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Heterogeneous mental disorders such as Autism Spectrum Disorder (ASD) are
notoriously difficult to diagnose, especially in children. The current psychiatric diagnostic
process is based purely on the behavioral observation of symptomology (DSM-5/ICD-10)
and may be prone to misdiagnosis. In order to move the field toward more quantitative
diagnosis, we need advanced and scalable machine learning infrastructure that will allow
us to identify reliable biomarkers of mental health disorders. In this paper, we propose a
framework called ASD-DiagNet for classifying subjects with ASD from healthy subjects
by using only fMRI data. We designed and implemented a joint learning procedure using
an autoencoder and a single layer perceptron (SLP) which results in improved quality of
extracted features and optimized parameters for the model. Further, we designed and
implemented a data augmentation strategy, based on linear interpolation on available
feature vectors, that allows us to produce synthetic datasets needed for training of
machine learning models. The proposed approach is evaluated on a public dataset
provided by Autism Brain Imaging Data Exchange including 1, 035 subjects coming from
17 different brain imaging centers. Our machine learning model outperforms other state
of the art methods from 10 imaging centers with increase in classification accuracy up
to 28% with maximum accuracy of 82%. The machine learning technique presented in
this paper, in addition to yielding better quality, gives enormous advantages in terms of
execution time (40 min vs. 7 h on other methods). The implemented code is available as
GPL license on GitHub portal of our lab (https://github.com/pcdslab/ASD-DiagNet).

Keywords: fMRI, ASD, SLP, autoencoder, ABIDE, classification, data augmentation

1. INTRODUCTION

Mental disorders such as Autism Spectrum Disorder (ASD) are heterogeneous disorders that
are notoriously difficult to diagnose, especially in children. The current psychiatric diagnostic
process is based purely on behavioral observation of symptomology (DSM-5/ICD-10) and may
be prone to misdiagnosis (Nickel and Huang-Storms, 2017). There is no quantitative test that can
be prescribed to patients that may lead to definite diagnosis of a person. Such quantitative and
definitive tests are a regular practice for other diseases such as diabetes, HIV, and hepatitis-C.
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It is widely known that defining and diagnosing mental
health disorders is a difficult process due to overlapping
nature of symptoms, and lack of a biological test that can
serve as a definite and quantified gold standard (National
Collaborating Centre for Mental Health (UK), 2018). ASD is
a lifelong neuro-developmental brain disorder which causes
social impairments like repetitive behavior and communication
problems in children. More than 1% of children suffer from this
disorder and detecting it at early ages can be beneficial. Studies
show that some demographic attributes like gender and race
vary among ASD and healthy individuals such that males are
four times more prone to ASD than females (Baio et al., 2018).
Diagnosing ASD has been explored from different aspects, like
monitoring behavior, extracting discriminatory patterns from
the demographic information and analyzing the brain data.
Behavioral data such as eye movement and facial expression are
studied in Liu et al. (2016), Jaiswal et al. (2017), Zunino et al.
(2018). For instance, Zunino et al. classified ASD from healthy
subjects by applying recurrent neural network to the video clips
recorded from them (Zunino et al., 2018).

Quantitative analysis of brain imaging data can provide
valuable biomarkers that result in more accurate diagnosis of
brain diseases. Machine learning techniques using brain imaging
data [e.g., Magnetic Resonance Imaging (MRI) and functional
Magnetic Resonance Imaging (fMRI)] have been extensively used
by researchers for diagnosing brain disorders like Alzheimer’s,
ADHD, MCI, and Autism (Colby et al., 2012; Peng et al., 2013;
Yang et al., 2014; Deshpande et al., 2015; Hosseini-Asl et al., 2016;
Khazaee et al., 2017; Eslami and Saeed, 2018b, 2019).

In this paper, we focus on classifying subjects suffering
from ASD from healthy control subjects using fMRI data. We
propose a method called ASD-DiagNet which consists of an
autoencoder and a SLP. These networks are used for extracting
lower dimensional features in a hybrid manner and the trained
perceptron is used for the final round of classification. In order
to enlarge the size of the training set, we designed a data
augmentation technique which generates new data in feature
space by using available data in the training set.

Detecting ASD using fMRI data has recently gained a lot
of attention, thanks to Autism Brain Imaging Data Exchange
(ABIDE) initiative for providing functional and structural brain
imaging datasets collected from several brain imaging centers
around the world (Craddock et al,, 2013). Many studies and
methods have been developed based on ABIDE data (lidaka,
2015; Chen et al., 2016; Abraham et al., 2017; Heinsfeld et al.,
2018; Itani and Thanou, 2019). Some studies included a subset
of this dataset based on specific demographic information to
analyze their proposed method. For example, lidaka (2015)
used probabilistic neural network for classifying resting state
fMRI (rs-fMRI) data of subjects under 20 years old. In another
work, Plitt et al. (2015) used two sets of rs-fMRI data, one
containing 118 male individuals (59 ASD; 59 TD) and the other
containing 178 age and IQ matched individuals (89 ASD; 89
TD) from ABIDE dataset and achieved 76.67% accuracy. Besides
using fMRI data, some studies also included structural and
demographic information of subjects for diagnosing ASD. For
example, Parisot et al. (2018) proposed a framework based on

Graph Convolutional Networks that achieved 70.4% accuracy. In
their work, they represented the population as a graph in which
nodes are defined based on imaging features and phenotypic
information describe the edge weights. In another study, Sen
etal. (2018) proposed a new algorithm which combines structural
and functional features from MRI and fMRI data and got 64.3%
accuracy by using 1111 total healthy and ASD subjects. Nielsen
et al. (2013) obtained 60% accuracy on a group of 964 healthy
and ASD subjects using the functional connectivity between
7266 regions and demographic information like age, gender,
and handedness attributes. In another study, Parikh et al
(2019) tested the performance of different machine learning
methods on demographic information provided by ABIDE
dataset including age, gender, handedness, and three individual
measures of IQ.

Machine learning techniques such as Support Vector
Machines (SVM) and random forests are explored in multiple
studies (Abraham et al, 2017; Subbaraju et al, 2017; Bi
et al., 2018b; Fredo et al., 2018). For instance, Chen et al.
(2016) investigated the effect of different frequency bands for
constructing brain functional network, and obtained 79.17%
accuracy using SVM technique applied to 112 ASD and 128
healthy control subjects.

Recently, using neural networks and deep learning methods
such as autoencoders, Deep Neural Network (DNN), Long
Short Term Memory (LSTM), and Convolutional Neural
Network (CNN) have also become very popular for diagnosing
ASD (Dvornek et al., 2017; Guo et al., 2017; Bi et al., 2018a;
Brown et al., 2018; Khosla et al., 2018; Li et al., 2018). Brown
et al. (2018) obtained 68.7% classification accuracy on 1,013
subjects composed of 539 healthy control and 474 with ASD, by
proposing an element-wise layer for DNNs which incorporated
the data-driven structural priors.

Most recently, Heinsfeld et al. (2018) used a deep learning
based approach and achieved 70% accuracy for classifying
1,035 subjects (505 ASD and 530 controls). They claimed this
approach improved the state of the art technique. In their
technique, distinct pairwise Pearson’s correlation coeflicients
were considered as features. Two stacked denoising autoencoders
were first pre-trained in order to extract lower dimensional data.
After training autoencoders, their weights were applied to a
multi-layer perceptron classifier (fine-tuning process) which was
used for the final classification. However, they also performed
classification for each of the 17 sites included in ABIDE dataset
separately, and the average accuracy is reported as 52%. The low
performance on individual sites was justified to be due to the lack
of enough training samples for intra-site training.

Generally, most related studies for ASD diagnosis using
machine learning techniques have only considered a subset of
ABIDE dataset, or they have incorporated other information
besides fMRI data in their model. There are few studies such
as Heinsfeld et al. (2018), which only used fMRI data without
any assumption on demographic information and analyzed
all the 1,035 subjects in ABIDE dataset. To the best of our
knowledge (Heinsfeld et al., 2018) is currently state of the art
technique for ASD diagnosis on whole ABIDE dataset, which we
use as the baseline for evaluating our proposed method.
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Although employing other types of information like
anatomical features and demographic attributes of subjects could
provide more knowledge to the model and may increase its
accuracy, the goal of our study is to merely design a quantitative
model for ASD diagnosis based on the functional data of the
brain. This model can be used in conjunction with other tools
assisting clinicians to diagnose ASD with more precision.
Another aspect that we targeted in this study is the running
time of the model. Unfortunately, the running time required
for training the model or analyzing the data is not discussed
in most of research papers mentioned above. Achieving high
diagnosis accuracy in a shorter amount of time would be more
desirable in clinical studies. Deep learning models are time
consuming techniques due to the huge number of parameters
that should be optimized. Although utilizing GPUs has reduced
the running time needed for training the models tremendously,
it still depends on the architecture of the model and size of the
data. We considered the running time of the model as a factor
while designing the architecture of our model. Using our hybrid
learning strategy the model needs fewer number of iterations for
training, which reduces the running time of the model. We also
decreased the number of features by keeping anti-correlated and
highly correlated functional connections and removing the rest,
which reduces the size of the network significantly.

The structure of this paper is as follows: First, in section 2
we provide a brief introduction to fMRI data, the dataset we
used in this study and explain ASD-DiagNet method in detail.
In section 3, we describe the experiment setting and discuss the
results of ASD-DiagNet. Finally, in section 4, we conclude the
paper and discuss the future direction.

2. MATERIALS AND METHODS

2.1. Functional Magnetic Resonance
Imaging and ABIDE Dataset

Functional Magnetic Resonance Imaging (fMRI) is a brain
imaging technique that is used for studying brain activities
(Lindquist et al., 2008; Eslami and Saeed, 2018a). In fMRI data,
the brain volume is represented by a group of small cubic
elements called voxels. A time series is extracted from each voxel
by keeping track of its activity over time. Scanning the brain
using fMRI technology while the subject is resting is called resting
state fMRI (rs-fMRI), which is widely used for analyzing brain
disorders. In this study, we used preprocessed ABIDE-I dataset
that is provided by the ABIDE initiative. This dataset consists of
1112 rs-fMRI data including ASD and healthy subjects collected

from 17 different sites. We used fMRI data of the same group
of subjects which was used in Heinsfeld et al. (2018). This set
consists of 505 subjects with ASD and 530 healthy control from
all the 17 sites. Table 1 shows the class membership information
for each site. ABIDE-I provided the average time series extracted
from seven sets of regions of interest (ROIs) based on seven
different atlases which are preprocessed using four different
pipelines. The data used in our experiments is preprocessed using
C-PAC pipeline (Craddock et al., 2013) and is parcellated into
200 functionally homogeneous regions generated using spatially
constrained spectral clustering algorithm (Craddock et al., 2012)
(CC-200). The preprocessing steps include slice time correction,
motion correction, nuisance signal removal, low frequency drifts,
and voxel intensity normalization. It is worth mentioning that
each site used different parameters and protocols for scanning
the data. Parameters like repetition time (TR), echo time (TE),
number of voxels, number of volumes, openness or closeness of
the eyes while scanning are different among sites.

2.2. ASD-DiagNet: Feature Extraction and
Classification

Functional connectivity between brain regions is an important
concept in fMRI analysis and is shown to contain discriminatory
patterns for fMRI classification. Among correlation measures,
Pearson’s correlation is mostly used for approximating the
functional connectivity in fMRI data (Liang et al., 2012; Baggio
et al,, 2014; Zhang et al., 2017). It shows the linear relationship
between the time series of two different regions. Given two times
series, u and v, each of length T, the Pearson’s correlation can be
computed using the following equation:

Duy = Yo (e — (v — )
\/Z’T:l(ut - a)z\/Z?:l(Vz — )2

1

where # and v are the mean of times series u and v, respectively.
Computing all pairwise correlations results in a correlation
matrix Cp,x,n where m is the number of time series (or regions).
Due to the symmetric property of Pearson’s correlation, we only
considered the strictly upper triangle part of the correlation
matrix. Since we used CC-200 atlas in which the brain is
parcellated into m = 200 regions, there are m x (m — 1)/2 =
19,900 distinct pairwise Pearson’s correlations. In this regard,
we selected half of the correlations comprising 1/4 largest and
1/4 smallest values and eliminated the rest. To do so, we
first compute the average of correlations among all subjects in

TABLE 1 | Class membership information of ABIDE-| dataset for each individual site.

Site Caltech CMU KKI Leuven MaxMun NYU OHSU OLIN PITT SBL SDSU Stanford Trinity UCLA UM USM Yale
ASD 19 14 20 29 24 75 12 19 29 15 14 19 22 54 66 46 28
Healthy control 18 13 28 34 28 100 14 15 27 15 22 20 25 44 74 25 28
Male count 29 21 36 55 48 139 26 29 48 30 29 31 47 86 13 7 40
Female count 8 6 12 8 4 36 0 5 8 0 7 8 0 12 27 0 16
Average age 27 26 10 18 25 15 10 16 18 34 14 16 13 14 22 12
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training set and then pick the indices of the largest positive
and negative values from averaged correlation array. We then
pick the correlations at those indices from each sample as our
feature vector. Keeping half of the correlations and eliminating
the rest reduces the size of input features by a factor of 2. There
is no limitation of the number of high- and anti-correlations
that should be kept. Removing more features results in higher
computational efficiency as well as reducing the chance of
overfitting, however removing too many features can also cause
losing important patterns.

In order to further reduce the size of features, we
used an autoencoder to extract a lower dimensional feature
representation. An autoencoder is a type of feed-forward neural
network model, which first encodes its input x to a lower
dimensional representation,

henc = Qenc(x) = T (Wencx + benc) (2)

where 7 is the hyperbolic tangent activation function (Tanh), and
Wene and bep, represent the weight matrix and the bias for the
encoder. Then, the decoder reconstructs the original input data

¥ = Ddec(henc) = Waechene + bec (3)

where W, and by, are the weight matrix and bias for the
decoder. In this work, we have designed an autoencoder with
tied weights, which means Wy, = W, . An autoencoder can
be trained to minimize its reconstruction error, computed as the
Mean Squared Error (MSE) between x and its reconstruction,
x'. The choice of using autoencoder instead of other feature
extraction techniques like PCA is its ability to reduce the
dimensionality of features in a non-linear way. The structure of
an autoencoder is shown in Figure 1.

The lower dimensional data generated during the encoding
process contains useful patterns from the original input data with
smaller size, and can be used as new features for classification.
For the classification task, we used a single layer perceptron (SLP)

which uses the bottleneck layer of the autoencoder, Ay, as input,
and computes the probability of a sample belonging to the ASD
patient class using a sigmoid activation function, o,

f&) = o (Waphene + bgp)

4
=0 (WslpT(Wencx + benc) + bslp) @

where Wy, and by, are the weight matrix and the bias for the
SLP network. The SLP network can be trained by minimizing the
Binary Cross Entropy loss, 7, using the ground-truth class label,
¥, and the estimated ASD probability for each sample, f(x):

H,f()) == (yxf) + 1=y x 1—f(x)) (5

Finally, the predicted class label is determined by thresholding
the estimated probability

A 1)
V= 0,

Typically, an autoencoder is fully trained such that its
reconstruction error is minimized, then, the features from
bottleneck layer, ke, are used as input for training the SLP
classifier, separately. In contrast, here, we train the autoencoder
and the SLP classifier simultaneously. This can potentially result
in obtaining low dimensional features that have two properties

if f(x) > 0.5,
otherwise.

(6)

1. Useful for reconstructing the original data,
2. Contain discriminatory information for the classification task.

This is accomplished by adding the two loss functions, i.e.,
MSE loss for reconstruction, and Binary Cross Entropy for the
classification task, and training both networks jointly. After the
joint training process is completed, we further fine-tune the SLP
network for a few additional epochs.

Functional connections

Autoencoder Structure

FIGURE 1 | Structure of an autoencoder consisting of an encoder that receives the input data and encodes it into a lower dimensional representation at the
bottleneck layer, and a decoder that reconstructs the original input from the bottleneck layer.

Reconstructed functional
connections
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2.3. Data Augmentation Using Linear

Interpolation

Machine learning and especially deep learning techniques can
be advantageous if they are provided with enough training data.
Insufficient data causes overfitting and non-generalizability of
the model (Raschka and Mirjalili, 2017). Large training sets are
not always available and collecting new data might be costly like
in medical imaging field. In these situations, data augmentation
techniques can be used for generating synthetic data using the
available training set (Karpathy et al., 2014; Eitel et al., 2015;
Wong et al,, 2016; Xu et al., 2016; Perez and Wang, 2017). There
are a few data augmentation methods proposed for different
applications, such as random translation/rotation/cropping (for
image data), adding random noise to the features (for general
type of data), extracting overlapping windows from the original
time series (for time series data), as well as more sophisticated
methods such as Generative Adversarial Networks. However,
these methods are not either applicable to our data due to
the structure of our features, not interpretable, or they may be
computationally more intensive than our proposed method.

The data augmentation technique that we propose in
this study is inspired by Synthetic Minority Over-sampling
Technique (SMOTE) (Chawla et al., 2002). SMOTE is an effective
model which is used for oversampling the data in minority
class of imbalanced datasets. SMOTE generates synthetic data
in feature space by using the nearest neighbors of a sample.
After k-nearest neighbors of sample p are found ({q1, 42, ..., qx}), a
random neighbor is selected (g,) and the synthetic feature vector
is computed using the following equation:

P=axp+(l—a)xgq (7)

In this equation, « is a random number selected uniformly in
the range [0, 1]. Finding the nearest neighbors of a sample is
based on a distance or similarity metric. In our work, the samples
have feature vectors of size 9,950 (half of the correlations).
One idea for computing nearest neighbors is to use Euclidean
distance, however, computing the pairwise Euclidean distances
with 9,950 features is not efficient. In order to compute the
similarity between samples and finding the nearest neighbors, we
used a measure called Extended Frobenius Norm (EROS). This
measure computes the similarity between two multivariate time
series (MTS) (Yang and Shahabi, 2004). fMRI data consists of
several regions each having a time series so we can consider it as a
multivariate time series. Our previous study on ADHD disorder
has shown that EROS is an effective similarity measure for fMRI
data and using it along with k-Nearest-Neighbor achieves high
classification accuracy (Eslamiand Saeed, 2018b). This motivated
us to utilize it as part of the data augmentation process. EROS
computes the similarity between two MTS items A and B based
on eigenvalues and eigenvectors of their covariance matrices
using the following equation:

EROS(A,B,w) = Y1y w;|(ai, by)|

= Y"1, wilcosoi| (8)

where, 0; is the cosine of the angle between iy, corresponding
eigenvectors of covariance matrices of multivariate time series A

and B. Furthermore, w is the weight vector which is computed
based on eigenvalues of all MTS items using Algorithm 1.
This algorithm computes the weight vector w by normalizing
eigenvalues of each MTS item followed by applying an aggregate
function f (here, we used mean) to all eigenvalues over the
entire training dataset and finally normalizing them so that

Z?:l wi = 1.

Algorithm 1: Computing weight vector for EROS (Yang and
Shahabi, 2004)

Input: An n x N matrix S, where # is the number of variables for
the dataset and N is the number of MTS items in the dataset.
Each column vector s; in S represents all the eigenvalues for iy,
MTS item in the dataset. s;; is a value at column i and row j in S.
Sgi 18 i, row in S. s;4 is iy, column

: fori=1to N do
sj < si/ Z}‘:lsij
end for
: fori=1tondo
wi < f(s4)
end for
: fori=1tondo
Wi <— W,'/ Z?:l Wj
. end for

R N A L e

Algorithm 2: Data augmentation using EROS similarity measure

Input: Training dataset of size N

1: fori=1to N do

2 Find 5 nearest neighbors to i using EROS

3 j < A random sample among nearest neighbors
4 r <— Random number in the range [0, 1]

5 Xy < axx+(1—a)xx

6: end for

The dimension of each sample’s covariance matrix is m x
m, where m is the number of brain regions. The covariance
matrix of each subject is pre-computed in the beginning and
is re-used when the sample is selected as a candidate. In order
to further reduce the time needed for computing the pairwise
similarities, we considered using the first two eigenvectors of each
sample. Our experiments showed that this simplification does not
affect the results while reducing the running time significantly
compared to using all eigenvectors and eigenvalues.

Now, using EROS as the similarity measure, our data
augmentation process is shown in Algorithm 2. After finding
k = 5 nearest neighbors of each sample i in the training set, one
of them is randomly selected, a new sample is generated using
linear interpolation between the selected neighbor and sample i.
Choosing k = 5 was based on the original implementation of
SMOTE algorithm (Chawla et al., 2002). Our experiments did
not show a significant change in the results when using different
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Select a sample p

Find the k-nearest neighbors of p
and select one of them randomly

Generate a new sample ¢, using
linear interpolation between p and g,

P
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(qr). Step (3) Generate new sample p” using p and g, by linear interpolation.

FIGURE 2 | Generating new artificial data: Step (1) Selecting a sample (). Step (2) Find k-nearest neighbors of p from the same class, and pick one random neighbor

values of k. Using this approach, one synthetic sample is created
for each training point which results in doubling the size of the
training set. Figure 2 shows the data augmentation process and
Figure 3 shows the overall process of ASD-DiagNet method.

3. EXPERIMENTS AND RESULTS

For all the experiments reported in this section, we used a Linux
server running Ubuntu Operating System. The server contains
two Intel Xeon E5-2620 Processors at 2.40 GHz with a total 48
GBs of RAM. The system contains an NVIDIA Tesla K-40c GPU
with 2,880 CUDA cores and 12 GBs of RAM. CUDA version 8
and PyTorch library were used for conducting the experiments.

We evaluated ASD-DiagNet model in two phases by
performing k-fold cross validation. In the first phase, the model
was evaluated using the whole 1,035 subjects from all sites
and in the second phase, the model was evaluated for each
site separately. As stated earlier, data centers may have used
different experimental parameters for scanning fMRI images,
so considering all of them in the same pool determines how
our model generalizes to data with heterogeneous scanning
parameters. On the other hand, by considering each data center
separately, fewer subjects are available for training the model and
the results indicate how it performs on small datasets. In each of
these experiments, the effect of data augmentation is evaluated.

The value of k in k-fold cross validation must be chosen such
that train/test partitions are representative of the whole dataset.
Since the whole dataset contains a lot more samples than each
individual site, using a large value of k like 10 in k-fold cross
validation provides more samples in the training process. This
helps the model to capture more information from the data while
leaving enough test samples to measure the ability of the model
in classifying unseen data. On the other hand, we are dealing
with a small number of samples in some of the sites, for example,
CMU which only contains 27 samples. Hence performing k-fold
cross validation with large values of k like 10 results in only
2-3 samples in test set and increases the variance of cross-
validation estimation, so we chose k = 5 when analyzing each
site separately. Other studies such as Heinsfeld et al. (2018) used
the same values of k for performing k-fold cross validation.

We report accuracy, sensitivity, and specificity of different
methods for evaluating their classification performance.

Accuracy measures the proportion of correctly classified subjects
(actual ASD classified as ASD and actual healthy classified as
healthy). Sensitivity represents the proportion of actual ASD
subjects which are correctly classified as ASD and specificity
measures the proportion of actual healthy subjects which are
classified as healthy. We also compared the performance of each
model’s diagnostic test by their Receiver Operating Characteristic
(ROCQ) curves. The area under ROC curves (AUC) shows the
capability of the model for distinguishing between ASD and
healthy subjects based on different thresholds. The higher AUC
value indicates that the model is better in distinguishing between
ASD and healthy subjects. We compared the performance
of ASD-DiagNet with three other baselines: SVM, random
forest and the method proposed by Heinsfeld et al. (2018).
Hyperparameter tuning for SVM and random forest classifiers
are performed by grid search technique. Hyperparameters such
as kernel type, regularization constant (C), kernel coefficient
(y) for SVM, and the number of trees as well as the function
to measure the quality of a split for random forest are tuned
using grid search. SVM and random forest were trained using
19,900 pairwise Pearson’s correlations for each subject. The
implementations of the grid search, SVM, and random forest are
carried out using the built-in functions provided by scikit-learn
library. In order to speed up the grid search, it is parallelized on
10 cores.

The following subsections explain each experiment in
more details.

3.1. Phase 1: Experiments Using the Whole

Dataset

In this phase, we performed 10-fold cross-validation on the whole
1,035 subjects using CC-200 atlas. Table 2 compares accuracy,
sensitivity, and specificity of our approach with Heinsfeld et al.
(2018), random forest, and SVM. As the results show, ASD-
DiagNet achieves 70.3% which outperforms other methods.!
The proposed data augmentation helps to improve the results by
around 1%. Based on Figure 4, ASD-DiagNet (with and without

!We like to mention that Heinsfeld et al. (2018) reported 70% accuracy in their
paper, however, the accuracy we reported here is the result of running their
method on our system using their default parameters and the code they provided
online. The different results observed here could be due to some missing details in
the implementation.
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FIGURE 3 | Workflow of ASD-DiagNet: (A) Pairwise Pearson’s correlations for each subject in the training set is computed. The average of all correlation arrays is
computed and the position of 1/4 largest and 1/4 smallest values in the average array is considered as a mask. Masked correlation array of each sample is
considered as its feature vectors. (B) A set of artificial samples is generated using the feature vectors of training samples. (C) Autoencoder and SLP are jointly trained
by adding up their training loss in each iteration. (D) For a test subject, the features are extracted using the mask generated in part A, followed by passing the features
through the encoder part of the autoencoder, and finally predicting its label using the trained SLP.

TABLE 2 | Classification performance using 10-fold cross-validation on the whole
dataset; Note that our proposed approach, ASD-DiagNet (with data
augmentation) achieves the highest accuracy among other methods.

data augmentation) achieved higher area under comparing to
other methods.

3.2. Phase 2: Intra-Site Evaluation

Method Accuracy Sensitivity Specificity

In this phase, we performed 5-fold cross-validation on each site
ASD-DiagNet 70.3 68.3 72.2 separately using CC-200 atlas. The accuracy of each method
ASD-DiagNet (no aug.) 69.4 69.6 69.2 is provided in Table 3. Based on these results, our method
SVM 68.3 64.4 70 achieves the highest accuracy in most cases (10 out of 17 sites)
Random forest 66.3 60.8 714 and outperforms other methods on average. In addition, note
Heinsfeld et al., 2018 65.4 61 69.3 that the proposed data augmentation helps improving the result

around 3% overall. Especially, for OHSU, the data augmentation
Bold values show the highest accuracy among all methods. improves the accuracy significantly (10% increase). However, in
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a couple of datasets no improvement is observed (e.g., MaxMun).
These datasets have shown low prediction accuracy by other
methods as well. In these cases, the artificial data generated
by data augmentation does not improve the results since the
functional connectivity of the original data does not carry enough
discriminatory information that can be used by the classifiers.

3.3. Running Time
We measured the running time of performing 10-fold cross
validation by different approaches. The training and evaluation

1.0 4 J—
0.8 -
]
&
& 0.6
2
.‘v:“'
o
‘; 0.4 1
2 7 — = Heinsfeld et al. (2018) (AUC = 0.720 )
= ; —— ASD-DiagNet (AUC = 0.764 )
021 4 ... ASD-DiagNet(no-aug) (AUC = 0.760 )
5’ Random Forest (AUC = 0.717 )
0.0 SVM (AUC = 0.753 )

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 4 | ROC curves of different methods for classification of whole
dataset using CC-200 parcellation.

TABLE 3 | Classification accuracy using 5-fold cross-validation on individual data
centers using our proposed method, ASD-DiagNet (with and without data
augmentation), compared with other methods.

Site ASD- ASD- SVM Random-
DiagNet  DiagNet Heinsfeld Forest
(no et al., 2018
aug.)

Caltech 52.8 49.9 52.3 46.9 54.2
CMU 68.5 67.4 45.3 66.6 62.4
KKI 69.5 68.6 58.2 66.4 66.6
Leuven 61.3 57 51.8 59.8 59.8
MaxMun 48.6 51.4 54.3 53.8 49.2
NYU 68 65.1 64.5 71.4 61.8
OHSU 82 71.9 74 79.4 54.3
Olin 65.1 58.8 44 59.5 52.2
Pitt 67.8 65.9 59.8 66.3 59.9
SBL 51.6 47.5 46.6 60 48.3
SDSU 63 61.3 63.6 58.7 62.7
Stanford 64.2 53 48.5 51.4 62.1
Trinity 541 51.2 61 53.1 54.5
UCLA 73.2 70.3 57.7 721 69.3
USM 68.2 65.1 62 73.2 58
UM 63.8 65.7 57.6 64.2 64.8
Yale 63.6 61.7 53 61.6 55.3
Average 63.8 60.7 56.1 62.6 58.6

for all methods are performed on the same Linux system
(described in section 3). The running time needed by each
method is as follows: 41 min by ASD-DiagNet, 20 min by ASD-
DiagNet (no aug.), 7 h and 48 min by SVM, 17 min by random
forestand 6 h by Heinsfeld et al. (2018). As can be observed, ASD-
DiagNet performs significantly faster than SVM and Heinsfeld
et al. (2018). The data augmentation doubles the size of the
training set by generating one artificial sample per subject in
the training set. As a result, the data augmentation increases the
computation time by a factor of 2.

3.4. Experiment on Other Parcellations

We tested ASD-DiagNet on two other ROI atlases besides CC-
200: Automated Anatomical Labeling (AAL) and Talaraich and
Tournoux (TT) which parcellate the brain into 116 and 97
regions respectively. The data for these parcellations is provided
by ABIDE-I consortium. Similar to CC-200 atlas, for each
parcellation, half of the correlations (keeping the 1/4 largest and
1/4 smallest values, and removing the rest intermediate values)
are selected as input features to the model. The resulting average
accuracy, sensitivity, and specificity of performing 10-fold cross-
validation on the whole dataset using different approaches for
AAL and TT are shown in Tables 4, 5.

For AAL parcellation, ASD-DiagNet and SVM outperform
other techniques with the classification accuracy of 67.5%
and achieve competitive result for TT atlas. Note that the
classification accuracy obtained using these parcellations are
below the accuracy obtained using CC-200 atlas, which implies
that the pairwise correlations among CC-200 regions contain
more discriminatory patterns than AAL and TT atlases. Based on
Figures 5, 6, SVM and ASD-DiagNet achieved higher AUC than
other methods.

TABLE 4 | Classification accuracy using 10-fold cross-validation on the whole
dataset based on AAL atlas.

Method Accuracy Sensitivity Specificity
ASD-DiagNet 67.5 63.4 71.5
ASD-DiagNet (no aug.) 64.5 60.9 68
SVM 67.5 63.9 70.9
Random forest 65 56.8 72.7
Heinsfeld et al., 2018 63.3 58.6 67.8

Bold values show the highest accuracy among all methods.

TABLE 5 | Classification accuracy using 10-fold cross-validation on the whole
dataset based on TT atlas.

Method Accuracy Sensitivity Specificity
ASD-DiagNet 65.3 63.4 66.9
ASD-DiagNet (no aug.) 65.2 61.1 69
SVM 66.4 61.6 71
Random forest 65.1 60.3 69.7
Heinsfeld et al., 2018 63.2 59.8 66.4

Bold and color values corresponds to highest accuracy achieved among all datasets.

Bold values show the highest accuracy among all methods.
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TABLE 6 | Classification accuracy using 10-fold cross-validation on the subjects
1.0 A below the age of 15.
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FIGURE 5 | ROC curves of different methods for classification of whole
dataset using AAL parcellation.
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3.5. Experiments on Young Age Group
Diagnosing ASD at early ages and starting medical treatment can
have a positive effect on the patient’s life. In this experiment,
we evaluated our proposed method as well as other baselines
on subjects below the age of 15 (550 subjects in ABIDE
dataset containing 448 males and 102 females) using CC-
200 atlas. Considering this subset of subjects, the classification
performance, as well as ROC curves of performing 10-fold
cross-validation of different methods are provided in Table 6
and Figure 7.

As can be observed from the results, ASD-DiagNet achieves
higher accuracy as well as higher AUC value compared to other
methods. The overall accuracy is around 2% below the accuracy
achieved for classification of the whole dataset, which we believe
is due to the smaller training set.

4. CONCLUSION AND FUTURE WORK

In this paper, we targeted the problem of classifying subjects
with ASD disorder from healthy subjects. We used fMRI data
provided by ABIDE consortium, which has been collected from
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FIGURE 7 | ROC curves of different methods for classification of subjects
below the age of 15 using CC-200 parcellation.

different brain imaging centers. Our approach, called ASD-
DiagNet, is based on using the most correlated and anti-
correlated connections of the brain as feature vectors and using
an autoencoder to extract lower dimensional patterns from them.
The autoencoder and a SLP are trained in a joint approach for
performing feature selection and classification. We also proposed
a data augmentation method in order to increase the number of
samples using the available training set. We tested this method
by performing 10-fold cross-validation on the whole dataset and
achieved 70.3% accuracy in 40 min. The running time of our
approach is significantly shorter than 6 h needed by the state of
the art method while achieving higher classification accuracy. In
another experiment, we evaluated our method by performing 5-
fold cross-validation on each data center, separately. The average
result shows significant improvement in accuracy compared to
the state of the art method. In this case, data augmentation helps
to improve the accuracy by around 3%. A different range of
accuracies can be observed among sites, from low accuracies in
sites such as Caltech and MaxMun to higher accuracies for OHSU
and UCLA. The variable accuracy among different sites can also
be observed in other studies (Nielsen et al., 2013; Heinsfeld et al.,
2018). It should be noted that the protocols and parameters used
for scanning the subjects are heterogeneous among sites, which
can cause variability in the functional patterns among different
subjects. Also, the difference in demographic information among
the datasets, such as age, IQ, and gender, makes the data
distribution different among them. These differences could be
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the reason for variable accuracies. We will consider this issue in
our future works by involving the demographic information of
the samples in data augmentation and the learning process. This
will help the classifier to learn associations between functional
connectivity patterns and demographic features which decreases
the disparity among accuracies of different sites. We will
also analyze other parcellations such as Power-264 by Power
et al. (2011). The functional network constructed using this
parcellation has shown promising results in diagnosing brain
disorders (Greene et al., 2016; Khazaee et al., 2016).

Overall, experiments on different parcellations as well as
subjects below the age of 15 show higher accuracy and AUC value
for ASD-DiagNet comparing to other methods. These results
demonstrate that our approach can be used for both intra-site
brain imaging data, which are usually small sets generated in
research centers, and bigger multi-site datasets like ABIDE in a
reasonable amount of time.

While our model has shown promising results for diagnosing
ASD disorder, there is still room for improvement by fusing
structural and phenotypic information of the subjects to the
functional patterns and creating hybrid features. Combination
of discriminatory information provided by these three sources
could increase the prediction accuracy of ASD. We consider
this feature fusion as one of the future directions of our study.
Another direction that we will pursue is improving the data
augmentation strategy. Overall, the proposed data augmentation
has improved the accuracy by generating synthetic data, but in a
couple of cases low or no improvement is observed. Optimizing
the current data augmentation method and considering the
structural and phenotypic data for generating new samples could
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