistic set is computable. If D ⊆ ω<ω is such a finite set, then there is

computable holistic set SD such that D ⊆ SD.

Proof. Fix a finite set D and let k be an even number such that D ⊆ kk. We

search for a finite set F such that D ⊆ F ⊆ kk which satisfies the restrictions

of a holistic set:

(1) (∀n) if 2n+ 1 < k, then σ�(2n) and σ�(2n+ 1) are not both in F ,

(2) if σ ∈ k<k and σ /∈ F , then (∀n) if 2n < k then σ�(2n) ∈ F .
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If there is no such F , then D cannot be extended to a holistic set. If there is,

then let F be the least one. We complete it to a holistic set by using essentially

the same procedure as we used to define Sin and Sout. Start with F ⊆ SD and

proceed by induction for every σ ∈ ω<ω and every n ∈ ω:

(1) If σ /∈ SD, then σ�(2n) ∈ SD and σ�(2n+ 1) /∈ SD.

(2) If σ ∈ SD and if σ�(2n) /∈ kk (i.e., it is not determined by F ), then

σ�(2n) /∈ SD and σ�(2n+ 1) ∈ SD.

It is easy to see that the constructed set SD is holistic. Fix σ and n. By our

choice of k as even, either 2n + 1 < k or 2n ≥ k. In the first case, the fact

that σ�(2n) and σ�(2n+1) are not both in SD follows from our choice of F ; in

the second case, it follows from our inductive definition. If σ /∈ SD and 2n < k,

then σ�(2n) ∈ SD follows from F ⊆ D; if 2n ≥ k, then σ�(2n) ∈ SD fol-

lows from our inductive definition. Finally, if σ ∈ SD, then for all n such

that 2n+ 1 > k we will have σ�(2n+ 1) ∈ SD. Therefore, all three properties

of holistic sets are satisfied.

The reason that the holistic sets are important for us is that they occupy

every uniformly codable degree.

Lemma 5.4: If A ⊆ ω is uniformly codable, then there is a holistic set S ≡e A.

Proof. Fix a uniformly codable set A. Without loss of generality, we may

assume that A is not c.e. We will build a holistic set S so that A ≡e S. For

σ ∈ ω<ω and Y ⊆ ω<ω, we use the notation σ�Y to denote the set of all strings

in ω<ω obtained by concatenating σ with some member of Y . We start with

∅ ∈ S. For every n, we use (2n)�Sout to define

S ∩ (2n)�(ω<ω).

We put the string (2n+ 1) into S if and only if n ∈ A, which ensures that

A ≤e S.

Since A is not empty, as least one string of the form (2n+1) will be in S, so the

holistic set conditions are satisfied for ∅. The main difficulty is what we do with

strings extending (2n + 1). In particular, we need to be careful when n /∈ A

and hence (2n+ 1) /∈ S. We need to find a way to transform this negative fact

about A into a positive fact that will force us to enumerate into S every string

(2n + 1)�(2k), in order to make S a holistic set enumeration reducible to A.

The following observation will facilitate this.
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Let P andW be the Π0
1〈A〉-class and uniform c.e. procedure witnessing that A

is uniformly codable. Let Γ be an enumeration operator witnessing that P is

a Π0
1〈A〉-class, i.e., such that

P = {X ∈ 2ω : (∃σ ∈ Γ(A)) σ � X}.

Fix a finite set D (for instance, D = {2n+1}). If D ⊆ A, then by compactness

there is some n such that for every X ∈ 2ω, either X extends a member of Γ(A)

of length less than n or D is enumerated by WX�n in no more than n steps.

Let

C = {τ ∈ 2n : τ ∈ Γ(A)}.
Then the finite set C generates a clopen set [C]≺ such that D ⊆ W τ for ev-

ery τ ∈ C (in |τ | many steps), and such that P ⊆ [C]≺. If, on the other hand,

D � A and C is a finite set of strings such that D ⊆ W τ for every τ ∈ C,

then it must be that [C]≺ ∩ P = ∅. Otherwise, for some X ∈ P , we will have

that D ⊆ WX , contrary to our assumption that A = WX . Now, if C is finite

and [C]≺ ∩ P = ∅, then by compactness, there is a finite set DC ⊆ A such that

[C]≺ ⊆ [Γ(DC)]
≺, and this is seen in finite time. Thus, we have witnessed the

negative fact D � A by a positive fact DC ⊆ A. We will use this idea to define

an inductive procedure that decides, for every σ � (2n + 1), whether or not

σ ∈ S.

To every σ � (2n+1), for n ∈ ω, we will assign a statement ϕσ so that σ ∈ S if

and only if ϕσ is true. Further, this statement will come with a uniformly c.e. se-

quence of finite sets {Dσ
i }i∈ω such that ϕσ is true if and only if (∃i) Dσ

i ⊆ A.

Since A is not c.e., there is a â /∈ A and a string τ̂ such that â ∈ W τ̂ . We will

always set Dσ
0 = {τ̂}. We need to handle three kinds of statements:

(1) The statement “n ∈ A” is assigned to the string (2n+1). The sequence

of finite sets {Dσ
i }i∈ω is defined simply by setting Dσ

i = {n} for every

i > 0.

(2) Statements of the form “[C]≺∩P = ∅”, where C is a finite set of binary

strings, are assigned to strings σ � (2n+1) that end in an even number.

As discussed above, this statement is true if and only if there is a finite

set D ⊆ A such that [C]≺ ⊆ [Γ(D)]≺. In this case, we will let {Dσ
i }i>0

be the sequence that lists, possibly with repetition, all finite sets D such

that [C]≺ ⊆ [Γ(D)]≺. It can happen that there are no such finite sets

at all. To deal with this situation, we will pad by letting Dσ
i = {â}.
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(3) Statements of the form “P ⊆ [C]≺”, where C is a finite set of binary

strings, are assigned to strings σ � (2n+1) that end in an odd number.

Such a statement is true if and only if (2ω � [C]≺) ∩ P = ∅. Let O be

a finite set of strings such that [O]≺ = 2ω � [C]≺; this can be found

computably. Now, just like in the previous case, we let {Dσ
i }i∈ω be a

sequence of finite sets that would witness “[O]≺ ∩ P = ∅”, were any of

them subsets of A (along with the finite set {â}).
The assignment is defined inductively: fix σ and suppose that we have as-

signed to it the statement ϕσ along with the sequence of finite sets {Dσ
i }i∈ω.

Let {Cn}n∈ω be a c.e. listing, allowing repetition, of all finite sets of strings

such that for some i and every τ ∈ Cn we have Dσ
i ⊆ W τ . Note that this list is

not empty because {τ̂} will always appear. Next, for every n, we associate the

statement “[Cn]
≺∩P = ∅” to σ�(2n) ∈ S and “P ⊆ [Cn]

≺” to σ�(2n+1) ∈ S.

Property (1) of holistic sets is clearly true at σ. Furthermore, by our earlier

analysis we have:

(2) σ /∈ S ⇒ (∀i)[Dσ
i � A] ⇒ (∀n)[[Cn]

≺ ∩ P = ∅] ⇒ (∀n)[σ�(2n) ∈ S],

(3) σ ∈ S ⇒ (∃i)[Dσ
i ⊆ A] ⇒ (∃n)[P ⊆ [Cn]

≺] ⇒ (∃n)[σ�(2n+ 1) ∈ S].

So S is a holistic set. Finally, we note that S ≤e A because σ ∈ S if and only if

σ = ∅, or σ ∈ (2n)�Sout for some n, or if σ is assigned the statement ϕσ with

sequence {Dσ
i }i∈ω and (∃i) Dσ

i ⊆ A.

6. The holistic space

In the previous section, we showed that every uniformly codable degree—hence

every almost total enumeration degree—contains a holistic set. Our next step is

to form a topological space from the holistic sets. It turns out to be a very well-

behaved topological space: it is Hausdorff, second countable (by definition), and

regular, so it satisfies the hypotheses of Urysohn’s metrization theorem. In fact,

it can be turned into a computable metric space, which is how we complete the

chain of implications and prove that every almost total degree is continuous.

Definition 6.1: Let

H = {S ⊆ ω<ω : S is holistic}.
For each σ ∈ ω<ω, let Oσ = {S ∈ H : σ ∈ S}. These sets form a subbasis for

the desired topology, i.e., their finite intersections form a basis. We call the

resulting topological space the holistic space.
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We extend the subbasis to an explicit basis as follows. By Lemma 5.3, there is

a computable listing {Dn}n∈ω of all finite subsets of ω<ω that extend to holistic

sets. Define {Bn}n∈ω by

Bn =
⋂

σ∈Dn

Oσ.

Note that for every n, the open set Bn is not empty; in particlar, it contains

the computable holistic set extending Dn that was constructed in Lemma 5.3.

For computability on topological spaces, we essentially follow the definitions

used by Grubba, Schröder and Weihrauch [5].

Definition 6.2: A second countable T0 space X is computable if it has a count-

able basis {Bn}n∈ω of nonempty open sets on which intersection is a computable

operation, meaning that there is a total computable function i such that

Bn ∩Bm =
⋃

k∈Wi(n,m)

Bk.

Lemma 6.3: The holistic space is a computable second countable Hausdorff

space.

Proof. The holistic space is clearly second countable. The basis defined above

makes it computable: if Dn ∪Dm extends to a holistic set, then Bn ∩Bm = Bk

for Dk = Dn∪Dm, otherwise Bn∩Bm is empty. To see that H is Hausdorff, fix

two different points S1 �= S2 ∈ H. Without loss of generality, fix σ ∈ S1 � S2.

As σ ∈ S1, by the third property of holistic sets there is a number n such that

σ�(2n+ 1) ∈ S1. On the other hand, since σ /∈ S2, by the second property we

have that σ�(2n) ∈ S2. So S1 ∈ Oσ�(2n+1), S2 ∈ Oσ�(2n), and by the first

property of holistic sets, Oσ�(2n+1) ∩Oσ�(2n) = ∅.
Definition 6.4: Let X be a computable topological space with basis {Bn}n∈ω.

A name for a point x ∈ X is any enumeration of the set {n : x ∈ Bn}. A name

for an open set O ⊆ X is any enumeration of the set {n : Bn ⊆ O}. A name

for a closed set F ⊆ X is just a name for X � F .

It is easy to see that from an enumeration of a holistic set S, we can compute a

name for S as an element ofH, i.e., we can enumerate {n :S∈Bn}={n :Dn⊆S}.
Conversely, from a name for S we can enumerate S itself. This means that the

degree of S as a point in H, in the sense of Kihara and Pauly [7], is just the

enumeration degree of S.
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Recall that a topological space X is regular if whenever F ⊆ X is closed

and x ∈ X � F , there are disjoint open sets U , V such that x ∈ U and F ⊆ V .

If X has a countable base {Bn}n∈ω, then one way to ensure that X is regular

is to require that for every basic open set Bn and x ∈ Bn, there is a basic open

set Bm and a closed set C such that x ∈ Bm ⊆ C ⊆ Bn. Indeed, if X has that

property and x /∈ F are given, then we can find a basic open set Bn such that

x ∈ Bn ⊆ X � F , and then x ∈ Bm and F ⊆ X � C witness that X is regular.

If we have a computable space X , then it is computably regular if this version

of regularity is effective.

Definition 6.5: A computable topological space X with base {Bn}n∈ω is com-

putably regular if there is a c.e. set R and a computable function c such that:

(1) for all n, we have Bn =
⋃

〈n,m〉∈R Bm;

(2) if 〈n,m〉 ∈ R, then c(n,m) is the index of a c.e. set Cn,m describing a

closed set Fn,m = X � (
⋃

k∈Cn,m
Bk) such that

Bm ⊆ Fn,m ⊆ Bn.

Lemma 6.6: The holistic space is computably regular.

Proof. If S is holistic and σ�(2k + 1) ∈ S, then σ ∈ S. In terms of our

topology, this means that Oσ�(2k+1) ⊆ Oσ. If σ�(2k + 1) ∈ S, then we also

know that σ�(2k) /∈ S and so Oσ�(2k+1) ∩ Oσ�(2k) = ∅. Finally, σ�(2k) /∈ S

implies σ ∈ S, so

Oσ�(2k+1) ⊆ H�Oσ�(2k) ⊆ Oσ.

Let R be the set of all pairs 〈n,m〉 such that if Dn = {σ0, σ1, . . . , σi}, then
Dm = {σ�

0 (2k0 +1), σ�
1 (2k1 +1), . . . , σ�

i (2ki +1)} for some k0, k1, . . . , ki ∈ ω.

Clearly, Bn =
⋃

〈n,m〉∈R Bm: if S ∈ Bn =
⋂

σ∈Dn
Oσ then Dn ⊆ S, and so by

the third property of holistic sets, there are numbers k0, k1, . . . , ki such that

D = {σ�
0 (2k0 + 1), σ�

1 (2k1 + 1), . . . , σ�
i (2ki + 1)} ⊆ S.

It follows that D extends to a holistic set, hence D = Dm for some m.

Fix 〈n,m〉 ∈ R. Let C be the finite set of indices (in the listing {Dn}n∈ω) of

sets of the form {σ�(2k)}, where σ�(2k+1) ∈ Dm. Let Fn,m = H�(
⋃

k∈C Bk).

It is straightforward to check that Bm ⊆ Fn,m ⊆ Bn. Of course, the process

of converting 〈n,m〉 to a c.e. index of the (finite) set C is computable, thus we

have established that H is computably regular.
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The previous lemmas are important in light of Urysohn’s metrization the-

orem [15], which states that every regular second countable Hausdorff space

is metrizable.3 Schröder [12] proved an effective version of Urysohn’s theorem

that holds in our case: there is a computable metric d on H that induces the

given topology. This metric is actually computable in the sense we need, i.e., if

S, T ∈ H, then from enumerations of S and T we can compute d(S, T ). More-

over, we will produce a computable dense sequence of points in H, making it a

computable metric space. We will outline the steps in Schröder’s proof following

the exposition given in Grubba, Schröder and Weihrauch [5].

The first step is to show that every computably regular space is computably

normal. Recall that a space X is normal if every two disjoint closed subsets

of X have disjoint open neighborhoods. There is a natural effective version of

this definition:

Definition 6.7: A computable space X is computably normal if given names

of two disjoint closed sets F1 and F2 there is a uniform way to compute names

for disjoint open sets O1 and O2 so that

F1 ⊆ O1 and F2 ⊆ O2.

It is a classical theorem that every second countable regular space is normal.

Grubba et al. [5] prove the effective version of this theorem: every computably

regular space is computably normal. Therefore:

Corollary 6.8: H is computably normal.

An equivalent way to express that a space X is normal is to say that whenever

F1 ⊆ O1 are a closed and an open set, we can find an open set O2 and a closed

set F2 so that F1 ⊆ O2 ⊆ F2 ⊆ O1. Indeed, X � O1 is closed and disjoint

from F1, so there are disjoint open neighborhoods X � F2 and O2 of X � O1

and F1. Note that we use the same set as a name for an open set and its

complement, so in a computably normal space there is a uniform way to obtain

a description of the second pair of sets from the first. Grubba et al. [5] use

this idea to prove the following: if A and B are disjoint closed sets, then given

names for A and B there is a uniform way to compute a name for a continuous

3 Actually, Urysohn assumed normality instead of regularity; following up on Urysohn’s

work, Tychonoff [14] showed that every regular second countable Hausdorff space is

normal.
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function fAB : X → [0, 1] so that

fAB[A] = 0 and fAB[B] = 1.

Using normality, they build a sequence of closed sets Fq and open sets Oq ⊆ Fq,

where q ranges over all rational numbers in the unit interval. This sequence has

the property that if q < p then Fq ⊆ Op, that A ⊆ O0, and that F1 ⊆ X � B.

Then if S is a holistic set,

fAB(S) = sup({q : S /∈ Fq} ∪ {0}) = inf({q : S ∈ Oq} ∪ {1}).
The distance function d on H can now be defined as follows: fix a listing

{〈ni,mi〉}i∈ω of the c.e. set R witnessing that H is computably regular. For

every i, let fi = fAB for the sets A = Fni,mi (the closed set that sits between

Bmi ⊂ Bni) and B = H � Bni . Finally if S and T are two holistic sets, then

define

d(S, T ) =
∑

i∈ω

2−i|fi(S)− fi(T )|.

Grubba et al. [5] prove that d is a metric onH that induces the original topology.

They note two important properties of d (see [5, Lemma 4.7]):

(1) The metric is computable in the sense that from any name for S and

any name for T , we can compute d(S, T ).

(2) For every pair 〈ni,mi〉, if d(S,Bmi) < 2−i, then S ∈ Bni .

We have that H is a metrizable space with a computable metric d. In order to

show that it is a computable metric space, we need to define a dense set QH

on which the metric remains computable. We use Lemma 5.3: let Sk = SDk
be

the computable holistic set that contains the finite set Dk and let

QH = {Sk}k∈ω.

The metric d is computable on QH because names for the points Sk are uni-

formly computable in k. We have shown:

Corollary 6.9: (H, d) is a computable metric space.

The final thing we need to check is that if S ∈ H, then the continuous

degree of S as a point in the computable metric space (H, d) is the same as

its enumeration degree. Recall that a name for S from the point of view of a

computable metric space is a function that takes as input a rational number ε

and outputs the index of a member of QH that is within distance ε of S. Let

us call such names for S metric names.
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Lemma 6.10: Let S be a point in H.

(1) Every enumeration of S computes a metric name for S.

(2) Every metric name for S computes an enumeration of S.

Proof. The first statement of the lemma follows easily from the fact that we have

a computable metric. If we have an enumeration of S, then we can compute a

name for S as a point in the computable topological spaceH, so we can compute

(a name for) the distance between S and any of the computable points Sk. This

means that we can search through the list QH until we find an appropriate point

that is at distance less than any fixed rational ε. Since the topology induced

by the metric is the same as the original, we know that there are computable

points arbitrarily close to S, i.e., in any open ball Bε = {T : d(S, T ) < ε}. This
lets us compute a metric name for S.

For the second statement, we will use property (2) above to construct an

enumeration of S given access to a metric name for S. We start enumerating

elements Sk from the sequence QH that are closer and closer to S using the

metric name for S. Recall, that {〈ni,mi〉}i∈ω is the listing of R that we used

to define the metric d. If we enumerate a point Sk such that d(S, Sk) < 2−i

and Sk ∈ Bmi , then d(S,Bmi) < 2−i and so S must be in Bni . This means

that Dni ⊆ S, so we can safely enumerate the finite set Dni . We must show that

this procedure will not miss any element of S. If σ ∈ S, then for some k we have

that σ�(2k + 1) ∈ S. Let i be such that Bni = {σ} and Bmi = {σ�(2k + 1)}.
Then S ∈ Bmi . Now using the fact that the metric d induces the original

topology on H, for some rational ε we will have that the open ball

Bε = {T : d(S, T ) < ε} ⊆ Bmi .

When we use the metric name for S to produce a point in QH at distance no

more than min(2−i, ε) it must give us a point in Bmi , and hence our procedure

will enumerate σ.

By the lemma, the continuous degree of a holistic set S as a point in (H, d)

coincides with its enumeration degree.

Corollary 6.11: Holistic sets have continuous enumeration degree.

This was the last step in the proof of our main result. We conclude with a

summary of what we have shown.
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Theorem 1.3: Let a be an enumeration degree. The following are equivalent:

(1) a is (uniformly) almost total.

(2) The sets in a are (uniformly) codable.

(3) a contains a holistic set.

(4) a is continuous.

Proof. In Lemma 4.5, we proved that the nonuniform version of (1) implies the

uniform version of (2). Proposition 4.4 established the equivalence of the two

versions of (2). Lemma 5.4 showed that (2) implies (3), and we just finished

proving that (3) implies (4) in Corollary 6.11. Finally, in Lemma 3.2 we proved

that (4) implies the uniform version of (1).
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[12] M. Schröder, Effective metrization of regular spaces, in Computability and Complexity in

Analysis, Informatik-Berichte, Vol. 235, FernUniversität in Hagen, Hagen, 1998, pp. 63–

80.

[13] A. L. Selman, Arithmetical reducibilities. I, Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik 17 (1971), 335–350.
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