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In this paper, efficient techniques are presented for analyzing the dynamics of mistuned bladed disks with cracks.
The analysis of the influence of cracks, coupled with the influence of mistuning on the dynamics of bladed disks, is
computationally challenging for several reasons: 1) complex geometry of modern turbines results in very high-
dimensional computational models; 2) mistuning in these structures breaks the cyclic symmetry in these systems; and
3) cracks further disrupt the symmetry and introduce a piecewise-linear nonlinearity into these systems. Recently,
several approaches have been developed to handle these challenges individually. The component mode mistuning
approach was developed to efficiently model small mistuning in bladed disks. The X-X, method was developed for
generating reduced-order models of cyclically symmetric systems with cracks. More recently, the generalized bilinear
amplitude approximation technique was created to efficiently approximate the nonlinear vibrational response of a
class of piecewise-linear nonlinear systems. This paper modifies and combines these techniques, for the first time, to
enable efficient modeling and statistical analysis of bladed disks with mistuning and cracks. The novel method is able
to generate the reduced-order model of full-bladed disks using only single-sector models and approximate the
nonlinear vibrational response of the system with significantly reduced computational effort. A high-dimensional
finite element model of a mistuned bladed disk with a crack is studied using the proposed approach. The influence of
mistuning patterns and cracks on the vibrational response of the bladed disk is discussed.

Nomenclature

Crom.s» Crom.o = damping matrices in reduced coordinates

C,, C, = damping matrices in global coordinates
C,.C, = damping matrices in relative coordinates
E; = Young’s modulus of ith blade

E, = Young’s modulus for tuned system

F = forcing vector in global coordinates
From.ss From.o = forcing vectors in reduced coordinates
F = forcing vector in relative coordinates
SFsj» Fox = modal forces

1 = identity matrix

stiffness matrices of tuned system in
reduced coordinates
K{{‘OM,S, KZom.o = stiffness matrices of mistuned system in
reduced coordinates

KROM,S’ KROM.D =

K K, = stiffness matrices in global coordinates
K, K, = stiffness matrices in relative coordinates
Mgom s Mrom,, = mass matrices in reduced coordinates
M, M, = mass matrices in global coordinates
M,.M, = mass matrices in relative coordinates

N = number of sectors

N, N, = numbers of modes in modal projections
p? = modal participation factors of ith blade

95> 90> 9s.j> 9ok modal coordinates

$1.j582,j> 01 k> 02k scalar coefficients in transient responses

T, T, = time the system spends in sliding and open
states
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Oy s Op i = undamped natural frequencies
Wy, j> Dod k = damped frequencies
Subscripts

i = sector number

J k = mode numbers

0 = open state

K = sliding state
Superscripts

b = cantilever blade

m = mistuned system

r = relative displacement

I. Introduction

NALYSIS of the influence of cracks in cyclically symmetric

systems such as bladed disks is important for design, failure
analysis, and structural health monitoring in these systems.
Predicting the dynamics of bladed disks is challenging for a variety of
reasons: 1) complex geometry of modern turbines results in very
high-dimensional computational models; 2) mistuning in these
structures breaks the cyclic symmetry in these systems; 3) cracks
further disrupt the symmetry in these systems; and 4) the breathing
effect induced by cracks introduces a piecewise-linear nonlinearity
into the system. To analyze the influence of cracks and mistuning on
the dynamics of cyclic symmetric structures, an efficient method that
can handle all of these challenges is required.

Bladed disks are typically designed to be cyclically symmetric
because each disk-blade sector is supposed to be identical. However,
there always exist small variations in structural properties among the
sectors that stem from manufacturing tolerances, material deviations,
and operational wear [1]. These random variations are referred to as
blade mistuning. Modeling mistuning for cyclic symmetric structures
is an active research area where many works have been published.
Some early works employed lumped parameter models to analyze
mistuning [2-6]. These simple models cannot accurately predict the
response of modern industrial bladed disks. Therefore, several
approaches have been developed to construct reduced-order models
from representative high-dimensional finite element (FE) models.
For instance, the subset of nominal modes (SNM) approach [7] uses a
truncated set of normal modes of a tuned system because this serves
as a good basis of the mistuned system when the mistuning is small.
This idea is also employed in the fundamental model of mistuning
(FMM) method [8] that is based on simplifying SNM for targeted
bladed dominated mode families. Both the SNM and FMM method
require eigen-decomposition of sector-level models of the stage by
employing cyclic symmetry analysis. A similar idea is used in the
component mode mistuning (CMM) approach [1] to model small
mistuning in bladed disks. The CMM method is a very general
modeling framework for cyclic symmetric structures that has recently
been implemented in the commercial software ANSYS. Moreover,
some recent works have been done to efficiently model large
mistuning [9-11]. All of these reduced-order modeling techniques
are developed for analyzing linear systems. A key feature of the most
useful reduced-order modeling methods is the ability to use sector-
level models and calculations, because the full-stage model may be
too large to construct and analyze in industrial applications.

The piecewise-linear nonlinearity induced by cracks eliminates the
use of efficient linear computational techniques. Thus, there are
several methods based on linear transformations that have been
developed to improve the efficiency of analyzing complex systems
when nonlinearities are discrete, such as the Irons—Guyan reduction
[12], the improved reduced system [13], the system equivalent
reduction expansion process [14], multilevel substructuring [15,16],
and component mode synthesis [17,18]. These linear approaches
reduce the dynamics of the linear portion of the system while treating
the localized nonlinearity as master degrees of freedom (DOFs).
Recently, a new reduced-order modeling technique for complex

cyclic symmetric structures with cracks, which is referred to as the
X-X, method [19], has been developed. This approach employs
relative coordinates to describe the relative motion of the contacting
surfaces and applies Craig—-Bampton component modes synthesis
(CB-CMS) [17] with cyclic analysis to reduce the rest of the system.
The response of the reduced system can then be analyzed using
nonlinear methods, such as alternating frequency/time (AFT) domain
methods [20-26]. Although these AFT approaches are more efficient
than traditional time integration [27], they still require iterative
calculations in the time and frequency domain until the response
converges. Thus, these methods are still computationally expensive,
particularly as the number of nonlinear DOFs increases.

Recently, several linear methods referred to as the bilinear
amplitude approximation (BAA) method [28,29] and the hybrid
symbolic-numeric computational (HSNC) method [30,31] have been
developed to efficiently compute the dynamics of piecewise-linear
nonlinear systems. These methods use the fact that the nonlinear
response of these systems can be obtained by combining all the
responses in each time interval where the system behaves linearly.
The BAA method, in particular, is developed for conducting
parametric analyses of these systems because it can efficiently
analyze the influence of parameter changes on the steady-state
response. The BAA approach approximates the vibrational response
of piecewise-linear nonlinear systems by combining the responses in
their two specific linear states: the fully open state and the fully
sliding state. A single vibration cycle can be constructed by coupling
these linear responses using specialized boundary conditions at the
transition. The BAA method is several order of magnitude faster than
nonlinear methods because it is based on linear calculations of a
reduced subset of linear modes. Furthermore, the method can be
incorporated with the X-X, approach to efficiently predict the
dynamics of complex cyclic symmetric structures with cracks [32].

Several methods mentioned above have been developed to handle
many challenges individually. This work will modify and combine
the CMM, X-X,, and BAA method for the first time to enable the
efficient construction and analysis of mistuned bladed disks with
cracks using sector-level calculations and linear analysis tools. The
effects of the mistuning pattern and crack size on the dynamics are
statistically investigated using the proposed method.

II. Methodology

In this section, a new computational framework that combines the
X-X,, CMM, and BAA methods to approximate the forced response
of bladed disks with mistuning and cracks is proposed. The new
method is able to construct a reduced-order model (ROM) of these
systems using sector-level calculations and efficiently approximate
the nonlinear response using linear techniques.

Consider an FE model of a bladed disk with N sectors shown in
Fig. 1a. In this case the first sector contains the blade with a crack
schematically shown in Fig. 1b. Because of the breathing effect of the
crack, cracked surfaces of an elastic structure typically undergo three
different states: 1) fully sliding (i.e., complete contact), 2) fully open
(i.e., no contact), and 3) partially open (i.e., partial contact between
the surfaces). Moreover, cracked structures usually respond
periodically if the system is excited by periodic forces and the
partially open state generally lasts a much shorter time interval than
the fully sliding state and the fully open state. Thus, the proposed
method is developed for the case where vibration cycles can be
approximated well by the fully sliding and fully open states only; that
is, the partially open state has a negligible effect on the overall
motion. If a gap/prestress does not exist between the contact surfaces,
the equations of motion for the system in its sliding state and open
state can be expressed as

M i (1) + Cox(1) + Kx(1) = F(1),
MO'.x:O (t) + CO'x.O (t) + K(}xl)(t) = F(t) (1)

where M, C, and K are the mass matrix, damping matrix, and
stiffness matrix of the entire structure, respectively; the subscript s
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Fig.1 a) Finite element model of the bladed disk with a cracked blade. b) Close-up of the blade with a crack.

refers to the sliding state; the subscript o refers to the open state; and
F(¢) is the harmonic force with frequency w. Note that the contact
stiffness and damping are applied when the bladed disk is in its fully
sliding state to reduce the penetration or separation in the contact
direction between each contact pair. The contact direction is defined
as the direction normal to the crack surfaces.

To facilitate the construction of the ROM, the coordinates are
reordered and expressed as

x=[x{; x5 xI @

where x,; and x, represent the nonlinear DOFs (i.e., the contacting
DOFs) along the crack surface shown in Fig. 1b, and x; are the rest of
the DOFs in the entire structure. The system matrices that correspond
to this coordinate system can be partitioned as

Mcl‘cl Mcl,c2 Mcl,l
M=|M, Moo My,
L MZI,I MZ-Z,I MI,I
_Ccl,cl Ccl,cZ Ccl.l
C= CZl,cz Cow Coy |,
| €Ly Chy Cuy
_Kcl,cl Kcl.cZ Kcl,l
K= K:l,cz KcZ.cZ Kc2,l (3)

T T
L Kcl‘l KcZ,l Kl-l

)

The X-X, method [19] can then be applied to reduce the system.
The reduction process is summarized as follows:

1) Perform a coordinate transformation (a transformation) so that
the motion along the crack surface is described in relative
coordinates x.

2) Compute the constraint modes ¥, crack acceleration modes
@ , and normal modes of the pristine system ®,, ; to construct the
Craig-Bampton transformation matrix . Note that ¥, is assumed to
be a localized deformation. It is considered to be nonzero only at the
sector with a crack.

3) The ROM of the entire system is then obtained by applying the
transformation using subsets of the crack acceleration modes and the
normal modes of the pristine system. The selection of these modes is
based upon the frequency range of interest.

The X-X, reduction process is described in detail in Appendix A and
the reduced equations of motion of the system can be expressed as

Mygom st (1) + Crom,stts (1) + Krom,stts (1) = From,s (1),
MROM,oiio(t) + CROM‘ouo(t) + KROM,ouo(t) = FROM,o(t) (4)

where

(M, M, M;
Mgoy = | M{, My My |,
M{; M5, My

CROM = Csz C22 C23 s

Krow = | K, Ky Ko (5)
| K; KI; Ks3

Note that Mgonm, Crom» and Kroy are the system matrices in the
reduced space and Fgroy is the reduced forcing vector. The
submatrices with subscripts 11, 12, 13, 22, and 23 are associated with
the sector with a crack (the first sector was chosen as the sector with a
crack in this paper) and the submatrices with subscript 33 are
associated with the pristine component of the entire bladed disk (i.e.,
the structure without any crack). Note that M3; = I and K33 = Ay,
where A, is the eigenvalue matrix of the pristine bladed disk. Explicit
expressions of all the submatrices in Eq. (5) can be found in
Appendix A. Note that these submatrices can be computed using
sector-level calculations; thus, sector-level models are sufficient to
construct the ROM of the entire bladed disk, and this leads to great
computational savings.

Next, the CMM method [1] is modified and applied to the ROM to
account for the mistuning of the bladed disk. The CMM method
assumes that the mistuning is in the blades and that the mistuning
level is small, and so the mistuned normal modes can be expressed
using a subset of normal modes of the tuned system. In this
work, mistuning is modeled in the blade portion of the bladed disk by
introducing  different Young’s modulus for each blade
E; = Ey(1 + 6;), where E; is Young’s modulus for the tuned
system and 9, is the dimensionless mistuning value for the ith blade.
The mistuning pattern of each blade can be efficiently assigned in the
reduced space by modifying the reduced stiffness matrix
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Fig. 2 The overall analysis process for bladed disks with mistuning and cracks.

1 K K
Kgom = Ky K% K33
| K K3 K
[ (1+68)Ky  (1+68)K), (1+6)K3
= | (1+6)K" (1+6)Kn (1+61)K»3
| (L +6)K T (14 8)Kn" Ag+ YK, pt'Alp?

(6

where Al-b"s is the diagonal matrix that includes the eigenvalue
difference between the tuned and mistuned system and p? includes
the modal participation factors of the ith blade, which is the
contribution of each tuned mode for the system. Note that
Af-’"s = §;A}, where A} is the eigenvalue matrix of the tuned
cantilever blade. The submatrices with subscripts 11, 12, 13, 22, and
23 are associated with the sector with a crack; thus, the mistuned
stiffness for these parts must be approximated by scaling the
submatrices of the tuned system by the appropriate mistuning,
namely, (1 4 &;). If the damping is proportional to the mass and
stiffness of the system (Cgoy = aMgom + PKRoy), the equations
of motion for the mistuned system in its sliding and open states can be
written as

MROM,s';x(Z) + (aMgopm s + ﬁKﬁOM,S)IlS(l) + Kﬁ’om;”x(t)
= From.s(1),
Myom,otio (1) + (aMrom,e + BKRom o) 0 (1) + Ko olto ()
= From,o(?) @)

Note that Eq. (7) for different mistuning patterns can be efficiently
constructed because the mistuning values can be applied in the ROM
instead of the full FE model. This enables the efficient creation of
different ROMs of bladed disk with cracks and different mistuning
patterns.

Next, the BAA method [29,32] is applied to approximate the
nonlinear response of the system. The BAA method uses the fact that
a nonlinear vibrational cycle for systems with cracks can often be
approximated well by combining the responses of the system in its
fully sliding and fully open states. A nonlinear optimization solver is
used to numerically solve for the unknown coefficients in the linear
responses by minimizing the residual of a set of constraint equations
derived for coupling these linear responses. The details of the BAA
method are described in Appendix B and the response approximation
process is summarized as follows:

1) A secondary modal reduction u; = ®)'q, and u, = ®)'q, is
carried out on Eq. (7) to project the equations of motion along
subspaces constructed by subsets of mode shapes grouped in ®@}' and
@7 where @7 and @} represent the modes that dominate the motion
of the mistuned structure in its sliding state and open state,
respectively.

2) The modal coordinates g, and g, can then be expressed as
combinations of the linear transient response and the linear steady-
state response listed in Eq. (B4).

3) A set of specialized constraint equations is derived and a
nonlinear optimization solver is used to numerically solve for the
transition time 7y and unknown coefficients in Eq. (B4) by
minimizing the residual of the constraint equations, where 7', is the
time span where the system stays in the sliding state. The system
response is assumed to have the same period as the excitation force
and switches from the sliding state to the open state at t = T';.

4) One steady-state nonlinear vibrational cycle can then be
constructed using the physical displacements x;, x,, and the
transition time 7'y, where x; = aff,®/"q, is the physical displacement
of the system in its sliding state and x, = af,®}'q, is the physical
displacement of the system in its open state.

Finally, the amplitudes and resonant frequency can be efficiently
identified using a frequency sweep process over the chosen frequency
range. The nonlinear forced response can be quickly obtained
because the unknown coefficients in Eq. (B4) can be efficiently
solved using the coefficients solved in the previous frequency point
as initial values for the nonlinear optimization solver (an appropriate
choice of initial values for the first frequency is needed to obtain a
physically valid solution [29]). Furthermore, mistuning values can be
directly assigned to the ROM; thus, the effects of numerous
mistuning patterns and levels that integrate with different crack sizes
can be efficiently analyzed for the bladed disk with cracks. The
overall analysis process is summarized in Fig. 2.

III. Results

The FE model of the mistuned bladed disk studied in this work is
shown in Fig. 3a. The bladed disk has 23 blades, and one of them has a
crack. The Young’s modulus for the system is E, = 104.5 GPa, the
Poisson’s ratio is v = 0.342, and the density is p = 9224 kg/m’.
Note that the damping matrix is proportional to the stiffness matrix by
settinga = Oand # = 7 X 1077, The full FE model contains 201,802
midside-node elements. Engine order (EO) excitations are applied to
the structure at the nodes indicated by arrows in Fig. 3a for the forced
response calculations. The EO excitation is the traveling wave
excitation caused by disturbances in the flow field [33]. The forces
applied to each blade have the same amplitude with different phase
angles that are determined by the number of obstructions in the flow
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Fig. 3 a) Finite element model of the mistuned bladed disk with a cracked blade and excitation forces. b) Close-up of the blade with a crack.

field. In this work, the EO11 excitation is applied to one tip node
along each blade in the axial direction with an amplitude of 10 N. Itis
assumed that the crack is located at the leading edge on the pressure
side of the first blade and its width is approximately two-thirds of the
blade thickness as shown in Fig. 3b. Note that a refined mesh is used
in the area around the crack. The models with different crack lengths
and mistuning patterns are then analyzed using the proposed method.

A. Linear and Nonlinear Analysis

The nonlinear response obtained using the proposed method is
compared with the FE solution computed using time integration and
linear responses of the corresponding linear models (i.e., the system
that always stays in its fully sliding state and the system that always
stays in its fully open state). The response within a frequency range
that contains the first mode family is studied in this work. Note that
the length of the crack is approximately one-half of the chord in this
analysis. A large crack is analyzed first to demonstrate the
effectiveness of the integrated method, which uses linear analysis
tools, when there is a strong nonlinearity present.

First, a ROM that is accurate over the first five mode families is
created using the X-X, reduction process. The ROM has 566 DOFs,
including 390 DOFs on the crack surfaces (i.e., there are 130 contact
pairs). A zero mean 4% standard deviation (SD) stiffness mistuning is
then applied to the ROM. It is observed that the linear response of
each blade is dominated by different modes in the chosen frequency
range; thus, the entire first mode family is selected in the secondary
modal reduction in this work. Note that the modal selection process is
more involved for the tuned system because only a subset of modes in
the mode family respond to the excitation. A careful selection for the
modes is required [32]. The approximated nonlinear response is then
obtained by numerically solving for the unknowns in the constraint
equations and the forced response can be computed using the
frequency sweep process.

Next, traditional FE analysis is performed to validate the nonlinear
response obtained from the proposed method. The FE solution is
performed using the commercial software ANSYS. To speed up the
simulation, the substructuring analysis is first employed to reduce the
required computational cost. The substructuring analysis is
conducted using CB-CMS [17] by retaining the elements in the
refined mesh area while condensing all other elements into
superelements. The transient dynamic analysis (time integration) is
then used to compute the time history of the system at a specific
frequency. Note that the Newmark method [34] is used in the transient
dynamic analysis. Furthermore, the linear responses of the structure
with a crack in its linear states are computed using the ROM created
using the X-X, method [i.e., the responses for the sliding and open
systems given in Eq. (7)].

The tip displacement amplitudes of the sector with a crack and its
adjacent sectors computed using the proposed method and FE
analysis are plotted and compared in Fig. 4. The linear responses of
the system in its fully sliding state and fully open state are also
plotted in the figures. Itis shown that the proposed method is able to
capture the resonant frequencies and amplitudes of all the blades at
a fraction of the computational cost. For the proposed method, the
average CPU time required to compute the nonlinear response for a
specific frequency using a workstation with Intel i7 processors
(3.6 GHz) is 0.49 s. By contrast, FE analysis requires
approximately 12 h to integrate to a steady-state response even
with the FE model size being reduced significantly using
substructruing analysis. The proposed method requires only 1.13 x
1073% of the CPU time of the substructuring-transient dynamic
analysis to obtain the approximation. Furthermore, it is observed
that there is a noticeable difference among the linear responses and
the nonlinear response at the first sector and the second sector (the
sector with a crack and its adjacent sector) in the case studied. The
linear analysis is not able to capture the change in the dynamics
caused by the localized crack effect. Thus, the proposed method is a
valuable tool to efficiently investigate the system with cracks and
different mistuning patterns.

B. Effect of Crack Length on the Dynamics of the Mistuned Bladed
Disk

To analyze the effect of the crack on the dynamics of the bladed
disk, the forced responses of the pristine structure and structures with
different crack lengths are compared and plotted in Fig. 5. The
response of the pristine structure is obtained by computing the linear
response from a ROM constructed using the standard CMM
approach. The nonlinear responses computed using the proposed
method for the cases where the crack length is approximately one-
ninth, one-fourth, and one-half of the chord are compared with the
response of the pristine structure and validated using FE solutions.
The blade-tip responses of the 1st blade and its adjacent blades (2nd,
3rd, 22nd, and 23rd) are shown in Figs. 5a-5e, respectively. Note that
the same set of mistuning values with zero mean and 4% SD is used
for all the cases studied. Figure 5 shows that the nonlinear response
computed using the proposed method agrees well with the FE
solution for all the cases. Note that significant changes in the resonant
frequency and amplitudes can be observed at the blade with a crack;
furthermore, a noticeable change in the response can also be found at
the 2nd blade for this particular mistuning pattern. The nonlinear
response of the system with a crack asymptotically approaches the
response of the pristine system as the crack length is reduced.
However, the presence of the crack does not significantly impact the
dynamics of the rest of the pristine sectors in this case. Thus, the
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Fig. 5 Comparison of the vibration responses for the pristine bladed disk and bladed disks with cracks of different lengths and the same mistuning

pattern.

presence of the crack only results in a localized effect and does not
alter the overall dynamic behavior caused by the existing mistuning
pattern.

C. Effect of Mistuning on the Dynamics of the Bladed Disk with a
Crack

The effect of different mistuning patterns on the response of the
system is investigated in this section. A few sets of mistuning values
6; with zero mean and 4% SD are randomly generated. Note that these

mistuning values can be directly applied to the ROM in the reduced
space, and hence there is no need to reconstruct the ROM, which
occupies most of the required CPU time. The nonlinear response of
the blade with a crack and the maximum response among all the
blades computed using the proposed method for three different
mistuning patterns are plotted in Fig. 6. Moreover, these nonlinear
responses are validated with FE solutions. It is observed that the
nonlinear responses obtained by the proposed method agrees with the
FE solutions for all the mistuning cases studied. The response at the
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D. Statistical Analysis

With the proposed method validated, it is now used to investigate
the statistical properties of the dynamics of bladed disks with varying
crack length and mistuning pattern. The nonlinear forced response of
the structure is computed for three mistuning levels (zero mean 1%,
zero mean 3%, and zero mean 5% SD mistuning). Note that 150
randomly generated mistuning patterns are applied to the ROM for
each mistuning level, and the responses of the pristine structure and
the structure with three different crack lengths (approximately one-
ninth of the chord, one-fourth of the chord, and one-half of the chord)
are computed for each mistuning pattern. The maximum amplitudes
within the frequency range that contains the first mode family are
recorded and are normalized with respect to the amplitude of the
pristine structure without mistuning. The statistical properties of the
normalized amplitudes at each blade are shown in Fig. 7 using box
plots. Each box plot displays the minimum, first quartile, median,
third quartile, and maximum amplitude values at each blade from 150
mistuning calculations. In these plots, the ends of the whiskers
represent the minimum and maximum amplitude values; the ends of
the boxes represent the first quartile and third quartile amplitude
values; the bands inside the boxes represent the median amplitude
values. The horizontal axis represents blade number and the vertical
axis represents the normalized amplitude (amplification factor for a
given sector). Note that the box plots in the same column represent the
results computed using the same set of mistuning patterns. Each
column has the specified mistuning level, and each row has the
specified crack length.

Figure 7 shows that the interquartile ranges of the normalized
amplitude values of the pristine structure reduce as the mistuning
level grows. This matches another study done by Bladh et al. [35],
where variation of the pristine blade amplitude has a local maximum
at 1% SD mistuning. It is observed that this trend still holds for
pristine sectors when a crack is present at the first blade. However, the
interquartile range of the normalized amplitude values at the blade
with a crack exhibits a different pattern when the mistuning level
changes. For the cases where the crack length is one-fourth and one-
half of the chord, the variation of the amplitude values at the blade
with a crack is getting higher when the mistuning level increases. This

results in a phenomenon that the variation of the normalized
amplitude values of the blade with a crack is relatively larger than that
of other pristine sectors when the crack length and mistuning level are
both large. Note that the largest amplification factor occurs in the
blade with a crack one-fourth the chord length with 5% SD in
mistuning. This largest amplification occurs in the blade with a crack
due to the interaction of mistuning and the crack.

Next, changes in the dynamics of the mistuned bladed disk caused
by crack propagation are statistically investigated. For a given
mistuning pattern, the blade amplitude of the structure with a crack is
rescaled by dividing it by the amplitude of the structure without a
crack, but with the same mistuning pattern. The rescaled amplitude
represents the amplification of the response due to the presence of the
crack with a given mistuning pattern. The box plots of the rescaled
amplitude values computed from 150 ROMs with different mistuning
patterns and crack conditions are shown in Fig. 8. In these plots, the
horizontal axis represents blade number and the vertical axis
represents the rescaled amplitude. Note that the box plots in the same
column represent the results computed using the same set of
mistuning patterns. Each column has the specified mistuning level,
and each row has the specified crack length. Figure 8 shows that the
variation in the rescaled amplitudes of all the blades grow when the
crack length increases. However, significant variation can only be
observed at the blade with a crack and its adjacent blades. The
presence of the crack results in a significantly localized variation in
the area near the crack. In this case, the mistuning level has no
significant impact on the amplification of the response.

IV. Conclusions

An efficient computational framework that combines several
previously developed methods (X-X,, component mode mistuning
(CMM), and bilinear amplitude approximation (BAA)) is introduced
in this paper. The new technique is developed to approximate the
nonlinear forced response of cyclic symmetric structures with
mistuning and cracks. The method is shown to be accurate and is
several orders of magnitude faster than traditional time integration.
Statistical analyses of the response of complex cyclic systems with
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piecewise-linear nonlinearities are enabled, for the first time, by this
efficient computational framework.

The dynamics of bladed disks with cracks and mistuning are
studied in this work. The reduced-order model (ROM) of the
structure is constructed using the X-X, method. The mistuning values
are then applied to the ROM using the modified CMM approach. The
nonlinear vibrational response is approximated using the BAA
method and the resonant frequency and amplitudes are identified
using a frequency sweep process. The effects of different mistuning
patterns and crack sizes on the dynamics of bladed disks are analyzed.
The statistical properties of the system are also discussed.

Appendix A: X-X, Method

This section details the construction of a ROM of a bladed disk
with a crack using the X-X, approach [19]. Note that all the system
matrices discussed in this appendix correspond to the tuned system.
Mistuning will be directly assigned to the ROM created using the
X-X, method.

First, a coordinate transformation is applied to the global
coordinates [Eq. (2)] so that the motion at the crack surfaces can be
described using relative coordinates

Xl Xy x
x = [xcz] = a[xcz] = a[x"] =ax (A1)
x; x; h

where x, = x.; — x, describes the relative displacements between
each contact pair, x;, = [x7),x7]" represents the DOFs of the
corresponding pristine structure where the crack is not present, and
the transformation matrix « is defined as

(A2)

S}

[
oo~
S ~~
~o o

After applying the transformation to Eq. (1), anew set of equations
of motion using the relative coordinates can be obtained:

M3 (1) + Cx,(1) + Kx,(1) = F(0),
M x,(1) + C,x%, (1) + K, %,(1) = F(1) (A3)
where
M M
M=o Ma = [ o ]
XXy Xp
C_‘x éx Xy,
C=aTC(x=|:_T' - ],
er-xh Xp
Kx _x X
K=aTK(x—|:_T’ _"Ii|,
X Xpy Kxn
F=a'F (A4)

_ The structure of these system matrices is shown in Fig. A1, where
M, represents the nonlinear component (relative DOFs) in the sector
with a crack, M, .,  represents the coupling between the nonlinear
component and pristine component in the sector with a crack, and
M, . represents the pristine component of the ith sector. The 1st
sector is chosen as the sector with a crack in this work. Note that the
pristine components M, , C,, , and K in these matrices are obtained
using the a transformation. These components can be computed from
single-sector calculations [36] using a cyclic symmetric analysis.
Explicit expressions for the submatrices of M can be described as (C
and K have the same expressions)

Cracked sector

/

Mxr XrXp,1

-

;‘ _
e Mxh,l
|

MXh,z
MXh,i
MX h MXh,N
Fig. A1 Conceptual structure of M.
Mx, =M cl,cls

=M +Mooo Moyl
ML'].L'I + Mgl.gz + Mcl,cZ + Mc2.c2 ML'l.l + Mc'2‘11|
M+ MY, My,

XXy
M, = |:

(A5)

Next, a modified CB-CMS method is used to reduce the model size
by keeping the contacting DOFs grouped in x, active while reducing
all other DOFs grouped in x;, using a truncated set of normal modes.
Furthermore, crack acceleration modes can also be employed in the
reduction process to accelerate the convergence for the case when the
crack is large. The modified Craig-Bampton transformation matrix
can be expressed as

I ‘I’EB,, 0 7
\Ile q)CB,, q)n,l
0 0 D, ,
p=1: : : (A6)
0 0 D, ;
L 0 0 (I)n,N .

where W, represents the constraint modes, ®cg_ represents the crack
acceleration modes with the relative displacement between contact
pairs denoted by @y , and @, ; are the normal modes of the ith
sector. The computation of each mode is described as follows. The
constraint modes W, are defined as the static displacement of the
DOFs in x;, induced by successive unit displacement of each relative
DOF grouped in x,, while all other relative DOFs are held fixed.
Because these constraint modes are obtained by perturbing the DOFs
along the crack surface, they can be treated as a localized deformation
in the sector with a crack; thus, they can be approximated as zero in all
other sectors and computed using only the sector with a crack. The
crack acceleration modes ®¢p represent the mode shapes of the
sector with a crack that can be computed by solving the eigenvalue
problem when its sector boundaries are fixed. Similarly, the normal
modes @, ; can be computed by solving the eigenvalue problem for a
healthy sector. Note that the pristine component of the full-bladed
disk is cyclically symmetric; thus the model of a single sector is
sufficient to construct the normal modes of the full system (i.e., ®,, ;
fori =2, ..., N can be obtained by applying the appropriate phase
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to @, ;). The detailed description of cyclic expansion can be found
in [36].

The size of # can be reduced dramatically by truncating the crack
acceleration modes and the normal modes for the frequency range of
interest. Reduced coordinates can then be obtained as

‘iS = ﬂSuS’ i() = ﬂouo (A7)

where X, and X, are the full coordinates of the system after applying
the o transformation in its sliding state and open state, respectively; u,
and u,, are the reduced coordinates for the system after applying the #
transformation in its sliding state and open state, respectively. In
general, the full coordinates X and X, share the same coordinate
system if the gap between the contact surfaces is zero [29]; however,
the reduced coordinates u, and u,, are in different coordinate systems
if the crack acceleration modes are used to construct ff, and #,,. These
crack acceleration modes are different in the sliding state and the open
state. The equations of motion in the reduced space can then be
obtained as

Mgom stis (1) + Crom.stis (1) + Krom sts(f) = From.s(1),
MROM‘()ﬁ()(Z) + CROM,()d()(t) + KROM,(Iuo (Z) = FROM,() (t) (A8)

where

M, M;p M

Myoy ="M= | M{, My My |,

Mi; M3 M
€, € Cy
Crom :ﬂTéﬂ = Csz Cn Cyn |,
| C; € Cy
(K K Ky
Krom =ﬂTkﬁ = K1T2 Ky Ky |,
| KT, K3, Ki
Frow = B'F (A9)

The submatrices of the Mgy can be expressed as (Croyn and
KRowm have the same expressions in their submatrices)

M,=M, +¥'M] . +M, . ¥ +Y'M, ¥,
Mj,=M, D, +‘I’ZM§,.xh_. D + Mx,.x,,_l Dcp, +PIM,, DPcp .
M3= Mx,,x,,_1 D, + ‘I’cTMx,L, @,

M= (I)&TB[, M, D + DLy M (. D + CI)ETB( M v, P

oy
+ (I)CB‘ Mx;,_l q)CBt. ’

-

—®d" M T M
M23 _(I)CB(,Mx,,x,,‘] (I)n,l +(I)CBL. Mxh_] (I)n.l ’

N
My=) @ M, ®,, (A10)
i=1

Note that My =3 ® M, ®,,=1 and K=
N, @K, ®,; =A, where A, is the eigenvalue matrix of the
corresponding pristine structure. All the submatrices in Eq. (A9) are
computed using sector-level matrices and mode shapes; thus, the
ROM of the full system can be constructed using single-sector
models and calculations, which leads to significant computational

savings.

Appendix B: BAA Method

This appendix discusses the response approximation process using
the BAA method [29,32]. First, a secondary modal reduction is
applied to the ROM of the mistuned system. The reduction is
achieved by projecting the equations of motion along subsets of mode
shapes that dominate the motion of the system in its sliding state and
open state. These mode shapes can be obtained by computing the
eigenvectors of (Kgoy o» Mrom,s) and (Kgon ,» Mrom,o)»> and are
grouped in matrices ®@4' and @', respectively. Equation (7) can then
be projected along @7 and @)’ using the modal transformations
u, = ®’q,andu, = ®”q,, where g, and ¢, are modal coordinates:

@ Myom PG + @ (aMyom s + FKRonm )P,
+ OV Ky @V g = B From (1),
D" Myon,, @4, + Py (aMrom,, + PKRom..)Pr 4,
+ @) Kion o P g0 = @57 From.o (1) (BI)

Equation (B1) can also be expressed as a set of decoupled modal
equations because they are proportionally damped

C'I.s,j + zz:s,jws,jih.j + w?,qu.j = f.s,j’ ] = 17 e 7Ns¢
éo.k + 2C0.kw0,k‘}0.k + w(z)_kqo.k = fa.kv k= 1~ BN Nu (BZ)

where N and N, are the numbers of mode shapes used to project the

motion in the sliding and open state, respectively; (o ;, @, ;) and

(¢s.j» $ox) are the undamped natural frequencies and the viscous
damping ratios associated with the jth mode in the sliding state and
the kth mode in the open state, respectively; (f ;, f, ) are the modal
forces. The modal forces can be expressed in the following form if the
system is excited by harmonic forcing:

f.r,j([) = fsc,j cos(a)t) + fss,j sin(a)t),
fo,k(l) = foc.k COS(“)Z) + fos.k Sin(wt) (B3)

The modal coordinates g, ; and g, can then be symbolically
expressed as combinations of the linear transient response and the
linear steady-state response:

q,,;(t) = e_g’"w’“’t[sl,j cos(wgq ;1) + 52,5 Sin(wgq ;1))
. fsejcos(wt — Oy ; +w) + fo jsin(wt — 0 ; + ) ,
2 Il = @/, PP + L, jofo,,)?
Qo (1) = e4oxPi [0} 1 cOs(woq i) + 07, SIN(@Woq 41)]
n Jock cos(@t = 0,1 +y) + fosu sin(wr =0, +y)
02 g1 = @00 1)P + L, 30/ 00,

(B4)
where @y ; and ey are the damped frequencies; 0,; =
tan_l(ZC.v,jw.v.jw/w?,j - wz)v and 90,1( = tan™! (251),1(600,/(60/(020‘1(_
®?); 8$1js S2j» 01> and 0, are scalar coefficients of the linear
transient responses; y represents an additional phase angle between
the external force and the linear steady-state responses caused by the
nonlinearity.

Next, the motion of an entire nonlinear vibration cycle is
approximated by coupling the linear response in the sliding state and
the linear response in the open state. The state of the system is
determined by the state of the relative DOFs shown in Fig. Bla. The
system is in the sliding state when x,. < 0 and is in the open state when
X, > 0, where X, represents the relative DOFs in the contact direction
(x, is a subset of x,.). Note that the amount of penetration between the
contacting nodes (|, ;|) in the sliding state is reduced when a higher
contacting stiffness value k* is used. 7', is the time that the system
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Fig. B1 a) Schematic plot of a steady-state vibration cycle. b) The relationship between the two modal coordinate systems.

spends in the sliding state and T', represents the time that the system
spends in the open state. Furthermore, as mentioned in Appendix A,
the reduced coordinates u,; and u, represent different coordinate
systems. To couple the linear responses in the two linear states, an
appropriate transformation is needed. Thus, the reduced space of the
open system is projected onto the reduced space of the sliding system
using u, = B p,u,, where B is the pseudo-inverse of f,. The
motion for all DOFs in this reduced space is schematically shown in
Fig. B1b. The compatibility conditions for the displacement and
velocity are then applied at the moment when the system switches
from one state to the other. These compatibility conditions are
directly applied to the reduced coordinates and are summarized as
follows:

%,,(T,) =0,
%, (T, +T,) =0,
u,(T,) = i,(T,).
u,0)=u,(T,+T,),
i, (T,) = a,(T).

u,(0) =1,(T; +T,) (B5)
where &, and 2, are the components of the velocity in the overlapping
space of @' and ®}'. The BAA method assumes that the continuity
of the velocity of the system is only satisfied in the overlapping space
because @7 and @) do not occupy the same vector space. This
overlapping space is obtained from the following: 1) ,®% and §, D}
are grouped into a single matrix; 2) the left-singular vectors
associated with the largest singular values of the matrix are selected
as the basis of the full overlapping space ®g;; 3) the full overlapping
space is projected onto the reduced space using ® = g} ®g,;. The
velocity components of the overlapping space are computed from
u, = T,u,andu, = T u,, where T, is the projection matrix defined
as T, = ®(® ®)~'®’. Equation (B5) can be expressed in terms of
modal coordinates as

B, ®1q,(T) =0,
By, ®uq, (T, +T,) =0,
DD (T,) = DT Dq,(T,),
D), (0) = BT D) q, (T, +T,).
QDG (T) = DD 4,(T,).

D) §,(0) = TP}, (T, + T,) (B6)

where ﬁw is the portion of 8, with the relative DOFs in the contact
direction; @} = i, @) is the transformed mode shapes of the
system in its open state; @7 and @;' can be computed using
O =T, ®", and ®] = T, D). Note that T, + T, is the period of a
steady-state nonlinear vibration cycle that can be calculated by

T,+T,=2rn/w and T, is an unknown in Eq. (B6). The total
number of scalar equations from Eq. (BS) can be quite large for a

complex system. Thus, these equations are premultiplied by ®7 to
reduce the required computational cost.

Next, a nonlinear optimization solver (e.g., the function
“Isqnonlin” in MATLAB) can be used to solve for the unknowns
($1,i» $2,i» 01 j» 02 j, ¥, and T;) in Eq. (B6) by minimizing its residual.
Then, the physical displacements x, and x, are expanded from the
modal coordinates using x; = afi,®?"q, and x, = af , P q,. The
nonlinear vibration cycle is then constructed using x,, x,, and the
transition time 7. Finally, an efficient frequency sweep can be
carried out to estimate the forced response for a bladed disk with a
crack. Note that Eq. (B6) might possess multiple solutions; thus, an
appropriate selection of initial values for the unknowns at the starting
frequency point is needed to obtain a physically valid solution [29].
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