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ABSTRACT

Quantitative analysis of brain disorders such as Autism Spectrum
Disorder (ASD) is an ongoing field of research. Machine learning
and deep learning techniques have been playing an important role
in automating the diagnosis of brain disorders by extracting dis-
criminative features from the brain data. In this study, we propose a
model called Auto-ASD-Network in order to classify subjects with
Autism disorder from healthy subjects using only fMRI data. Our
model consists of a multilayer perceptron (MLP) with two hidden
layers. We use an algorithm called SMOTE for performing data
augmentation in order to generate artificial data and avoid overfit-
ting, which helps increase the classification accuracy. We further
investigate the discriminative power of features extracted using
MLP by feeding them to an SVM classifier. In order to optimize
the hyperparameters of SVM, we use a technique called Auto Tune
Models (ATM) which searches over the hyperparameter space to
find the best values of SVM hyperparameters. Our model achieves
more than 70% classification accuracy for 4 fMRI datasets with the
highest accuracy of 80%. It improves the performance of SVM by
26%, the stand-alone MLP by 16% and the state of the art method
in ASD classification by 14%.

The implemented code will be available as GPL license on GitHub
portal of our lab (https://github.com/PCDS).
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1 INTRODUCTION

Diagnosing brain disorders such as Alzheimer’s, Mild Cognitive Im-
pairment (MCI), Attention Deficit Hyper Activity Disorder (ADHD)
and Autism Spectrum Disorder (ASD) using machine learning and
deep learning techniques is an ongoing field of research [7, 11,
15, 17, 19, 29]. In this study, we focus on ASD disorder which is
diagnosed in more than 1% of children. ASD is a neurological and de-
velopmental brain disorder which affects the social communication
and behaviour of the children. This disorder is not curable and con-
tinues to adulthood. ASD diagnosis currently relies on traditional
methods like screening the child’s behaviour and interviewing par-
ents [25]. These methods are error prone which may cause harmful
side effects due to overprescribing drugs [27]. In order to diagnose
brain disorders like ASD in a more quantitative manner, research
has been pushed towards analyzing brain imaging data such as
Magnetic Resonance Imaging (MRI) and functional Magnetic Reso-
nance Imaging (fMRI) using machine learning and deep learning
techniques.

Generally, MRI and fMRI techniques, provide images from dif-
ferent levels of the brain which are widely used as the input of
machine learning techniques. In fMRI data, the brain is divided into
small cubic elements called voxels and the activity of each voxel
over time is extracted as a time series. The statistical association
between two voxels which is also known as their functional connec-
tivity is defined as the correlation between their time series values.
Pearson’s correlation is the most widely used measure for comput-
ing functional connectivity and is calculated using the following
equation:
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In which u and v are two time series of length T and @ and ©
correspond to their mean value respectively.
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Alteration in functional connectivities may cause different brain
disorders such as Alzheimer’s, Schizophrenia, and other disor-
ders [21, 24] which motivated us to consider functional connectivi-
ties as the features of our model.

Autism Brain Imaging Data Exchange (ABIDE) initiative has pro-
vided a dataset containing fMRI and MRI data generated from 1112
healthy control and ASD subjects. The data is coming from 17 differ-
ent brain imaging centers. Researchers have come up with new tech-
niques for diagnosing ASD using MRI [18] and fMRI [1, 6, 14, 16]
data provided by ABIDE repository. Some of these techniques are
based on conventional machine learning techniques such as Support
Vector Machines (SVM) and Random Forest [1, 3, 12]. For example,
Bi et al [3], used the random SVM cluster for classification of healthy
from ASD subjects. Various studies used the demographic informa-
tion of the subjects such as age, IQ, and handness in their methods
or selected subsets of subjects with specific attributes in their anal-
ysis. For instance, Parisot et al. [26], represented the population
of the subjects as a graph in which imaging features correspond
to vertices and phenotypic information of the subjects define the
weights of the edges connecting them to each other. There are few
studies such as [14] which used only fMRI data without considering
any demographic information in their analysis. Using only fMRI
data for classifying ASD vs healthy subjects provides a tool for
clinicians to assist them in decision making process without being
biased with other demographic information. Although including
other information may increase the prediction accuracy, our goal is
to rely solely on brain fMRI data for detecting ASD disorder, which
is a more challenging task.

Deep Learning techniques such as Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN) and Autoencoders
have gained astonishing success in the past few years in many differ-
ent areas including computer vision, speech recognition, health care
and etc. Different deep learning based methods are also proposed
for diagnosing ASD [2, 4, 10, 13, 20, 23]. For example, Devornel
et al. [10] used Long Short-Term Memory Networks (LSTMs) and
obtained 68.5% classification accuracy. Heinsfeld et al. [14] used
two denoising autoencoders in order to extract a lower dimensional
feature vector from the data and used their weights as the initial
weights of an MLP. Fine-tuning the MLP resulted in 70% classifi-
cation accuracy. To the best of our knowledge, this method is the
state of the art technique in ASD classification of whole ABIDE
dataset.

Deep Learning models contain a huge number of parameters that
should be optimized during the learning process. Providing large
training data for deep learning models, makes them more general
to unseen data and avoids problems like overfitting. Unfortunately,
large datasets are not always available. This is the case in the field
of neuroimaging in which scanning subjects and generating more
data is a time consuming and costly task. In such cases, techniques
like data augmentation can be useful. Data augmentation methods
are shown to be helpful in reducing overfitting and generalizing
deep learning models [22].

In this paper, we propose a deep learning based approach for
classification of healthy subjects from ASD patients by only using
fMRI data and without considering any demographic information.
In order to increase the number samples and avoid overfitting, we
augment artificial data into training set using a technique called

Synthetic Minority Over-Sampling (SMOTE) [5]. SMOTE was origi-
nally proposed in order to oversample minority class in imbalanced
datasets. In this study, we use SMOTE in order to oversample both
healthy and ASD class to double the size of the training set, although
the datasets we use here are almost balanced in terms of ASD and
healthy subjects. We also investigate the effectiveness of the fea-
tures extracted using the deep learning model. To do this, besides
doing experiments on the deep learning model as a classifier, we
use its hidden layer which contains extracted features, as the input
to SVM classifier. Considering that SVM has some hyperparameters
like kernel function and penalty which their optimal values are
not known beforehand, we use a method called Auto Tune Models
(ATM) to automate the hyperparameter tuning process. Our experi-
ments show significant improvement in classification accuracy by
using the oversampling technique and using SVM.

2 DEEP LEARNING BASED MODEL FOR ASD
CLASSIFICATION

The model that is used in this study is a multilayer perceptron with
two hidden layers (Fig 2 part D). The input layer of the network re-
ceives the pairwise Pearson’s correlation coefficients of all regions
in the brain (functional connectives) computed using equation 1.
Since Pearson’s correlation have a symmetric property, instead of

using N? pairwise correlations, we use distinct correla-

tions extracted from upper triangle (or lower triangle) part of the
correlation matrix and avoid redundant values. Here N refers to
the number of brain regions.

Assuming x; is the input of layer i, W; is the vector of weights
connecting the nodes in layer i to to the nodes in layer i + 1 and b;
as bias value of that layer, layer i + 1 is activated using the following
equation:

zi+1 = f(Wixi + b;) (2)
In which f is the rectifier activation function (ReLU) defined as:
fx) = x7 = max(0, x) (3)

Softmax function is finally applied to the final output layer, which
determines the probability that the input feature vector corresponds
to each classes. Softmax function is computed using the following
equation.
e

Zj 5 j?:l s (4)
In which z; corresponds to the activation of node i. Since in our
problem there are two classes (associated with ASD and Healthy
groups), the value of k in equation 4 is equal to 2. The node with
the highest probability determines the class. The classification loss
is then computed using negative log likelihood function as L; =
—log(p;) In which p; is the probability of correct class computed
using the softmax function. The value of the loss is used to optimize
the parameters of the network using backpropagation algorithm.

2.1 Oversampling Using SMOTE

As mentioned earlier, deep learning methods need a large amount
of data in order to generate reliable results. One issue we are fac-
ing in our classification problem is the lack of enough data, such
that each dataset contains less than 200 samples. This motivated



us to generate synthetic samples using available data in order to
improve the quality of the model and avoid overfitting. There are
some traditional data augmentation methods in the field of com-
puter vision such as rotating and flipping images, to generate extra
training data, but these techniques will not work in our problem
since the nature of features we are using are completely different
than images. Instead, we use a method called SMOTE which was
originally proposed for oversampling the minority class in imbal-
anced datasets [5]. In this method, the oversampling is performed
by generating one or more synthetic samples per training point
in the minority class. For each sample in the minority class, an
artificial sample is generated by linear interpolation between two
points randomly selected from its k nearest neighbors. This process
is repeated for each sample based on the desired number of artificial
data. In our proposed approach, we utilize this method for gener-
ating one artificial point per existing samples in the training set.
Since the length of our features is quite long, we skipped finding k
nearest neighbors and instead, picked candidate samples randomly
from the same class as the original sample. This process results
in doubling the size of the training set and improving the predic-
tion performance which will be discussed more in the experiments
section.

2.2 Hyperparameter Tuning using ATM

Hidden layers in a deep neural network are known for learning
complex features from the input data. The final layer of the network
receives these extracted features from previous layers and performs
the classification. We hypothesized that using these features com-
bining with other classification methods such as SVM could result
in high accuracy since SVM is known as a very effective method
in fMRI classification. In this way, we combine the power of deep
learning for extracting features and benefit from the well known
SVM method. SVM classifier has different set of hyperparameters,
for example the penalty parameter, kernel function and parame-
ters related to specific kernels such as the degree of polynomial
in the polynomial kernel function. In order to find the optimal hy-
perparameters for SVM, we used a tool called Auto-Tuned Models
(ATM) [28]. ATM is a scalable multi-method and self optimizing
tool which automates and optimizes the hyperparameter tuning
process of machine learning algorithms.

ATM implements a parameter-search algorithm by partitioning
the hyperparameter space using a conditional-parameter tree (CPT).
Each branch of the CPT corresponds to fixed hyperpartitions. An ex-
ample of CPT for SVM classifier is shown in figure 1. After building
the CPT, ATM performs parameter search in two steps. In the first
step, the hyperpartitions are selected based on multi-armed bandit.
Then, the hyperparameters within each partition are tuned based
on Gaussian Process technique. ATM provides different options for
tuning hyperpartitions (uniform, multi-armed bandit, hierarchical
multi-armed bandit, etc.) and hyperparameters (uniform, Gaussian
Process, etc.)

ATM provides a parameter called budget for resource allocation.
It could be defined as either the total computation time, or the total
number of classifiers to try. For this study, we set the budget to 50
classifiers. After hyperparameter tuning by ATM is finished, we use
the top 10 classifiers with the highest Cross-Validation accuracy on

C (penalty’

term) Kernel
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Figure 1: Example of CPT for SVM classifier

Table 1: Class membership information of ABIDE-I fMRI
dataset for each individual site

Site NYU OHSU USM UCLA
ASD 75 12 46 54
Healthy control | 100 14 25 44

training set as the candidate classifiers, and perform the ensemble
classification with a voting mechanism to predict the label of each
test sample.

3 EXPERIMENTS AND RESULTS
3.1 ABIDE dataset

As mentioned earlier, ABIDE initiative has gathered and prepro-
cessed brain imaging data from ASD as well as healthy subjects
from different brain imaging centers [8]. While different pipelines
are used for preprocessing the data, in this study, we used C-PAC
pipeline in which preprocessing steps include motion correction,
slice timing correction, nuisance signal removal, low frequency
drifts, and voxel intensity normalization. ABIDE also provided
seven different parcellation methods in which the brain is par-
cellated to several different regions. The data that we used for this
study is parcellated to 200 regions using spatially constrained spec-
tral clustering algorithm [9]. It is worth mentioning that each data
center generated brain imaging data using different parameters and
scanning protocols. Parameters like repetition time (TR), echo time
(TE), and openness or closeness of the eyes during the scan are
different among each data center. We used 4 datasets from ABIDE-I
repository for conducting our experiments. The class membership
information of the datasets are shown in table 1.

3.2 Classification performance

In order to measure the classification performance of our proposed
method, we performed 5-fold Cross-validation and compared the
average accuracy, sensitivity and specificity of each method. Consid-
ering TN as the number of correctly classified healthy subjects, TP
as correctly diagnosed ASD subjects, FP as falsely diagnosed with
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Figure 2: Overall classification framework of Auto-ASD-Network: A) Time series are extracted from different regions. B) Pair-
wise functional connections are computed using Pearson’s correlation. C) Artificial data is generated in feature space by ap-
plying SMOTE algorithm on training data D) multilayer perceptron is trained using training data (This Model can be used for
final classification or features can be extracted from the hidden layer and sent to part E. E) ATM is used for finding the best
parameters of SVM on features extracted from MLP in Part D. Top 10 classifiers are used for predicting the class label of a

hold-out test sample (ensemble classification).

ASD and FN as ASD subjects diagnosed as healthy, accuracy of clas-
TP+TN TP

TP+ TN + FP+FN’
TN

sifier is defined as sensitivity as

TP+ FN

d ificit —_—.
and specificity as

3.3 List of methods

For all methods listed in this section, the feature vector of each
sample is the set of Pearson’s correlation coefficients between time
series of each pair of brain regions. Since the fMRI data that we

use is parcellated to 200 regions, each feature vector contains 19900

200 x 199
(———) distinct pairwise correlation coefficients. The methods

that are evaluated for ASD classification are as follows: Method 1:
Ref. [14]

In this method, first, two denoising autoencoders extract a lower
dimensional representation from the input data. Then, the weights
of the autoencoders are used as initial weights of an MLP. This MLP
is trained on the input data and is used for the final classification.
Method 2: SVM

SVM is used as the first baseline classifier which is trained on the
original input data (19900 pairwise correlation coefficients).
Method 3: SVM-ATM

SVM is used as the classifier which is trained on the original input
data. SVM hyperparameters are tuned using ATM technique.
Method 4: MLP

MLP is used as the second base classifier which is trained on origi-
nal input data.

Method 5: MLP-DA

MLP is used as the second baseline classifier which is trained on



original data as well as artificial data generated using SMOTE algo-
rithm.
Method 6: MLP-SVM-ATM
Similar to methods 1 and 2, however, the input data to SVM are
features that are extracted from the hidden layer of MLP. In this
case, MLP is trained by using only original data and no data aug-
mentation is performed. Parameters of SVM are optimized using
ATM.
Method 7: Auto-ASD-Network
Similar to method 6, SVM is used as the final classifier which re-
ceives its input from the last hidden layer of the MLP, with the
addition of the data augmentation using SMOTE for training the
MLP. Parameters of SVM are optimized using ATM.

All the experiments reported in this section are performed on
a Linux system containing two Intel Xeon E5-2620 Processors at
2.4 GHz and total 48 GBs of RAM. The system contains an NVIDIA
Tesla K-40c GPU with 2880 CUDA cores and 12 GBs of RAM. CUDA
version 8 and PyTorch library were used for performing the experi-
ments.

3.4 Evaluating the effect of ATM

In the first experiment, we evaluated the effect of hyperparam-
eter tuning using ATM. Table 2 shows the classification perfor-
mance of SVM with and without hyperparameter tuning (SVM and
SVM-ATM). According to the results in Table 2, ATM significantly

Table 2: Performance comparison of traditional SVM and
SVM optimized using ATM (SVM-ATM)

Site | Method | Accuracy Sensitivity Specificity
OHSU SVM 54 0 100
SVM-ATM 72.3 56.6 83.3
NYU SVM 57.1 0 100
SVM-ATM 69.1 53.3 81
USM SVM 64.7 100 0
SVM-ATM 69.6 84.3 42
UCLA SVM 55.1 100 0
SVM-ATM 72.2 83.8 57

improves the performance of SVM classifier. Without tuning hyper-
parameters, for all datasets either sensitivity or specificity is equal
to zero, which means that all test subjects are classified either as
healthy or ASD.

3.5 Evaluating the effect of data augmentation

In this experiment, we examined the performance of deep neural
network as a classifier, with and without performing data augmen-
tation (i.e. MLP and MLP-DA). We also measured the performance
of hyperparameter tuned SVM trained using the features extracted
from MLP (i.e. MLP-SVM-ATM and Auto-ASD-Network). The re-
sults are shown in Table 3.

As the results imply, data augmentation improves the perfor-
mance of MLP classifier by increasing classification accuracy. Data
augmentation also helps the network to provide better features

Table 3: Performance comparison of different methods with
and without data augmentation

Site Method Accuracy Sensitivity Specificity
OHSU Ref. [14] 74 66.6 86.6
MLP 64 62.5 61.6
MLP-DA 74.3 74.1 70.8
MLP-SVM-ATM 78 67.3 84.6
Auto-ASD-Network 80 73 83
NYU Ref. [14] 64.5 78 46
MLP 68.5 44 87
MLP-DA 70 65.1 71.5
MLP-SVM-ATM 69.7 57.3 79
Auto-ASD-Network 70 57.9 79.2
USM Ref. [14] 62 20 84
MLP 64 100 0
MLP-DA 70 70 53.7
MLP-SVM-ATM 72.3 85 42
Auto-ASD-Network 72.4 87.3 45
UCLA Ref. [14] 57.7 58 57.4
MLP 71.9 76.7 64.8
MLP-DA 72.7 77.6 65.2
MLP-SVM-ATM 70.6 75.6 63.6
Auto-ASD-Network 72.2 82.3 59.8

for SVM classifier, as the performance of Auto-ASD-Network is
better than MLP-SVM-ATM. Overall, among the 4 datasets that we
used, Auto-ASD-Network outperforms other methods as it shows
almost equal or higher accuracy. For OHSU dataset, Auto-ASD-
Network significantly outperforms all other methods and achieves
80% accuracy.

3.6 Running Time

Table 4: Running time of each method

Method Running time
Ref [14] 7 min
SVM 4 sec
SVM-ATM 11.25 min

MLP 2.5 min
MLP-DA 4.8 min
MLP-SVM-ATM 5.3 min
Auto-ASD-Network 7.6 min

We measured the running time of different methods on UCLA
dataset which is shown in Table 4. Among all methods, SVM with no
hyperparameter tuning has the fastest running time but the worst
performance. Using ATM for optimizing SVM hyperparameters



trained on original feature vectors (19900 pairwise correlations) is
the most time-consuming method since ATM needs to train the SVM
several times with a large number of features. Data augmentation
almost doubles the running time due to the increasing number of
training samples.

4 CONCLUSION AND FUTURE WORK

In this paper, we focus on the classification of Autism Spectrum Dis-
order which is on the rise among children. We propose a method
called Auto-ASD-Network, in which we use the power of deep
learning for extracting useful patterns from the data as well as dis-
criminative power of Support Vector Machines classifier which is a
very well known approach in brain disorder classification. Features
extracted from the deep learning model are used as the input to
the SVM classifier. In order to increase the generalizability of those
features and considering the fact that deep learning methods are
prone to overfitting, we employ a data augmentation method using
an oversampling technique called SMOTE and double the number
of items in the training set. We also use a tool called ATM in order
to optimize the hyperparameters of SVM classifier using training
features extracted by the deep neural network. We achieve more
than 70% accuracy for 4 different datasets. Auto-ASD-Network sig-
nificantly improved the results of original deep neural network
(improved by 16%), SVM (improved by 26%) and state of the art
classifier (improved by 14%) with the maximum accuracy of 80%.

For the future work of this study we will be focusing on design-
ing novel deep learning based models which are able to diagnose
the severity of ASD. We will also improve the performance of
deep learning techniques by designing new data augmentation and
simulation methods in order to increase the generalization of the
deep-learning methods used in the diagnosis and the classification
of mental disorders.
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