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Abstract—The Sparse Fast Fourier Transform (SFFT) is an
algorithm developed by the MIT, to compute the discrete
Fourier transform of a signal with a sublinear time complexity:
O(log ni{/nk? log n), for a signal of size n, and sparsity level
k, that is the number of non-zero coefficients in the frequency
domain. In this paper, we propose a highly scalable GPU-based
parallel algorithm called GPU-SFFT for computing the SFFT of
k-sparse signals. We exploit the computational power provided
by the modern GPUs to achieve a high performance algorithm.
The design and implementation of GPU-SFFT was based on
three goals: to unroll the for loops in the sequential MIT-
SSFT to increase the parallelism by maximizing the number
of concurrent threads executing independent instructions, to
minimize the transfer of data between the CPU and the GPU as
much as possible, and to use high performance sorting algorithms
available in the Thrust library for CUDA, and to compute the
reduced size FFTs of the algorithm with cuFFT, the NVIDIA
CUDA Fast Fourier Transform (FFT) library. GPU-SFFT is 37x
times faster than the MIT-SFFT and 5x faster than cuFFT.

I. INTRODUCTION

The Discrete Fourier Transform (DFT) is one of the most
important algorithm for the analysis of the spectral repre-
sentation of signals in engineering and science, with a wide
range of applications from astronomy to medical imaging,
and from seismology to cryptography. The DFT algorithm
compute the Fourier transform of a discrete signal of size
n with time complexity of O(n?). This time complexity
results in unacceptable performance for processing the big data
sets characteristic of modern applications. The Fast Fourier
Transform(FFT) is the fastest and most widely used algorithm
to process the DFT of a signal of size n with a time complexity
of O(n log n) [2]-[5]. However, the FFT algorithm may be
too slow to process the DFT of signals with sizes of terabytes,
even though these signals may be sparse in the frequency
domain, that is only k frequency coefficients are different
than zero, where k << n. Moreover, in many applications,
for example in medical imaging is sometimes hard to obtain
sufficient amount of data to compute the DFT with the desired
accuracy.

The suboptimal performance of the FFT algorithm to
compute the DFT of k-sparse signals, and the existence of
an important set of domains(video, audio, medical imaging,
spectroscopy, GPS, seismic data) with signals that are sparse
in the frequency domain, motivated the development of sub-
linear algorithms, that is algorithms with runtime complexity
proportional to the level of sparsity, which is considerably
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smaller than the size of the input data and that use only
a subset of this data to compute the frequency coefficients
which are significant [6]—[8]. The Sparse Fast Fourier Trans-
form (SFFT) algorithms developed at MIT [12] are sub-
linear algorithms that by exploiting the inherent sparsity of
natural signals, are faster than the FFT algorithms for k-
sparse data. The MIT-SFFT algorithm implements a solution
to the problem of computing the DFT, Z(f), of a signal,
x(t), of size n, with only k non-zero frequency coefficients,
the other n — k coefficients are zero. For general signals,
the MIT-SFFT computes an approximation &’(f) of &(f).
The time complexity of the version 2.0 of the MIT-SFFT
algorithm is O(log ny/nk? log n) with a sparsity level range
of O(n/+/log n), that is, the algorithm is faster than FFT up
to O(n/log n). [12].
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Fig. 1: A simplified flow diagram of the outer loop of the
version 2.0 of the MIT-SFFT algorithm

MIT — SFFT algorithm: Figure 1 shows a simplified
flow diagram of the the computational stages of the MIT-
SFFT algorithm [12]. The outer loop of the algorithm is
divided into location loops and estimation loops. The location
loops in Figure 1 implement the stages of permutation and
filtering, FFT and cutoff, and reverse hash function. The
MIT-SFFT algorithm is based on binning the large Fourier
coefficients of the significant frequencies, present in the input



signal, into a small set of B bins, where B = O(k) is a
parameter that divides n. The collision problem of having
non-zero frequencies in the same bin is solved by separating
two coefficients that are close to each other, locating them on
separate bins, so that there is only one large frequency per
bin. The permutation stage of the location loop performs the
random permutation of the input signal so that adjacent Fourier
coefficients in the frequency domain are evenly separated. The
process of binning the frequency coefficients is implemented
by filtering the permuted input signal. The filter suppresses the
frequency coefficients that hash out of the bin while passing
through frequency coefficients that hash into the bin. The
utilization of a filter guarantees therefore the goal of binning
one frequency coefficient per bin, minimizing the leakage
of frequencies from one bin to another [12]. The hashing-
based spectrum permutation method implemented in the MIT-
SFFT maps indices of the original signal spectrum to the
permuted locations so that the original locations can then be
recovered in the estimation loops. After permuting and filtering
the input signal, the original problem has been reduced from
a n-dimensional DFT to a B-dimensional DFT. This size
reduced DFT is computed by the FFT algorithm with time
complexity O(B log B).After computing the B-dimensional
DFT, each bin in the frequency domain contains at most one
potential large coefficient. However, in a k-sparse DFT, it is
likely that many of the coefficients in the bins are close to
zero. Since the algorithm guarantees that the probability of
missing a large coefficient is low if the top O(k) samples are
selected. Then, in the cutoff stage, the indices of the top k
coefficients of maximum magnitude are selected form the set
of B bins in the frequency domain, and the indices of the other
B — k coefficients are discarded. In the reverse hash function
stage the k largest coefficients found in the cutoff stage are
reconstructed by finding the original locations in the frequency
domain. The version 2.0 of the MIT-SFFT adds a heuristic
to restrict the location of indices of largest coefficients using
a filter that has no leakage at all. The intersection of these
indices with the indices of k largest coefficients found in
the cutoff stage is computed in the reverse hash function.In
a voting approach, this function give a vote to an index, every
time the index appears in the intersection of both set of indices,
when the number of votes reaches a threshold, the index is
added to the output of the function. The output of the location
loops are the indices of the largest frequency coefficients that
have a number of votes at least equal to a given threshold [12].
The estimation loops share the permutation, filtering, and the
FFT stages described for the location loops, with the goal
of having one large frequency coefficient per bin with high
probability. Given the set of indices computed by the location
loops, and the bins in the frequency domain, the estimation
coefficients stage of the estimation loops return the indices
and the values of the k largest frequency coefficients. In order
to compensate the collision of large frequencies in the same
bin, the output of the estimation loops is the median of the
values of the frequency coefficients found on all the estimation
loops.

CUDA computer model : The programmable Graphics
Processing Units (GPUs) is a highly parallel, multithreaded,

many core processor with very high computational power and
memory bandwidth [13]. The GPU is organized into an array
of highly threaded streaming multiprocessors (SMs). Each SM
contains several cores that share control logic and instruction
cache. The GPU architecture is called Single Instruction
Multiple Thread (SIMT), on which hundred of threads on
each core can concurrently execute the same instruction [1]. In
2006, NVIDIA introduced CUDA, a general purpose parallel
computing platform and programming model what allows pro-
grammers to use CUDA-enabled GPUs to solve many complex
computational problems [13]. A key component of the CUDA
programming model is the kernel, the code that implements the
instruction to be executed by the threads on the GPU device.
The threads executing the instructions in a kernel are grouped
into one or two dimensional grids. The grids are made up of
threads blocks. The threads in a block are organized in groups
of 32 called warps. All the threads in a warp execute the
same instruction at the same time. The CUDA memory model
contains different types of programmable memory spaces:
Registers, shared memory, local memory, constant memory,
texture memory and global memory. Each thread has private
local memory. Each thread block has shared memory visible
to all threads of the block and with the same lifetime as
the block. Using shared memory improves the performance
when threads inside the block need to access the same data
multiple times. All threads have access to the same global
memory. Global memory is the largest, highest latency, and
most used memory on a GPU. Data transferred from CPU
to GPU resides in global memory. Transferring data between
CPU and GPU is a slow process with a negative impact in
the performance of a CUDA code, hence this type of transfers
should be minimized. Coalesced memory access occur when
all the 32 threads in warp access adjacent memory locations.
Ensuring coalesced global memory access is an important goal
for high performance GPU based algorithms [1].

The GPU based parallel algorithm for computing the Sparse
Fast Fourier Transform(SFFT), GPU-SFFT, presented in this
paper was implemented in CUDA C using the functionality
available in the sequential C++, version 2.0 of the MIT-SFFT
package. Three goals were defined for the project of defining
and implementing the GPU-SFFT package. The first goal was
to unroll the for loops in the sequential MIT-SSFT to increase
the parallelism by maximizing the number of concurrent
threads executing independent instructions, as well as ensuring
coalesced global memory access by the threads in each warp.
The second goal was to minimize the transfer of data between
the CPU and the GPU as much as possible. The third goal was
to replace the sequential sort algorithms in the MIT-SFFT by
the high performance sorting algorithms available in the Thrust
library for CUDA [14], and to compute the reduced size FFTs
of the algorithm with cuFFT, the NVIDIA CUDA Fast Fourier
Transform (FFT) library [15].

The comparison of the execution times of the GPU-SFFT
with the execution times of the MIT-SFFT, shows that the
speedup obtained with the GPU-SFFT was up to 502 when
the times for data transfer between the CPU and the GPU
were not considered, and up to 23z when these times were
included. Moreover, an up to 5x speedup was obtained when



the execution times of the GPU-SFFT are compared to the
corresponding times of cuFFT. For all the experiments per-
formed with the GPU-SFFT, the Mean Absolute Error (MAE)
was below 1073, and there were not missing frequencies in
the computed SFFT output signal.

Contributions of the paper: The main contributions of
the paper are:

1) We propose GPU-SFFT, a GPU based parallel algorithm
for computing the Sparse Fast Fourier Transform(SFFT)
of a input signal of size m, with only % frequencies
coefficients different than zero in the frequency domain.

2) The experimental results shows that GPU-SFFT is a high
performance algorithm without reducing the accuracy of
its output as compared to the sequential version of the
MIT-SSFT package.

Organization of the paper: The paper is organized as
follows: Section II describes the functionality of the GPU-
SSFT algorithm, including the techniques used to implement
such functionality. Section III is dedicated to the experiments
and results. The conclusions are presented in Section IV.

II. GPU BASED SPARSE FAST FOURIER TRANSFORM
ALGORITHM

GPU-SFFT is a GPU-based parallel algorithm which imple-
ments the parallel version of the functionality corresponding
to the stages shown in Figure 1 for the MIT-SFFT sequential
algorithm. This section includes the description of the func-
tionality of the GPU-SSFT algorithm, including the techniques
used to implement such functionality. The description is based
on pseudocodes that map to the stages shown in Figure 1.

A. GPU-SFFT outer loop function

Algorithm 1 GPU outer loop function.

1: Input: hxln]dfilts[fs].dfilt ;[ fs]

2: Output: hz[IF)

3: procedure OUTLPGPU(ha,n,df ilts,dfilt¢,fs,B,By,W ,L,L¢,Lt,Ly)
: dxz[n] <~ CUDAMALLOC(n)

4:
5: CUDAMEMCPY (dz, hx)

6: dbins¢[L * B] < CUDAMALLOC(L * B)

7: dbinsy[L * B] <~ CUDAMALLOC(L * B)
8 dI[n] < cCUDAMALLOC(n)

9 dJ2[Lc * Bt] + CUDAMALLOC(L. * By)

10: dHs[L] + CUDAMALLOCMANAGED(L)

11: for : < 0, L. do

12: LOCLARGECOEFGPU(dx,B¢,n,W ,dJ2[i * Bt])

13: end for

14: IF +0

15: for i + 0, L do

16: o < random() mod n > ged(oyn) =1
17: dH[i] < modInv(c,n) > dHy[ilo = 1(mod n)
18: dJ[B¢] < CUDAMALLOC(By)

19: PERMFILTERGPU(dz,B.df iltt, f s,dbinst,dHy [i])

20: FFTCUTOFFGPU(dJ,dbins,dbins ¢,B,Bt)

21: if L < L; then

22: REVHASHGPU(d!,dJ,B¢,B,n,Li,dJ2,W ,IF,0)

23: end if

24: end for

25: hx <= ESTVALGPU(dI, IF, dbinsy,dfilty, B,n, L,dH,)
26: end procedure

One of the goals in the design of the GPU-SFFT algorithm
was to minimize the transfer of data between the CPU and

the GPU as much as possible. The first procedure to achieve
this goal is to compute the time and frequency components of
the filters on the GPU(device) side as preprocessing stage for
the GPU-SFFT algorithm. The second procedure is to transfer
the data of CPU(host) input signal of size n to the device
side only one time at the starting of the computation. Both
techniques are represented in the algorithm 1 for the outer
loop function of the GPU-SFFT. The input of the algorithm
1 are the host input signal, hz[n|, and the device time and
frequency components of the filters, dfilt;[fs]and dfilts|fs]
respectively, where fs is the size of the filters. Lines 4 and 5
of the algorithm 1, show the allocation of GPU global memory
for the device input signal, dz[n], and the memory transfer of
hz[n] to dz[n]. Lines 6 to 12 of the algorithm 1, show the
allocation of GPU global memory for the internal variables.
There are two for loops in the algorithm 1, that due to their
small size of (L =number of loops < 60) are computed in the
host side. The functions which are called in the for loops of the
algorithm 1 implement the GPU version of the stages shown
in Figure 1. These functions are described in the following
sections.

B. GPU-SFFT: Permutation and filtering

Algorithm 2 Sequential function to permute and filter the input
signal x.

1: Input: z[n],filt¢[fs]

2: Output: bins¢[B]

3: procedure PERMFILTER(z,B, filte, fs,binst, Hy ;)
4 index < 0

5 for i < 0, fs do

6: binst[i mod Bl+ < xzlindex] * filti[i)

7.

8

9

index < (index + Hy ;) mod n
end for

: end procedure

The algorithm 2 is the sequential version of the permutation
and filtering stage in Figure 1. This algorithm implements(line
6) the hash function given Equation 1 [12] which maps each
of the n elements of the input signal to one of B bins.

he B(3) = floor( /B> >hep:n]—[B] (1)

On a GPU version of the algorithm 2, a thread collision can
occur when multiple threads, for example threads i, B+i, 2B+
i,..., try to update the same bin concurrently, introducing
time delays that negatively impact the performance of the
parallel algorithm. The algorithm 3 is the GPU version of
the sequential algorithm 2. This algorithm is designed to
solve the thread collision with a tiling based approach [11].
The number of colliding threads is approximately equal to
T = floor(fs/B),where fs is the size of the filter. Since
fs is not divisible by B, when the filter vector is partitioned
into T tiles of size B, there are R = fs mod B remaining
elements of the filter after the 7" tile. Then, when the permuted
and filtered components of the input signal are binned in
bins:[i mod B], for the iteration 7, each element of the filter,
filt,[i], which is convoluted with the permuted input signal,
are in different tiles for each iteration. After the ¢ = T * B



iteration of the for loop finishes, the remaining R iterations
access the last R elements of the filter.

Algorithm 3 GPU function to permute and filter the input signal
z.

. Input: dz[n].dfilt[fs]
: Output: dbins:[B|
: procedure PMFILTERGPU(dx,B,df ilts, fs.dbinst,dH s ;)
dbinst[B] < CUDAMEMSET(dbinst, 0, B)
T + fs/B,R <+ fsmod B
if n < 227 then

PFTKERN(dbins,dx,df ilty,n,B,dHs ;,T,R)
else

PFKERN(dbins¢,dx,df ilte,n,B,dHs ;,fs)
end if
: end procedure

=N AR A
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12: procedure PFTKERN(dbinst,dz,dfilt¢,n,B,dHs ;,T,R)
13: i < threadldx.x 4+ blockIdx.x * blockDim.x
14: if i < Bori== B then

15: if i < B then

16: for j «+ 0,7 do

17: id+— 1+ B

18: dbinsi[i|+ < dz[(id * dHy ;) mod n] * dfilts[id)
19: end for

20: end if

21: if i == B then

22: for j +— 0, R do

23: id<—j*xT+1

24: dbinst[j]+ < dz[(id * dH, ;) mod n| = dfilt,[id]
25: end for

26: end if

27: end if

28: end procedure

29: procedure PFKERN(dbins,dx,df ilty,n,B,dHs ;,fs)

30: i < threadldx.x 4+ blockldx.x * blockDim.x

31: if ¢ < fs then

32: dbins¢[i mod B]+ < dz[(i * dH ;) mod n| * dfilt[i]
33: end if

34: end procedure

The kernel PFTKERN implements this tilling approach to
unroll the sequential for loop of the sequential algorithm
2. Each thread on this kernel bins the components of the
permuted and filtered input signal that correspond to one bin,
independently of each other thread on the kernel, making this
computation free of collisions. Each thread computes the first
for loop (lines 17 to 22) of size T'. After this for loop finishes,
the remaining R components of the filter are convoluted with
the permuted input signal in the second for loop (lines 24-28)
of PFTKERN . In the sequential algorithm 2, the permutation
index (line 7) has an implicit dependence on the index i of the
for loop. In the GPU version, the computation of the indices of
the permuted input signal, the filter, and the bins on PFTKERN
are explicitly dependent of the index of the thread.

The experimental results show that for input signals with
sizes n < 227, the performance of PFTKERN is much better
than the performance of the corresponding for loop on the
sequential version. The sizes of the for loops on this kernel
are T' < 30 and R < 1000, which are efficiently computed
by one thread within times that are smaller than the time
delays caused by the potentials thread collisions. However,
for input signals with sizes n > 227, the value of R are
in the range [2000,250000], increasing the time to compute
the second for loop on PFTKERN , and therefore degrading
the performance of the algorithm. In order to obtain the

expected high performance, the kernel PFKERN (lines 32 to
38) was added to the algorithm 3. This kernel is designed
for a direct unrolling of the corresponding sequential for
loop. PFKERN has therefore the time delays introduced by the
collision of about 7" threads trying to update the same bin, but
does not have the time delays caused by the computation of
the second for loop on PFTKERN , which are greater than
the corresponding collision times. PFKERN has therefore a
higher performance than PFTKERN for input signals with sizes
n > 227, Hence, in order to guarantee the high performance of
the algorithm 2 for all the input signals, PFTKERN is selected
for input signals with sizes n < 227, and PFKERN for sizes
n > 227 (lines 7-11).

C. GPU-SFFT: FFT and Cutoff

Algorithm 4 GPU function to compute the FFT of the bins vector
in the time domain, and to find and sort the B; = 2k indices of
the largest frequency coefficients in the bins vector in the frequency
domain.
1: Input: dbins:[B]

2: Output: dbinsy[B], dJ[Bt]

3: procedure FFTCUTOFFGPU(dJ,dbinst,dbins ¢,B,Bt)
4: dbinsy < CUFFT(dbinst, B)
5
6

dJ < CUTOFFGPU(dJ, dbinsy, By, B)
: end procedure

Algorithm 5 GPU function to find and sort the B; = 2k indices
of the largest frequency coefficients in the input vector.

1: Input: dg[m]

2: Output: dId[B¢]

3: procedure CUTOFFGPU(dId,B¢,dg,m)

4: dsampless[m] <~ CUDAMALLOC(m)
5: dsamplesy|m] <+ CUDAMALLOC(m)
6: SKERN(dy, dsampless, dsamplesy, m)
7 THRUST::SORT(dsamples)

8 cutof f < dsampless[m — By — 1]

9: id <+ 0

10: CKERN(dId, cutof f,dsamplesy, m,id, Bt)
11: THRUST::SORT(dId)

12: end procedure

13: procedure SKERN(dy,dsampless,dsamplesy,m)
14: i < threadIdx.x + blockIdx.x * blockDim.x
15: if - < m then

16: dsamples;[i] < ||dg||?
17: dsamplesy[i] < dsampless|i]
18: end if

19: end procedure

20: procedure CKERN(dId,cutof f,dsamplesr,m,id, Bt)

21: i < threadldx.x + blockldx.x * blockDim.x

22: if ¢ < m then

23: if dsamplesy[i] > cutof f and id < B; then
24: dId [ATOMICADD(id, 1)] + ¢

25: end if

26: end if

27: end procedure

The algorithms 4 and 5 are the GPU implementation of the
FFT and Cutoff stages on Figure 1. In the algorithm 4, the
FFT of the bins vector in the domain time is computed using
the cuFFT library. The bins vector in the frequency domain is
the input to the algorithm 5, on which the B; = 2k indices of
the largest frequency coefficients on this vector are computed



and sorted.

The algorithm 5 allocate device memory for two vectors:
dsamples, and dsamplesy. Both vectors are filled with the
square of the magnitudes of the input vector on the SKERN
kernel. After sorting the dsamples, vector, with the sort
functionality of the Thrust library [14], a cutoff value is
computed. The kernel CKERN implements the unrolling of
the corresponding for loop on the sequential version of the
MIT-SFFT algorithm. The cutoff value is used on CKERN .
to compute the indices of the largest frequency coefficients.
These largest frequency coefficients are the elements in the
dsamples; with values greater or equal to the cutoff.

D. GPU-SFFT: Function to restrict the indices of the largest
frequency coefficients of the input signal.

The function to restrict the the location of the 2k largest
frequency coefficients in the DFT of the input signal z is
a heuristic that was added as a preprocessing stage in the
version 2.0 of the MIT-SFFT (see Figure 1), to improve the
performance of the algorithm [12]. This function implements
an aliasing filter which is very efficient because has not
leakage. The algorithm 6 implements the GPU version of this
function. The output of the kernel LLCKERN is the filtered input
signal dz’. After computing the FFT of dz’,dg, by cuFFT. The set of
indices of the 2k largest frequencies contained in dj are computed
by the procedure CUTOOFGPU on the algorithm 5.

Algorithm 6 GPU function to restrict the location of the 2k largest
frequency coefficients in the DFT of the input signal x.

: Input: dz[n]

: Output: dJa[Bi]

procedure LOCLARGECOEFGPU(dx,B¢,n,W ,dJ2)
da’'[W] + cupaMALLoC(W)
dg[W] + cubaMALLOC(W)
o < n/W,T < random() * o
LLCKERN(dz', dz, W, T, o)
dij < CUFFT(dz', W)
dJz < CUTOFFGPU(dJ2, By, dj, W)

: end procedure

SORIDNE RN
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11: procedure LLCKERN(dz' ,dz,W ,7,0)

12: i < threadldx.x 4+ blockIdx.x * blockDim.x
13: if i <W then

14: dx'[i] + dz[T + i * o]

15: end if

16: end procedure

E. GPU-SFFT: Reverse hash function

The GPU version of the reverse hash stage of Figure 1
is implemented by the algorithm 7 by unrolling the corre-
sponding for loop on the sequential version of the MIT-SFFT
algorithm.The goal of the algorithm 7 is to reverse the hash
function (Eq. 1) to compute the true indices of the largest
frequency coefficients that have been hashed to non empty
bins [12]. The input of the algorithm 7 is the set of indices of
frequency coefficients,d.J, computed by the algorithm 5, and
the set of indices of frequency coefficients, dJ>, computed
by the algorithm 6. For each location loop, the algorithm
7 computes the set of indices I of the largest frequency

coefficients that map to J under the hash function and that
are in the permuted set of indices d.Js,, that is,

IL:{iL S [n”(hg(lL) edJ)ﬂ(iL EdJQU)} 2)

where dJo, = (dJ2+0) mod W. The algorithm 7 implements
a voting approach [12] on which every time an index is added
to the set I, the index will get a vote (line 15). The output of
the algorithm 7 is the set of indices dI of the largest frequency
coefficients which get a number of votes equal or greater than

a given parameter L;, that is
dI = {iq € I;|dV]iq] > L} 3)

where I; € Ir.

Algorithm 7 GPU function to reverse the hash function and to
return the set of indices of the largest frequency coefficients which
occurred in at least L; of the location loops.

: Input: dJ[B],dJ2[Bt]

: Output: dI[[F]

: procedure REVHASHGPU(d!I,dJ,Bt,B,n,Lt,dJo,W ,IF,0)
dV'[n] <~ cupaAMALLOC(n)

dV[n] - CUDAMEMSET(dV, 0, n)

dJ2s[Bt] < CUDAMALLOC(B:)

dJ2s [« (dJ2 * o) mod W

RHKERN(dI,dJ,dV ,dJ2s,L¢, I F,W)

: end procedure

ORI NE RN

10: procedure RHKERN(dI,dJ,dV ,dJ2s,Li, I F,W)
11: i < threadldx.x 4 blockldx.x * blockDim.x
12: if < B then

13: Iy, = {ir € [n]|(ho(ir) € dT) N (i1, € dJ25)} < iL,;
14: ATOMICADD(dV [ir, 5], 1)

15: if dV[’LL,.J == L; then

16: dI [ATOMICADD(IF,1)] < ir, ;

17: end if

18: end if

19: end procedure

FE. GPU-SFFT: Estimate values

Algorithm 8 GPU function to estimate the values of the largest
coefficients given the indices of such coefficients.

: Input: dI[IF]dfilts|fs].dbinsy[L * B]

: Output: hz[IF]

: procedure EVALGPU(dI,IF ,dbinsy.dfilty,B,n,L,dH;)
dz[IF] < CUDAMALLOC(IF)
EVKERN(d#,dI,IF,dbinsy,L,n,dHy,B,dfilt ;)
CUDAMEMCPY (h, di)

return hi

: end procedure

9: procedure EVKERN(dﬁ,dI,IF,dbme,L,n,dHU,B,dfiltf)
10: i < threadldx.x 4+ blockldx.x * blockDim.x
11: if i < IF then

12: pos 0

13: for j + 0, L do

14: id + (dHs[j] * dI[i]) mod n

15: ), [pos] < bins ¢ [he, B (1[4])]/ filtf[id mod (n/B)]
16: POS4 4

17: end for

18: dz[I[i]] < median(x})

19: end if

20: end procedure

The GPU version of the estimate frequency coefficients
stage of Figure 1 is implemented by the algorithm 8 by



unrolling the corresponding for loop on the sequential version
of the MIT-SFFT algorithm. This algorithm is based on the
theorem that the DFT of a signal in the time domain corre-
sponds to phase rotation in the frequency domain: z(n—7) <
e~27fT3(f) [9]. The goal of the algorithm 8 is therefore to
compute the true values of the largest frequency coefficients
that have been hashed to non empty bins, by removing the
phase rotation introduced by the permutation and filtering of
the input signal in the time domain [12]. The input of the
algorithm is the set of indices of frequency coefficients,dl,
computed by the algorithm 7. Every thread of the kernel
EVKERN of the algorithm runs a for loop of size equal to
the total number of loops (L), on which the index I(i) is
permuted, and the value of the largest frequency coefficient
bins¢|hs p(I]i])] is divided by the corresponding component
of the frequency component of the filter to remove the phase
rotation. It is possible that more than one frequency hash to
the same bin, hence to compensate errors due to this hash
collision, the median of the values computed in the for loop
is assigned to the I(i) component of the SFFT(x) = Z. The
device memory transfer of the SFFT output signal, dZ to the
host memory, hZ, completes the output of the algorithm.

III. EXPERIMENTS AND RESULTS

In this section we present the results of the experiments
performed to compare the performance of the proposed GPU-
SFFT algorithm with the sequential MIT-SFFT algorithm
[10], and with the cuFFT, the NVIDIA CUDA Fast Fourier
Transform (FFT) library [15], performances. We were not able
to compare the performance of GPU-SFFT with other similar
algorithm proposed on reference [16] because neither the code
nor the parameters used in their experiments were available.
The input signal, z, to the experiments in the time domain were
computed as inverse DFTs of a signals,j, in the frequency
domain with & randomly chosen elements equal to 1 and
n — k elements equal to zero. The output SFT signals of
the experiments, &, were compared to the corresponding input
signal in the frequency domain. Only the experiments whose
results replicated exactly the input signals, that is with no
missing components, were accepted as valid results. For all
the experiments presented in this section, the Mean Absolute
Error (MAE) is defined as:

k
MAE = Z |2[i] — gl4]| “4)
1=0

| =

All the experiments presented in this section were per-
formed on a Linux server with Ubuntu operating system
version 16.04.5, 44 Intel Xeon Gold processors, clock speed
2.1 GHz, and 125 GB of RAM. The GPU in this server is
a NVIDIA Titan Xp, with 30 SM, 128 cores/SM, maximum
clock rate of 1.58 GHz, 12196 MB of global memory, and
CUDA version 10.1 with CUDA capability of 6.1.

A. Experimental results

As an intermediate stage to the design and implementation
of GPU-SFFT. we port the MIT-SFFT in C++ to C. This
version called MIT-SFFTC is more compatible with the CUDA

C language easing the implementation of GPU-SFFT. We used
this version for all the experiments included in this section.
The experiments presented in this section were divided in two
sets. The first set of experiments have input signals with sizes
in the range [2!?,227], and a level of sparsity of k = 1000.
The second set of experiments have input signals with sparsity
levels in the range [1000,43000], and a size of n = 227.The
parameters used in the experiments are given in the Tables
I to IV, the symbols used in these tables to identify the
parameters are described in the Sparse Fourier Transform Code
Documentation [10].

For the first set of experiments, Figure 2 compares the ex-
ecution times of the MIT-SFFTC and the GPU-SFFT when
the I/O times to transfer the input signal from the host to
the device are not included. The GPU-SFFT times reflects the
impact of the parallelization by being nearly independent of
the signal size and by being much lower than the times of
the MIT-SFFTC. The speedup obtained with the GPU-SFFT
vs MIT-SFFTC (Figure 6) has a maximum of 17x with an
average of 8x. When the I/O times are included, GPU-SFFT
is faster than MIT-SFFTC for all signal sizes, and faster than
cuFFT for signal sizes greater than 22! (Figure 3). For this
case, the speedup obtained with GPU-SFFT vs MIT-SFFTC
has a maximum of 4x and an average of 3x, and the speedup
of GPU-SFFT vs cuFFT has a maximum of 5x and an average
of 3x.

For the second set of experiments, Figure 4 compares the
execution times of the MIT-SFFTC and the GPU-SFFT when
the I/O times are not included. The GPU-SFFT times are much
lower than the times of the MIT-SFFTC in the complete range
of sparsity levels. The speedup obtained with the GPU-SFFT
vs MIT-SFFTC i(Figure 7) has a maximum of 37x with an
average of 27x. When the I/O times are included, GPU-SFFT
is still faster than both MIT-SFFTC and cuFFT for all the
sparsity levels (Figure 5). For this case, the speedup obtained
with GPU-SFFT vs MIT-SFFTC has a maximum of 21x and
an average of 13x, and the speedup of GPU-SFFT vs cuFFT
has a maximum of 5x and an average of 3x.

GPU — SFFT accuracy: Figures 8 and 9 show than
the MAE (Equation 4) for both set of experiments is below
10~3, with all the k frequencies components in the output of
GPU-SFFT successfully recovered. Hence, GPU-SFFT shows
a better performance than both the MIT-SFFTC and cuFFT
with high levels of accuracy.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed GPU-SFFT a GPU-based parallel
algorithm for computing the SFFT of k-sparse signals. GPU-
SFFT was designed to achieve a high performance algorithm
by unrolling the for loops in the sequential MIT-SSFT [12]
to increase the parallelism by maximizing the number of
concurrent threads executing independent instructions, GPU-
SFFT is 37x times faster than the MIT-SFFT and 5x faster
than cuFFT, the NVIDIA CUDA Fast Fourier Transform (FFT)
library [15]. For the further direction of this study we will
focus on improving the performance of GPU-SFFT and by
applying it to the solution of practical problems.
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TABLE I: Parameters MIT-SFFT (n = 29, k = 1000)

q 19 [20] 21 | 22 | 23 | 24 25 26

B 3.85]1.4[2.16[0.683]0.99]0.663|0.662 | 0.478

Comb-cst

256 | 128 | 128 | 256 | 256 | 128 | 128 | 128

1

oc-loops 2 2 2 2 2

est-loops

3
5
thre-loops 2
Comb-loops | 2

2 2

6 5 5 3 5 5 5
2 2 2 2 2 2 2
2 2 2 2 2 2 2

TABLE II: Parameters GPU-SFFT (n = 29, k = 1000)

q 19720721 [ 22 123 ] 24 25 26

B 385 1.4[2.16]0.683]10.99[0.663]0.662]0.478

Comb-cst

256 | 128 128 | 256 [ 256 | 128 | 128 | 128

1

oc-loops 3 2 2 2 2

est-loops

5
thre-loops | 2
2

2
5
2
2

B DN L
DI DN L

5 3 5 5
2 2 2 2
2 2 2 2

Comb-loops

TABLE III: Parameters MIT-SFFT (n = 227)

k/T000 1 7 13 19725 31 37 43
B 0.68]0.7710.665]0.66 | 0.79 ] 0.69 | 0.70 | 0.8
Comb-cst [ 128 14096 | 4096 | 4096 [ 8192 [ 16384 | 32768 [ 32768
Toc-loops 3 2 2 2 2 3 3 3
est-loops 4 5 9 9 9 9 10 9
thre-loops 2 2 2 2 2 2 2 2
Comb-loops | 2 2 2 2 2 2 2 2
TABLE IV: Parameters GPU-SFFT (n = 227)
k/T000 I 7 13 197725 31 37 43
B 0.68]0.7770.665]0.66 | 0.79 ] 0.69 | 0.70 | 0.8
Comb-cst | 12814096 | 4096 | 4096 | 8192 [ 16384 | 32768 | 32768
Toc-loops 3 2 2 2 2 3 3 3
est-loops 4 5 7 9 9 9 8 8
thre-loops 2 2 2 2 2 2 2 2
Comb-loops | 2 2 2 2 2 2 2 2
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