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Abstract

The concept of a large intelligent surface (LIS) has recently emerged as a promising wireless
communication paradigm that can exploit the entire surface of man-made structures for transmitting
and receiving information. An LIS is expected to go beyond massive multiple-input multiple-output
(MIMO) system, insofar as the desired channel can be modeled as a perfect line-of-sight. To understand
the fundamental performance benefits, it is imperative to analyze its achievable data rate, under practical
LIS environments and limitations. In this paper, an asymptotic analysis of the uplink data rate in an
LIS-based large antenna-array system is presented. In particular, the asymptotic LIS rate is derived in
a practical wireless environment where the estimated channel on LIS is subject to estimation errors,
interference channels are spatially correlated Rician fading channels, and the LIS experiences hardware
impairments. Moreover, the occurrence of the channel hardening effect is analyzed and the performance
bound is asymptotically derived for the considered LIS system. The analytical asymptotic results are
then shown to be in close agreement with the exact mutual information as the number of antennas and
devices increase without bounds. Moreover, the derived ergodic rates show that hardware impairments,
noise, and interference from estimation errors and the non-line-of-sight path become negligible as the

number of antennas increases. Simulation results show that an LIS can achieve a performance that is
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comparable to conventional massive MIMO with improved reliability and a significantly reduced area

for antenna deployment.

Index Terms

large intelligent surface (LIS), large system analysis, channel estimation, ergodic rate, channel

hardening effect.

I. INTRODUCTION

Future man-made structures, such as buildings, roads, and walls, are expected to be elec-
tromagnetically active [2]—[5]. As such, these structures can be leveraged to provide wireless
connectivity to emerging services, such as Internet of Things (IoT) applications [6]-[11], via
the emerging concept of a large intelligent surface (LIS) [2]-[4]. If properly operated and
deployed, LISs are expected to provide wireless connectivity to a plethora of IoT devices, such as
sensors, vehicles, and surveillance cameras, through man-made structures. The LIS concept can
be essentially viewed as a scaled-up version of conventional massive multiple-input and multiple-
output (MIMO) systems. However, an LIS exhibits several key differences from massive MIMO
systems. First, unlike conventional massive MIMO systems where transmission and reception are
carried out via a base station (BS), an LIS can transmit and receive signals through all surfaces
of man-made structures. This allows users in close proximity to communicate with an LIS and
their transmission power levels can be set to values that are lower than those resulting from
massive MIMO. This results in battery savings at the device and reduced interference levels in
an LIS. Hence, higher data rates can be achieved because of the reduced interference levels,
compared to massive MIMO systems. Second, LISs will be densely located in both indoor and
outdoor spaces, making it possible to perform near-field communications through a line-of-sight
(LOS) path [2]-[4]. Since an LOS path is highly correlated to the channel components between
antennas, antenna spacing of greater than half a wavelength is meaningless in order to obtain full
diversity gain. Consequently, an LIS can enable dense antenna arrays'. Finally, an LIS enables
simpler channel estimation and feedback, compared to conventional massive MIMO systems that

typically require channel state information (CSI) for hundreds of antennas. Since an extensive

'Indeed, distortions in radiation patterns can occur due to mutual coupling. However, we envision an LIS that can correct
the distortions in the radiation patterns of any array with any antenna spacing, as in [12] and [13]. More practically, we consider

hardware impairments which include residual coupling loss after decoupling of antenna-RF chains as in [14].



overhead for CSI acquisition resulting from pilot training and CSI feedback can be caused by
the massive number of antennas, this overhead can seriously degrade the performance of massive
MIMO systems [15], [16]. However, the desired channel of an LIS-based large antenna-array
system is highly correlated with the LOS path, facilitating accuracy and simplicity in terms of
channel estimation and feedback.

For these reasons, the use of an LIS has recently attracted attention in the wireless literature
[2]-[5]. These recent works focus on addressing a number of LIS challenges that include perfor-
mance analysis, estimating user location, user assignment, and power allocation. For instance, in
[2], the authors derived the data rates of the optimal receiver and the matched filter (MF) in the
uplink of an LIS-based system. Meanwhile, in [3], the authors obtained the Fisher-information
and Cramer—Rao lower bound for user positions using the uplink signal for an LIS. In [4],
the authors proposed optimal user assignments to select LIS units that maximize the sum rate
and minimum individual rate. The authors in [5] proposed the use of LIS as a relay station
for a massive MIMO system and developed a power allocation scheme to maximize energy
efficiency. However, these previous studies have not considered practical LIS environments and
their limitations, such as imperfect channel estimations and a user-specific channel model. For
instance, both [2] and [3] assumed an LIS with an infinite surface area and considered that a
single infinite LIS performs the MF over all devices. Moreover, [2]—[5] assumed perfect channel
estimations for an LIS. Finally, all of the interference channels in [2]-[4] were assumed as
following a LOS path, and [5] considered independent Rayleigh fading both in desired and
interference channels. Given that LISs are densely located and devices are reasonably close
to their target LISs, desired channels can be modeled as a LOS path whereas interference
channels must be modeled depending on the distances between interfering devices and the
target LISs. Therefore, the interference channel can be composed of a deterministic LOS path
and spatially correlated non-line-of-sight (NLOS) path describing a device-specific spatially
correlated multipath environment.

The main contribution of this paper is a rigorous asymptotic analysis of the uplink rate of
an LIS-based large antenna-array system that considers a practical LIS environment and its
limitations. In this regard, we assume that each device uses as desired surface that maps to
a limited area of the entire LIS that we refer to as an LIS unit. Further, the MF procedure

across the surface is assumed to be performed under realistic channel estimation errors and



hardware impairments, such as analog imperfectness, quantization errors, and residual coupling
loss, are also considered. The interference channels are modeled as spatially correlated Rician
fading channels, composed of a deterministic LOS path and stochastic NLOS path according to
the distance between the interfering device and the target LIS unit. We then analyze the uplink
ergodic rate of each device in presence of a large number of antennas and devices, and derive an
asymptotic ergodic rate of LIS. This approximation allows the estimation of the uplink ergodic
rate accurately without the need for extensive simulations, and then it enables to obtain optimal
operating parameters such as an optimal size of an LIS unit. The asymptotic variance of the uplink
rate is also derived in order to verify the occurrence of channel hardening effect theoretically, that
is a particularly important phenomenon in large antenna-array systems such as massive MIMO
and LIS [17]. Given that the channel hardening determines several practical implications such
as system reliability, latency, and scheduling diversity, we analyze the occurrence of the channel
hardening effect in an LIS-based system and compare it to a massive MIMO system. On the basis
of the asymptotic ergodic rate and variance, the performance bound of an LIS-based system is
obtained by using a scaling law for the uplink signal-to-interference-plus-noise ratio (SINR). We
then show a particular operating characteristic of LIS whereby noise, estimation errors, hardware
impairments, and NLOS interference become negligible compared to LOS interference from other
devices. Our simulations show that LIS can be a promising technology beyond massive MIMO
given that LIS can provide a comparable rate to massive MIMO, with improved reliability and
a significantly reduced area for antenna deployment.

The rest of this paper is organized as follows. Section II presents the LIS-based system model.
Section III describes the asymptotic analysis of the uplink data rate and Section IV describes
the channel hardening effect and performance bound. Simulation results are provided in Section
V to support and verify the analyses, and Section VI concludes the paper.

Notations: Throughout this paper, boldface upper- and lower-case symbols represent matrices
and vectors respectively, and I,; denotes a size- M identity matrix. The conjugate, transpose, and
Hermitian transpose operators are denoted by (-)*, (-)", and (-)", respectively. The norm of a
vector a is denoted by |a|. E[-], Var [], and Cov [-] denote expectation, variance, and covariance
operators, respectively. yx = E[X] and 0% = Var [ X] denote the mean and variance of a random
variable X, respectively. O (-), ®, and o denote the big O notation, the Kronecker product, and
the Hadamard product, respectively. The operators Re (-) take the real part. CA (m, 0?) and
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Fig. 1. [Illustrative system model of the considered uplink LIS having multiple LIS units and serving K users.

X: denote a complex Gaussian distribution with mean m and variance o2, and a chi-square

distribution with k degrees of freedom, respectively.

II. SYSTEM MODEL

We consider an uplink LIS-based large antenna-array system that serves K single-antenna
devices, as shown in Fig. 1. The LIS is located in a two-dimensional space along the xy-plane
at z = 0 in Cartesian coordinates. We define the notion of an LIS unit which corresponds to
a subarea of the entire LIS and has a square shape with an area limited to 2L x 2L centered
on the (z,y) coordinates of the corresponding device. Each LIS unit has a large number of
antennas, M, distributed on its surface with antenna spacing of AL in a rectangular lattice form.
We assume that each LIS unit has its own signal processing unit for estimating the channel and
detecting any data signal, as in [2]-[4], [18], and [19]. Each user device communicates with
its corresponding LIS unit and controls the transmission power toward the center of the LIS
unit according to target signal-to-noise-ratio (SNR), in order to avoid the near-far problem. We
define the location of device k as (zy, Yk, 2x). Then, antenna m of LIS unit k& will be located
at (5 yHS 0) where 215 € [v, — L,y + L] and y-° € [yx — L,y + L]. In contrast to the

works in [2] and [3], that consider an infinite L, we consider a finite L which is a more practical

assumption.



Depending on the location of the device, LIS units may overlap which, in turn, can seriously
degrade the performance. To overcome this problem, we assume that the LIS allocates orthogonal
resources among devices with similar (z,y) coordinates using an appropriate resource allocation
and scheduling scheme. Therefore, we assume that each device communicates with a non-

overlapping LIS unit.

A. Wireless Channel Model

The desired channel h;,;, € CM between device k and LIS unit k is assumed to be a LOS path.
Then, hyy, can be given by hyy = [Br Mk, - - - BreasPrrar] T, where 8L, = ok, 1% denotes
a LOS channel gain between device k and antenna m of LIS unit k. Here, ok, = 1/cosOpem
denotes the antenna gain and 6y, is the azimuth angle-of-arrival between device k£ and antenna
m of LIS unit k. Given that the antennas on each LIS unit are placed at different locations
within the 2L x 2L square-shaped area, 0y, has different values for different m considering
the non-isotropic characteristic of an LIS. Since device £k has a distance of z; from the center

of its target LIS unit, we obtain cos Oy = 2k /dgrm, Where dyg,, denotes the distance between

device k and antenna m of LIS unit k, given by dys, = \/(:ck — 2V 4 (), — yLIS)? 4 22,
Also, l,%km =1/ \/m is the free space path loss attenuation, and hyy,, is the LOS channel
state between device k and antenna m of LIS unit k, obtained as hy,, = exp (—j27dgrm /),
where A denotes the wavelength of a signal [20]. In fact, the desired channel can be generated
by Rician fading composed of a deterministic LOS path and spatially correlated NLOS path.
However, the signal from the NLOS path becomes negligible compared to the one from the
LOS path as M increases, as will be proved in Section IV. Therefore, the desired channels are
modeled as a perfect LOS path in the considered LIS as assumed in many prior works [2]—[4].
Further, hj; € CM is the interference channel between device j and LIS unit k, expressed as a

combination of LOS and NLOS:

Kjk L 1 NL
hjy=,|——h; + hb 1
ik K’jk + ]_ ik K’jk + ]_ gk ( )

where ;i is the Rician factor between device j and LIS unit k. Here, h}k € CM is the deter-

ministic LOS component from device j to LIS unit £ given by h;fk = [ﬁ}lhjkl, ey B}thk M}T,
where 8, = aly, % and hjp,, are LOS channel gain and state, respectively, between de-

vice j and antenna m of LIS unit k. h?kL is the correlated NLOS component defined as



hhy: = [R5, ... B, LT = 11291, where Rj;, € CM*7 is the deterministic correlation matrix

from device j to LIS unit & and g, = [gjk1, - - - ,gjkp]T ~ CN (0,Ip) is an independent fast-
fading channel vector. Here, P represents the number of dominant paths among all NLOS paths
and is related to the amount of scattering in the wireless channel environment [21]. Since we
consider an LIS located in a two-dimensional space along the xy-plane, it can be modeled as a
uniform planar array (UPA) [22]. Given a UPA model, RRj; is obtained as Rl/ 2 l Dj x> Where

Dj, = |« Tklid( k1 ?m) ?k%)d( kP>¢ykP)] and l' = dlag(lgm "Z%IM) is a diagonal

—d- BpL/2

ikm With a path loss exponent BpL-

matrix including the path loss attenuation factors I} Tk =
Here, d (¢}, ¢",) € C" represents NLOS path p at given angles of (¢}, ,¢" ). By using a

UPA model, d (¢! Tk O kp) will be given by:

1
\ h o
d( jkp> jkp) - \/Md ( Jkp) ® dy, (¢]kp) @)
x T

d (65,) = [L &5, PSRN | 3)

dy (60,) = [1 JEREN, L TRV l)%kp} , (4)

where ¢7,, = sin0},  and J kp = Sin 9;‘@ cos 07, when the elevation and azimuth angles of path
p between device j and LIS unit & are 67, and QJ .p» Tespectively [23]. «; kp L indicates the antenna
gain of path p which can be obtained by ozjkp = \/cosﬁ cos O ep Where 0y, € [—g, g} and

Oitp € {051pr O -

B. Uplink Data Rate

The instantaneous uplink data rate of device k& will be given by Ry = log (1 4 ), where i
is the instantaneous SINR of device k received at LIS unit k. The uplink signal received from

all devices at LIS unit £ is expressed as follows:

K
Y. = Pl + Z VPiljkr; + wg + ny, 5)

i#k
where x, and x; are uplink transmit signals of devices k and j, respectively, assumed as
independent Gaussian variables with zero means and unit variances. Further, p, and p; are

the uplink transmit SNRs of devices k and j, respectively, and n, € CM ~ CN (0, I};) is the

noise vector. Moreover, w;, € CM represents the residual noise caused by hardware impairments,



as given by
K
Wy = €, © (\/ﬂkhkMk + Z mhjkxj> ; (6)
J#k
where ¢, = [cy, .. ., cM]T represents hardware impairments at LIS unit £ which can be modeled
using a Gaussian distribution such that ¢, ~ CN (0,1 ;) [14], [24]. Therefore, in (5), \/prhirTr
is uplink desired signal of device k, Z]I;k V/Pihjkx; is the aggregate uplink interference from
other devices, and wy + mny. is the sum of the noise components. We consider a linear receiver

fl,f for signal detection. Then, the received signal at LIS unit & is obtained as

K

e = VorFibuar + Y /i fiher; + filwy + fimg. (7

J#k

We consider an MF receiver defined by f, = ﬁkk where ﬁkk is the estimated channel of hyy.
In the case of perfect channel estimation, f, = hy,. Under the imperfect CSI results from an
least square estimator, we have f, = hy; + \/gek, where parameter 7, € [0, 1] represents
the imperfectness of hy. e, = [BEents ... BEver M}T € CM denotes the estimation error vector
uncorrelated with hy, and my. The elements of the estimation error vector has independent

random variables of eg,, ~ CA (0,1). Using (7), we can write the received SINR of device k

at LIS unit k£ as follows:
pr (1= 72) ||

-2
ka]?|€Ehkk|2 + > pilv/1— T,fhgkhjk + Tkelghjk‘ + ‘fk ’wk‘ + ’\/1 — T,fhgk + Tkeg’
J#k

(®)

where wy, = [wy, . .. ,@M]T =c 0 Zfil V/Pihix . Then, (8) can be simplified to

Si (1 — 712
= 230270, ©)
k
where
S = |, (10)
K

I = pemi X+ > pi¥ie + Zi, (11)

ik



and

Xy = |ef |, vk (12)
2
Y;—k = ‘\/1 —Tlghlljkhjk—l—ﬂgeghjk ,Vj,k‘ (13)
2 2
Ih=20 + 7} = ' 1 — 2R Wy + Trepwy| + ‘\/1 — 72hy, + ey |, VE. (14)

In fact, the considered LIS system is significantly different from a classical massive MIMO
because of a key difference in the SINR expression. In the considered LIS system, the desired
signal power, ‘hkk‘4, is calculated by the squared sum of the squared LOS channel gains over all
antennas, i.e., ( anvle ( 5,£ka)2)2, and this is a deterministic value known at the LIS by measuring
the signal strength of the reference signals. However, in a conventional massive MIMO system,
this desired signal power, |hkk|4’ is not a deterministic value and cannot be known at the BS
accurately because of an NLOS fading. Therefore, the BS can detect the desired signal using
only the estimated CSI, P, resulting in Sy, = |izkk|4 and X = |izl,jkek\2 as most prior studies
on massive MIMO systems have considered (e.g., see [21], [25], and references therein). Given
the uplink data rate Ry, we will analyze the moments of mutual information asymptotically as

M and K increase without bounds.

III. ASYMPTOTIC RATE ANALYSIS

We consider an LIS-based large antenna-array system composed of a large number of discrete
antennas that are densely distributed on a contiguous LIS and each LIS unit occupies a subarea
of the LIS with M antennas. Given a massive number of IoT devices will be connected via
wireless communication systems in the near future [7], we present an asymptotic analysis of
the data rate in an LIS-based system as M and K increase. In conventional massive MIMO
systems, there is a relationship between M and K such that M//K > 1 and M/K is constant
as in [21] and [26]. In contrast, LIS enables wireless communications without any constraint on
the relationship between M and K.

From (10), we can describe the desired signal power, S, as

M 2 M 2
S = |hw|* = (Z }ﬁ;%mhkkmf) = (Z( ,I;m)2> . (15)

m m
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fo (5,I;m) is the summation of the desired signal power received at LIS unit %, and this
is equivalent to the summation of the power received within the ranges of —L < x < L
and —L < y < L when the signal is transmitted from the location of (0,0, z;) in Cartesian

coordinates [2]. Then, S; converges as Sy — 5,3 M—> 0 where we define
—00

= 1 2k
S— — // _dady
ATAL? )] L@yt (a2 + 42 + 22)*
1 ZkL

2rAL? /—LSySL (2 + 22) VL2 + 2 + 2

1 L2 Pr
ALz (Zk /rzﬂ,g) ALY (16)
_ -1 L?
where p, = tan (7% 2L2+Z%). Then, we have

Sk —px — 0, (17)
M—oo

where pp = %. (17) shows that Sy converges to a constant value, p;, depending on z; and
L, and the total captured energy by the LIS can increase as M increases within the constrained
physical area of LIS unit (i.e., AL? decreases). In fact, the work in [27] showed that the total
captured energy is limited by the product of the physical area used for deploying antennas and the
channel’s solid angle, and it remains unchanged as M increases within the constrained physical
area. However, since the authors in [27] assumed perfect NLOS channels and obtained the array
response by using the far-field approximation, [27] does not directly apply to our LIS system. In
the considered LIS system, the increase of M indicates an increase of the number of LOS paths
and this results in an increase in the number of spatial channels and the channel’s solid angle.
Then, the total captured energy by an LIS can increase as M increases within the constrained
physical area of the LIS unit. Therefore, the mean and variance of I?;, can be readily derived,
as follows.
Corollary 1. The mean and variance of R can be respectively approximated as follows:

0.2

~log (14 ju, ) — — 18
KRy, g( :U'Yk) 2(1+/,L%)2 ( )
0'2 0'4
012%€ ~ Vi 5 — Vi - (19)
(1+ :“Vk) 4(1+ :“wc)
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where (1, and a,zm represent the mean and variance of the uplink SINR, respectively, which are

likewise approximated as

2 1 O-%k

2 2 o2 2\2 U%k U}lk
0'%C zkak(l—Tk) 2 ~ "6 |> (21)

Kr, K1,

Proof: From [28], the mean of a function f for a random variable X using Taylor expansions
can be approximated by

BIF ()]~ f (ux) + L0 g3 )

The variance of a function f for a random variable X can be approximated as

" 2 4

ag
Var [ (X)] = (f (ux) P — D% )
Since Sy is constant, (20) and (21) can be obtained when f (I},) = ppSi (1 — 77) /I;; from (9).
Similarly, (18) and (19) can be obtained when f (7x) = log (1 + ). [ |

Corollary 1 shows that both the mean and variance of the uplink rate are determined exclusively
by a random variable ;. Based on the results from Corollary 1, the mean and variance of I

will be analyzed asymptotically.

A. Asymptotic Analysis of Ry

We provide an asymptotic analysis of uplink data rate, Ry, by following three steps. Given
that R exclusively depends on a random variable [, we first analyze the moments of random
variables Xy, Y}, and Z;, from (11). We then asymptotically obtain the asymptotic moments of
I, given the covariances between Xy, Y., and Z;,. We finally derive asymptotic moments of [?;,
from Corollary 1 using the derived asymptotic moments of .

In order to obtain the moments of [, we first derive the following lemmas from the asymptotic
analyses.

Lemma 1. The mean and variance of X}, follow zux, = SN (B,I;m)4 and 0%, = (Z% (B,%m)‘l) 2,
respectively.

Proof: The detailed proof is presented in Appendix A. [ |
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Lemma 2. The mean and variance of Y}y, follow iy, —fiy;, Sy 0 and O'%/k —O'y] ., ——0,
—00 M—o0

respectively, where

ﬂY]k - k + S]k + S]k + ‘:uyk} (24)
_ 2
0%, = (s + 0 +500)" 2] (sh+ )+ 852) (25)
and
L Kk (1 —77) pH pL
A L S, XA 26
ik K+ 1 kk ks (26)
2
L KjkTy
L= Itk 27
Sjk K"]k)_‘_]- (ﬁkm m) ’ ( )
N1 _
Sjk = Kk + 12 ‘hkkrjkp ) (28)
R
N2 k
N2 vl ) 29
Sjk Kok +1 ;;( jkp ]km) / ( )
Proof: The detailed proof is presented in Appendix B. [ |

Lemma 3. The mean and variance of Z; follow iz, — jiz, —> 0 and UZ — a%k M—> 0,
—00

respectively, where fiz, = fo (ﬁ,gmf + pzy, 0y, =T (2 - Tk) Zm (ﬁkm) + UZI?, and
M
pap =3 (0% + 0% + 2Re (W) (30)

m

M 2
0% = <Z (a?m + 0% + 2Re (ﬁﬁ))) : (31)

The terms 02, 02z, and wi®

Zkm Zlm

are given in (70), (71), and (76), respectively.
Proof: The detailed proof is presented in Appendix C. [ |
Z% (B,I;m)z in Lemma 3 can be asymptotically obtained by /p; using (17). Similarly,
S M (8L )" in Lemma 1 and 3 can be obtained by > (5% )*—g, —— 0, where g = -5
and ¢ is given by

i
qr = // dxdy
CL<@a<L (22 +y?+23)°

L2 LRI +37) L “
TTERert R geeprt s \veeg)
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Next, we asymptotically derive the covariances between X, Y, and Zj, and then the
asymptotic mean and variance of [, are obtained by the following lemma.
Lemma 4. The mean and variance of I, follow juy, —jir, — 0and o7 /M?*—57 [M?
— 00

M,K—00
. —_ 72 .
0, respectively, where 17, and o7 _are given as

K
fite = P + ) Pilivy + Dz, (33)
J#k
K K
0 = G+ T =T G+ Y00y, Y pip@itogy, (34)
Jj#k i,j# k1]
where
M
Rk (L—78) u 1
o = hiyhit 36
Heyy, | kk'ltk (36)
_ R gL gl (37)
Haypr K + 1 kmMtm!tkm-
Proof: The detailed proof is presented in Appendix D. [ |

Lemma 4 shows that ji;, and ﬁk are deterministic values depending on locations of the devices
and the correlation matrices. Therefore, we can approximate the mean and variance of Ry as
follows.

Theorem 1. The mean and variance of Ry, follow pp, —jip, — 0 and 0% —0% ———

M—c0 k kM, K—oc0
where fip, and 67, are

=2

g,

fig, = log (1+ fiy,) — — 2% 38
o2 ol

5_}2%k — Tk _ Tk (39)

(14 7)" 41+ )"
Proof: By respectively replacing 17, and U%k in (20) and (21) with fi7, and 51 from Lemma
4, we obtain the mean and variance of the asymptotic uplink SINR. Let us define the mean and

variance of the asymptotic uplink SINR of device % as i, and 5?%, respectively, then fi,, and
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6,2Yk are also deterministic values, as follows:

— — 2 1 5-%k

_2 2 -2 2\ 2 61 5?11@

o, = sl —1) (= — = |- 41)
Hr, Mg,

We can obtain [iz, and 5}2% by respectively replacing p., and o> in (18) and (19) with zi., and

2
T
5'2w which completes the proof. [ |

We refer to fig, and 612% as the asymptotic mean and variance of Ry, respectively. Given
deterministic values of fi,, and 5?%, Theorem 1 shows that the mean and variance of uplink
data rate in an LIS-based large antenna-array system can be obtained based on deterministic
values such as the locations of the devices and the correlation matrices. Then, we can evaluate
the performance of an LIS-based system in terms of ergodic rate, reliability, and scheduling
diversity, without extensive simulations. In particular, we can easily estimate the ergodic rate
from (38), and verify system reliability and the scheduling diversity gain from (39). Furthermore,

the results from Theorem 1 will be in close agreement with the moments of mutual information

resulting from an actual LIS-based system as the number of devices and antennas increase.

IV. CHANNEL HARDENING EFFECT AND PERFORMANCE BOUND

The channel hardening effect is an important feature in large antenna-array systems whereby
the variance of mutual information shrinks as the number of antennas grows [17]. Since a
wireless system’s reliability and scheduling diversity depend on the fluctuations of the mutual
information, it is important to estimate the fluctuations that can be expected in a given large
antenna-array systems such as an LIS. Given the importance of the channel hardening effect,
next, we verify its occurrence in an LIS-based large antenna-array system and we then derive
the performance bound of the ergodic rate.

Since M = (2L/AL)2, (9) is given by using (17) as

-
LT A VER

(42)

where 7, denotes the asymptotic value of ~; and I denotes a random variable with a mean and

variance of iy, and 57 from Lemma 4, respectively. With M = (2L/ AL)?, fij, and g, are
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represented by

K
= Mpyiar | Mpy, _
P = Sz g 2Pty 43)
J#k
M2p2rig2  Mriq, (2 — 72) K
2 kT 9k k i) B 5
T = J096rALt T 6dm?lE ijayk + Z PiPjWijk+0 7z (44)

Jj#k i,j# k1]
We can observe in (42) that the mean and variance of 7, are determined by /i, /M 2 and ﬁk /M*,
respectively. Lemma 5 is used to determine the scaling laws of fiz, /M? and 67 /M* according
to M.
Lemma 5. According to the scaling laws for M, the mean and variance of I;,/M? follow
= 2_ 4 =2 4 : Lk pirg(1-72)
A,/ M?*—fig, gy Oand o7 /M —— 0, respectively, where jir, =3 7, m} hjh,
Proof: From (44), 57 /M* is obtained as follows:
5 2 K 2-9 K _
Ol _  PATadE e (2= T) 7y D itk P3OV, T D i jkits PiPiPigk
M* 409674 LA M? 64m2 L2 M3 M* M4 '

(45)

2 2
PRTR d et (2-72)

From the scaling laws for M, as discussed in [25], j5osid5igz and o =7r2373

in (45) converge
to zero as M goes to infinity. U%ZV in (45) is calculated by the squared sum of M elements
from (31), and then J%ZV increases with O(M 2) as M increases based on the scaling law. Hence,

U%IV:/M4 converges to zero as M — 0o. Also, 532% /M* in (45) is given by using (25) as follows:

(46)

,2 2 2
Oy, [ sj+sh + i 2|pl|” (8% + s+ 53%)
M4 M2 + M4 ‘

In order to verify the scaling law of (46), we determine the scaling laws of s?k, ?Ikl, ?I,f,

and | u?k}z according to M. From (27), SJL-k is calculated by the sum of (ﬁﬁmﬂﬁm)z over all

m where m = 1,..., M. Consequently, s k increases with O(M) as M increases. From (28),
stl is calculated by the sum of ‘hkkrjkp‘ over all p where p = 1,..., P. Given that rj, is

a correlation vector normalized by v/M from (2) and hj,7ji, is calculated by the sum of M

elements, S?I,j increases with O(M) as M increases. From (29), SN

of («a ]kpﬁ,%mlé\gjn) /M for all m and p. Thus, s3> follows O(1) as M increases. From (26),

2 is calculated by the sum

‘u}k‘ is obtained from hkkhjk which is calculated by the sum of A elements. Therefore ‘,ujL,f

increases with O(M 2) as M increases. Hence, (46) goes to zero as M — oo and we have
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Z][;k P03, /M4 —— 0% Similarly, @;; from (35) increases with O(M?) as M increases.

M—o0

Then, ZZKJ ity PiPi%ijk JM* M—> 0 and (45) eventually converges to zero as M — oo.
) : —00
From (43), jis, /M? is obtained by

— 2 O.
K, PrTi qk zy /)yNYJk

= 47
M?  64n2L2M 47rL2M M? +Z “47)

ka qk

. Gmzrzy and

From the scaling laws for M in (47) converge to zero as M — oc. /LZZ;;V

47rILJ/gM
in (47) is calculated by the sum of M elements from (30), and then p zy increases with O(M),

finally ,uZZZV /M? converges to zero as M — oo. Also, iy, /M? in (47) is presented by using

fy, s +si2+ .
(24) as M;;f _ Lt ]\22 i . From the scaling laws of s?k, ?Ikl, ?I,f, and ‘ ,u]k‘ according
to M, we have fiy, /M 2 ‘ i } /M? Sy 0. Therefore, (47) is asymptotically obtained as
5 ool 0, which completes the proof .
Vil % mz - 5, U, which completes the proof.
J

Lemma 5 shows that 7}, /M 2 does not converge to a random variable, but rather to a constant
without any variance as M increases. Therefore, we can prove the following result related to the
occurrence of the channel hardening effect and the performance bound of the uplink data rate.

Theorem 2. The asymptotic variance of Ry goes to zero as M — oo, and an asymptotic mean

2 2
PPk (I_Tk ) . .
6L, | 15 an asymptotic bound

of Ry, is given by jip, —[ir, M—> 0, where jip, = log (1 +
—00
of the uplink data rate.
Proof: From Lemma 5, I;,/M? converges on a constant value of ji;, as M — oo. Then,

Y from (42) also converges on a constant value without any variance as M — oo, as given by

~ piek(1=72)

Ve~ 6L 0. Therefore, the asymptotic uplink data rate, R, converges in distribution

M—oo

pﬁﬁk(l—‘ﬁ?)>
L4720, ) Ao
piﬁk(l—ﬂf)>
6L, ) T

Theorem 2 shows that the channel fading of an LIS-based large antenna-array system behaves

to a constant value: Rj,—log (1 + 0. Finally, the asymptotic mean and variance

of Rj, converge, respectively, as fir, — log <1 + > 0 and 612% T 0. [ ]
JK—00

as a static channel and its impact on the uplink data rate becomes negligible as M increases.

This shows that an LIS-based large antenna-array system is subject to the channel hardening

effect resulting in several practical implications. First, an LIS-based system lacks scheduling

diversity given that the fluctuations of the mutual information are small. Further, an LIS offers

2 If the number of devices that dominantly transmits interference signals to a target LIS unit is as large as M, it will not
converge to 0. However, there are actually far fewer such devices than M because the minimum distance of the (x,y) coordinates
between adjacent devices is considered under the assumption that the LIS units do not overlap. Therefore, we assume that this

value always converges to 0.
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TABLE 1

SIMULATION PARAMETERS

Parameter Value

Carrier frequency 3 GHz

Uplink target SNR 3 dB

Hardware impairments (¢) 1

Channel imperfectness (77) 0.5

Length of LIS unit (2L) 0.5 m

Rician factor (k[dB]) [29] 13 — 0.03d[m]

LOS path loss model [20] 11 + 20log; ,d[m]
NLOS path loss model [21] | 37log,,d[m] (BpL = 3.7)

an improved reliability insofar as it has a nearly deterministic data rate. Also, an LIS provides a
low latency of having a deterministic data rate. Furthermore, Theorem 2 shows that the ergodic
rate of an LIS converges to the asymptotic bound i, as M increases. We can observe that [ip,
is a function of fi;, which depends exclusively on ‘hgkh?kf. Therefore, the asymptotic bound
is only affected by the interference signals through the LOS path from other devices. Hardware
impairments, noise, and interference from estimation errors and the NLOS path become negligible
compared to LOS interference as M increases. If all of the interference is generated from the
NLOS path, the asymptotic bound goes to infinity as M increases. Moreover, Lemma 5 and
Theorem 2 show that the approximation gap resulting from the Taylor expansions in Corollary 1
goes to zero as M — co. As M increases, fij, and G7_follow, respectively, O(M?) and O(M?)
as proved in Lemma 5, and thus, 57, /fi7, follows O(1/M) and eventually converges to zero.
Hence, since the terms of a higher order than the second degree of the Taylor expansion become
negligible compared to the first and second-order terms, the approximation gap resulting from
Taylor expansions in (20) and (21) goes to zero as M — oo. Similarly, Zf?{k goes to zero as

proved in Theorem 2 and the gap in (18) and (19) eventually goes to zero, as M — oo.
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Fig. 2. Ergodic rates of an LIS-based system with LOS interference as a function of the number of antennas on the LIS unit.

V. SIMULATION RESULTS AND ANALYSES

In this section, simulation results for the uplink rate in an LIS-based large antenna-array system
are presented under a practical-sized environment with finite M/ and K. Further, the asymptotic
analyses are compared with the numerical results obtained from Monte Carlo simulations (all
simulations are statistically averaged over a large number of independent runs). The simulation
parameters are provided in Table I and we do not consider shadowing given that the desired
channel of LIS can be modeled as a perfect LOS. In our results, the labels “Estimation” and
“Asymptotic bound” refer to the results obtained from Theorems 1 and 2, respectively, while the
label “Simulation” captures a practical, simulated deployment of the considered LIS system.

In Figs. 2 and 3, Theorems 1 and 2 are verified in the following scenario. The devices are
located at z = 1 in parallel with the LIS on a two-dimensional plane. The devices are located
in the ranges of —10 < x < 10 and —10 < y < 10 (in meters). The distance between the
adjacent devices is set equally to d,, and the target device is located at (0,0, 1). Therefore, a
total of 1681, 441, and 121 devices are located in a two-dimensional rectangular lattice form
when d,, = 2L, d,, = 4L, and d,, = 8L, respectively.

Figs. 2 and 3 compare the ergodic rates resulting from the simulations to the estimations from
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Fig. 3. Ergodic rates of an LIS-based system with NLOS interference as a function of the number of antennas on the LIS unit.

Theorem 1 as M increases. In Fig. 2, we assume that every interference signal from the other
devices is generated entirely from the LOS path and in Fig. 3, it is generated entirely from the
NLOS path. As shown in Figs. 2 and 3, the asymptotic mean values derived from Theorem 1
are close to the results of our simulations over the entire range of M. We can also observe from
Fig. 2 that the ergodic rate converges to the asymptotic bound obtained from Theorem 2 as M
increases. However, in Fig. 3, the ergodic rate goes to infinity as M increases without bound. As
proved in Theorem 2, we can see that only the interference stemming from a LOS path affects
the ergodic rate of an LIS-based system.

In Figs. 4-8, we consider that the devices are uniformly distributed within a three-dimensional
space. In particular, these figures are generated for a scenario in which we randomly and
uniformly deploy the devices in a 4 mx 4 m X 2 m space. Based on the 3GPP model in
[29], the existence of a LOS path depends on the distance from the transmitter and receiver. The

probability of LOS is then given as follows:

(dc — dyk) /dC,O < djk < dc,

PLOS —
0, djk > dc,

(48)

where d;;, is the distance in meters between device j and the center of LIS unit %, and d¢ denotes
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Fig. 4. Ergodic rates of an LIS-based system with randomly located devices as a function of the number of antennas on the

LIS unit.

a cutoff point, which is typically set to 300 m in a cellular environment [29]. Since the antenna
of a BS in a cellular system is located at a high altitude, d takes a large value such as 300 m.
However, in an LIS environment, a relatively smaller d¢ value is more reasonable. In Figs. 4-8,
dc = 10 m is assumed to jointly consider the LOS and NLOS path simultaneously. If a LOS
path occurs, the Rician factor, x;i, is calculated according to d;; as per in Table I.

Figs. 4 and 5 show the ergodic rate and variance of the rate, respectively, as a function of
M. The asymptotic mean and variance derived from Theorem 1 are close to the results of our
simulations and the accuracy improves as M increases. In Fig. 4, the asymptotic means closely
approximate the results of the simulations regardless of K, whereas the asymptotic variances
approach the results of the simulations as K increases as shown in Fig. 5. Based on Theorem
1, the gap between the actual mean and asymptotic mean approaches zero as M increase, while
the gap between the actual variance and asymptotic variance approaches zero as both M and K
increase. Fig. 4 also shows that the ergodic rate gradually converges to the asymptotic bound
obtained from Theorem 2. Given that the interference power increases as K increases, the ergodic
rate gradually decreases as K increases.

Fig. 5 shows the channel hardening effect whereby the rate variance gradually converges
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Fig. 5. Variances of uplink rates of an LIS-based system with randomly located devices as a function of the number of antennas

on the LIS unit.

to zero as M increases. Moreover, the rate variance gradually decreases as K increases for a
fixed M. From the scaling laws of fi;, and 5§k in Lemma 4, fi;, and 51 follow O (K) and
O (K?), respectively. Then, 53 _follows O (1/K?) from (19)—(21). Therefore, 57, decreases as
K increases.

In Figs. 6 and 7, we compare the performances of an LIS-based large antenna-array system
and a massive MIMO system. We consider a multi-user massive MIMO system in which an MF
is used for uplink signal detection. Since massive MIMO systems typically operate via far-field
communications, we assume that every wireless signal is from an NLOS path and the distance
from a device to all BS antennas is taken as equal [21]. For a massive MIMO system with a
uniform linear array (ULA), the wireless channels from the NLOS path can be modeled using
(1) with kj, = 0 and

d(oh,) = L[ 1 @B, L B (Mg, ]T’ “9)

VM
which is then applied to (2). Here, v is the antenna spacing of a massive MIMO system assuming
v = \/2. We also assume a single BS with M antennas and P = M /2, as in [21], and the same

device distribution is considered as in the case of the LIS. For a fair comparison, we assume
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Fig. 6. Performance comparison between the ergodic rates of an LIS-based system and a massive MIMO system as a function

of the number of antennas.

that the antenna gain is always equal to 1 in both cases (i.e., with massive MIMO and the LIS).

Fig. 6 compares the ergodic rates of an LIS-based large antenna-array system and a massive
MIMO system as M increases. This figure shows that the ergodic rates resulting from LIS are
higher than those resulting from massive MIMO in the range of practical-sized M, since the
desired signal power of the LIS channel (i.e., LOS channel) is higher than that of the massive
MIMO channel (i.e., NLOS channel). The performance gap decreases as M increases because
the interference signal from the NLOS path becomes negligible, and eventually the massive
MIMO system becomes an interference-free environment. When K = 30, an LIS shows about
2-fold increase in the ergodic rate compared to massive MIMO with ULA at M = 100, but two
systems achieve a nearly equal ergodic rate at M = 3600. However, the increase of M indicates
an increase in the physical area for deploying the massive antennas, whereas the physical area
of the LIS remains constant at 2L x 2L. For example, the ergodic rates resulting from the LIS
and the massive MIMO systems are almost equal when K = 30 and M = 3600. The total
physical length of the massive MIMO antennas is equal to 180 m under the assumption of a
ULA with A\/2-spacing. Even if we consider a two-dimensional antenna deployment, a 60 x 60

antenna-array occupies an area of roughly 9 m?. However, the LIS unit only occupies an area
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Fig. 7. Performance comparison between variances of uplink rates resulting from an LIS-based system and a massive MIMO

system as a function of the number of antennas.

of 0.25 m?. An interference-free MIMO environment is practically impossible given that the
size of its array would have to be tremendous. This clearly shows the advantages of an LIS for
space-intensive wireless communication.

Fig. 7 compares the variances of uplink rates resulting from an LIS-based large antenna-array
system and a massive MIMO system as M increases. In Fig. 7, we plot the rate variance of
LIS using the estimated value obtained from Theorem 1. We can observe that the rate variance
of massive MIMO increases as M increases and then eventually converge to constant value
exemplifying the so-called reduced channel hardening effect [17]. However, the rate variance of
LIS converges to zero as M increases due to the channel hardening effect. Therefore, an LIS
has improved reliability having a deterministic rate and it results in lower latency compared to
a massive MIMO system.

Fig. 8 shows the ergodic rates resulting from an LIS-based large antenna-array system as a
function of L when M = 100. In the LIS, the maximum SINR is achieved at the central antenna
of the LIS unit and the SINR gradually decreases as the antenna moves from the center to the
edge. Thus, the ergodic rate increases as L increases when L is small and decreases when L

exceeds some threshold point. As shown in Fig. 8, the maximum ergodic rates can be achieved
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Fig. 8. Ergodic rates of an LIS-based system as a function of L when M = 100.

through optimal L values. Furthermore, an optimal L can be obtained numerically using the

asymptotic analysis from Theorem 1 as given by L = 0.35 m in Fig. 8.

VI. CONCLUSIONS

In this paper, we have asymptotically analyzed the uplink data rate of an LIS-based large
antenna-array system. We have derived the asymptotic moments of mutual information by
considering a practical LIS environment in which a large LIS can be divided into smaller LIS
units, each of which having a limited area. We have studied the uplink rate in presence of
limitations such as hardware impairments, imperfect channel estimation, and interference that is
generated by device-specific spatially correlated Rician fading. We have shown that our analyses
can accurately determine the performance of an LIS analytically, without the need for extensive
simulations. Furthermore, we have demonstrated that a channel hardening effect will occur in an
LIS-based system. We have also derived the asymptotic bound of the uplink data rate and shown
that hardware impairments, noise, and interference from channel estimation errors and the NLOS
path become negligible as M increases. The simulation results have shown that the results of
our asymptotic analyses agree with those resulting from extensive simulations, and the ergodic

rate and the variance of rate respectively converge to the derived asymptotic bound and zero as



25

M and K increase. Moreover, we have observed that an LIS enables reliable and space-intensive
communication, which renders it a promising technology beyond massive MIMO systems. We
expect that our asymptotic analyses will be invaluable to predict the theoretical performance of an
LIS-based large antenna-array system when conducting system-level simulations and developing

prototypes.

APPENDIX A
PROOF OF LEMMA 1

Given the definition of X = ‘ekH hkk‘z from (12), we have

2

(50)

M
E ﬁkm ekmhkkm
m

Let us define Xy, = (B,I;m)zezmhkkm Vk, m. Then, X, ~ CN (O, (B,I;m)4) and X, can be

described as follows: u

1
X~ 5 (BE.) X3, (51)

m

where X7 denotes the chi-square distribution with k degrees of freedom, which completes the

proof.

APPENDIX B

PROOF OF LEMMA 2

2
Given the definition of Y, = }\/1 — Tghgkhjk + Tkel,jhjk from (13), we have

2 2
o= (D = [+ v e )

where we define Xy, = Y + Yi' + Y}{* Vj, k and

K .
Y;II; L ( — Tk hEkh’jk + Tk Z 5km jmekmh]km> ,VJ, k (53)
1—
1/2
v = fw+1 (./1 — T2hi R g, ) R thkrjkpgjkp,vy,k (54)

M,P
Yﬁ? \/ (Tkek Jl/ézggk> % 1 Zﬂkmrjkmpekmg]kmv]?k (35)
jk +
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where Rl/2 = [Pjk1s . Tikp] and iy = [Fikips - Tikarp) - Vi, K, p. We first prove that Y
and Y; . follow independent complex Gaussian distributions. We then asymptotically obtain the
distribution of Yﬁ? by using the law of large numbers for a large M and the Lyapunov central
limit theorem (CLT). Finally, we asymptotically derive the mean and variance of Yj;. Given
that exp,, gjrp, and exmg;rp are independent of each other, Y; s Y; % » and Y;IEZ are independent
random variables. Further, since ey, and g, are standard complex Gaussian random variables

respectively independent across m and p, we have Yj; ~ CN (uly, s%.) and Yji' ~ CN (0, s3}),

where
L Kjk (1— )
S — 717, h 56
S =
ik K"]k)_‘_]- km jm) >
2
SN = o 12 P ir| (58)

. 2. 2. .
Here, hl,jkh;fk in (56), Zi\f (B,I;m ]Lm) in (57), and Zp ‘hkkrjkp‘ in (58) are deterministic values
depending on the locations of the devices and the correlation matrices.
In order to obtain a random variable Y; » > we use the law of large numbers to approximate

(55) for a large M. Zm B TikmpCim3ikp 10 (55) is thus expressed as follows:

M

L *
E : ﬁkmrjkmpekmgjkp ]kp E : ﬁkmljkmd]kmpekmgjkp’ (59)
m

where dji,, is element m of d (gé}’kp, ]kp) We define Y}kp Z Bl i dikmpYskmp V7, K,
where yjrmp = €;,,9jkp- Then, the random variable ijp follows Corollary 2.

Corollary 2. On the basis of the Lyapunov CLT, a random variable ?jkp asymptotically follows
a complex Gaussian distribution:

d
\/Z G )2 Yiep —— CN(0,1), (60)

km"jkm

where “ MLV’ denotes the convergence in distribution.
—00
Proof: In order to follow the Lyapunov CLT, ¥;.m, should be independent random variable
across m and the following Lyapunov’s condition should be satisfied for some o > 0 [30]:

2+6} —0, 61)

hm 2+5 Z E |:‘5kmljkm jkmpYjkmp — Nm‘
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where 53, = "M 62 and g, and o2,

are the mean and variance of the random variable
Bl i dikmpYjkmp» respectively. Here, yjkmpy = €f,,95kp is @ random variable product of two
independent random variables. Since ey, is an independent random variable across m and
independent with g, {Yjk1p, ---, Yjkmp} 1S @ sequence of independent random variables, each
with zero mean and unit variance. Then, we can obtain y,, = 0 and o2, (B,I;ml] km) |djkmp\2 =

(Bemly km) /M ¥m. We consider § = 2, such that (61) is obtained as follows:

Z (5 ka) E [|yjkmp|4] 42 (5 ka)

. m . L day,
Z\}gnoo M L NL 9 2 @:) Z\}gnoo M L NL 9 2 J\/lll—r>noo Md?k’ (62)

where we define aj, = SV (B,%ml]km) /M and a, = M (ﬁ,lgml]km) /M V3, k. (a) results from
E [|yjkmp|4} = 4 Vm since Y,xm,p is product of two independent random variables that follow an
identical standard complex Gaussian distribution. Given that 0 < 35, < 1 and 0 < l] o < 1, we

have 0 < a;, <1 and 0 < &, < 1. Therefore, (62) goes to zero, which completes the proof. W

Based on Corollary 2, we have \/WY;LQ Md > CN (0,1), where
—00
N TE NS (g L2y 63
Sik = et 1 Z( ykpﬂkm jkm) /M. (63)
m7p
Here, a?lkl;g l] m 18 @ deterministic value depending on the locations of the devices and the

correlation matrices. Given that Y Y;k , and Y;l}iz are independent of each other, we have

1 L d . . 2
o Ee (Zy,, — 1ky) = CN (0,1). For a random variable Y = > . |X;|", where

X; is a complex Gaussian random variable independent across i such as X; ~ CN (m;,0?),

the mean and variance of Y are respectively obtained by py = >, (67 + \mi|2) and 0% =

(2

>, (ot +2/m;|*0?) . Then, fiy,, and oy, are ultimately obtained by

. = Jk + Sjk + Sjk + "uyk} (64)

O-%/k = ( ]k‘ ‘l’ sjk: + 8‘17\113) ‘l’ 2‘#’?]&‘ 2 (S?k‘ ‘l’ S?Ikl ‘l‘ S?Ikz) . (65)

APPENDIX C



28

PROOF OF LEMMA 3

Given the definition of Z; from (14), we have

2 M
7z = ',/1 — TP h ey | = [zl (66)
2 M 2
ZV= ’,/ 1 — r2hp i + Tef wy| = (> 2| (67)

n _ / 20L 7% L W / 20L 7% ~

TeBE €r Wy = Wzt . Then, 2 follows a complex Gaussian distribution:
n % 2

M M
Then, the mean and variance of Z}! are iz = Y (BE.)? and op =T (2-10) 2 (BE)", re-
spectively. Similarly, as proved in Corollary 2, fo 2z follows a complex Gaussian distribution

based on the Lyapunov CLT as M — oo. From (6), 2]}, can be represented as follows:

Ak NGEs . We define 2 = \/peBihkkmCm 2, and 20 =

cmzﬁmhR . Since c¢,, 1s a zero-mean complex Gaussian random variable inpendent with 2z, , the

where A = >

mean and variance of "% are obtained from [31], respectively, as foov =0 and

o2 = pe( B Var o] (B [l + Var [2,]) = dpu(5h,)" (70)

Similary, the mean and variance of 2’} can be obtained, respectively, as fhopr = 0 and
m

ka

2
=10 (‘E . ‘ + Var [zgmh}}m}) : (71)

. n R .
Since z;,, and h;; are independent, we have
2

Piljk *
Z — 5km mhkkmhjkm

72
o (72)

B [ | =0 -)

Also, Var [z hf | in (71) is obtained in a manner similar to (70), as follows:

Var (44, hit] = (85,7 (o2 + 72l [7) (73)
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where

K
. Pikik oL
g, = 2\ g Omon (74)
J#k
K p' P
o =3 = ikl (75)
o J#k Kyk_'_l P

. 2
(72) and (73) respectively show that |E [z A | |” and Var [z AL ,] can be calculated based
on the deterministic values such as the locations of the devices and the correlation matrices.
Since 2’ and 2R include a common random variable ¢, 2} . they are dependent of each other

with the following covariance:

Jk

Note that 2}~ and 2% are independent random varlables across m. Therefore, we can finally

obtain the mean and variance of Z;" respectively as follows:

M
pzy =3 (0% + 0% + 2Re(wpsY) ) (77)
M 2
05 = (Z ( 2o+ 02n + 2Re(w,:3gf‘))> : (78)

which completes the proof.

APPENDIX D

PROOF OF LEMMA 4

Given the definition of I, = kalek + Z][;k p;iYir + Zi from (11), we have

2
pil\/1— T2 + Tep b + '\/1 — 72hy, + e

Based on Lemmas 1-3, ji;, can be obtained as fi;, = pxT7qr + Z;;k pilty;, + +/Pr. We can

2

Ik = pkr,f}el,jhkkf + Z]I;k (79)

observe from (79) that Xy, > i p; Yk, and Zj, are function of a common random variable vector
ei. Similarly, Y;; and Y, Vi # j also include a common random variable vector e;. As K
increases, the sum of covariances between Yj; and Y, Vi # j becomes dominant and the
covariances between X, Z - pjYji, and Z;, becomes negligible. Then, the variance of ;, can be

asymptotically obtained based on Lemmas 1-3 as O’I JM? — alk /M? W 0, where
—00

K
& =R+ 2= G+ Y ST T, PP (80)
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(wiji denotes the asymptotic value of wij, = Cov [Yir, Yji] = v, v, — tv,, by, Vi # j, where
1,y = E[YaYjil, py,, = E[Yi], and py,, = E[Y}]. For convenience, we use the following

notations.

1—72 P
Ctk = 1/ 1—- 7'13 h’II;Ikh'tk = Kotk —l—kl (\/ /‘ftkhlljkh%k + Zp hlljkrtkpgtkp> ) (81)

Qgmk = \/ Fou & 151% (\/ Rk ﬁtmhtkm + Z Ttkmetkp) ) (82)

for t € {i,j} and VYm, k. With a;,,x, we have Tpellhy; = Z% Atmk € Here, g and gy

are complex Gaussian random variables independent with ey, such as ¢ ~ CN (uctk,aftk)

b

and Aimk ™~ CN (/’l’fltmk7a2 ), where Hey = A /Htk(l Tk)h htk7 — 1— Tk Z ‘h k’r'tkp

Atmk Kep+1 Ctk Kep+1

_ /TR gL gL g do? = 2 (8kn)” 2
Hapmp = Rtk+15kmﬂtm thm, all O-atmk T R+l Zp |Ttkmp| .

By using the above notations, we have

Y;k = ‘\/ 1-— Tlghlljkhtk + Tkell;lhtk
M M M
— |cm|2 + 2Re <Ctk Zm afmkekm) + Zm tmkCrm Zm (O CT— (83)

With a standard complex Gaussian distribution for eg,,, we have E[ey,,] = 0, E[el, ] = 0,

2 M . 2
m

E(e},,] = 0, and E [|ej,|*] = 1. Then, py,, and f1y;,y,, are obtained as iy, = fic,, + 3 m Hay

km

and
M
v = B (el el + el Y- lamellernl”
2\ M 2 2 « Mo, 2
+ |l Z |@imi|” |exm|” + 2Re Cikcjkzm @i Gimk | €km|” ) + &

M M
/”chku k+uczk Z /”LAJmk_‘_ILLC ik Zm /’LAL77Lk+2Re (/’chkuzﬂc Zm /’LZ,L',,,”C/”LGJ'mk) +M§’
(84)

where we define pc,, = E [|ctk|2] and py, = E Uatmk\z} for t € {i,7} and Vm, k. Then, we
have fic,, = 02+ |pte,|” and pa,,, = 02, + |pta,,,|" Further, & and p¢ are given by

M M M M
|a2mk| ‘ekm‘ ‘ajmk| ‘ekm‘ + azmka imk |ekm| ;‘knkajnk|€kn|2 . (86)
J

n#m
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Then, w;j;, is obtained by

M M M
Wijk = 2Re Ncikﬂzjk Z /’L:Z‘mkluajmk + pe — Z H A, Z HAGmg - (87)

Here, /i, is obtained from hj, hj; which is calculated by the sum of M elements. Then, the
first term of w;;x in (87) increases with O(M?) as M — oo. Similarly, the second and the last
term of w;;x increase with O(M?) as M — oo. According to the scaling laws for M, we have
wijk/M? — @iy M? T 0, where

M
Wijk = 2Re | Heytie,, Z Wa o Hag | - (88)

We can observe from (88) that w;;;, can be obtained by a deterministic value and the LOS

component of the interference channel exclusively produces ;.
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