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SUMMARY
Traditional two-station ambient noise interferometry estimates the Green’s function between
a pair of synchronously deployed seismic stations. Three-station interferometry considers
records observed three stations at a time, where two of the stations are considered receiver–
stations and the third is a source–station. Cross-correlations between records at the source–
station with each of the receiver–stations are correlated or convolved again to estimate the
Green’s function between the receiver–stations, which may be deployed asynchronously. We
use data from the EarthScope USArray in the western United States to compare Rayleigh wave
dispersion obtained from two-station and three-station interferometry. Three three-station inter-
ferometric methods are distinguished by the data segment utilized (coda-wave or direct-wave)
and whether the source–stations are constrained to lie in stationary phase zones approximately
inline with the receiver–stations. The primary finding is that the three-station direct wave
methods perform considerably better than the three-station coda-wave method and two-station
ambient noise interferometry for obtaining surface wave dispersion measurements in terms of
signal-to-noise ratio, bandwidth, and the number of measurements obtained, but possess small
biases relative to two-station interferometry. We present a ray-theoretic correction method that
largely removes the bias below 40 s period and reduces it at longer periods. Three-station
direct-wave interferometry provides substantial value for imaging the crust and uppermost
mantle, and its ability to bridge asynchronously deployed stations may impact the design of
seismic networks in the future.

Key words: Coda waves; Seismic interferometry; Seismic noise; Seismic tomography; Sur-
face waves and free oscillations.

1 INTRODUCTION

Inter-station seismic interferometry is designed to extract an esti-
mate of the Green’s function between pairs of seismic stations or
receivers. Generally speaking, there are two established methods
to perform this task, which we will call ‘two-station interferom-
etry’ and ‘three-station interferometry’. In this paper, we attempt
to discuss and characterize important variants of three-station in-
terferometry, and compare the characteristics amongst the variants
and to two-station interferometry using data from the EarthScope
transportable array (TA) in the United States.

Two-station interferometry is the traditional method of ‘ambi-
ent noise interferometry’ or ‘ambient noise correlation’. It is the
more commonly applied method and is based on a single cross-
correlation between ambient noise recorded at two stations. The
cross-correlation can be converted to an estimate of the Green’s
function of the medium if the time-series is long enough (e.g.
Shapiro & Campillo 2004). In this case, one of the stations acts

as a virtual source of the seismic energy and the other as the re-
ceiver. When many pairs of stations are considered, it is the basis for
ambient noise tomography of surface waves, and many applications
of this method have emerged since (Shapiro et al. 2005; Sabra et al.
2005; Yao et al. 2006).

Three-station interferometry, in contrast, considers recordings
from three seismic stations at a time. This method takes the cross-
correlation between recordings of ambient noise at one station,
which acts as a virtual source and which we call the ‘source–
station’, with recordings from two other stations, which are called
the ‘receiver–stations’. These two cross-correlations, or particular
segments of them, are then cross-correlated again (or, as discussed
further below, convolved). Stacking the resulting waveforms from
many source–stations for the same pair of receiver–stations pro-
vides an estimate of the Green’s function between the two receiver–
stations. This method, therefore, is based on cross-correlations per-
formed three at a time, where the last one has been referred to as
the ‘correlation of correlations’ (Stehly et al. 2008) but in certain
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circumstances will be a convolution of correlations. We refer to
this method generally speaking as ‘three-station interferometry’, to
distinguish it from traditional two-station ambient noise methods.
When the final cross-correlation is between the coda-wave parts of
the first two correlations the method is commonly referred to as the
‘correlation of the coda of correlations’ or C3 (Stehly et al. 2008).

Fig. 1 illustrates some of the notation introduced in this paper. For
two-station interferometry, we denote the cross-correlation between
a pair of seismograms observed at stations ri and rj as C2(ri, rj).
With an appropriate phase-shift, C2(ri, rj) can be converted to an
estimate of the Green’s function between the two stations, Ĝ2(ri , r j ),
where we suppress the time-dependence of the correlations and
the estimated Green’s function. For three-station interferometry,
cross-correlations between observations at a source–station, sk (1
≤ k ≤ N), with the two receiver–stations, C2(sk, ri) and C2(sk, rj),
are correlated again (or in some circumstances convolved). This
produces the three-station ‘source-specific interferogram’, C3(ri, rj;
sk), for source–station sk. (The subscript ‘3’ distinguishes the final
cross-correlation or convolution from the first two correlations.)
The ‘composite Green’s function’ for three-station interferometry
is produced by taking a weighted sum over the contributing source-
specific interferograms from the N source–stations:

Ĝ3(ri , r j ) =
N∑

k=1

wkC3(ri , r j ; sk), (1)

where wk is a weight. Ĝ3 provides information about the medium
between the two receiver–stations. For this equation to hold, C3 must
have an appropriate phase-shift applied prior to the summation.

The advantages of two-station interferometry include its sim-
plicity and general applicability. The principal advantage of the
three-station method over the two-station method is that the two
receiver–stations do not have to operate at the same time, although
they do have to operate synchronously with each source–station for
some length of time. Thus, three-station interferometry can be ap-
plied to asynchronously deployed stations (Curtis et al. 2012; Ma
& Beroza 2012), which provides the opportunity for what Curtis
et al. (2012) call ‘retrospective seismology’. In terms of applica-
tions, the method will be most impactful in settings where there is a
long-term backbone seismic network to provide the source–stations
and shorter term deployments from which the receiver–stations are
taken.

In practice, the data processing involves three noteworthy sub-
tleties. (1) The cross-correlations of seismic noise data that form
the basis for both the two-station and three-station methods involve
refined data processing methods that aim to speed convergence
and reduce sensitivity to earthquakes and localized persistent noise
sources (e.g. Ritzwoller & Feng 2019). We discuss the methods of
data processing that we use in Sections 2 and 3 below, but we do
not attempt to optimize data processing procedures for three-station
interferometry.

(2) We must specify which parts of the cross-correlations of seis-
mic noise, C2(sk, ri) and C2(sk, rj), that are correlated or convolved
to produce the source-specific interferogram for source sk, C3(ri, rj;
sk). Fig. 2 identifies the two parts of the cross-correlations relevant
to this study: the coda-wave (CW) and the direct-wave (DW) parts.
If coda waves are correlated, we refer to the method to produce
an estimated Green’s function as ‘coda-wave interferometry’ and
if direct waves are correlated or convolved we call it ‘direct-wave
interferometry’.

(3) Finally, it is important to specify how to determine the weights,
wk, that convert individual source-specific interferograms to the

estimated Green’s function. One aspect of the choice of weights
is the geometrical relationship between the receiver–stations and
each source–station. For coda-wave interferometry there is no geo-
metrical constraint so that all source–stations are used for a given
receiver–station pair irrespective of their relative position; that is,
the geometrical-weights are all unity (Fig. 3a). However, for direct-
wave interferometry we impose the constraint that the source–
stations lie within appropriately defined ‘stationary phase zones’
so that sources outside those zones are given zero geometrical-
weight and sources inside the zones are given unit geometrical-
weight. The stationary phase zone is a Fresnel ellipse for source–
stations between the receiver–stations (Fig. 3c) or hyperbolae for
source–stations not between the receiver–stations (Fig. 3b), where
the receiver–stations are the foci of both the ellipse and the hy-
perbolae. Another aspect of these weights is based on a measure
of the quality of each source-specific interferogram, C3(ri, rj, sk).
Both aspects of assigning weights are discussed in greater detail in
Section 3.2.

It is useful to define nomenclature to distinguish the interfero-
metric methods considered here. Traditional two-station ambient
noise (AN) interferometry is denoted:

I AN
2 ,

where the ‘2’ represents the number of stations used. Three-station
methods require the specification of two additional fields, ‘type’
and ‘geometry’, so that three-station interferometric methods are
denoted generally as:

geometr yI t ype
3 .

Here, ‘type’ indicates either coda-wave (CW) or direct-wave (DW)
interferometry, ‘geometry’ represents the shape of the stationary
phase zone, and the ‘3’ indicates the number of stations used in
the method prior to stacking over source–stations. Of course, in the
stacking of eq. (1) multiple source–stations will typically be used,
but data analysis is performed three stations at a time. There is
no geometrical constraint for coda-wave interferometry; thus this
field is left blank in this case. For direct-wave interferometry the
geometrical constraint is either an ellipse (ell) or a hyperbola (hyp).

Therefore, we identify three general methods of three-station
interferometry to estimate Green’s functions. First, three-station
coda-wave interferometry is denoted as

ICW
3 .

Hence, there is the following relationship between our notation
and earlier notation: ICW

3 ≡ C3. Second, three-station direct-wave
interferometry with sources in the elliptical stationary phase zone
between the receiver–stations is represented as

ellIDW
3 .

Finally, we indicate three-station direct-wave interferometry with
sources in the hyperbolic stationary phase zones radially outside
the receiver–stations as

hypIDW
3 .

When we refer to direct-wave interferometry generally without dis-
tinguishing between the geometry of the stationary phase zones, we
will use the symbol IDW

3 , leaving the geometry field blank.
Three-station coda-wave interferometry (ICW

3 ) was initiated by
Stehly et al. (2008) and has been fairly well studied (Garnier &
Papanicolaou 2009; Froment et al. 2011; Ma & Beroza 2012; Zhang
& Yang 2013; Haendel et al. 2016; Sheng et al. 2017, 2018; Spica
et al. 2017; Ansaripour et al. 2019). Applications of ICW

3 to surface
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Figure 1. Notation for interferometry. (a) Two-station interferometry. C2(ri, rj) is the cross-correlation between processed seismograms recorded at receiver–
stations ri and rj. The two-station estimated Green’s function, Ĝ2(ri , r j ), can be determined from C2 after applying an appropriate phase shift. Receiver–stations
ri and rj must operate synchronously. (b) Three-station interferometry. Cross-correlations between seismograms recorded at each source–station, sk, with records
at receiver–stations, ri and rj, are denoted C2(sk, ri) and C2(sk, rj). Direct-wave or coda-wave parts of these records are cross-correlated or convolved to measure
the source-specific interferogram, C3(ri, rj; sk), which can be summed over contributions from many source–stations to produce the three-station composite
Green’s function, Ĝ3(ri , r j ), between the receiver–stations. Receiver–stations ri and rj need not operate synchronously with one another, but both must overlap
the operation of each source–station.

Figure 2. Example of the definition of the direct-wave and coda-wave seg-
ments of a two-station cross-correlation of ambient noise, C2, for stations
ANMO (Albuquerque, NM) and M47A (Cromwell, IN), at an inter-station
distance of ∼1950 km. The direct-wave is the segment of the record between
times corresponding to group speeds of 2 and 5 km s–1. The coda-wave seg-
ment starts 150 s after the end of the direct-wave, and extends to the end of
3000 s. The symmetric component of the cross-correlation is shown (average
of positive and negative correlation lags).

wave tomography or 3-D model construction remain rare, however,
in particular at regional or continental scales. To the best of our
knowledge, the principal exceptions are two studies that combine
group velocity measurements from ICW

3 with traditional ambient
noise interferometry (I AN

2 ) to improve 3-D models of Mexico and
the southern United States (Spica et al. 2016), and of the Iranian
Plateau (Ansaripour et al. 2019).

In comparison, three-station direct-wave interferometry (IDW
3 )

has received much less attention. Froment et al. (2011) discussed
the possibility for using direct versus coda waves, and differenti-
ated between two types of correlations of correlations: C3

coda and
C3

all , where C3
coda denotes the correlation of the coda of correlations

and C3
all refers to correlating the entirety of the correlations. Thus,

as noted above, their C3
coda is similar to our ICW

3 and because the
direct-waves dominate the coda-waves in the correlations, their C3

all

is in some ways similar to our IDW
3 . They, however, do not discuss

constraining the source–stations in direct-wave interferometry to
lie in stationary phase zones, although other studies do (Curtis &
Halliday 2010; Duguid et al. 2011; Curtis et al. 2012; Entwistle
et al. 2015). Moreover, the latter studies also recognize that for the
elliptical stationary phase zone, when source–stations lie generally
between the receiver–stations, the original cross-correlations should
be convolved with one another rather than cross-correlated. There-
fore, for hypIDW

3 the three data operations are all cross-correlations,
but for ellIDW

3 the third data operation is a convolution. Discussion
of the role of convolution in interferometry goes back at least to

Slob & Wapenaar (2007). Entwistle et al. (2015) applied aspects
of direct-wave interferometry to data from the EarthScope Trans-
portable Array, but to the best of our knowledge IDW

3 has not yet
been applied tomographically or in the context of inversions for 3-D
models and its properties remain poorly understood.

The purpose of this paper is to determine and compare empiri-
cally the characteristics of the three-station methods to each other
and to two-station interferometry. In particular, we focus on obtain-
ing reliable surface wave dispersion measurements in the context of
tomography. From the outset, it is evident that coda-wave interfer-
ometry has the advantage that any geometrical relationship can exist
between the source–stations and the receiver–stations, whereas for
direct-wave interferometry only a small subset of stations can be
used as source–stations for each pair of receiver–stations. In coda-
wave interferometry, however, signals emerge very slowly with the
addition of source–stations, which means that many more source–
stations are needed to recover reliable estimated Green’s functions.
Therefore, the relative merits of direct-wave interferometry and
coda-wave interferometry (which of the methods will be prefer-
able, in what ways, and in which settings) need to be determined
empirically.

We address these questions by applying I AN
2 , ICW

3 , ellIDW
3 and

hypIDW
3 across the central and western United States to all stations

west of 95◦W longitude from the EarthScope Transportable Array
to measure Rayleigh wave dispersion from 8 to 80 s period and
present associated phase speed maps from 10 to 60 s period. We
pay particular attention to the agreement between the three-station
results and the two-station results, including systematic differences
(bias) and fluctuation, and to the distributions of measurements as
functions of signal-to-noise ratio (SNR), bandwidth, and the number
of measurements produced for asynchronously deployed receiver–
stations.

2 DATA

Three-station interferometry (I3) is based on data output from two-
station interferometry (I2). As the basis for the three-station inter-
ferometry in this study, we use the two-station database of ambi-
ent noise cross-correlations (C2) constructed by Shen & Ritzwoller
(2016). Stations in the database of Shen & Ritzwoller (2016) extend
across the contiguous US, but we use only a subset of them in the
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Figure 3. Schematic illustration of the geometrical constraints on source–stations for different methods of three-station interferometry. The two receiver–
stations are shown with the blue and green triangles, and the circles are locations of other stations that may act as source–stations. Those stations that can
act as source–stations are shown with red circles and those cannot with grey circles. (a) For three-station coda-wave interferometry, ICW

3 , all stations whose
operation overlaps the two receiver–stations can act as a source–station. (b) For three-station direct-wave interferometry with source–stations radially outside
the receiver–stations, hypIDW

3 , source–stations must lie in stationary phase hyperbolae (purple shading). (c) For three-station direct-wave interferometry with
source–stations between the receiver–stations, ellIDW

3 , source–stations must lie in the stationary phase ellipse (purple shading). The angle θ in each case is
defined in Section 3.1 and used in Fig. 5.

central and western United States (west of 95◦W longitude), which
defines our region of study (Fig. 4). We use all 1047 EarthScope US-
Array stations in this region deployed from 2005 to 2010, including
979 Transportable Array ( US-TA) stations and 68 Reference Net-
work ( US-REF) stations. We retain a two-station cross-correlation
only if its SNR is greater than 10, where SNR is defined as the
ratio of the maximum amplitude of the waveform in the time win-
dow of the direct fundamental Rayleigh wave to the rms of the
waveform in the coda-wave window (Fig. 2). SNR defined in this
way is independent of frequency. Among the 547 581 possible com-
binations of pairs from the 1047 stations, 66 per cent (364 103)
operated synchronously so that two-station ambient noise interfer-
ometry could be used. Of these, we retained 325 446 (89 per cent)
cross-correlations that met the SNR criterion. In contrast, 34 per
cent (183 478) of the station-pairs were deployed asynchronously.

The deployment of the Transportable Array started from the West
Coast and rolled eastward, with stations deployed temporarily for
∼2 yr (Fig. 4). This rolling pattern provides an ideal geometry
for direct-wave interferometry with an elliptical stationary phase
zone, ellIDW

3 , in which source–stations lie approximately between
receiver–stations. In contrast, the Reference Network was deployed
permanently and was scattered across the United States with a sta-
tion spacing of ∼300 km. This is a good geometry for coda-wave
interferometry, ICW

3 , and direct-wave interferometry with a hyper-
bolic stationary phase zones, hypIDW

3 , in which source–stations lie
approximately radially outward from receiver–stations.

Shen & Ritzwoller (2016) used a common method of ambient
noise data processing (Bensen et al. 2007). Briefly, continuous
records of vertical component seismograms are cut to day-long
segments and downsampled from 40 to 1 Hz. Then the instrument
response, mean and trend are removed. To minimize the effects of
strong directional sources (in particular earthquakes) and to broaden
the usable bandwidth, temporal normalization and spectral whiten-
ing are applied. The temporal normalization uses a 80 s running
time window, which strongly attenuates signals with periods above
80 s. For this reason we will focus our interpretation on measure-
ments only up to 80 s period and show tomographic results only up
to 60 s period.

After pre-processing, daily seismograms from all available com-
binations of station-pairs (ri, rj) are cross-correlated to produce
C2(ri, rj), between correlation lag times of ±3000 s. Daily corre-
lations are then stacked to generate two-station estimated Green’s
functions between each pair of stations [Ĝ2(ri , r j )]. Finally, we com-
pute the so-called ‘symmetric component’ of the estimated Green’s
function by averaging the estimated Green’s function at positive
and negative correlation lags for simplicity. We will also refer to
this symmetric component estimated Green’s function as Ĝ2(ri , r j ),

even though it is defined only for positive lag. This database of sym-
metric component estimated Green’s functions is the basis for the
three-station analysis (Section 3).

3 DATA PROCESS ING FOR
THREE - STAT ION INTERFEROMETRY

The input for three-station interferometry are the two-station sym-
metric component cross-correlations (or estimated Green’s func-
tions) taken from the database of Shen & Ritzwoller (2016) with
SNR > 10. As interstation cross-correlations, these functions are
denoted by C2 and as estimated Green’s functions by Ĝ2. Three-
station source-specific interferograms (C3) are cross-correlations of
the coda-wave parts of the interstation cross-correlations, or cross-
correlations or convolutions of the direct-wave parts of the inter-
station cross-correlations. Three-station data processing aims to
compute the composite Green’s function between pairs of receiver–
stations by stacking the three-station interferograms over contribu-
tions from various source–stations.

For concreteness, consider a receiver–station pair (ri, rj) and a set
of source–stations, {sk}N

k=1, that operate synchronously with both ri

and rj at least for some time. Fig. 1(b) depicts this situation, where
one source–station is shown. Let the coda-wave parts of the two-
station cross-correlations be denoted CCW

2 (sk, ri ) and CCW
2 (sk, r j ),

and the direct-wave parts be written C DW
2 (sk, ri ) and C DW

2 (sk, r j ),
where the coda-wave and direct-wave segments are defined in Fig. 2.
The three-station data processing procedure breaks into three prin-
cipal steps (Sections 3.1–3.3).

3.1 Constructing source-specific interferograms

The first step in three-station data processing is devoted to
cross-correlating or convolving segments of the two-station cross-
correlations. It is broken into three categories depending on whether
one considers the direct- or coda-wave segments of the two-station
cross-correlations and the geometrical relationship between the
receiver–station pair and each source–station. For direct-waves, the
geometrical relationship is summarized in terms of hyperbolic or
elliptical stationary phase zones (Figs 3b and c).

(1) The first category is, for each source–station, to com-
pute the three-station source-specific interferograms based on the
coda-waves in the two-station cross-correlations. That is, correlate
CCW

2 (sk, ri ) and CCW
2 (sk, r j ) for all sk to produce CCW

3 (ri , r j ; sk)
for 1 ≤ k ≤ N. An example record-section containing three-station
coda-wave source-specific interferograms is presented in Fig. 5(a),
where each trace is for a separate source–station.
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(a) (b)

Figure 4. Map of stations used in this study. Red stars mark stations used in Figs 5, 6 and 8: M07A (Soldier Meadow, NV) and M15A (Promontory, UT). (a)
The start dates for each station are colour-coded, showing a rolling pattern from west to east. (b) Duration of deployment is colour-coded. Most stations are
deployed around 2 yr with a few much longer from the USArray Reference Network ( US-REF) and the Southern California Seismic Network (CI).

Figure 5. Example record sections of three-station interferograms for the receiver–station pair M07A–M15A, whose locations are shown in Fig. 4. (a)
Coda-wave correlations (CCW

3 ) for different source–stations plotted at the azimuth angle θ shown in Fig. 3(a). (b) Direct-wave correlations (C DW
3 ) plotted for

source–stations at the azimuth angle shown in Fig. 3(b). The green regions are the hyperbolic stationary-phase zones for hypIDW
3 . (c) Direct-wave convolutions

(C DW
3 ) plotted for source–stations at the azimuth angle shown in Fig. 3(c). Only positive time lags are defined. The green region is the elliptical stationary-phase

zone for ellIDW
3 . Grey curves in (b) and (c) are predictions from eqs (4) and (5), respectively, with c = 3 km s–1. Only selected three-station interferograms are

shown to ease visualization.

(2) The second category is to compute the three-station source-
specific interferograms based on the direct-waves in the two-station
cross-correlations for the source–stations in the hyperbolic station-
ary phase zones. For each source–station sk in the stationary-phase
hyperbolae for the receiver–station pair, cross-correlate C DW

2 (sk, ri )
and C DW

2 (sk, r j ) to produce hypC DW
3 (ri , r j ; sk). An example record-

section for three-station direct-wave source-specific interferograms
computed by cross-correlation is shown in Fig. 5(b), where each
trace is for a separate source–station. For this record-section, cross-
correlations are computed based on source–stations irrespective of

whether they lie in the stationary-phase hyperbolae. However, the
green-shaded regions identify the stationary phase zones.

(3) The third category is similar to the second, but we compute
the three-station source-specific interferograms based on the direct-
waves in the two-station cross-correlations for the source–stations
in the elliptical stationary phase zone. For each source–station sk in
the stationary-phase ellipse for this receiver–station pair, convolve
C DW

2 (sk, ri ) and C DW
2 (sk, r j ) to produce ellC DW

3 (ri , r j ; sk). An exam-
ple record-section for three-station source-specific direct-wave in-
terferograms computed by convolution is shown in Fig. 5(c), where
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each trace is for a separate source–station. As in Fig. 5(b), convolu-
tions are presented irrespective of whether the source–station lies in
the stationary-phase ellipse, but the green-shaded region identifies
the stationary phase zone.

Convolution of the direct-wave parts of the two-station records
when source–stations lie in the elliptical stationary phase zone has
been formally justified by other studies (Halliday & Curtis 2009;
Curtis & Halliday 2010). We provide a heuristic argument for illu-
mination. When a source–station lies radially outward from a pair
of receiver–stations, it is the time-difference between the travel-
times from the source–station to the two receiver–stations that ap-
proximates the traveltime between the two receiver–stations. Cross-
correlation of two records finds the time-difference between them,
therefore when source–stations lie outside the receiver–stations it
is the appropriate method to apply. In contrast, convolutions find
the sum of the times. When a source–station lies between two
receiver–stations, we wish to find the sum of the times from the
source–station to each receiver–station, so that convolution is the
appropriate method to apply in this case.

We define the hyperbolic and elliptical stationary phase zones in
a straightforward and simplified manner. An ellipse is defined as the
locus of points where the sum of the distances to the foci is constant.
Let dij be the great-circle distance between the two receiver–stations,
dki be the distance between a point sk on the ellipse and receiver–
station ri, and dkj be the distance between sk and receiver–station
rj. Then we define the elliptical stationary phase zone for method
ellIDW

3 as

dki + dkj ≤ (1 + α)di j , (2)

where α ≥ 0 and we choose α = 10−2. Thus, if source–station sk

lies within the elliptical stationary phase zone, the sum of distances
from sk to ri and to rj is less than 1 per cent longer than the distance
between the receiver–stations.

Similarly, a hyperbola is defined as the locus of points where
the difference of the distances to the foci is constant. We therefore
define the hyperbolic stationary phase zones for method hypIDW

3 as

|dki − dkj | ≥ (1 − α)di j , (3)

where α ∈ [0, 1] and again we choose α = 10−2. This means that if
source–station sk lies within the hyperbolic stationary phase zone,
the difference of distances from sk to ri and to rj is greater than
99 per cent of the distance between the receiver–stations. On a
sphere, the locus of points where the difference of the distances to
the foci is constant, however, approximates a hyperbola only near
the foci.

The stationary phase zones can be defined alternatively using
azimuthal angle θ (Fig. 3) instead of α. For the methods ICW

3 and
hypIDW

3 , θ is the angle from the source–station to the mid-point
between the receiver–stations (Figs 3a and b), which defines the
slopes of the asymptotes of a hyperbola. It is related to α by cos θ

= 1 − α, where θ ∈ [0, 2π ]. The definition of angle θ for a given
source–station for method ellIDW

3 is motivated by the symmetry in
eqs (4) and (5). To do so, first identify the ellipse on which the
source–station lies with the two receiver–stations as foci. Then find
the intersection point between the ellipse and the perpendicular
bisector of the line segment linking the two receiver–stations. Angle
θ is the angle between a receiver–station and this intersection point.
Fig. 3(c) shows an example of this intersection point, but does not
identify the location of the source–station or the ellipse on which
it lies. In this case, θ is related to α by cos θ = 1/(1 + α), where
θ ∈ [0, π

2 ]. For the same α, θ is generally larger for hypIDW
3 than for

ellIDW
3 . Our choice of α = 10−2 corresponds to a maximum θ ≈ 8◦

for both hypIDW
3 and ellIDW

3 .
We use eqs (2) and (3) with α = 10−2 to define the stationary

phase zones in this paper for methods ellIDW
3 and hypIDW

3 , respec-
tively. These definitions are chosen for simplicity and because they
appear to provide reliable results in the applications we consider.
However, the choice of the value of α is ad hoc as is its frequency-
independence. More elaborate, perhaps frequency-dependent, defi-
nitions may prove to be preferable.

The approximate arrival time, δt, for method hypIDW
3 is known

(Tsai 2009; Yao & van der Hilst 2009):

δt = di j

v
cos θ, (4)

for a plane-wave in a medium with constant wave speed v, where
dij is the inter-receiver–station distance and θ is shown in Fig. 3(b).
The grey line plotted in Fig. 5(b) is for this formula. Analogously,
the approximate arrival time tsum for method ellIDW

3 is:

tsum = di j

v
sec θ, (5)

for θ shown in Fig. 3(c). The grey line plotted in Fig. 5(c) is for this
formula.

3.2 Stacking weights

Appropriate stacking weights wk must be applied for each source–
station sk to compute the composite Green’s functions for each of
the three-station methods (ICW

3 , hypIDW
3 and ellIDW

3 ). The principal
weight that we use is to set wk equal to the reciprocal of the rms
of the noise in the coda-wave part of each source-specific inter-
ferogram, C3(ri, rj; sk) for receiver–stations ri and rj. Defined in
this way, we downweight each contributing cross-correlogram by
the rms of trailing noise. We do not, however, normalize the am-
plitude of the cross-correlograms. Therefore, down-weighting by
the rms of trailing noise is approximately equivalent to normal-
izing the amplitudes of the cross-correlograms then weighting by
peak signal-to-rms trailing noise ratio (SNR). Because the peak
signal grows approximately linearly with the time-series length of
the records used to compute the cross-correlations, and rms trail-
ing noise grows approximately as the square root of the time-series
length, SNR grows approximately as the square root of time-series
length (Snieder 2004; Bensen et al. 2007). Thus, the use of this
weighting scheme tends to accentuate the contribution from longer
cross-correlations, but less strongly than if we had not normal-
ized by peak amplitude and inversely by the rms of the trailing
noise.

There are three other aspects of the data processing that can be
considered to be stacking weights. First, for the direct-wave three-
station methods, we only include a source–station in the stack if it
lies within an appropriately defined stationary phase zone, which
is referred to as geometrical-weighting in the Introduction. This
choice can be thought of as applying binary weights to source–
stations depending on their position relative to the receiver–stations.
Secondly, also as mentioned above, unless the two constituent two-
station interferograms, C2(sk, ri) and C2(sk, rj), both have SNR ≥
10, the weight of the corresponding three-station interferogram,
C3(ri, rj; sk), is set to zero; otherwise it is unity. Thirdly, to include
signals for the longest paths (>3000 km) in the coda-wave three-
station method, a source–station is excluded if the length of either
CCW

2 (sk, ri ) or CCW
2 (sk, r j ) is less than 1500 s.
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3.3 Estimating composite green’s functions

To compute the composite Green’s function, Ĝ(ri , r j ), for each of
the three-station methods we apply the weighted sum given by eq.
(1) based on the stacking weights (Section 3.2). Fig. 6 provides
some examples using the same pair of receiver–stations used in the
record-sections of Fig. 5.

Fig. 6(a) presents an example composite Green’s function for
three-station coda-wave interferometry (ICW

3 ). For this method, no
stationary phase zone is needed, so contributions from all source–
stations are included in the stack. This is the black line in Fig. 6(a),
labelled ‘Stack all’, which is compared to the two-station ambient
noise cross-correlation plotted as the red line and labelled I AN

2 . Two
observations of noteworthy: First, one of the features of coda-wave
interferometry is the tendency for the composite Green’s functions
to be more symmetric than for two-station ambient noise methods
(e.g. Stehly et al. 2008,and many others), and this is also observed
in this example. We found it, however, to be an artefact due to
the use of symmetric components (Sheng et al. 2018). Second, the
SNR of the three-station coda-wave composite Green’s function
is lower than for the two-station record, even though in this case
510 source–stations contribute to the three-station interferogram.
This highlights another aspect of coda-wave interferometry, that is,
signals emerge from noise very slowly as source–stations are intro-
duced. And, as can be seen in Fig. 5(a), constituent source-specific
three-station interferograms are typically very noisy so that signals
cannot be discerned in any of them. This implies that the pres-
ence of many long duration source–stations may be necessary for
coda-wave interferometry to play a useful role in ambient noise in-
terferometry, unless more sophisticated data processing procedures
are applied (Section 7.3). For comparison, we also plot in Fig. 6(a)
the recovered composite Green’s function based on source–stations
that lie exclusively in the hyperbolic stationary phase zone. The
choice of source–stations in this zone further degrades the SNR of
the composite Green’s function, indicating that there is no geometri-
cal advantage to choosing source–stations in the end-fire directions
in coda-wave interferometry.

Fig. 6(b) shows an example composite Green’s function for three-
station direct-wave interferometry where the source–stations lie in
the hyperbolic stationary phase zone (hypIDW

3 ). In this case, the
green line, which is the stack for source–stations only in the hyper-
bolic stationary phase zones, is the Green’s function estimate, and
there are 25 source–stations. Retaining source–stations at all az-
imuths (black line) degrades the result by adding precursory noise.
Two comments are worthy of note in comparing the three-station
composite Green’s function (green line) with two-station Green’s
function (red line). First, the relative amplitudes for the different
correlation lags are more similar than for coda-waves. Secondly,
precursory noise is lower for the three-station estimate. These are
both common characteristics when comparing two-station to three-
station Green’s functions.

Finally, Fig. 6(c) presents an example composite Green’s func-
tion for three-station direct-wave interferometry where the source–
stations lie in the elliptical stationary phase zone (ellIDW

3 ). The
green line, which is the stack for source–stations only in the el-
liptical stationary phase zones, is the composite Green’s function
estimate, and there are seven source–stations. As with the hyper-
bolic stationary phase zone, retaining source–stations at all azimuths
(black line) degrades the result but in this case adds both precursory
and trailing noise, especially the trailing noise. In this case, too,
there is lower precursory noise for the three-station estimate than
for I AN

2 .

4 D ISPERS ION MEASUREMENTS

4.1 Frequency–time analysis

To measure frequency dependent phase speed, we apply frequency–
time analysis (FTAN; Dziewonski et al. 1969; Levshin & Ritzwoller
2001; Bensen et al. 2007). We assume that the measured phase of
a two-station interferogram (I AN

2 ) at frequency ω in the frequency
domain for receiver–stations ri and rj is approximately (Lin et al.
2008)

φAN
i j (ω) = ω

ci j
di j + π

4
+ φs + 2Nπ, N ∈ Z, (6)

where dij is the distance between the two receiver–stations, π /4
is from the far-field or high-frequency asymptotic approxima-
tion of the Bessel function, φs is an initial phase term and cij is
the frequency-dependent phase speed, which is what we aim to
measure.

For two-station ambient noise interferometry (I2), φs ≈ 0 has
been shown theoretically (Snieder 2004) and empirically (Yao et al.
2006; Lin et al. 2008). For three-station coda-wave interferometry
(ICW

3 ), φs should also be approximately 0. However, for three-
station direct-wave interferometry (IDW

3 ), φs will differ from 0, and
this initial phase must be taken into account when measuring phase
speed.

For hypIDW
3 , let the source–station sk lie outside the two receiver–

stations at distances dki from ri and dkj from rj (Fig. 7b). Be-
cause correlation of two interferograms will determine the dif-
ference of the phases in the frequency domain, the phase of
hypC3(ri, rj; sk) is

hypφi j ;k = φAN
ki − φAN

k j = ω

(
dki

cki
− dkj

ck j

)
+ 2Nπ. (7)

From straight-ray and far-field assumptions (Tsai 2009), we have

dki

cki
− dkj

ck j
≈ dki − dkj

ci j
, (8)

thus

hypφi j ;k = ω

ci j
(di j + hypδdi j ;k) + 2Nπ, (9)

where

hypδdi j ;k = dki − dkj − di j . (10)

For ellIDW
3 , source–stations lie generally between the two

receiver–stations (Fig. 7a). Because convolution of two interfero-
grams will determine the sum of the phases in the frequency domain,
the phase of ellC3(ri, rj; sk) is

ellφi j ;k = φAN
ki + φAN

k j = ω

(
dki

cki
+ dkj

ck j

)
+ π

2
+ 2Nπ. (11)

Based on approximations similar to hypIDW
3 , we find

ellφi j ;k = ω

ci j

(
di j + ellδdi j ;k

) + π

2
+ 2Nπ, (12)

where

ellδdi j ;k = dki + dkj − di j . (13)

Assuming hypδd = 0 gives hypφs = −π /4 by comparing eqs (6) and
(9). Similarly, assuming ellδd = 0 yields ellφs = π /4 by comparing
eqs (6) and (12). The assumption that δd = 0 will lead to biased
measurements for the three-station direct-wave methods and its
correction is discussed in Section 5.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/221/1/521/5716674 by U

niversity of C
olorado Boulder user on 21 M

arch 2020



528 S. Zhang, L. Feng and M. H. Ritzwoller

(a)

(b)

(c)

Figure 6. Examples of stacks of three-station interferograms for the receiver–station pair M07A–M15A of Fig. 5. In each panel the two-station estimated
Green’s function (I AN

2 ) is plotted for reference (red). The number of source–stations for each stack is shown in parentheses above the stacked trace. (a) Method
ICW

3 . Two stacks of coda-wave interferograms are shown: (black line) stack of the interferograms from all source–stations irrespective of the azimuthal angle
θ (defined in Fig. 3a) and (green line) stack of the coda-wave interferograms for sources in the hyperbolic stationary phase zone. For ICW

3 , the black line is
the composite Green’s function. (b) Method hypIDW

3 . Black and green lines have similar meanings to those in (a), but here the direct-wave interferograms are
stacked. For hypIDW

3 , the green line is the composite Green’s function. (c) Method ellIDW
3 . Black line is the same as in (b), but the green line is the stack of

direct-wave interferograms in the elliptical stationary phase zone. For ellIDW
3 , the green line is the composite Green’s function and only positive time lags are

defined.

(a) (b)

Figure 7. Geometry of the source–station (sk) and receiver–stations (ri, rj) used to determine the phase for the three-station direct-wave methods: (a) ellIDW
3

and (b) hypIDW
3 . Great circle distances between two stations are denoted as d with appropriate subscripts.

Fig. 8 compares example frequency-time (FTAN) diagrams for
the two-station method and the three-station methods, for the two
receiver–stations M07A and M15A. The four diagrams are sim-
ilar at short periods but the diagrams for the two direct-wave
methods show larger relative amplitudes at longer periods. For
the coda-wave diagram, longer periods are too noisy to measure
and the 26 s stripe correspond to a spatially localized micro-
seism source. The effects of the 26 s microseism are discussed in
Section 7.2.

We apply two additional quality control criteria to the dispersion
measurements. First, for a dispersion measurement to be retained,
we apply a spectral SNR (Bensen et al. 2007) criterion to the com-
posite Green’s function, where again SNR is defined as the peak
amplitude in the direct-wave window divided by the rms of the
waveform in the coda-wave window. That is, at a given period the
composite Green’s function must have a SNR ≥10 otherwise the
dispersion measurement at that period is discarded. Secondly, the

distance between the two receiver–stations must be greater than
three wavelengths (Lin et al. 2008) for the dispersion measure-
ment to be retained. For example, if the phase speed is 4 km s–1,
at 20 s period the receiver–stations must be separated by more
than 240 km. This criterion becomes more restrictive as period
increases.

4.2 General characteristics

Fig. 9(a) summarizes the spectral SNR of each of the four interfer-
ometric methods, averaging over the entire data set of dispersion
measurements. Generally speaking, SNR decreases with period and
the trends are similar between I3 and I AN

2 . The peaks near 16 and
8 s periods correspond to the primary and secondary microseisms,
respectively, while the dip near 26 s period corresponds to the ex-
istence of a spatially localized microseismic source (e.g. Shapiro
et al. 2006; Xia et al. 2013). Fig. 9(b) presents the SNR results
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Figure 8. Frequency–time analysis (FTAN) diagrams for the receiver pair M07A–M15A using the waveforms from Fig. 6: (a) I AN
2 , (b) ICW

3 , (c) hypIDW
3 and

(d) ellIDW
3 . White and blue circles are group and phase speed measurements, respectively.

relative to the SNR for I AN
2 . The SNR for ellIDW

3 is slightly larger
than for hypIDW

3 , while both have a SNR more than twice that of
I AN

2 across a broad bandwidth. In contrast, ICW
3 has a much lower

median SNR (<10) across all periods.
Because SNR plays a significant role in the quality control of

dispersion measurements, the number of accepted I2 and I3 mea-
surements varies with period similar to SNR (Fig. 10a). The number
of accepted I3 measurements can be divided into three categories
depending on whether the two receiver–stations operated at the same
time (synchronously) and whether an I2 measurement exists for the
path so that the I3 measurement is new or repeated. These three
categories of I3 measurements are referred to as ‘Synchronous-
Repeated’ (receiver–stations deployed synchronously, with both an
I3 and an I2 measurement), ‘Synchronous-New’ (receiver–stations
deployed synchronously, with an I3 but not an I2 measurement), and
‘Asynchronous-New’ (receiver–stations deployed asynchronously,
with only an I3 measurement). In the Synchronous-New case, the
receiver–stations produced an I2 measurement but it was rejected,
usually because it did not meet the SNR requirement. The num-
bers of I3 measurements that derive from these three categories are
shown in Figs 10( b)–(d). In all categories, ellIDW

3 measurements
somewhat outnumber the hypIDW

3 measurements, and both outnum-
ber the I AN

2 measurements (in cases where they exist) and greatly
outnumber the ICW

3 measurements.
Fig. 10(b) is for the Synchronous-Repeated category of I3 mea-

surements. By definition, the number of I3 measurements will be no
larger than the number of I2 measurements. Nearly every existing
I AN

2 measurement is accompanied by an IDW
3 measurement, but the

number of ICW
3 measurements is considerably smaller. The num-

ber of these measurements generally decreases with period after
maximizing between 20 and 30 s, although the ICW

3 measurement

maximizes nearer to 15 s period and decays very rapidly at longer
periods.

Fig. 10(c) is for the Synchronous-New category of I3 mea-
surements, and illustrates that many new longer periods measure-
ments emerge from the IDW

3 method. Above about 50 s period,
IDW

3 nearly doubles the number of measurements between syn-
chronously deployed stations. Although a principal attraction of the
three-station methods is the ability to obtain measurements between
asynchronously deployed stations, but many new measurements re-
sult from the IDW

3 methods even for synchronously deployed sta-
tions particularly at long periods. There are essentially no new
measurements from ICW

3 in this category.
Fig. 10(d) is for the Asynchronous-New category of I3 mea-

surements, measurements from the I3 methods that are inherently
non-existent for I2. Relative to the number of measurements de-
livered by I AN

2 , the greatest impact of the I3 methods is at the
longer periods of the bandwidth considered. The vast majority of
the measurements for ICW

3 are from synchronously deployed sta-
tions (Fig. 10b), indicating that it is difficult for ICW

3 to bridge
asynchronous stations.

5 CORRECTING THE BIAS IN
THREE - STAT ION DIRECT-WAVE
INTERFEROMETRY (IDW

3 )

As described above, the three-station methods are based on mea-
suring the phase speed of the composite Green’s function (eq. 1),
Ĝ3(ri , r j ), between a pair of receiver–stations (ri, rj), which is a
stack of source-specific interferograms, C3(ri, rj; sk), that emerge
from particular source–stations sk. In direct-wave methods hypIDW

3
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(a)

(b)

Figure 9. Signal-to-noise ratio (SNR) of estimated Green’s functions for
the different interferometric methods (see legend) plotted versus period.
(a) Median of the SNR for each method taken over all measurements at
each period. SNR generally decreases with period for all methods, but the
highest SNR is from the three-station direct-wave method with an elliptical
stationary phase zone (ellIDW

3 ) and the lowest is from the three-station coda-
wave method (ICW

3 ). (b) Paths common to two-station and three-station
interferometry in (a) are selected such that the ratio of the median SNR
for each three-station method to that for the two-station method is shown.
The direct-wave methods increase SNR relative to I AN

2 by a factor ranging
from about 1.5–3 which grows with period, whereas the coda-wave method
reduces SNR by a factor of 3-5.

and ellIDW
3 , the phase speed, cij, is measured using the compos-

ite Green’s function based on eqs (9) and (12), respectively, under
the assumption that δd = 0. It is this assumption for the compos-
ite Green’s function that can produce the systematic bias in the
three-station direct-wave methods. Because ellδd is always positive,
assuming ellδd = 0 will result in a phase speed that is biased slow
for ellIDW

3 . In contrast, because hypδd is always negative, assuming
hypδd = 0 will result in a phase speed that is biased fast for hypIDW

3 .
Therefore, the correct distance to be used in measuring phase

speed will depend on the specific location of each source–station.
The direct use of the composite Green’s function invariably will
yield a biased phase speed measurement. To ‘de-bias’ the phase
speed measurements, we abandon the composite Green’s function

and measure a phase speed curve for each source-specific interfer-
ogram [C3(ri, rj; sk)] independently based on corrections from the
more accurate ray-theoretic distance, ellδdij; k or hypδdij; k and then
average the resulting phase speed curves.

Fig. 11 presents an example of the set of source-specific phase
speed curves that have been de-biased by using the source-specific
ray-theoretic distances. At each period we reject a source-specific
measurement if its SNR < 10 or either of the source–receiver dis-
tances is <2λ. We do not, however, apply the wavelength criterion
to the two source–receiver distances in constructing the composite
Green’s function before the de-biasing correction (Section 3.3) be-
cause that would require stacking over different source–stations at
different periods. Then we reject the 10 per cent of measurements
most different from the mean. Finally, we calculate the standard
deviation (σ ) and discard the mean measurement altogether if σ >

60 m s–1.
Fig. 12(a) shows the correction averaged over the entire data set

for the two three-station direct-wave methods. Our definition of
stationary phase zones that α = 1 per cent (eqs 2 and 3) provides
an upper limit on the bias as 1 per cent. The absolute mean cor-
rection is about 10 m s–1 at all periods for both methods, which is
around 0.3 per cent, and thus consistent with the definition of sta-
tionary phase zones. The average standard deviation amongst the
constituent source-specific curves over the entire data set is pre-
sented in Fig. 12(b). The standard deviations for the ellIDW

3 method
are generally smaller for the hypIDW

3 method, consistent with the lat-
ter having larger and more complex sensitivity zones (Section 7.1).
These standard deviations may serve in the future as uncertainty
estimates for the resulting dispersion measurements.

6 VAL IDATE THREE - STAT ION (I3)
AGAINST TWO-STAT ION (I2)
INTERFEROMETRY

To test if three-station methods are consistent with two-station in-
terferometry, and if the de-biasing correction for IDW

3 presented in
Section 5 is effective, we statistically compare the differences in
Rayleigh wave phase speed measurements and also the associated
phase speed maps from the methods.

6.1 Phase speed measurements

Fig. 13 and Table 1 present comparisons of Rayleigh wave phase
speed measurements derived from the three-station methods to two-
station interferometry for common receiver–station pairs.

Fig. 13(c) and Table 1 (column 2) show that the mean difference
between the two-station Green’s functions and the three-station
composite Green’s functions based on coda-waves is negligible
(<2 m s–1, on average), from which we infer that the three-station
method based on coda-waves is unbiased. The standard deviation of
the difference decreases with period to achieve a minimum around
15 s, but then increases rapidly with period although results extend
only up to 30 s period.

In contrast, Figs 13(a) and (b) and Table 1 (columns 4 and 6) show
the existence of a non-zero systematic difference or bias between
each of the three-station direct-wave methods with two station inter-
ferometry before correction. For ellIDW

3 , the bias is always negative
and the absolute bias increases with period. For hypIDW

3 , the bias is
positive and the absolute bias generally decreases with period.

After the de-biasing correction, the mean and standard devia-
tion of the difference between the IDW

3 and I AN
2 measurements are
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(a) (b)

(c) (d)

Figure 10. Number of resulting measurements (in thousands) versus period. (a) Number of accepted Rayleigh wave phase speed measurements plotted versus
period for the different interferometric methods (see legend). The largest number of measurements is from the three-station direct-wave method with an elliptical
stationary phase zone (ellIDW

3 ) and the smallest number is from the three-station coda-wave method (ICW
3 ). The total number of measurements can be broken

into three parts, as shown in (b)–(d). (b) Number of measurements from I3 that exist for I AN
2 . (c) Number of synchronous measurements from three-station

interferometry methods (I3) that are non-existent for two-station interferometry I AN
2 (because of low SNR). (d) Number of asynchronous measurements from

I3 that are non-existent for I AN
2 (because of asynchrony).

shown in Figs 13(d), (e) and Table 2, which should be contrasted
with Figs 13(a), (b) and Table 1 that contains the same statistics
without the de-biasing. The correction decreases the absolute mean
difference between the IDW

3 and I AN
2 measurements at most peri-

ods. If we consider the mean difference to be a measure of residual
bias, then the bias of the corrected measurements is relatively small
(<5 m s–1) for both IDW

3 methods at periods <40 s. However, the
residual bias generally increases at longer periods for both IDW

3

methods. Potential causes of and corrections for the residual bias
are discussed in Section 7.1.

In contrast with the bias, generally the standard deviations of
the differences between the dispersion measurements from the I AN

2

method to both IDW
3 methods grow with period [Figs 13a, b and

Table 1(columns 5 and 7)]. Partly, this is due to the decrease in
signal-to-noise ratio (SNR) in both the three-station and two-station
interferograms at longer periods (Fig. 10a). However, irrespective of
SNR, we do not expect the dispersion measurements from the three-
station methods to agree with those from the two-station method
as well at longer periods. The reason is that the Fresnel Zone or
sensitivity kernel for the three-station methods is not identical to

the sensitivity kernel for the two-station method and the differences
in sensitivity grow with period (Section 7.1).

6.2 Eikonal tomography

To further validate and compare the three-station methods we report
results from surface wave tomography based on them. To perform
tomography, we apply the eikonal tomography method (Lin et al.
2009) to Rayleigh wave phase speed measurements obtained from
the two-station and three-station methods. We use the eikonal to-
mography method rather than traditional tomographic methods that
minimize a penalty functional (e.g. Barmin et al. 2001) because
eikonal tomography applies no ad hoc regularization that depends
on data coverage. This simplifies comparison of results from dif-
ferent data sets because they are less affected by differences in the
number and distribution of wave paths. In this section, we consider
IDW

3 only after the de-biasing correction.
The Rayleigh wave phase speed maps produced by the three-

station (I3) and two-station (I AN
2 ) methods are generally quite

similar, as displayed at periods of 10, 20, 40 and 60 s in Figs 14–17.
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(a) (b)

Figure 11. Examples of the de-biased Rayleigh wave phase speed curves for the receiver–station pair A13A (Polebridge, MT) and H20A (Greybull, WY) for
the two three-station direct-wave methods: (a) ellIDW

3 and (b) hypIDW
3 . Each grey curve is measured for a single source-specific interferogram (C3), where

there are 9 source–stations for ellIDW
3 and 32 source–stations for hypIDW

3 . The mean and standard deviation of the constituent curves are plotted with the black
error bars. The two-station ambient noise (I2) dispersion curve is shown in red.

(a)

(b)

Figure 12. (a) Mean de-biasing correction averaged over all receiver–station
pairs in the data set for ellIDW

3 (red line) and hypIDW
3 (green line). (b)

Standard deviation of the de-biased dispersion curves averaged over all
receiver–station pairs in the data set.

The touchstone is the I AN
2 map, and at each period there is

substantial agreement between the I3 maps with the I AN
2 map.

However, we do not show the three-station coda-wave (ICW
3 )

maps at periods of 40 and 60 s because the ICW
3 method does

not provide enough measurements to perform tomography reliably
at periods above 30 s. Presumably, this is because the coda is
enriched at the shorter periods (Spica et al. 2016; Ansaripour
et al. 2019).

A more careful comparison of the tomographic maps requires de-
tailed inspection of the differences between the maps. Let us assume
that we have two dispersion maps on the same grid of longitudes
(xi) and latitudes (yj): c(1)

i j = c(1)(xi , y j ) and c(2)
i j = c(2)(xi , y j ). Let


ij be the difference between these maps:


i j = c(1)
i j − c(2)

i j , (14)

whose mean over (xi, yj) is denoted as 
̄ and standard deviation as
σ
. Figs 18–20 display such differences between the three-station
methods with two-station interferometry in map form and Table 3
summarizes the differences, tabulating 
̄ and σ
.

Fig. 18 (and Table 3, column 2) shows the difference between the
Rayleigh wave phase speed maps at periods of 10 and 20 s from
three-station coda-wave interferometry (ICW

3 ) and two-station in-
terferometry (I AN

2 ). There is a small systematic difference between
the maps (
̄ ≈ 7 m s–1) and the standard deviation of the differences
is also small (σ
 < 15 m s–1). Unfortunately, we are unable to pro-
duce meaningful tomographic maps from ICW

3 at longer periods,
while it may be more feasible to push ICW

3 towards shorter periods
than what can be produced by I AN

2 (Section 7.3).
Fig. 19 presents difference maps at periods from 10 to 60 s

for the three-station direct-wave method ellIDW
3 relative to I AN

2 .
Table 3, columns 4–5, summarizes the mean and standard deviation
of the difference over the maps. The standard deviation of the
differences generally grow with period because the IDW

3 methods
increasingly sample the earth differently than the (I AN

2 ) method
at longer periods (Section 7.1). Larger discrepancies are observed
near the peripheries of the maps, where both methods have
larger uncertainties. However, the maps are reasonably consistent
(σ
 < 25 m s–1) across all periods.
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(a)

(b)

(d)

(e)

(c)

Figure 13. Mean and standard deviation of the difference between Rayleigh wave phase speed measurements from the three-station methods (I3) and the
two-station (I AN

2 ) method. (a)–(c) No bias correction has been applied. Measurements from the direct-wave three-station methods (IDW
3 ) are systematically

shifted from the I AN
2 measurements, albeit with different signs, whereas the coda-wave measurements (ICW

3 ) are not shifted relative to those from I AN
2 .

The standard deviation of the differences between the three-station and two-station measurements grow with period generally, but minimize around 20 s.
(d)–(e) Similar to (a)–(b), but the IDW

3 methods have been de-biased based on ray-theory. Systematic differences in Rayleigh wave phase speed measurements
compared to the I AN

2 method are largely removed at periods below 40 s, and are reduced at longer periods compared to the uncorrected values. The statistics
are tabulated in Tables 1, 2.

Table 1. Differences (m s–1) of Rayleigh wave phase speed measurements
from the I3 methods compared to I2 before the de-biasing correction.

ICW
3

ellIDW
3

hypIDW
3

Period (s) Mean SD Mean SD Mean SD

10 0.1 7.3 − 9.3 13.5 11.5 14.1
20 − 0.0 17.0 − 9.9 13.8 13.3 12.9
30 − 1.4 43.2 − 9.9 18.4 14.0 18.2
40 – – − 8.1 24.1 10.8 23.6
50 – – − 11.4 27.2 10.4 27.5
60 – – − 12.8 27.0 8.3 28.8
70 – – − 14.7 25.8 5.0 28.4
80 – – − 15.0 24.2 0.6 28.8

Table 2. Differences (m s–1) of Rayleigh wave phase speed measurements
from the direct-wave I3 methods compared to I2 after the de-biasing
correction.

ellIDW
3

hypIDW
3

Period (s) Mean SD Mean SD

10 0.6 5.5 − 1.3 16.8
20 0.3 7.2 1.7 14.0
30 − 0.9 11.5 3.4 19.4
40 − 1.7 17.7 3.8 26.7
50 − 7.6 24.2 8.1 31.7
60 − 5.9 28.0 6.4 34.3
70 − 6.7 28.4 4.5 35.2
80 − 4.7 27.4 2.2 34.4

Fig. 20 presents difference maps at periods from 10 to 60 s for
the three-station direct-wave method hypIDW

3 relative to I AN
2 whose

mean and standard deviation are summarized in Table 3, columns
6–7. Similar patterns are observed as in ellIDW

3 .

7 D ISCUSS ION

7.1 Residual bias of three-station interferometry

Our de-biasing correction methods are based on straight-ray theory.
As shown in Section 6, some residual bias exists between three-
station direct-wave interferometry (IDW

3 ) and two-station interfer-
ometry (I AN

2 ) even after the correction, especially at the longer
periods. We believe this is due to deviation from ray theory. In
particular, we discuss here the finite frequency effects and the dif-
ferences in the Fresnel Zones or sensitivity kernels between the
methods.

Fig. 21 schematically depicts the difference in sensitivity for the
three-station direct-wave measurements and the two-station mea-
surement, in which we approximate the Fresnel Zone for the two-
station method as an ellipse, shown with dashed lines, with the
two receiver–stations at the ellipse’s foci. The Fresnel Zone for the
method ellIDW

3 is approximately the sum of the two Fresnel zones for
each of the constituent waves that emanate from the source–station
(red dot in Fig. 21a) which lies between the receiver–stations for
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(a) (b)

(c) (d)

Figure 14. Rayleigh wave phase speed maps constructed with eikonal tomography at 10 s period using four different interferometric methods: (a) traditional
two-station ambient noise interferometry (I AN

2 ), (b) three-station direct-wave interferometry with elliptical stationary phase zone (ellIDW
3 ), (c) three-station

direct-wave interferometry with hyperbolic stationary phase zone (hypIDW
3 ) and (d) three-station coda-wave interferometry (ICW

3 ). Red lines depict geological
provinces (Fenneman & Johnson 1946).

this method. The sensitivity zone for ellIDW
3 is smaller than for

I2, on average, and we therefore expect that the method ellIDW
3

will have a higher resolution than I2, everything else being equal.
In contrast, the Fresnel Zone for the method hypIDW

3 is approx-
imately the difference of the two Fresnel zones for each of the
constituent waves that emanate from the source–stations (red dots
in Fig. 21b), which lie outside the receiver–stations. This sensitiv-
ity zone for hypIDW

3 is larger and considerably more complicated
than for I2, on average. We, therefore, expect that the method
hypIDW

3 will have a lower resolution than I2, everything else being
equal.

The Fresnel zones for the I AN
2 method widen with period, as

will those for the IDW
3 methods. Therefore, differences between the

Fresnel zones of the IDW
3 methods compared with the Fresnel zone

of the I AN
2 method will increase with period, too, as the various

methods sample the earth between and around the pair of receiver–
stations increasingly differently. We believe this is the source of the
increase in the standard deviations of the differences between the
phase speed measurements and maps for the various methods (e.g.,
Fig. 13).

The analysis of Fresnel Zones presented here is schematic
and illustrative. The Fresnel Zones have internal structure that
will produce details in the sums and differences presented in
Fig. 21. General conclusions about the nature of the differences
between the various Fresnel Zones are robust, but to use this in-
formation quantitatively to improve images in the future will re-
quire much more careful computation of the Fresnel zones (e.g.
de Vos et al. 2013).

7.2 Effects of the 26 s microseism

A noteworthy observation is that few reliable measurements ex-
ist for three-station coda-wave interferometry (ICW

3 ) beyond 40 s
(Fig. 10a). The degradation of quality with period for ICW

3 is also
observed in Spica et al. (2016) and Ansaripour et al. (2019). To un-
derstand its cause, we compare the spectra for all methods (Fig. 22).
Specifically, we randomly choose 10 000 interferograms from each
method and calculate their amplitude spectra. Then the amplitude
spectra are normalized and stacked to form mean amplitude spectra
curves with standard deviations for each method.
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(a) (b)

(c) (d)

Figure 15. Similar to Fig. 14, but at 20 s period.

(a) (b) (c)

Figure 16. Similar to Fig. 14, but at a period of 40 s. ICW
3 yielded too few measurements to produce a tomographic map.

As shown in Fig. 22, the 26 s spatially localized microseism
source (e.g. Shapiro et al. 2006; Xia et al. 2013) leaves an imprint on
the spectra for all methods although is somewhat stronger for ICW

3 ,
which is also indicated in the example FTAN diagrams (Fig. 8). We
also compare spectra of ICW

3 with and without spectral whitening
(Figs 22d and e). The whitening makes the spectra flatter at short

periods but does not substantially remove the effects of the 26 s
microseism.

The spectra of ICW
3 also show much stronger variability at long

periods than other methods. Spectral whitening does not help reduce
its variability. Thus, although the 26 s microseism has a stronger
effect on ICW

3 than other methods, we believe the lack of signals
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(a) (b) (c)

Figure 17. Similar to Fig. 16, but at a period of 60 s.

Figure 18. Differences in Rayleigh wave phase speed maps (Figs 14 and 15) between three-station coda-wave interferometry (ICW
3 ) and two-station ambient

noise interferometry (I AN
2 ). ICW

3 yields too few measurements to produce tomographic maps at longer periods.

Table 3. Differences (m s–1) of Rayleigh wave phase speed maps from the
I3 methods compared to I2 after the de-biasing correction.

ICW
3

ellIDW
3

hypIDW
3

Period (s) Mean SD Mean SD Mean SD

10 7.0 11.8 − 0.8 8.1 − 2.9 8.7
20 7.4 13.8 − 1.8 5.2 − 0.5 5.6
30 – – 1.9 8.8 1.0 7.0
40 – – − 0.4 12.3 0.8 15.4
50 – – 9.9 16.2 2.1 17.9
60 – – 1.2 24.1 6.5 23.3

at long periods for ICW
3 is largely due to the nature of the coda in

two-station interferometry (I AN
2 ).

7.3 Potential for further refinement

We have chosen many of the characteristics of the two-station and
three-station interferometric methods in a reasoned but largely ad
hoc way. Thus, all of the procedures we describe above may be
refined to improve some aspect of the results. Such refinements
could be made (1) to the data processing procedures, (2) to the
definition of the stationary phase zones for the direct-wave methods,
(3) to the de-biasing procedure applied to the direct-wave methods

and (4) to the use of the results from the different methods in concert
with one another.

(1) Data processing procedures include the definition of both the
direct-wave and coda-wave windows, the wavelength criterion for
the minimum inter-receiver–station distance, the chosen values of
the stacking weights wj, and the use of only the symmetric com-
ponent of the two-station ambient noise interferograms as the basis
for all of data processing. In addition, the two-station data process-
ing procedures of Shen & Ritzwoller (2016) underlie our results,
including the use of an 80 s moving average time-domain normal-
ization window and spectral whitening. All of these choices may
be revised in the future to optimize the result of data processing.
For three-station coda-wave interferometry (ICW

3 ), performing in-
terferometry on hourly or daily I2 and then stack hourly or daily
ICW

3 (Zhang & Yang 2013; Haendel et al. 2016) may greatly in-
crease SNR because cross-talk between incoherent asynchronous
signals are avoided (Sheng et al. 2018). Despite its inapplicability
to asynchronous pairs, this pre-stacking scheme may be promising
for extraction of short-period information (Sheng et al. 2018).

(2) Another important characteristic of the three-station direct-
wave methods is the definition of the stationary-phase zones. We
choose α = 10−2 in eqs (2) and (3) to be period-independent, which
produces a maximum angle of both the elliptical and hyperbolic sta-
tionary phase zones of about θ = 8◦. An optimal period-dependent
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(a) (b)

(c) (d)

Figure 19. Similar to Fig. 18 except differences are between three-station direct-wave interferometry ellIDW
3 and I AN

2 (Figs 14–16), and results are presented
at four periods: 10, 20, 40 and 60 s.

parametrization of the stationary phase zones may be possible.
Moreover, because increasing α should increase the bias of the
three-station methods, in station-rich settings α may be reduced
and in station-poor regions it may be increased, although at the
expense of increasing bias.

(3) The de-biasing method outlined in Section 5 applies correc-
tions to dispersion curves before they are statistically summarized
for each path, based on a great-circle ray-theoretic procedure. This
method could be improved by correcting additional errors from
off-great-circle propagation (Yao et al. 2006; Foster et al. 2014),
non-plane waves (Pedersen 2006) and finite-frequency effects (Yao
et al. 2010; de Vos et al. 2013). Alternately, a completely differ-
ent approach may be possible, which applies phase corrections to
source-specific interferograms (C DW

3 ) and then makes the disper-
sion measurements on the composite Green’s function (Ĝ3). The
correction is a (frequency-dependent) phase shift to each of the
source-specific interferograms prior to stacking.

(4) Because the three-station methods (I3) are consistent with
the two-station method (I2), measurements from all methods can be
combined simultaneously. It might be particularly advantageous to
combine measurements from methods ellIDW

3 and hypIDW
3 because

they are oppositely biased, and their biases may cancel approxi-
mately without an explicit bias correction.

7.4 Connections to other methods

We now discuss how three-station interferometry (I3) methods con-
nect to and differ from other interferometric methods, and how the

methods can gain insight from each other. In particular, we discuss
the earthquake two-station method (Sato 1955), source-receiver in-
terferometry (Curtis & Halliday 2010), and generalized interferom-
etry not based on Green’s function retrieval (Fichtner et al. 2017).

In the earthquake two-station method, for an earthquake lying
approximately inline with two receivers, seismograms recorded at
two receivers are correlated to extract information about the inter-
receiver medium (e.g. Landisman et al. 1969). Thus, if the earth-
quake is replaced by a station and the earthquake seismograms are
replaced by interstation noise correlations, then the configuration
of the earthquake two-station method is somewhat similar to three-
station direct-wave interferometry method hypIDW

3 . In this study,
source–receiver distances are similar in scale to inter-receiver dis-
tances while global earthquakes are often used for regional studies
in the earthquake two-station method (e.g. Yao et al. 2006). Thus,
global source–stations may also be used in IDW

3 which may provide
longer period information in the future.

Source–receiver interferometry (SRI; Curtis & Halliday 2010)
presents three types of geometries where one can extract the Green’s
function between a source and a receiver without direct obser-
vation: correlation-correlation SRI, correlation-convolution SRI,
and convolution-convolution SRI. The geometries of three-station
direct-wave interferometry methods hypIDW

3 and ellIDW
3 are similar

to the correlation-correlation SRI and correlation-convolution SRI,
respectively, with a station serving as a virtual source. A critical
difference between three-station interferometry and SRI is that our
goal is to obtain reliable dispersion measurements from the direct
Rayleigh waves, which requires us to resolve the source phase φs

(Section 4.1). The tapering of stationary phase zones and the area
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(a) (b)

(c) (d)

Figure 20. Similar to Fig. 19 except between hypIDW
3 and I AN

2 .

(a)

(b)

Figure 21. Schematic illustration contrasting the sensitivity kernels for
ellIDW

3 and hypIDW
3 with that for I2 which is shown as a Fresnel ellipse

encompassing the two receiver–stations (blue triangles) and is depicted with
the dashed lines. (a) The sensitivity kernel for ellIDW

3 is a superposition
of the two elliptical Fresnel zones where the source–station (red dot) is at
one focus and each of the receiver–stations are at the other foci. The re-
sulting sensitivity kernel for ellIDW

3 (grey region) is smaller than the kernel
for I2 (zone encompassed by the dashed line). (b) The sensitivity kernel
for hypIDW

3 is the difference of the two elliptical Fresnel zones where each
source–station (red dots) is at one focus and each of the receiver–stations is
at the other focus. The resulting sensitivity kernel for hypIDW

3 (grey region)
is more complicated and larger than the kernel for I2 (zone encompassed
by the dashed line).

weights of source–stations in Entwistle et al. (2015) will affect φs

in a complicated way, so that the tapering and the area weights are
not used here. When amplitude information can be reliably inter-
preted from two-station interferograms (I2), the tapering and the
area weights may provide a closer approximation to the theoretical
integral of Green’s function retrieval and thus might also benefit
phase measurements.

Finally, the three-station direct-wave methods (IDW
3 ) could work

optimally for new generalized interferometric methods not based
on estimating Green’s functions. New methods of interferometry
are being developed that attempt to extract information about the
sources and propagating medium jointly irrespective of the relative
position of the sources and receiver–stations (e.g. Tromp et al.
2010; Hanasoge 2014; Fichtner et al. 2017; Sager et al. 2018).
IDW

3 , where the location of source–stations is known exactly, may
provide an ideal application for these methods.

8 CONCLUS IONS

Our principal finding is that the three-station direct-wave interfer-
ometry methods ellIDW

3 and hypIDW
3 generally outperform three-

station coda-wave interferometry ICW
3 for obtaining Rayleigh wave

dispersion measurements, even though direct-wave interferometry
has been largely ignored as an imaging tool to date. This outperfor-
mance includes such metrics as SNR, the number of measurements
returned, and most notably the band-width of the measurements be-
cause ICW

3 is primarily confined to providing measurements below
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(a) (b)

(d) (e)

(c)

Figure 22. Mean (lines) and standard deviation (shaded areas) of spectra for (a) traditional two-station ambient noise interferometry (I AN
2 ), (b) three-station

direct-wave interferometry with elliptical stationary phase zone (ellIDW
3 ), (c) three-station direct-wave interferometry with hyperbolic stationary phase zone

(hypIDW
3 ), (d) three-station coda-wave interferometry (ICW

3 ) without spectral whitening and (e) ICW
3 with spectral whitening. Dashed lines mark the secondary

microseism peak (8 s), the primary microseism peak (16 s) and the 26 s microseism. The 26 s microseism shows a peak across all methods. Whitening of
ICW

3 only makes the spectra flatter at short periods but does not eliminate the 26 s peak. The spectra of ICW
3 show strong variability at long periods which is

not observed in other methods. Whitening of ICW
3 does not reduce the variability at long periods.

25 s period. In addition, the direct-wave methods also outperform
two-station interferometry in these metrics.

There are two primary caveats concerning the performance of
the three-station direct-wave methods. First, the ellIDW

3 and hypIDW
3

methods are slightly biased relative to two-station interferometry,
I AN

2 . However, we present a ray-theoretic de-biasing procedure
that nearly eliminates the bias at and below about 40 s period,
where ray-theory is expected to work best, and substantially re-
duces bias at longer periods. Secondly, the sensitivity kernels for
the three-station direct-wave methods are more complicated than
both two-station interferometry and three-station coda-wave in-
terferometry and remain poorly understood. Research is needed
to understand the nature of the sensitivity kernels for the three-
station direct-wave methods and how they compare to two-station
interferometry.

The tests presented here use data from the EarthScope TA, but the
relative merits of the various methods tested may vary in different
settings where station coverage and geometries will differ. Indeed,
the three-station methods that we test here may be least needed in
the contiguous US due to the outstanding data coverage provided
by the TA. Tests in different regions (e.g. Antarctica, Tibet, Europe,
Alaska, the Juan de Fuca Plate, etc.) are needed to determine how
the methods will perform in a variety of settings.

Irrespective of these caveats, we believe that three-station direct-
wave interferometry promises to provide a substantial new tool to
the toolbox of standard methods for imaging the structure of the

crust and uppermost mantle. We encourage seismologists to bear
in mind its ability to bridge asynchronously deployed stations in
designing new seismic networks.
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