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ABSTRACT This paper proposes a distributed dynamic state estimation algorithm considering packet losses
in interconnected smart grid subsystems. Particularly, the distributed filter structure is developed in an
interconnected waywhere the packet dropouts occur in communication links between them. The system error
dynamic between true and estimate state is written in a compact form after combining all estimation errors.
It can be transformed into the linearmatrix inequality framework after introducing semidefinite programming
variables. Finally, the local and neighboring gains for the distributed estimator are computed after solving
the convex optimization problem. The explore method is applied to the IEEE 14-bus system. In doing this,
the state-space model of IEEE 14-bus is obtained using the Holt-Winters method. Simulation results are
demonstrated considering packet losses and cyber attacks.

INDEX TERMS Communication networks, distributed dynamic state estimation, Holt-Winters method,
interconnected subsystems, linear matrix inequality, packet dropouts, smart grids.

I. INTRODUCTION
Due to climate change, global warming and energy cri-
sis, the renewable energy resources (DERs) such as solar
cells and wind turbines are integrated into the grid. Even
though it reduces energy losses, carbon dioxide emissions,
and tariff rate, but the significant challenges arise for network
monitoring and maintaining its stability [1]. Consequently,
the electricity network requires to monitor in a distributed
way as the microgrid (for an example) is located in consumer
premises or remote areas such as mountain and river sites.
Interestingly, the unprecedented growth of the signal process-
ing and communication technology can assist the vision of the
distributed monitoring and stabilizing challenges effectively.

Actually, the system state estimation is necessary for mon-
itoring the distribution networks to achieve a stable and reli-
able grid operations [2]. However, most of the traditional
dynamic state estimation method for smart grids is cen-
tralised [3]. It not only requires a massive computational
and communication resources but also vulnerable for single
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paint failure. From the flexible and convenient point of
view, the distributed state estimation has attracted consid-
erable attention in recent years because of the ubiquitous
applications in industry, utility operator, sensor networks
and reliable energy management system design [4]. Unfor-
tunately, without coordination between adjacency estima-
tors/packet losses, the estimation provides by the different
estimators may not converge [5]. It motivates the introduction
of information sharing among estimators, so enhancing the
smart grid state estimation accuracy. In other words, this
paper addresses the distributed state estimation problem for a
discrete-time system under the condition of packet dropouts
among the neighbouring estimators without any significant
approximation.

A. RELATED WORK
In wireless sensor networks [6], the stability of continuous-
time system is analysed, where it is taken into account the
communication delays and packet dropouts. From the engi-
neering perspective, the stability analysis for a continuous-
time system is easy, while the discrete-time system is
easy to implement in the digital platforms. Early work on
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Kalman filter (KF)-based centralised estimation of discrete-
time systems include [7], in which the sensing measurements
are lost where the Bernoulli distribution is considered as a
packet dropout sequence. It derives the convergence con-
dition which is the maximum and minimum packet arrival
probabilities corresponding to the updated and predicted error
covariance matrices (upper and lower bound). The stabil-
ity analysis of networked control systems using the stan-
dard linear quadratic Gaussian (LQG) approach is proposed
in [3], [8]. Moreover, the weak convergence analysis of the
KF algorithm subject to the intermittent observations is pre-
sented in [9]. Even though it considers the Markov process
as a packet loss model, but these algorithms are suitable for
centralised power system state estimation only. Furthermore,
the extended KF-based power system dynamic state estima-
tion (centralised) is suggested in [10], [11] which considers
the unreliable link between sensors and estimators.

In the diffusion distributed state estimation, the global
estimation is combined with local estimation results with
a set of weighting parameters. First of all, the diffusion
least mean square (LMS)-based distribution estimation for
sensor networks is presented in [12]. In order to reduce the
computational complexity, the sparsity-aware LMS algo-
rithm is proposed over distributed sensor networks [13].
It exploits the l1-norm regularisation approach through adap-
tive combination of neighbouring agent weights. Even though
it algorithmic complexity is reasonable from the practical
implementation point of view, but the performance is not so
good compared with the diffusion KF algorithm.

Basically, the KF-based diffusion state estimator for sensor
networks is put forward in [12], [14]. The concept is then
extended in [15]–[19] where it considers the packet losses
and delays in measurements. Additionally, the covariance
intersection-based fusion algorithm is commonly used where
the weighting coefficients can be determined by taking the
reciprocal of locally estimated error covariances [20]–[22].
The accuracy and consistent of this method is analysed in
[20]. Essentially, the Bayesian approach to compute the
cross-covariance between two estimators and information
fusion is suggested in [23]. When there is more than two
estimators, the method is inapplicable as it can not compute
the cross-correlation between estimators. Overall, it is very
difficult to obtain the optimumweighting factors for diffusion
approach; the estimation performance depends on it. Besides,
it is quiet difficult to analysis the stability of thismethod as the
local and global estimation is computed separately. From the
prevalent point of view, the interconnected distributed state
estimation method has appreciable attention in the research
community.

From the signal processing perspective, the belief
prorogation-based distributed message passing algorithm is
proposed in [24]. However, the performance of this method
is quite similar with the KF method, but it needs enor-
mous computational complexity and difficult to analysis
the convergence [25]. The game theory-based optimal dis-
tributed approach for target tracking is proposed in [26].

This approach considers only the neighboring estimators
(including itself) and apply it for target tracking in sen-
sor networks. Thirdly, the event-triggered based distributed
H∞ state estimation is explored in [27]. It considers the
neighboring estimator is an event which occurs synchronous
and asynchronous fashion depending on the event-triggered
condition. In [28], proposes a distributed H∞ consensus-
based estimation technique using the dissipativity theory is
the sufficient condition to guarantee the stability is derived for
a continuous-time system subject to perfect communication
between estimators. Last but not least, the distributed reced-
ing horizon estimation subject to random packet dropouts is
put forward in [29]. The sufficient conditions that guaran-
tee the consensus on estimation are developed, but it only
applicable if the packet dropout process satisfies certain
conditions.

Recently, the consensus analysis in sensor networks with
periodic sensing and different switching topologies is pre-
sented in [30], but it is only suitable for a continuous-time
linear system. From the digital implementation point of view,
the consensus analysis for multi-agent systems with delay
and occasional packet dropout is proposed in [31], [32].
However, the searching feedback gain computation algorithm
is designed specifically for second order systems and applied
for stabilising the system state which assumes to be perfectly
known. The fully state feedback concept is then extended
in [33] for higher-order systems without noise, but it can be
applied for stabilising the system where it has different states
in each agents. Moreover, the distributed consensus-based
state feedback approach is proposed in [34], and it derives
the upper bound of convergence rate by selecting appropriate
quantizer parameters. Finally, a survey of recent progress
in networked control systems considering coding rate for
stabilising the system in the presence of packet losses, topol-
ogy coordination problem and communication constraints is
presented in [35]–[37]. All of the aforementioned papers,
it assumes that the system state is available, then it designs
a state feedback gain computation method for regulating the
system states. Unfortunately, the power system state such as
rotor angle and flux is usually unknown in practice, so firstly
it requires to apply a state estimation method, then the control
algorithm can be applied for stabilizing the system states if
needed. Motivated by the aforementioned research gaps, this
paper proposes a distributed state estimation algorithm con-
sidering packet dropouts among adjacency estimators without
any important approximation [38], [39].

B. KEY CONTRIBUTIONS
The specific contributions of the paper are summarized as
follows:
• Considering the packet losses in communication links
between the distributed estimators, the system error
function between true and estimate state is written in
a compact form. Inspired by the Laplacian operator
from the graph theory, the dynamic error function is
combined.
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• The local and neighbouring gains are determined
based on the convex semidefinite programming (SDP)
approach. Using the Schur complement, the designed
error dynamic is transformed into the liner matrix
inequality (LMI). After congruence transformation,
the desired optimum gains for distributed estimation
process are determined.

• The performance of the developed method is demon-
strated using the IEEE 14-bus system. In doing this, the
state-space model of smart grid is obtained using the
Holt-Winters method. It shows that the proposedmethod
can bewell estimated the system states within 0.1 second
after sharing information between the estimators despite
the packet losses among them.

Paper Outline: The remainder of this paper is organized
as follows. A system and observation model are illustrated in
Section II. In Section III, the problem is formulated for the
smart grid distributed state estimation. The proposed algo-
rithm is derived in Section IV. The power system including
the IEEE 14-bus as well as the numerical simulations are
demonstrated in Section V. This paper ends with conclusion
in Section VI.
Notations: Bold face lower and upper case letters are used

to represent vectors and matrices, respectively. Superscripts
x′ denotes the transpose of x, E(•) denotes the expectation
operator and I denotes the identity matrix with appropriate
dimension. The quantity ρ(•) denotes the spectral radius of
a matrix and ⊗ denotes the Kronecker product. Symbol ?
denotes the symmetric terms in a symmetric matrix.

II. SYSTEM AND OBSERVATION MODEL
For developing estimation scheme, consider the following
system at time instant k:

x(k + 1) = Adx(k)+ Bdu(k)+ nd (k), (1)

where x(k) ∈ Rq is the system state, u(k) ∈ Rr is the control
input, nd (k) ∈ Qq is the Gaussian process noise with zero
mean Q(k) covariance matrix, Ad ∈ Rq×q and Bd ∈ Rq×r

are constant state and input matrices.
To get measurements, the service providers deploy a set of

sensors around the physical object whose measurements are
described by i-th estimator:

yi(k) = Cx(k)+ wi(k), i = 1, 2, · · · , n (2)

where yi(k) is the measurement, C is the observation matrix
and wi(k) is the Gaussian measurement noise with zero mean
Ri(k) covariance matrix. Generally, the estimator exchanges
information with neighbour estimators through a lossy com-
munication network which causes packet dropouts [27], [30].
This is due to the fact that the packet loss is induced by the
transmission errors, delays, fading and link failures [37].

III. PROBLEM FORMULATION BASED ON
INTERCONNECTED FILTER STRUCTURE
Consider there are packet losses during exchanging infor-
mation among the neighbouring estimators in Fig. 1 [27],

FIGURE 1. Smart grid interconnected subsystems and its research
questionnaires.

[30], [31], [33]. Let Ni denotes neighbouring estimators and
αij(k) ∈ {0, 1} is the Bernoulli distribution and it is consid-
ered as a packet loss model as follows [7]:

αij(k) =

{
1, probability of λij(k),
0, probability of 1− λij(k).

(3)

Here, λij(k) is the packet dropout probability between estima-
tor i and j at time instant k . Inspired by [30], [4], [38], [39]
the proposed estimator is written as follows:

x̂i(k + 1) = Ad x̂
i(k)+ Bdu(k)+ K[yi(k)− Cx̂

i(k)]

+L
∑
j∈Ni

αij(k)[x̂j(k)− x̂i(k)]. (4)

Here, x̂i(k + 1) is the estimated state, x̂i(k) is estimated state
of the previous step, K and L are the local and neighbour-
ing gain to be designed. Overall, the pictorial view of the
system model and its research questionnaires are depicted
in Fig. 1. In future, the consensus of the proposed algorithm
will develop.

IV. PROPOSED STATE ESTIMATION ALGORITHM USING
LINEAR MATRIX INEQUALITY APPROACH
The estimation error ei define as follows [38], [39]:

ei(k) = x(k)− x̂i(k). (5)

ei(k + 1) = x(k + 1)− x̂i(k + 1). (6)

Putting (4) into (6), and using (1) as well as (2) we can obtain:

ei(k + 1) = x(k + 1)− Ad x̂
i(k)− Bdu(k)− K[yi(k)

−Cx̂i(k)]− L
∑
j∈Ni

αij(k)[x̂j(k)− x̂i(k)]

= [Ad − KC]ei(k)+ L
∑
j∈Ni

αij(k)[ej(k)− ei(k)]

+nd (k)− Kwi(k). (7)

Define Gm = [gijm]n×n is the Laplacian matrix with

gijm =


∑

j∈Ni
αijmg

ij
m, if i = j (diagonal element),

−α
ij
mg

ij
m, if (i, j) ∈ E , i 6= j (adjacence),

0, otherwise ( (i, j) /∈ E, disjoint).

(8)
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FIGURE 2. Topologies due to packet losses in communication networks.

The Laplacian Gσ (k) ∈ Gm, σ (•) : Z+ → {1, 2, · · · , S} is
a stochastic process driven by an independent and identically
distributed sequence,m = 1, 2, · · · , S where S = 2

∑n
i=1 |Ni|/2

is the total number of possible topologies and |Ni| is the
number of estimators in the neighbouring set Ni [38], [39].
To illustrate, Fig. 2 shows the different switching topologies.
It is noticed that the interconnected topology is changed
because of the unreliable communication links between the
physical connected estimators as shown in Figs. 1 and 2 [30],
[31], [33]. In this case, the packet loss probability is given
by:

φm =
∏

i=1, i<j[α
ij
m(1− λij)+ (1− αijm)λij]. (9)

Now we can define the following augmented vectors for
estimator i = 1, 2, . . . , n:

e(k) = [e′1(k) . . . e′n(k)]′,w(k) = [w′1(k) . . .w′n(k)]′. (10)

The combine error dynamic is written in a compact form:

e(k + 1) = [In ⊗ (Ad − KC)− Gσ (k) ⊗ L]e(k)

+ Innd (k)− (In ⊗ K)w(k). (11)

Here the symbol ⊗ denotes the Kronecker product. The fol-
lowing approach is used to compute the gains for distribute
estimation.

The system error dynamic is stable after minimizing the
estimation error, if the following linear matrix inequality
(LMI) holds:

A′clXAcl − X < 0, X > 0, ρ(Acl) < 1. (12)

Here, Acl = In ⊗ (Ad − KC) − Gσ (k) ⊗ L. Introducing
semidefinite programming variables,M = KX andN = LX ,
it can be rewritten into the LMI form as follows:[
−X (In ⊗ A′d )X − In ⊗ (C ′M ′)− Gk ⊗ N ′

? −X

]
< 0.

Using the above inequality, the optimization variables X,M
and N are computed. Finally, the optimum gains are deter-
mined by:

K = X−1M, L = X−1N . (13)

After computing the gains by (13), the system state estimation
is obtained using (4). The main characteristic of this proposed
method is that it does not need to approximate the error
function for computing the optimum gains. In reality, it does
not also require to calculate the computational intensive
predicted/updated error covariance matrix as it is virtually
replaced by optimization variable x. Precisely, the gains com-
putation are accurately reflected the original filter structure
in (4). This is because the error function in (11) can assist to
trace back to the original filter structure as it does not need any
approximation. In contrast, the suboptimal filter structure in
[4], it assumes that there are no neighbouring terms (L = 0)
in the error function (7) for computing the error covariance
and gain in the stability analysis. This means the gain/error
covariance expression for estimation is totally different from
the stability analysis.

V. IEEE 14-BUS STATE SPACE MODEL USING
HOLT-WINTERS METHOD AND SIMULATION RESULTS
The proposed method is applied to the IEEE 14-bus sys-
tem. In doing this, the state-space model of IEEE 14-bus is
obtained using the Holt-Winters method. Simulation results
are demonstrated considering packet losses and cyber attacks
The simulation has been carried out using the Matlab, Mat-
power [40] and YALMIP softwares [41]. Similar with [31],
[33], we consider there are n=4 interconnected estimators
as shown in Fig. 2. Obviously, there are m = 1, 2, · · · , 8
possible topologies and their Laplacian matrix are described
by:

G1=


1 − 1 0 0
−1 2 − 1 0
0 − 1 2 − 1
0 0 − 1 1

, G2=


0 0 0 0
0 1 − 1 0
0 − 1 2 − 1
0 0 − 1 1



G3=


1 − 1 0 0
−1 1 0 0
0 0 1 − 1
0 0 − 1 1

, G4 =


1 − 1 0 0
−1 2 − 1 0
0 − 1 1 0
0 0 0 0



G5 =


0 0 0 0
0 0 0 0
0 0 1 − 1
0 0 − 1 1

, G6 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



G7 =


0 0 0 0
0 1 − 1 0
0 − 1 1 0
0 0 0 0

 , G8 =


1 − 1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 .
For instance, the Laplacian matrix G1 and G2 are corre-
sponding to the topology 1 and 2 in Fig. 2, respectively. For
simulation, the Laplacian matrix is considered static.

The IEEE 14-bus system is employed to demonstrate the
performance of the proposed approach. A single-line diagram
of the IEEE 14-bus is depicted in Fig. 3. The system has
total 10 generators and 11 loads. It has the total generation
capacity 772.4MWand load capacity 259MW. Basically, the
system state vector is comprised of bus voltage magnitudes
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TABLE 1. Simulation parameters.

FIGURE 3. Single-line diagram of the IEEE 14-bus system [39], [42].

TABLE 2. The nominal values of the IEEE 14-bus system.

and phase angles. Generally, for a power system with M
buses, the system state vector x can be defined as x =
[21 22 · · · 2M , V1 V2 · · · VM ]′, where 2i is the i-th phase
angle and Vi is the i-th bus voltage magnitude. The bus 1
is a slack bus. The simulation parameters of the IEEE 14-
bus system can be found in [40]. The nominal phase angles
and bus voltage magnitudes are shown in Table 2, where the
optimal power flow is evaluated by Matpower tool using the
Newton’s method.

In order to apply the proposed method in the linear state-
space model for estimating the system states, it requires the
system state matrix A and input matrix B in (1). For com-
puting them, this paper adopts the Holt-Winters method [24],
[43], [44] which is summarised by:

A = γ (1+ β)I. (14)

B = diag[(1+ β)(1− γ )x̂(t − 1)− βa(t − 1)

+ (1− β)b(t − 1)]. (15)

FIGURE 4. Voltage magnitude V2 and its estimation.

FIGURE 5. Voltage angle θ2 and its estimation.

Here, the coefficient γ, β ∈ (1, 0), the system tuning param-
eters a(t) and b(t) are recursively computed by:

a(t) = γ x(t)+ (1− γ )x̂(t).

b(t) = β[a(t)− a(t − 1)]+ (1− β)b(t − 1). (16)

Here, a(t − 1) and b(t − 1) are the initial coefficients, x and
x̂ are the nominal and predicted states of the system.

For computing A and B in (14) and (15), this paper uses
γ = 0.5, β = 0.8, a(t − 1) = 0, b(t − 1) = 0, x̂ is
flat started (unit value) and x is nominal values which are
mentioned in Table 2. Similar with [24], this paper uses the
nominal voltagemagnitudes and phase angles. For computing
the system parameters A and B, the simulation is conducted
at time t=1 to 10. It is evident from the dynamic responses
in Figs. 4-5 that the estimation results precisely match the
actual system states within few time steps. This clearly
implies that the explored method can well reject the system
impairments, and accurately monitor the large-scale power
systems. It is worth to mention that the sharing information
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FIGURE 6. Voltage angle θ2 and its estimation considering cyber attacks.

between the connected estimators also influences to reach it
consensus on estimation despite unreliable communication
links among them. Sometime the optimal KF approach is used
to compute the local gain in case of infeasibility [45], [46].

Sometimes there is a cyber attack in the sensing mea-
surements. Considering random false data injection attacks,
the simulation result is presented in Fig. 6. It can be seen
that the proposed algorithm requires more time to recover the
system state.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a distributed dynamic state estimation
algorithm based on the linear matrix inequality approach for
smart grids. Inspired by the control theory, matrix properties
of the Kronecker product and the Laplacian operator, the pro-
posed framework is developed. The desired gains are deter-
mined by the convex optimization process, and the algorithm
is applied to IEEE 14-bus system. It shows that the estimated
state converges to the true state within 0.1 second. Therefore,
these findings are valuable for green communication, house-
holds, and provides knowledge towards the distributed energy
management system design. Future and ongoing research
includes the investigation of delays on the state estimation
performance and stabilizing the system states in a distributed
way. In future, the consensus of the proposed algorithm will
develop.
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