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ABSTRACT

The continuous degrees measure the computability-theoretic content of
elements of computable metric spaces. They properly extend the Turing
degrees and naturally embed into the enumeration degrees. Although
nontotal (i.e., non-Turing) continuous degrees exist, they are all very close
to total: joining a continuous degree with a total degree that is not below
it always results in a total degree. We call this property almost totality.

We prove that the almost total degrees coincide with the continuous
degrees. Since the total degrees are definable in the partial order of enu-
meration degrees [1], we see that the continuous degrees are also definable.
Applying earlier work on the continuous degrees [10], this shows that the
relation “PA above” on the total degrees is definable in the enumeration
degrees.

In order to prove that every almost total degree is continuous, we pass
through another characterization of the continuous degrees that slightly
simplifies one of Kihara and Pauly [7]. We prove that the enumeration
degree of A is continuous if and only if A is codable, meaning that A is
enumeration above the complement of an infinite tree, every path of which
enumerates A.

1. Introduction

The continuous degrees were introduced by Miller [10] as a natural measure of
the computability-theoretic content of elements of computable metric spaces.
A computable metric space M is a metric space with a distinguished countable
dense sequence Q™" ={¢M},,c., C M on which the metric is computable, mean-
ing that there is an effective way to approximate the distance between any two
elements in the sequence with arbitrary precision. Common separable metric
spaces can usually be given a computable structure. As a simple example, the
real line R with the usual metric and Q¥ =Q is a computable metric space. For
C|0, 1], the space of continuous functions on the unit interval under the uniform
metric, we can take Q€% to consist of all rational polynomials on the unit
interval.

If M is a computable metric space, a name for a point x € M is a function
that takes as input a rational number ¢ and outputs the index of a member
of the sequence @™ that is within distance € of x. Note that names are dis-
crete objects; they fall within the scope of classical computability theory. By
naming points in computable metric spaces, we can compare the computability-
theoretic content of points from different spaces: a point x in one computable
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metric space has at least as much computability-theoretic content as a point y
in some (possibly different) computable metric space if every name for x com-
putes a name for y. Miller [10] observed that every point in a computable metric
space is equivalent to a point in C[0, 1]. For this reason, he called the induced
degree structure the continuous degrees. We write D, for the structure of the
continuous degrees.

The Turing degrees embed into the continuous degrees; they are the continu-
ous degrees of points in R, or more naturally, Cantor space with an appropriate
metric and computable structure. On the other hand, the continuous degrees
embed into the enumeration degrees. An enumeration reduction determines
the positive information about one set from the positive information about an-
other. It is closely connected to the idea of computing with partial oracles.
Equivalent forms of this reducibility have been introduced several times over
the years: Kleene [8] and Myhill [11] in the partial oracles version, Friedberg
and Rogers [3] and Selman [13] in the version we discuss here. For sets of natu-
ral numbers A and B, we say that A is enumeration reducible to B (A <. B) if
every function that enumerates A (uniformly) computes an enumeration of B.
The enumeration degrees D, arise from enumeration reducibility in the standard
way. Thus, we have three structures:

Dr — D, — D,.

The copy of Dr in the enumeration degrees is the set of total enumeration
degrees and the copy of D,. in the enumeration degrees is the set of continuous
enumeration degrees. Miller [10] proved that each of the embeddings is proper:
there are nontotal continuous degrees and there are noncontinuous enumeration
degrees.

The continuous degrees are, however, in some sense very close to total enu-
meration degrees.

Definition 1.1: We say that an enumeration degree a is almost total if when-
ever b £ a is total, aV b is also total.

In words, an enumeration degree is almost total if adding any new total
information takes it to a total degree. This is true of total degrees because the
join of any two total degrees is total; it is much harder to see that there is a
nontotal enumeration degree with this property. In 2014, Cai, Lempp, Miller
and Soskova (unpublished) observed that continuous enumeration degrees are
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almost total (see Section 3 for a proof). Together with the fact that there are
nontotal continuous degrees, which is itself nontrivial [10], this proves that there
are nontotal almost total enumeration degrees. Surprisingly, we show that this
is the only possible source of examples: an enumeration degree is almost total
if and only if it is continuous.

Remark 1.2: Tt is worth saying a few words about the known proofs that
nontotal continuous degrees exist. Miller’s [10] proof relies on a generaliza-
tion of Brouwer’s fixed point theorem for multivalued functions on [0, 1]*, the
Hilbert cube. Day and Miller [2] noted that Levin’s [9] neutral measures (infor-
mally, measures relative to which every sequence is Martin-Lof random) must
have nontotal continuous degree. Levin constructed a neutral measure using
Sperner’s lemma, which is a combinatorial version of Brouwer’s fixed point the-
orem (see Gécs [4] for the construction). Finally, Kihara and Pauly [7] and,
independently, Mathieu Hoyrup (unpublished) realized that the existence of
nontotal continuous degrees follows from the fact that the Hilbert cube [0, 1]¢
is strongly infinite-dimensional, hence not a countable union of zero-dimensional
subspaces. It is unlikely to be a coincidence that every known proof that
nontotal continuous degrees exist—hence, that nontotal almost total degrees
exist—has a nontrivial topological component. However, we do not know how
to formalize this observation into a conjecture.

In order to prove that every almost total degree is continuous, we establish
a couple of other characterizations of the continuous degrees. In Section 4, we
introduce codable sets. A set A is codable if it is enumeration above the com-
plement of an infinite tree, every path of which computes an enumeration of A.
Kihara and Pauly [7] introduced a very similar, but slightly more complicated
notion and showed that it is equivalent to having continuous degree. We prove
that codability is equivalent to its uniform version, and that if A has almost
total enumeration degree, then it is uniformly codable. In Section 5, we define
holistic sets, which are subsets of w<“ with special combinatorial properties.
We prove that the enumeration degrees of holistic sets and the enumeration
degrees of uniformly codable sets coincide. In Section 6, we introduce a topol-
ogy on the set of holistic sets, giving rise to the holistic space, a computable
second countable Hausdorff space. Schroder [12] proved an effective version of
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Urysohn’s metrization theorem.! We show that the holistic space is computably
regular, which allows us to apply Schroder’s theorem and conclude that the
holistic space is a computable metric space. This gives us the final link in our
chain of characterizations: we prove that holistic sets have continuous enumer-
ation degree.

In Section 3, we also consider a uniform version of almost totality and give a
short proof that uniformly almost total enumeration degrees are continuous. It
should be noted that this uniform version could be avoided in the proof that al-
most total degrees are continuous, as could the nonuniform version of codability.
We include both for completeness. Summarizing all of our characterizations:

THEOREM 1.3: Let a be an enumeration degree. The following are equivalent:

(1) a is (uniformly) almost total,

(

2)
(3) a contains a holistic set,
4)

(

The equivalence of the first and last statements has an important consequence

the sets in a are (uniformly) codable,

a is continuous.

for the structure of the enumeration degrees. In recent years, there has been a
sequence of advances in understanding which relations are first order definable
in D, (as a partial order). There is a natural jump operator in the enumeration
degrees that agrees with the Turing jump operator under the embedding of
Dr into D.. Kalimullin [6] proved that the enumeration jump operator is first
order definable in the enumeration degrees by a very simple structural property.
Building on this work, Cai, Ganchev, Lempp, Miller and Soskova [1] proved that
the total enumeration degrees are first order definable. This, combined with the
characterization of the continuous enumeration degrees as almost total, gives
us a new first order definable class of enumeration degrees.

THEOREM 1.4: The property “a is a continuous enumeration degree” is first
order definable in D,.

Miller [10] studied the structural relationship between total and nontotal
continuous degrees. He proved that nontotal continuous degrees can be used to
characterize the relation “PA above” between (pre-images of) total enumeration
degrees. For Turing degrees x and y, we say that y is PA above x (x < y)

1 See [5] for an outline of the proof of Schréder’s theorem.
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if every infinite tree computable in x has a path computable in y. We transfer
the relation “PA above” to total enumeration degrees in a natural way: the
enumeration degree b is PA above the enumeration degree a (a < b) if a
and b are the images of Turing degrees x and y such that x <« y. Miller
showed that a < b if and only if a and b are total and there is a nontotal
continuous enumeration degree c, such that a < ¢ < b. Thus, we have another
definable relation in the enumeration degrees.

THEOREM 1.5: The relation “a < b” is first order definable in D,.

This nicely complements a result by Cai et al. [1] that shows that if we transfer
the relation “c.e. in” from pairs of Turing degrees to pairs of total enumeration
degrees, then once again we obtain a first order definable relation. Definable re-
lations are natural obstacles to nontrivial automorphisms. The question about
the existence of a nontrivial automorphism in the Turing degrees has remained
impenetrable, in part due to the lack of many examples of definable relations.
Neither “c.e. in”, nor “PA above” are known to be first order definable re-
lations in the Turing degrees. The total enumeration degrees are a definable
automorphism base for the enumeration degrees. This means that a nontrivial
automorphism of D, would induce a nontrivial automorphism of Dy. We now
know that this automorphism must preserve the jump, the relation “c.e. in”,
and the relation “PA above”. Could such an automorphism be nontrivial?

2. Preliminaries

ENUMERATION DEGREES. Enumeration reducibility captures the notion of rel-
ative enumerability between sets of natural numbers. We present it in the form
first given by Friedberg and Rogers [3]. Let {D,},e. be a computable listing
of all finite sets.

Definition 2.1: A set A C w is enumeration reducible to a set B C w
(A <. B) if there is a c.e. set W such that

A={z: (3v) (x,v) € W and D, C B}.

A c.e. set W can, in this sense, be treated as an operator mapping sets of
natural numbers to sets of natural numbers. We write A = W(B) and call W
an enumeration operator. The notation A = W% is reserved to mean that A
is c.e. in B via the c.e. operator W. Enumeration reducibility and the relation
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“c.e. in” are closely connected. In particular, the relation “c.e. in” can be
expressed using enumeration reducibility.

PROPOSITION 2.2: Let A and B be sets of natural numbers.

(1) Aisce. in B ifand only if A<, B® B.

(2) A<r Bifand only if A® A<.B® B.
In both cases, there is a uniform way to compute an index for the operator
witnessing one relation from an index witnessing the other.

On the other hand, Selman [13] proved that enumeration reducibility can be
captured in terms of the relation “c.e. in”.

THEOREM 2.3 (Selman 1971): If A and B be sets of natural numbers, then
A <. B if and only if (VX)[B is c.e. in X = A is c.e. in X].

We associate a degree structure to enumeration reducibility in the standard
way: A is enumeration equivalent to B (A =, B) if A <. B and B <, A.
The enumeration degree of A is the equivalence class of A under enumeration
equivalence; we write it as d.(A). The enumeration degrees inherit an order from
the reduction: we let d.(A) < d(B) if and only if A <. B. The disjoint union
of two sets A @ B gives rise to a least upper bound operation

de(A)V de(B) = d.(A® B).

The resulting upper semilattice is the structure of the enumeration degrees D,.

Part (2) of Proposition 2.2 implies that the map taking dr(A) to d.(A @ A),
for all A C w, is an embedding of the Turing degrees into the enumeration
degrees. Its range is an important class of degrees.

Definition 2.4: A set A C w is total if A <. A. An enumeration degree is total
if it contains a total set.

Examples of total sets include graphs of total functions, sets of the form
A® A, and for every X € 2 the set (X)< = {0 € 2<¥: 0 < X}. It is easy
to see that an enumeration degree is total if and only if it contains a set of the
form A @ A, so the total degrees are an embedded copy of the Turing degrees.

Selman’s theorem tells us that we can view the enumeration degree of a set A
as the collection of Turing degrees that can enumerate A. It turns out that an
enumeration degree is total if and only if this set of degrees has a least element.
If A is total, then every Turing degree that enumerates A also enumerates A,
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hence computes A. So dr(A) is the least Turing degree that enumerates A. For
the other direction, if there is a least Turing degree x that enumerates A, then
fix X € x. We know that A is c.e. in X, and so A <. X & X. On the other
hand, every Turing degree that enumerates A computes X, and so enumerates
X @& X. By Selman’s theorem, X & X <. A, hence A is of total degree.

CONTINUOUS DEGREES. The continuous degrees were introduced by Miller [10].
As we noted in the introduction, a computable metric space? is a metric
space M together with a countable dense sequence Q™ = {¢M},c.. € M on
which the metric is computable, meaning that there is a computable function
f:NxNxQ"— QF such that for all n,m,e e Nx Nx QT,

|dM(Qr/1V17Q7’/7\“LA) - f(nama€)| <e.

Definition 2.5: A name for a point z in a computable metric space M is a
function X : QT — N, such that da(z, q%a)) < ¢ for every e € Q.

If x is a point in a computable metric space M and y is a point in a computable
metric space N, then z is representation reducible to y (v <, y) if every name
for y computes a name for x.

Representation reducibility induces a degree structure in the same way that
enumeration reducibility does. We call this structure the continuous de-
grees D,.. The continuous degree of a point x in a computable metric space can,
in this case as well, be viewed as a set of Turing degrees: the Turing degrees of
names for x.

Once again, the continuous degrees that correspond to Turing cones form an
isomorphic copy of Dr in D,.. Recall our first example of a computable metric
space: R with Q® = Q. We map the Turing degree of a set A to the continuous
degree of real r4 € [0, 1] whose binary expansion is given by A. A real number r
can be identified with its left Dedekind cut L, = {¢ € Q: ¢ < r}. Any name
for r computes L, and the set L, computes a name for r, so the continuous
degree of r corresponds to Turing cone above dr(L,). Of course, for every set A

2 1n [10], Miller includes the nonstandard requirement that M is a complete metric space.
Since every metric space has a unique completion, this does not limit the collection
of continuous degrees. On the other hand, by requiring completeness, the computable
structure determines the underlying metric space, so there are only countably many
computable metric spaces. Under the standard definition, which we use in this paper,

N
there are 22 ° computable metric spaces.
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we have L,, =r A, so the mapping we defined is, in fact, an embedding. We
could have used the right Dedekind cut R, = {q € Q: ¢ > r} instead of the
left. The sets L, and R, are Turing equivalent. In fact, if 7 is not a rational
then L, = R, and if r is rational then L, = R, \ {r}.

Another example of a computable metric space is the Hilbert cube [0, 1]*
under the metric given by

d(a,8) =) |a(n) = B(n)|/2".
new
In this case, we can take Q%" to be a listing of the set of finitely nonzero
sequences of rationals in the interval [0, 1]. Miller [10] proved that every con-
tinuous degree contains an element of Hilbert cube. This allowed him to embed
the continuous degrees into the enumeration degrees. Let o € [0,1]* and let

Cy = @[La(n) D Ra(n)]

new
Every name for o can enumerate the set C,, and conversely, any set that can
enumerate C, can compute a name for . Therefore, by Selman’s theorem
(Theorem 2.3), the mapping that sends the continuous degree of « to the enu-
meration degree of C, is an embedding of D,. into D,.

Definition 2.6: An enumeration degree a is continuous if it contains the set C,
for some sequence « € [0, 1]“.

We now have two ways to embed the Turing degrees into the enumeration
degrees: directly, mapping dr(A) to d.(A @ A), or via the continuous degrees.
It is straightforward to see that, for every set A, the continuous degree of 74
is mapped to the enumeration degree of L,, & R,, = A & A. Thus the two
methods of embedding the Turing degrees produce the same result.

3. Almost totality

As we have defined above, an enumeration degree a is almost total if whenever
b f ais total, aVb is also total. In this section, we show that continuous degrees
are almost total. In fact, we will see that the almost totality of continuous
degrees is witnessed uniformly. It turns out to be easy to show that this uniform
version of almost totality is equivalent to being continuous. We provide this
proof, even though we are primarily interested in the nonuniform version.
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Definition 3.1: A set A C w is uniformly almost total if there is an enumer-
ation operator I' and a c.e. operator W such that

VX CwXaX £ A= FY Cw)l(AoXaeX)=YaY and WY = A].

Note first that uniform almost totality is an enumeration degree notion. It is
also not hard to see that it implies almost totality: we could require, without
strengthening the property, that I' preserve X & X as part of its output, so that

A X pX=YaY.
LEMMA 3.2: Continuous enumeration degrees are uniformly almost total.

Proof. Fix a and let a be a sequence of real numbers such that C, € a. Let X
be the binary expansion of a real number rx € [0, 1]. Consider the sequence g,
defined by 8(n) = (a(n) + rx)/2. Addition on real numbers is a computable
operation, as is division by 2, so from any name for « and any name for ry,
we can compute a name for 5. To be explicit: if ¢1 < a(n) and g2 < rx, then
(1 +q2)/2 < B(n), and if g1 > a(n) and gz > rx, then (q1 + ¢2)/2 > B(n).
So from an enumeration of C, and L,, & R,,, we can uniformly compute an
enumeration of Cg. It follows that Cs <. C, ® X ® X. The choice of X did not
matter to our enumeration procedure, so there is an enumeration operator I'
that works for all X.

If 5(n) is a rational number ¢x, then rx <, a(n). To see this, note that if
d(a, {qn tnew) < /27, then d(a(n), g,) = |a(n) — ¢,| < €, and so

Irx = (2ax —an)| = (24x — a(n)) = (20x — qn)| <e.

Thus we can compute a name for rx from a name for a. So if X & X ﬁe Ca,
then Cj is a total set: for every n, the real 5(n) is not rational and hence

Rp(n) = Lp(n)-
To complete the proof, we modify the operator I', as described above, so that
NChaXaX)=YaY,

where Y @Y is obtained by rearranging the set Cg @ (X @ X). This rearrange-
ment is, of course, computable and uniform. Finally, we use the fact « = 28—rx
to obtain a c.e. operator W such that C, = WY. This shows that C,, and
hence a, is uniformly almost total.
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PROPOSITION 3.3: A set A C w is uniformly almost total if and only if it has
continuous degree.

Proof. One direction was proved above. So now assume that A C w is uniformly
almost total as witnessed by I' and W. Furthermore, assume without loss of
generality that A is nonempty. Note that

wXe2”: XX <. A} =0,
where p is Lebesgue measure. Thus, for almost all X, we have
wY = A,

where (A X X)=Y @Y.

The power of uniform almost totality is that, by combining I" and W, we can
take a total set X ® X £, A and any enumeration of A to a fixed enumeration
of A that only depends on X. To make this more explicit, fix a Turing func-
tional ® such that ®Y: w — w has range WY and is total as long as WY = ().
We define a sequence of reals o € [0,1]* as follows. Let

al(k,n)) = p{X €2%: ®¥ (k) =n, where (A X & X) =Y @Y}

Note that we can uniformly compute « from any enumeration of A: to approx-
imate a((k,n)) to within ¢, it is enough to wait for a stage when we see

p{X €2*: dY(k) |, whereT(A X3 X)=YOY}>1—c.

Finally, we claim that it is easy to enumerate A from (a name for) a. Note
that if n € A, then >, . a((k,n)) > 1. On the other hand, if n ¢ A, then
Y okew @((k,n)) = 0. Son € A if and only if there is a k& € w such that
a({k,n)) > 0, which proves the claim. Therefore, A has continuous degree; it
has the same degree as a.

In what follows, we will work considerably harder to show that every (not
necessarily uniformly) almost total degree is continuous. We do not have a
direct proof that uniform almost totality and almost totality are equivalent.
One reason for our specific interest in almost totality, as opposed to its uniform
version, was mentioned in the introduction: it provides a definition of the con-
tinuous degrees in the partial order of enumeration degrees. This is immediate
from the fact that the total degrees are definable [1].
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4. Codability

In order to prove that almost total degrees are continuous, we pass through
another property that turns out to be a characterization of the continuous
degrees. We start by relativizing the notion of “II{-class” to an enumeration
oracle. We use (A) to signify that we are treating A as an enumeration oracle,

rather than a Turing oracle.

Definition 4.1: Let A C w. Call U C 2% a %9(A)-class if there is a set W <. A4,
such that

U=W"={X€2¥: (JoeW)X =0}
A TIY(A)-class is the complement of a %9(A)-class.
Note that a II{{A & A)-class is just a II{[A] class in the usual sense.

Definition 4.2: A set A C w is codable if there is a nonempty I19(A)-class
P C 2% such that for every X € P, A is c.e. relative to X. If there is a
c.e. operator W such that A = WX for every X € P, then A is uniformly
codable.

First note that codable and uniformly codable are enumeration degree prop-
erties. It should also be clear that every total degree is uniformly codable;
indeed, {A @ A} is a I19(A @ A)-class.

Remark 4.3: Uniform codability first arose as a potentially interesting property
in a 2014 attempt by Mingzhong Cai, Steffen Lempp, Miller and Soskova to
understand almost totality. They proved that if A has almost total degree
and there is a nonempty II{(A)-class @ such that no path in Q is below the
enumeration degree of A, then A is uniformly codable. The proof was never
published.

Uniform codability can also be found in a characterization of the continuous
degrees that was recently given by Kihara and Pauly [7, Section 7.1]. In fact,
their result motivated us to revisit almost totality. Translating from their no-
tation, they prove that A has continuous degree if and only if A is uniformly
codable via the IT{(A)-class P and there is a uniform way to compute a path
in P from an enumeration of A. It should be noted that it is not clear that
they use the extra hypothesis in an essential way, and in light of our results, we
expect that their proof can be modified to do without it.
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We will prove in Lemma 4.5 that if A has almost total enumeration degree,
then it is uniformly codable. So for the other results in this paper, we could
avoid the nonuniform version of codability altogether. However, it is simple
enough to prove that codability implies uniform codability.

PROPOSITION 4.4: If A C w is codable, then it is uniformly codable.

Proof. We prove the contrapositive. Assume that A is not uniformly codable
and let P C 2 be a nonempty I19(A)-class. We will construct an X € P that
does not enumerate A. Since P is arbitrary, this proves that A is not codable.
We construct X by “forcing with T19(A)-classes”. In other words, we let Py = P
and construct a sequence Py 2 P; O P, O --- of nonempty H?(A)—classes such
that any X €

Say that we have constructed P.. Let W, be the eth c.e. operator; we want
to ensure that A # WX, Since A is not uniformly codable, there is a Z € P,
such that A # WZ. There are two possibilities.

CASE 1. If there is an n € WZ \ A, then let ¢ < Z be long enough that
n e WZ. Set

ccw Pe 18 sufficient.

P€+1 =Peﬂ[0]<.
So if X € P.y1, we have n € WX \_ A, hence A # WX.
CASE 2. If there is an n € A~ WZ, then let

Pop1={Z€P:ng W2}
By assumption, P.y; is nonempty. Also, if X € P.. 1, we have A # W.X.
As promised, almost total degrees consist of uniformly codable sets.

LEMMA 4.5: If A C w has almost total enumeration degree, then it is uniformly
codable.

Proof. Assume that A has almost total enumeration degree. The proof of this
lemma consists of two parts: we first use a failed forcing argument to construct
an enumeration operator I' with specific properties. We then use this operator
to define a I19(A)-class, witnessing that A is uniformly codable.
Recall that
(X)<={0c€e2¥:0 <X}
was one of our examples of a total set. In this proof, it is convenient to use
(X)< instead of the enumeration equivalent set X & X. We will also use (7)<,



756 U. ANDREWS ET AL. Isr. J. Math.

for 7 € 2<%, to denote the set {o € 2<¥: ¢ < 7}. We want to build an enumer-
ation operator I' such that if X € 2% is sufficiently generic, then I'(4A @ (X)<)
is the graph of an enumeration of A. In particular, the operator I" will have the
following properties:

(1) If ¢ € 2<%, then I'(A @ (0)<) is the graph of a partial function with
range contained in A.

(2) For every n € N and every o € 2<%, there is an extension 7 = o such
that the domain of I'(A & (7)<) contains n.

(3) For every a € A and every o € 2<%, there is an extension 7 > ¢ such
that the range of I'(A @ (7)<) contains a.

To find such an enumeration operator, we consider the following attempt to
construct an element X € 2“ that witnesses that A is not almost total.

Construction: We build X by initial segments as

o

s€w
Let o9 = (). We use even stages to ensure that (X)< % A. At stage s = 2e, we
diagonalize against T'.(A). If 6.0 € T'.(A), then let 0541 = o5 1. Otherwise,
0s+1 = 05 0. Since only one of 0,70 or o, 1 is in (X)<, this ensures that

Le(4) # (X)<.

At the odd stage s = 2e + 1, we want to ensure that I'.(A & (X)<) is not
an enumeration of A. There are several ways in which this could be achieved.
It might be possible to extend o appropriately so that I'c (A @ (0s41)<) is not
the graph of a function: for some n we have two different elements a # b such
that (n,a) and (n,b) are both in T'.(A & (0s41)<). It might be that we can
extend o, so that I'.(A @ (0s+1)<) does not have range contained in A: for
some b ¢ A and some natural number n we have that (n,b) € T.(A® (0541)<)-
If these two attempts at achieving our goal fail, then there is still the possibility
that we could find an extension o441 of os that forces I'.(A & (X)<) to not
be a total function or to only enumerate a proper subset of A. In the first
case, there would be an n for which there is no extension 7 > 0441 such that n
is in the domain of I'.(A & (7)<). In the second, there would be an element
a € A for which there is no extension 7 > o411 such that a is in the range of
I.(A®(7)<). If none of these options are possible, we say that the construction
fails at stage s.
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The proposed construction must fail at some finite stage. Otherwise, we
would build an X € 2% such that X & X =. (X)< £. A and such that no
enumeration of A is enumeration reducible to A ® (X)< = A® X & X. This
contradicts the assumption that A has almost total degree. Even stages cannot
cause any problems, so the failure must be at an odd stage, say s = 2e + 1,
giving us an e-operator I'. that works as requested for every 7 = o5. To get I,
we hardcode o, i.e., ' consists of the axioms (n, D4 & Dx) in I', such that Dx
only contains strings that are comparable with o.

Next, using the operator I' we define a I19(A)-class P such that every path
in P uniformly enumerates A. If B is a superset of A and X is sufficiently
generic, then I'(B®(X)<) C I'(A®(X)<), which is the graph of an enumeration
of A. Of course, I'(B @& (X)<) may fail to be a function: there may be some n
for which there are two numbers a # b such that (n,a) and (n,b) are both in
I'(B® (X)<). We will let P C 2¢ be the set of all B such that A C B and B
is small enough so that there is no X € 2% that causes I'(B @ (X)<) to be a
proper multifunction. The set P is a I19(A)-class because it is the complement
of the ¥{(A)-class generated by all 3 € 2<¢ such that

(3n)[B(n) =0 and n € A], or
(30 € 254)(@n)(@a)()[a £ b and {(n,a}, (n,B)} € T({x: f(x) = 1} & (0)<)].

Note that P is nonempty because it contains A.

Finally, to prove that A is uniformly codable, we must explain how to enu-
merate A from any B € P. This is simple, because A is exactly the set of
elements that appear in the range of I'(B & (0)<), as ¢ ranges over 2<%.

5. Holistic sets

We have shown that every almost total degree is uniformly codable. The next
step in our proof that these degrees are continuous is to introduce a concrete
combinatorial property that guarantees that a set is uniformly codable. Then
we will prove that every uniformly codable degree contains such a set.

Definition 5.1: Say S C w<% is holistic if for every o € w<¥,
(1) (Yn) 0™ (2n) and 0~ (2n + 1) are not both in S,
(2) if o ¢ S, then (Vn) 07 (2n) € S,
(3) if 0 € S, then (In) o™ (2n+1) € S.
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PROPOSITION 5.2: If S C w<% is holistic, then it is uniformly codable.

Proof. We build a tree T' C 2<“. Every level of this tree corresponds to a
specific pair (67 (2n),07(2n 4+ 1)), where 0 € w<¥. If 7 € T and 7 is of a
level that corresponds to (07 (2n),07(2n + 1)), then 770 € T if and only
ifo™(2n) ¢ Sand 771 € T if and only if 67 (2n+1) ¢ S. Clearly T <. S,
and so T defines a I19(S) class P. As 0~ (2n) and o~ (2n+ 1) cannot both be S
by the first property of holistic sets, it follows that T has no dead ends and so
P # (. Every X € P can enumerate S using the following procedure:

If X(k) = 0 and level k corresponds to (67 (2n),07(2n + 1)),

then enumerate o.

We claim that this procedure works. If X (k) = 0, then by definition of T we
have 07 (2n) ¢ S, and hence o € S by the second property of holistic sets. On
the other hand, if 0 € S, then by the third property of holistic sets there is an n
such that o™ (2n+ 1) € S (and hence 07 (2n) ¢ S). If level k of T corresponds
to the pair (67 (2n),07(2n + 1)), then X (k) must be 0, and hence X will

enumerate o.

Holistic sets are not hard to construct. Consider the following easy examples
of computable holistic sets, Sous and Sj,. The first, Sout, does not contain the
empty string and is defined inductively as follows: for every o € w<* and every
n € w, if 0 & Sout, then 07 (2n) € Syt and 0™ (2n+1) € Sous; if 0 € Sout, then
07 (2n) € Sout and 07 (2n 4+ 1) € Syue. The set Sy, contains the empty string,
but otherwise follows the same inductive definition. With a little more work,
we can define an infinite family of computable holistic sets, with all possible
finite restrictions. This will be useful in Section 6.

LEMMA 5.3: The set of finite sets D C w<%“ such that D can be extended to
a holistic set is computable. If D C w<% is such a finite set, then there is
computable holistic set Sp such that D C Sp.

Proof. Fix a finite set D and let k be an even number such that D C k¥. We
search for a finite set F such that D C F C k*F which satisfies the restrictions
of a holistic set:

(1) (Vn)if 2n+1 < k, then 07 (2n) and 07 (2n + 1) are not both in F,
(2) if o € k<F and o ¢ F, then (Vn) if 2n < k then 07 (2n) € F.
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If there is no such F', then D cannot be extended to a holistic set. If there is,
then let F' be the least one. We complete it to a holistic set by using essentially
the same procedure as we used to define Si, and Sgy¢. Start with F C Sp and

<w

proceed by induction for every o € w<“ and every n € w:

(1) If o ¢ Sp, then 0™ (2n) € Sp and 0™ (2n+ 1) ¢ Sp.
(2) If 0 € Sp and if 07 (2n) ¢ k* (i.e., it is not determined by F), then
07 (2n) ¢ Sp and o™ (2n+1) € Sp.

It is easy to see that the constructed set Sp is holistic. Fix ¢ and n. By our
choice of k as even, either 2n + 1 < k or 2n > k. In the first case, the fact
that 07 (2n) and 0™ (2n+1) are not both in Sp follows from our choice of F'; in
the second case, it follows from our inductive definition. If o ¢ Sp and 2n < k,
then o7 (2n) € Sp follows from F C D; if 2n > k, then 07 (2n) € Sp fol-
lows from our inductive definition. Finally, if ¢ € Sp, then for all n such
that 2n + 1 > k we will have 07 (2n + 1) € Sp. Therefore, all three properties
of holistic sets are satisfied.

The reason that the holistic sets are important for us is that they occupy
every uniformly codable degree.

LEMMA 5.4: If A C w is uniformly codable, then there is a holistic set S =, A.

Proof. Fix a uniformly codable set A. Without loss of generality, we may
assume that A is not c.e. We will build a holistic set S so that A =, S. For
o €w<¥andY C w<¥ we use the notation Y to denote the set of all strings
in w<* obtained by concatenating o with some member of Y. We start with
) € S. For every n, we use (2n) " Sout to define

SN (2n)" (w<s).
We put the string (2n + 1) into S if and only if n € A, which ensures that
AL S

Since A is not empty, as least one string of the form (2n+ 1) will be in S, so the
holistic set conditions are satisfied for (). The main difficulty is what we do with
strings extending (2n + 1). In particular, we need to be careful when n ¢ A
and hence (2n + 1) ¢ S. We need to find a way to transform this negative fact
about A into a positive fact that will force us to enumerate into S every string
(2n + 1)7(2k), in order to make S a holistic set enumeration reducible to A.
The following observation will facilitate this.
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Let P and W be the I19(A)-class and uniform c.e. procedure witnessing that A
is uniformly codable. Let I" be an enumeration operator witnessing that P is
a I{{A)-class, i.e., such that

P={Xe€2¥: (30 €T'(A)) o = X}.

Fix a finite set D (for instance, D = {2n+1}). If D C A, then by compactness
there is some n such that for every X € 2%, either X extends a member of I'(A)
of length less than n or D is enumerated by WX!™ in no more than n steps.
Let

C={re2”:7el'(A)}.

Then the finite set C' generates a clopen set [C]~ such that D C W7 for ev-
ery 7 € C (in |7]| many steps), and such that P C [C]7. If, on the other hand,
D ¢ A and C is a finite set of strings such that D C W7 for every 7 € C,
then it must be that [C]~ N P = . Otherwise, for some X € P, we will have
that D C WX, contrary to our assumption that A = WX. Now, if C is finite
and [C]® N P = (), then by compactness, there is a finite set De C A such that
[C] C [I(De)] ™, and this is seen in finite time. Thus, we have witnessed the
negative fact D ¢ A by a positive fact D € A. We will use this idea to define
an inductive procedure that decides, for every o = (2n + 1), whether or not
occsS.

To every o = (2n+1), for n € w, we will assign a statement ¢, so that o € S if
and only if ¢, is true. Further, this statement will come with a uniformly c.e. se-
quence of finite sets { DY };c, such that ¢, is true if and only if (3i) DY C A.
Since A is not c.e., there is a @ ¢ A and a string 7 such that a € W7*. We will
always set D§ = {7}. We need to handle three kinds of statements:

(1) The statement “n € A” is assigned to the string (2n+ 1). The sequence
of finite sets { DY}, is defined simply by setting D7 = {n} for every
i> 0.

(2) Statements of the form “[{C]*NP = ()", where C is a finite set of binary
strings, are assigned to strings o > (2n+1) that end in an even number.
As discussed above, this statement is true if and only if there is a finite
set D C A such that [C]~ C [[(D)]~. In this case, we will let {D? };~0
be the sequence that lists, possibly with repetition, all finite sets D such
that [C]™ C [I'(D)]=. It can happen that there are no such finite sets
at all. To deal with this situation, we will pad by letting D7 = {a}.
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(3) Statements of the form “P C [C]?”, where C' is a finite set of binary
strings, are assigned to strings o > (2n+1) that end in an odd number.
Such a statement is true if and only if (2¥ \ [C]?) NP = (. Let O be
a finite set of strings such that [O]F = 2 < [C]~; this can be found
computably. Now, just like in the previous case, we let {D7}ic,, be a
sequence of finite sets that would witness “[O]% N P = (", were any of
them subsets of A (along with the finite set {a}).

The assignment is defined inductively: fix o and suppose that we have as-
signed to it the statement ¢, along with the sequence of finite sets {D? };c..
Let {Cp}new be a c.e. listing, allowing repetition, of all finite sets of strings
such that for some ¢ and every 7 € C), we have DY C W7. Note that this list is
not empty because {7} will always appear. Next, for every n, we associate the
statement “[Cp]~NP =0" to e (2n) € S and “P C [C,]" to o™ (2n+1) € S.

Property (1) of holistic sets is clearly true at o. Furthermore, by our earlier
analysis we have:

(2) 0 ¢ S= (Vi)[D7 € Al = (Vn)[[Cr]* NP =10] = (Vn)[o™(2n) € 5],

(3) ceS= (FD? CA = (Tn)PC[C.]’]= @n)c™(2n+1) eS|
So S is a holistic set. Finally, we note that S <. A because ¢ € S if and only if
o=10,or o€ (2n)" Sou for some n, or if ¢ is assigned the statement p, with
sequence {DY }ie,, and (i) D C A.

6. The holistic space

In the previous section, we showed that every uniformly codable degree—hence
every almost total enumeration degree—contains a holistic set. Our next step is
to form a topological space from the holistic sets. It turns out to be a very well-
behaved topological space: it is Hausdorff, second countable (by definition), and
regular, so it satisfies the hypotheses of Urysohn’s metrization theorem. In fact,
it can be turned into a computable metric space, which is how we complete the
chain of implications and prove that every almost total degree is continuous.

Definition 6.1: Let

H ={S Cw<¥: S is holistic}.
For each 0 € w<¥, let O, = {S € H: 0 € S}. These sets form a subbasis for
the desired topology, i.e., their finite intersections form a basis. We call the
resulting topological space the holistic space.
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We extend the subbasis to an explicit basis as follows. By Lemma 5.3, there is
a computable listing {D,, },,c. of all finite subsets of w<“ that extend to holistic

sets. Define {B,}new by
B,= (] O..

oceD,
Note that for every n, the open set B,, is not empty; in particlar, it contains
the computable holistic set extending D,, that was constructed in Lemma 5.3.

For computability on topological spaces, we essentially follow the definitions
used by Grubba, Schréder and Weihrauch [5].

Definition 6.2: A second countable T space X is computable if it has a count-
able basis { By, }ne. of nonempty open sets on which intersection is a computable
operation, meaning that there is a total computable function ¢ such that

B.NBn= |J B
kEWi(n,m)
LEMMA 6.3: The holistic space is a computable second countable Hausdorff
space.

Proof. The holistic space is clearly second countable. The basis defined above
makes it computable: if D, U D,, extends to a holistic set, then B,, N B,, = By
for Dy = D, UD,,, otherwise B,, N B, is empty. To see that H is Hausdorft, fix
two different points S; # So € ‘H. Without loss of generality, fix o € S1 N\ Ss.
As o € S, by the third property of holistic sets there is a number n such that
07 (2n+ 1) € S1. On the other hand, since o ¢ S2, by the second property we
have that 07 (2n) € S2. So S1 € Oy~ (2n+1); S2 € Og~(2n), and by the first
property of holistic sets, Oy~ (241) N Og~(2n) = 0.

Definition 6.4: Let X be a computable topological space with basis { By, }new-
A name for a point x € X is any enumeration of the set {n: z € B,}. A name
for an open set O C X is any enumeration of the set {n: B, C O}. A name
for a closed set F' C X is just a name for X \ F'.

It is easy to see that from an enumeration of a holistic set S, we can compute a
name for S as an element of #, i.e., we can enumerate {n: S€ B, } ={n: D,, CS}.
Conversely, from a name for S we can enumerate S itself. This means that the
degree of S as a point in H, in the sense of Kihara and Pauly [7], is just the
enumeration degree of S.
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Recall that a topological space X is regular if whenever F' C X is closed
and x € X \ F, there are disjoint open sets U, V such that t € U and FF C V.
If X has a countable base {B),}ncw, then one way to ensure that X' is regular
is to require that for every basic open set B,, and = € B,,, there is a basic open
set B,, and a closed set C' such that =z € B,,, C C C B,,. Indeed, if X has that
property and z ¢ F are given, then we can find a basic open set B,, such that
r € B, CX\F,and then z € B, and FF C X \ C witness that X is regular.
If we have a computable space X, then it is computably regular if this version
of regularity is effective.

Definition 6.5: A computable topological space X with base { B, }ne, is com-
putably regular if there is a c.e. set R and a computable function ¢ such that:
(1) for all n, we have Bn = U, ;nyer Bm;
(2) if (n,m) € R, then c¢(n,m) is the index of a c.e. set Cy, ., describing a
closed set Fy, = X N\ (Ugee, . Br) such that

LEMMA 6.6: The holistic space is computably regular.

Proof. If S is holistic and 07 (2k + 1) € S, then ¢ € S. In terms of our
topology, this means that Oy~ (2x11) € Op. If 07 (2k + 1) € S, then we also
know that o™ (2k) ¢ S and s0 Oy~ (2k41) N O~ (2k) = 0. Finally, 07 (2k) ¢ S
implies 0 € S, so

Oo~(2k+1) € H N Oo~(21) € Os.

Let R be the set of all pairs (n,m) such that if D,, = {09,01,...,0;}, then
Dy, = {05 (2ko+1),07 (2k1 +1),...,07 (2k; + 1)} for some ko, k1, ..., k; € w.
Clearly, B, = U<n7m>6R B,,:ifSeB,= ﬂaeDn O, then D,, C S, and so by
the third property of holistic sets, there are numbers kg, k1, ..., k; such that

D= {05 (2ko+1),07 (2k1 +1),...,0; 2k; +1)} C S.

It follows that D extends to a holistic set, hence D = D,, for some m.

Fix (n,m) € R. Let C be the finite set of indices (in the listing { Dy, }ne.,) of
sets of the form {07 (2k)}, where 07 (2k+1) € D,y Let Fyy py = HN(Upee Br)-
It is straightforward to check that B,, C F), ,,, C B,. Of course, the process
of converting (n,m) to a c.e. index of the (finite) set C' is computable, thus we
have established that # is computably regular.
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The previous lemmas are important in light of Urysohn’s metrization the-
orem [15], which states that every regular second countable Hausdorff space
is metrizable.® Schréder [12] proved an effective version of Urysohn’s theorem
that holds in our case: there is a computable metric d on H that induces the
given topology. This metric is actually computable in the sense we need, i.e., if
S,T € H, then from enumerations of S and T" we can compute d(S,T"). More-
over, we will produce a computable dense sequence of points in H, making it a
computable metric space. We will outline the steps in Schroder’s proof following
the exposition given in Grubba, Schréder and Weihrauch [5].

The first step is to show that every computably regular space is computably
normal. Recall that a space & is normal if every two disjoint closed subsets
of X have disjoint open neighborhoods. There is a natural effective version of
this definition:

Definition 6.7: A computable space X' is computably normal if given names
of two disjoint closed sets F; and Fj there is a uniform way to compute names
for disjoint open sets O and Os so that

FlgOl and FQQOQ.

It is a classical theorem that every second countable regular space is normal.
Grubba et al. [5] prove the effective version of this theorem: every computably
regular space is computably normal. Therefore:

COROLLARY 6.8: H is computably normal.

An equivalent way to express that a space X’ is normal is to say that whenever
F7 C O; are a closed and an open set, we can find an open set Os and a closed
set Fy so that F;1 C Oy C Fy C O;p. Indeed, X \ O; is closed and disjoint
from F}, so there are disjoint open neighborhoods X ~\ F; and O3 of X \ Oy
and F;. Note that we use the same set as a name for an open set and its
complement, so in a computably normal space there is a uniform way to obtain
a description of the second pair of sets from the first. Grubba et al. [5] use
this idea to prove the following: if A and B are disjoint closed sets, then given
names for A and B there is a uniform way to compute a name for a continuous

3 Actually, Urysohn assumed normality instead of regularity; following up on Urysohn’s
work, Tychonoff [14] showed that every regular second countable Hausdorff space is
normal.
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function fap : X — [0, 1] so that
fAB[A] =0 and fAB[B] =1.

Using normality, they build a sequence of closed sets F;, and open sets O, C Fy,
where ¢ ranges over all rational numbers in the unit interval. This sequence has
the property that if ¢ < p then F, C O,, that A C Og, and that F; C X \ B.
Then if S is a holistic set,

fap(S) =sup({g: § ¢ Fy} U{0}) = inf({g: S € Oy} U{1}).
The distance function d on H can now be defined as follows: fix a listing
{{ni,m;)}icw of the c.e. set R witnessing that H is computably regular. For
every i, let f; = fap for the sets A = F),, ;,,, (the closed set that sits between
By, C Bp,) and B = H \ B,,. Finally if S and T are two holistic sets, then
define
d(s,T) = 22_1|fi(5) — fi(T)|.
S

Grubba et al. [5] prove that d is a metric on H that induces the original topology.
They note two important properties of d (see [5, Lemma 4.7)):

(1) The metric is computable in the sense that from any name for S and
any name for 7', we can compute d(S,T).
(2) For every pair (n;,m;), if d(S, By,,) < 27%, then S € B,,.
We have that H is a metrizable space with a computable metric d. In order to
show that it is a computable metric space, we need to define a dense set Q7
on which the metric remains computable. We use Lemma 5.3: let S, = Sp, be
the computable holistic set that contains the finite set Dy and let

Q" = {Sk}rew-

The metric d is computable on Q™ because names for the points Sy are uni-
formly computable in k. We have shown:

COROLLARY 6.9: (H,d) is a computable metric space.

The final thing we need to check is that if S € H, then the continuous
degree of S as a point in the computable metric space (H,d) is the same as
its enumeration degree. Recall that a name for S from the point of view of a
computable metric space is a function that takes as input a rational number &
and outputs the index of a member of Q™ that is within distance € of S. Let
us call such names for S metric names.
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LEMMA 6.10: Let S be a point in ‘H.

(1) Every enumeration of S computes a metric name for S.
(2) Every metric name for S computes an enumeration of S.

Proof. The first statement of the lemma follows easily from the fact that we have
a computable metric. If we have an enumeration of S, then we can compute a
name for S as a point in the computable topological space H, so we can compute
(a name for) the distance between S and any of the computable points Si. This
means that we can search through the list Q* until we find an appropriate point
that is at distance less than any fixed rational . Since the topology induced
by the metric is the same as the original, we know that there are computable
points arbitrarily close to S, i.e., in any open ball B. = {T: d(S,T) < ¢}. This
lets us compute a metric name for S.

For the second statement, we will use property (2) above to construct an
enumeration of S given access to a metric name for S. We start enumerating
elements S from the sequence Q7 that are closer and closer to S using the
metric name for S. Recall, that {(n;, m;)}iec, is the listing of R that we used
to define the metric d. If we enumerate a point Sy such that d(S,S;) < 27
and Sk € By, then d(S, B;,,) < 27¢ and so S must be in B,,. This means
that D,,, C S, so we can safely enumerate the finite set D,,,. We must show that
this procedure will not miss any element of S. If o € .S, then for some k we have
that o7 (2k +1) € S. Let i be such that B,,, = {0} and B,,,, = {c™(2k + 1)}.
Then S € B,,,. Now using the fact that the metric d induces the original
topology on H, for some rational € we will have that the open ball

B. ={T: d(S,T) <&} C By,.

When we use the metric name for S to produce a point in Q™ at distance no
more than min(27¢, ) it must give us a point in B,,,, and hence our procedure

will enumerate o.

By the lemma, the continuous degree of a holistic set S as a point in (H, d)

coincides with its enumeration degree.
COROLLARY 6.11: Holistic sets have continuous enumeration degree.

This was the last step in the proof of our main result. We conclude with a
summary of what we have shown.
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THEOREM 1.3: Let a be an enumeration degree. The following are equivalent:

(1) a is (uniformly) almost total.

(

2)
(3) a contains a holistic set.
4)

(

The sets in a are (uniformly) codable.

a is continuous.

Proof. In Lemma 4.5, we proved that the nonuniform version of (1) implies the

uniform version of (2). Proposition 4.4 established the equivalence of the two

versions of (2). Lemma 5.4 showed that (2) implies (3), and we just finished

proving that (3) implies (4) in Corollary 6.11. Finally, in Lemma 3.2 we proved

that (4) implies the uniform version of (1).

(1]

(2]
(3]
(4]
(5]
[6]
[7]

(8]
(9]

(10]
(11]

(12]

(13]
(14]

(15]

References

M. Cai, H. A. Ganchev, S. Lempp, J. S. Miller and M. 1. Soskova, Defining totality
in the enumeration degrees, Journal of the American Mathematical Society 29 (2016),
1051-1067.

A. R. Day and J. S. Miller, Randomness for non-computable measures, Transactions of
the American Mathematical Society 365 (2013), 3575-3591.

R. M. Friedberg and H. Rogers, Jr., Reducibility and completeness for sets of integers,
Zeitschrift fiir Mathematische Logik und Grundlagen der Mathematik 5 (1959), 117-125.
P. Gécs, Uniform test of algorithmic randomness over a general space, Theoretical Com-
puter Science 341 (2005), 91-137.

T. Grubba, M. Schréder and K. Weihrauch, Computable metrization, Mathematical
Logic Quarterly 53 (2007), 381-395.

I. Sh. Kalimullin, Definability of the jump operator in the enumeration degrees, Journal
of Mathematical Logic 3 (2003), 257-267.

T. Kihara and A. Pauly, Point degree spectra of represented spaces,
https://arxiv.org/abs/1405.6866.

S. C. Kleene, Introduction to Metamathematics, D. Van Nostrand, New York, 1952.

L. A. Levin, Uniform tests for randomness, Dokladi Akademii Nauk SSSR 227 (1976),
33-35.

J. S. Miller, Degrees of unsolvability of continuous functions, Journal of Symbolic Logic
69 (2004), 555-584.

J. Myhill, Note on degrees of partial functions, Proceedings of the American Mathemat-
ical Society 12 (1961), 519-521.

M. Schréder, Effective metrization of regular spaces, in Computability and Complexity in
Analysis, Informatik-Berichte, Vol. 235, FernUniversitit in Hagen, Hagen, 1998, pp. 63—
80.

A. L. Selman, Arithmetical reducibilities. I, Zeitschrift fiir Mathematische Logik und
Grundlagen der Mathematik 17 (1971), 335-350.

A. Tychonoff, Uber einen Metrisationssatz von P. Urysohn, Mathematische Annalen 95
(1926), 139-142.

P. Urysohn, Zum Metrisationsproblem, Mathematische Annalen 94 (1925), 309-315.


https://arxiv.org/abs/1405.6866

	1. Introduction
	2. Preliminaries
	3. Almost totality
	4. Codability
	5. Holistic sets
	6. The holistic space
	References



