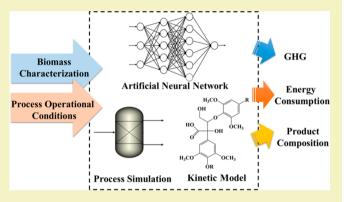




Research Article pubs.acs.org/journal/ascecg


## Generating Energy and Greenhouse Gas Inventory Data of Activated Carbon Production Using Machine Learning and Kinetic Based **Process Simulation**

Mochen Liao, Stephen Kelley, and Yuan Yao\*

Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States

Supporting Information

**ABSTRACT:** Understanding the environmental implications of activated carbon (AC) produced from diverse biomass feedstocks is critical for biomass screening and process optimization for sustainability. Many studies have developed Life Cycle Assessment (LCA) for biomass-derived AC. However, most of them either focused on individual biomass species with differing process conditions or compared multiple biomass feedstocks without investigating the impacts of feedstocks and process variations. Developing LCA for AC from diverse biomass is time-consuming and challenging due to the lack of process data (e.g., energy and mass balance). This study addresses these knowledge gaps by developing a modeling framework that integrates artificial neural network



(ANN), a machine learning approach, and kinetic-based process simulation. The integrated framework is able to generate Life Cycle Inventory data of AC produced from 73 different types of woody biomass with 250 characterization data samples. The results show large variations in energy consumption and GHG emissions across different biomass species (43.4-277 MJ/kg AC and 3.96-22.0 kg CO<sub>2</sub>-eq/kg AC). The sensitivity analysis indicates that biomass composition (e.g., hydrogen and oxygen content) and process operational conditions (e.g., activation temperature) have large impacts on energy consumption and GHG emissions associated with AC production.

KEYWORDS: Activated carbon, Biomass, Life Cycle Assessment, Machine learning, Artificial neural network, Kinetics, Process simulation

#### ■ INTRODUCTION

Activated carbon (AC) is a carbonaceous material with high porosity, absorptivity, and surface reactivity and has high valueadded applications in water purification, industrial processes, and flue gas cleanup. 1,2 AC also has many emerging applications such as functional materials used for electrode, catalyst, and carbon capture.<sup>3</sup> The worldwide consumption of AC was 12.8 million metric tons in 2015,4 and the annual growth rate of the AC market was projected as 6.31% from 2019 to 2024.5 AC can be produced from diverse carbonaceous sources such as coal (the main current source of commercial AC) and biomass (e.g., agricultural waste, wood, and herbaceous plants).3,6 Given a large number of potential feedstocks for AC production and rapid growth of AC demand, it is critical to understand the environmental implications of producing AC from alternative biomass feedstocks, especially given that AC production is one of the largest contributors to the overall environmental impacts of relevant technologies such as wastewater treatment based on previous Life Cycle Assessment (LCA) studies. 7-10 This understanding will enable more informed decision-making related to biomass selection, technology investment, process design, and optimization.

Many LCA studies evaluated the environmental implications of AC produced from diverse sources. A comprehensive literature review of previous studies is provided in Supporting Information (SI), section 1. The review indicates large variations in the environmental burdens associated with AC production from different biomass feedstocks (see Table S1). Given that most previous studies focused on a specific biomass feedstock, it is difficult to apply their results for other biomass feedstocks or make generic comparisons. 11-13 Developing LCAs for AC produced from a variety of biomass is challenging due to the lack of Life Cycle Inventory (LCI) data. Rapid and reliable estimation of LCI data for AC produced from diverse biomass sources is essential to screen different types of biomass feedstock and support early stage technology development and process design for sustainable AC production. It also significantly reduces the time and efforts needed for the gateto-gate LCI data collection for manufacturing processes that is usually the most time-consuming phase for LCA.<sup>14</sup> A few

Received: November 1, 2019 Revised: December 15, 2019 Published: December 17, 2019



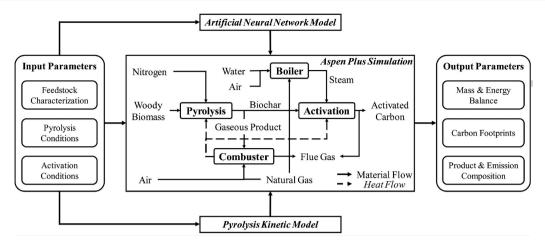



Figure 1. Schematic diagram of the integrated modeling framework in this study.

previous studies have investigated different approaches for the rapid generation of LCI data of production processes. For example, Parvatker and Eckelman<sup>15</sup> reviewed different methods that have been used for LCI estimation, such as process simulation tools, <sup>16,17</sup> process design calculations, <sup>18,19</sup> stoichiometry, proxy method, 20 molecular structure-based models,<sup>21</sup> and hybrid LCI.<sup>22,23</sup> Other studies have used other process simulations in conjunction with other techniques such as dynamic model,<sup>24</sup> kinetic model,<sup>25</sup> network approaches,<sup>26</sup> and knowledge-based models.<sup>27</sup> Applying previous approaches to estimate LCI for AC produced from diverse biomass feedstocks is challenging due to the lack of quantitative understandings of the relationships between LCI and large variations in biomass compositions and process operations, which are further discussed in the following two paragraphs. A few studies have tried to use machine learning (ML), a technique that does not rely on preknown knowledge, to directly generate LCI data<sup>21</sup> or environmental impacts.<sup>2</sup> However, these applications of ML techniques are limited to commercialized chemicals/products with abundant LCI data. Thus, it is challenging to apply ML alone to AC production that lacks LCI data for different biomass feedstocks.

Previous studies indicate that energy consumptions and greenhouse gas (GHG) emissions are mainly driven by the AC production stage that usually has large variations due to differences in the types and composition of biomass, process operational conditions, and sources of energy. 9,13 A few studies have tried to explore such variations by investigating AC production scenarios by varying process parameters. For example, Sepúlveda-Cervantes et al. conducted a gate-to-gate LCA of soybean shell-based AC production using zinc chloride activation.<sup>31</sup> By varying the operational conditions (i.e., activation temperature, time, and impregnation ratio), the electricity consumption of AC production changed from 17 to 50 MJ/kg AC, and the GHG emissions varied between 5.86 to 47.2 kg CO<sub>2</sub>-eq/kg AC.<sup>31</sup> Arena et al. analyzed the impacts of different energy sources on the environmental footprints of coconut shell AC, which showed a significant reduction of most environmental impact categories (60-80%) by using electricity from renewable sources. 12 For feedstock variations, most studies 13,32,33 developed LCA for individual biomass with a limited set of operational conditions then made a comparative analysis. To the best of the authors' knowledge, none of the previous studies have correlated LCA results with parameters related to biomass characteristics and process

operations. Thus, it is challenging to use previously developed LCA models to obtain quantitative understandings of the impacts of feedstocks and process variations or screen biomass and perform process optimization for AC production from an environmental perspective.

One additional, and significant, liability of many studies is that they have assumed a fixed composition for the gas and vapor product generated by the activation process, 11,12,31 whose accuracy cannot be ensured in the scenarios with varying feedstocks and operating conditions. The composition of these gas and vapor can have a significant effect on LCI. 11,12,31 The composition of gases and vapors will vary depending on both the composition of the starting biomass and operational conditions. 31,34

To address the gaps discussed above, this study integrated kinetic-based process simulation and artificial neural network (ANN), a machine learning approach, to estimate environmental footprints of AC produced from a variety of biomass feedstocks. Specifically, primary energy consumption and GHG emissions of AC production, two most commonly used indicators in previous LCAs for AC production, 11-13 were parametrized by process models that used large data sets collected from literature (e.g., ultimate analysis of biomass, in total 250 data samples) and predicted by ANN (e.g., total AC yield). As the focus is to demonstrate the functionality of the integrated framework in generating the LCI data for AC produced from different biomass, the system boundary of this work is gate-to-gate. This system boundary is also consistent with most of the previous LCAs of AC. 9-12,31-33,35-42 The influences of biomass feedstock characteristics were investigated by correlating the feedstock compositions with energy consumption and GHG emissions.

This study can be used for screening a diverse array of biomass feedstocks useful for AC production, enhancing options for feedstock selection, process design, and process optimization. Although this work focuses on AC production, the integration of ANN and kinetic-based based simulation can be applied to other production systems to generate LCI data for rapid LCA analysis, especially for emerging technologies whose LCI data is not available. These combined models will allow future research and production on biomass-based AC to clearly understand the environmental sustainability implications of their process choices. Furthermore, the sensitivity analysis was constructed to identify the key biomass properties and operational parameters driving the energy and GHG

emissions, which are valuable information for future process optimization and improvement.

#### MATERIALS AND METHODS

This study focuses on steam activation, a common technology for AC production.<sup>3</sup> The steam AC production process consists of two steps. In the first step, dried biomass is treated at high temperature (400-850 °C) and inert atmosphere in a slow pyrolysis process that produces solid biochar, syngas, and condensable bio-oil.<sup>2</sup> In the second step, the biochar is placed in a high-temperature reactor without air, and superheated steam is injected to activate the biochar. A series of complex chemical reactions are involved in both steps, and it is challenging to directly determine the yields and composition of the products of each step. Yet the yield and composition of the gases and vapors are required to estimate the energy consumption and GHG emissions of AC production.<sup>43</sup> To address this challenge, previous studies used either experiments or literature data for specific feedstocks with a limited set of activation conditions. 12,11 However, such data cannot be accurately extended to a broad array of different feedstocks. Although some recent studies tried to use ANN models to predict the LCI data or LCIA (life cycle impact assessment) results, <sup>21,28–30</sup> it is very challenging to use ANN alone to estimate the environmental burdens of AC production that does not have sufficient data samples for different biomass feedstocks and process operational conditions. This work addressed this challenge by first using kinetic-based process models to estimate pyrolysis yield and gas composition and then using trained ANN models to predict the activation yield, and Aspen Plus process simulation to generate gateto-gate LCI data such as energy consumption and air emissions (see Figure 1).45,

Three types of input parameters were used in this modeling framework, including biomass characterization (i.e., ultimate analysis data), pyrolysis conditions (i.e., temperature and reaction time), and activation conditions (i.e., steam to biochar mass ratio, activation time, and temperature). These data were used as the input of the ANN model to predict the total yield of AC production. The training process is detailed in our prior work.<sup>45</sup> This study focuses on woody biomass, given that it is one of the most abundant biomass resources in the world.<sup>47</sup> This also has the practical advantage of limiting the effects of ash, in particular active alkali, which can have a significant impact on the initial slow pyrolysis reactions and be significant in herbaceous or agricultural feedstocks. The data of ultimate analysis (a type of chemical analysis commonly used for biomass and fuels, it provides composition information such as the contents of carbon, hydrogen, and oxygen)<sup>48</sup> combined with the pyrolysis time and temperature were then used as the inputs to the pyrolysis kinetic model adapted from the previous study, 46 producing data on the quantity and composition of pyrolysis products. Both ANN and kinetic models were run independently, although they used the same data sets for biomass characterization and operational conditions. Then the data generated by the kinetic model (gas and solid products from pyrolysis) and ANN model (total AC yield) were used in an Aspen Plus process simulation that ultimately provided the energy and mass balance data needed to estimate the environmental burdens of AC. <sup>49</sup> A list of input and output parameters is provided in Table S2. As this study mainly focused on energy and GHG emissions, energy consumption and GHG in the gas products were mainly tracked for the process simulation. However, the integrated modeling framework is capable to provide the full list of inputs and outputs that can be used as LCI to estimate other environmental impact categories such as acidification and eutrophication that other researchers may be

**Pyrolysis Kinetic Model.** Many mechanistic studies have attempted to investigate biomass thermochemical conversion processes. Four types of mechanisms were commonly used, including (1) three-step reaction mechanism, (2) two-stage semiglobal reaction mechanism, (3) Broido-Shafizadeh reaction mechanism, and (4) multistep reaction mechanism (MSRM).<sup>50</sup> The MSRM framework was chosen in this study given its capability of predicting the

composition of the biochar solid and the product gases and vapors. <sup>50,51</sup> MSRM assumes that biomass is composed of the lignocellulosic components (i.e., cellulose, hemicellulose, and lignin) and thermal degradations happen on these components and derived products. Then the MSRM based model suggests a series of reactions, related to the decomposition of the individual biomass components, where the overall reaction rate can be determined by the kinetic equation shown in eq 1:

$$r = kT^n e^{-E/RT} (1)$$

where r is the rate of reaction, k is the pre-exponential factor, T is the reaction temperature, n is the exponential factor of temperature, E is the activation energy of the reaction, and E is the ideal gas constant. The E, E, and E are given for each reaction included in the MSRM model, E and thus the product compositions can be calculated based on a given combination of temperature, time and starting biomass composition. See Table S3 for parameter values associated with each reaction included in this model. In total, the kinetic model includes 5 reactions for cellulose, 10 for hemicellulose, 12 for lignin, 8 for metaplastic compounds, and 13 for gas-phase tar cracking.

In this study, the pyrolysis kinetic model was developed based on the MSRM model published in 2017. 46 Modifications were made by considering gas-phase tar cracking reactions and the differences between softwood and hardwood. 53,54 Extractive components of biomass were not considered in this study as previous studies indicated that the extractive content of woody biomass is generally low (1-5% for softwood and 2-8% for hardwood), and there is limited interaction between the reactions of these extractives and the bulk of the biomass.  $^{55-58}$  The triangulation method (see eqs 1–5 in the SI) was used to estimate the lignocellulosic composition of biomass (used as the inputs of MSRM) from the ultimate analysis data of biomass.<sup>58</sup> This method was used due to the lack of lignocellulosic composition data from the literature and database. It is recognized that the use of triangulation method may lead to some deviations, for example, the cellulose and hemicellulose in woody biomass perform similar elemental composition but different decomposition pathways.<sup>59</sup> This limitation can be addressed in the future when more lignocellulosic composition data is available. Even with this limitation, the pyrolysis yield of biochar generated by the kinetic model ranges from 20.8 to 39.1% that is well-aligned with industrial pyrolysis operations. 60,61

**Artificial Neural Network.** A key parameter needed by the Aspen Plus process simulation is the yield of AC. The MSRM kinetic model provides the yield of the intermediate biochar (pyrolysis yield), but it does not provide the final yield of AC from biochar (activation yield). In this study, the yield of the final AC product from the starting biomass (biomass yield) was estimated by using ANN as outlined in our prior work. The ANN model was trained using eight input variables, including five process variables (i.e., pyrolysis time, pyrolysis temperature, activation time, activation temperature, and steam to biochar ratio) and three biomass characterization variables (i.e., biomass carbon content, hydrogen content, and oxygen content). The output variable is the total AC yield based on the total biomass input of the entire AC production process. The ANN model demonstrated a high accuracy ( $R^2 = 0.971$ ) and showed high consistency with independent experimental data through an additional model validation step.

Aspen Plus Process Simulation. In this study, the process simulation model was developed using Aspen Plus (Aspen Plus V10) to generate energy and mass balances. The process flowsheets of pyrolysis and steam activation are provided in Figure S3 and S4, and the detailed model is shown in SI, section 2.3. One key parameter needed for the process simulation of steam activation is the activation yield that is defined as the AC produced divided by the total biochar input to the activation process. The activation yield could have large variations depending on the quantity and quality of biochar (that are driven by pyrolysis process and biomass feedstock) and process operational conditions. To take such variations into consideration, this study calculated the activation yield using eq 2, where the total AC yield is given by the ANN model and the pyrolysis yield of

biochar was provided by the kinetic model. The calculated activation yields range from 29.0 to 94.8%, which is consistent with the activation yields derived from literature. <sup>63</sup>

activation yield = 
$$\frac{\text{total AC yield}}{\text{pyrolysis yield of biochar}} \times 100\%$$
 (2)

In addition to the data provided by the ANN and kinetic models discussed previously, another key piece of information is the composition of flue gas coming from the steam activation. This gas needs to be counted as an air emission. Previous LCA studies have assumed that the only steam-carbon reaction occurs without  $\rm CO_2$  generation, which is not consistent with experimental measurements. Other reactions such as the water—gas shift reaction, methanation reactions, steam-reforming reactions, and the Boudouard reaction also occur. In this study, those reactions were considered by using the model from Martín-Gullón et al.  $^{66}$  as shown in eq 3.

$$C + \alpha H_2 O \rightarrow (2 - \alpha)CO + (\alpha - 1)CO_2 + \alpha H_2,$$
  
 $\alpha = 3.4690 - 0.0019T(K)$  (3)

The Aspen Plus database has property data, which can be used to model gas-phase reactions and estimate the reaction products including gases (e.g., hydrogen, methane, carbon monoxide and carbon dioxide) and vapors (e.g., alkanes, alkenes and oxygenates). <sup>67,68</sup> However, the property data for solid components (e.g., woody biomass, biochar, and AC), lignocellulosic components (e.g., cellulose, hemicellulose and lignin) and monosaccharides (e.g., glucose and xylose) are not included in Aspen databases. The relevant physical property parameters for lignocellulosic components and monosaccharides were collected from the literature. <sup>69</sup> For solid components, the thermodynamic data was calculated based on previous studies <sup>54,70</sup> and documented in SI, section 2.4. Key process parameters used in the Aspen Plus simulation are listed in Table 1.

Table 1. Key Process Parameters Used in the Process Simulation Model

| parameter                                       | value                                      | ref |
|-------------------------------------------------|--------------------------------------------|-----|
| heat capacity of biomass feedstock $(J/(kg K))$ | $1500 + T^a$                               | 71  |
| heat capacity of biochar and AC $(J/(kg K))$    | $420 + 2.09T - 6.85 \times 10^{-4} T^{2a}$ | 71  |
| pyrolysis gas residence time (s)                | 2                                          | 52  |
| pyrolysis nitrogen gas mass flow                | 1/6 of feedstock mass flow                 | 44  |
| pyrolysis thermal efficiency (%)                | 90                                         | 72  |
| combustor excess air rate (%)                   | 30                                         | 12  |
| pyrolysis nonsolid product combustion rate (%)  | 80                                         | 73  |
| steam boiler thermal efficiency (%)             | 82                                         | 74  |
| activation furnace thermal efficiency (%)       | 90                                         | 72  |
| pyrolysis temperature (K) <sup>b</sup>          | 773                                        |     |
| pyrolysis time $(min)^b$                        | 60                                         |     |
| activation temperature (K) <sup>b</sup>         | 1073                                       |     |
| activation time $(min)^b$                       | 60                                         |     |
| steam to biochar ratio (kg/kg) <sup>b</sup>     | 2                                          |     |

<sup>a</sup>T represents the absolute temperature in Kelvin. <sup>b</sup>These parameters were used in the sensitivity analysis with ranges provided in Table S5.

In this study, the natural gas was combusted in the combuster to provide the heat for pyrolysis and activation, given that natural gas is the most commonly used fuel type to supply heat in the U.S. manufacturing industry. A few studies used electricity to supply heat, but all of them were based on lab-scale AC production/experiments. II,31,36,39 Electricity could be used for ancillary facilities or purposes (e.g., process monitoring and control), but the electricity consumption for those purposes is generally negligible I3,33,35 and

needs to be assessed on a case-by-case basis given the specific equipment used. Thus, this study does not include ancillary electricity consumption and the primary energy consumption is reported in the form of natural gas. Meanwhile, all of the gaseous byproducts from the initial pyrolysis process were combusted with an 80% combustion rate to produce process energy. The combustion rate is the ratio of pyrolysis products that can be fully combusted, and 80% was used based on the ratio of unidentified and hard-to-combust substances of nonsolid pyrolysis products.<sup>73</sup> The energy content in the flue gases from the activation process are estimated to be minor, <sup>13</sup> so they were not combusted. To understand the impacts of energy recovery, scenarios with and without burning gas products were evaluated using energy recovery ratio (ERR) calculated by eq 4:

$$ERR = \frac{energy \, recovered}{total \, energy \, consumption} \times 100\% \tag{4}$$

Understanding the Impacts of Biomass Feedstock. To investigate the impact of the composition of the woody biomass feedstock, a large data set (250 data samples) containing the characterization data of woody biomass feedstocks was collected from Bioenergy Feedstock Library, <sup>76</sup> Phyllis2 database, <sup>77</sup> and the literature. <sup>78–112</sup> The entire data set is provided in Table S6. The Aspen Plus process simulation was run for each sample with the fixed operational conditions shown in Table 1, allowing for comparisons among different feedstocks, as well as an initial quantification of the variations in energy and GHG emissions for individual species of biomass sources. In addition, the sensitivity analysis was conducted to understand the impacts of varied biomass composition and operational conditions on the energy and GHG emissions of AC. The typical value and upper/lower bounds of all parameters were determined by the literature review and documented in Table S5. <sup>45,63,113–115</sup>

Fossil-based and biogenic GHG were tracked separately in this study given the debate of accounting biogenic GHG.  $^{116}$  Some studies set the characterization factor of biogenic CO $_2$  as zero according to the carbon-neutral assumption.  $^{13,117,118}$  Fossil-based GHG emissions were generated from burning natural gas that was assumed to be the sole fossil fuel used in the AC production.  $^{119}$  Biogenic GHG emissions were generated from both energy recovery (burning pyrolysis gas products) and the activation process (GHG as byproducts). Both fossil-based and biogenic GHGs were converted to the same unit (kg CO $_2$  eq/kg AC) by applying the latest 100-year Global Warming Potential (GWP) conversion factors from IPCC, which distinguishes methane from biogenic and fossil sources (the GWP conversion factor is 30 for fossil methane and 28 for biogenic methane).  $^{120}$ 

## ■ RESULTS AND DISCUSSION

Table 2 lists the average, minimum, maximum, and standard deviation (STD) for 250 data samples of different biomass feedstocks. These ranges are consistent with the results of previous LCA studies using woody biomass (Table S1). Some observations can be identified in Table 2. First, there are large variations in energy consumption and fossil-based/biogenic GHG emissions of steam AC production across different types of biomass. Second, although the average energy consumption and GHG emissions of softwood are higher than that of hardwood, there are large overlaps between the softwood and hardwood for the min-max results across all categories. The differences between hardwood and softwood could be more remarkable if more characterization data is available (e.g., textural properties, lignocellulose composition, morphology). Third, energy recovery reduces the primary energy consumption and fossil-based GHG emissions by burning gas byproducts as biogenic fuel sources (and as a result biogenic GHG emissions increase). The detailed LCI generated by this

Table 2. Variability in Primary Energy Consumption, Fossil-Based and Biogenic GHG Emissions

|                                                            | softwood          |                  | hardwood          |                  | total             |                  |  |
|------------------------------------------------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|--|
|                                                            | average (min-max) | STD <sup>a</sup> | average (min-max) | STD <sup>a</sup> | average (min-max) | STD <sup>a</sup> |  |
| $E_{\rm NRE}$ (MJ/kg AC)                                   | 101(43-224)       | 32               | 88(43-277)        | 32               | 93(43-277)        | 33               |  |
| $E_{RE}$ (MJ/kg AC)                                        | 65(25-155)        | 23               | 57(23-208)        | 24               | 60(23-207)        | 24               |  |
| fossil GHG <sub>NRE</sub> (kg CO <sub>2</sub> -eq/kg AC)   | 8.7(4.2-18.8)     | 2.6              | 7.4(4.0-22)       | 2.4              | 7.9(4.0-22)       | 2.6              |  |
| fossil GHG <sub>RE</sub> (kg CO <sub>2</sub> -eq/kg AC)    | 4.0(1.7-9.3)      | 1.4              | 3.5(1.5-12)       | 1.4              | 3.7(1.5-12)       | 1.4              |  |
| biogenic GHG <sub>NRE</sub> (kg CO <sub>2</sub> -eq/kg AC) | 5.1(2.7-12)       | 1.5              | 4.3(2.4-13)       | 1.4              | 4.6(2.4-13)       | 1.5              |  |
| biogenic $GHG_{RE}$ (kg $CO_2$ -eq/kg AC)                  | 6.7(3.4-14)       | 1.9              | 5.9(3.4-16)       | 1.8              | 6.2(3.4-16)       | 1.9              |  |

<sup>a</sup>STD: Standard deviation; RE: with energy recovery; NRE: without energy recovery.

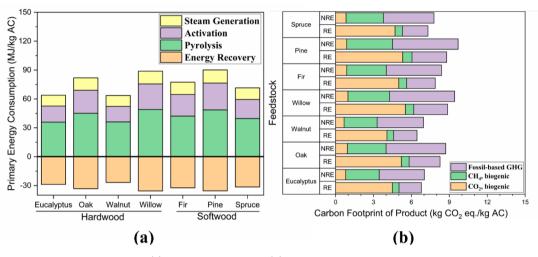



Figure 2. Average primary energy consumption (a) and carbon footprint (b) of steam AC production from different woody biomass species.

study for each of the 250 data samples were provided in the EXCEL file supplemented as one of the SI documents.

To understand the major contributors to both energy and GHG emissions results, the breakdown results of four types of common hardwood (i.e., eucalyptus, oak, walnut, and willow) and three types of common softwood (i.e., fir, pine, and spruce) were shown in Figure 2. Because more than one data sample of biomass characterization was collected from the literature, the average values of the results for each type of wood were shown.

In Figure 2a, the energy demand by different unit processes in the AC production is shown as positive and the energy recovered by burning flue gas is shown as negative. Figure 2a shows that across all different biomass species, pyrolysis has the largest energy demand (53–57% without energy recovery), which is consistent with the literature. <sup>33,38,44</sup> Across seven feedstocks, 72–80% of the pyrolysis energy consumption can be supplied by the energy recovered from flue gas, which is also consistent with the previous study (~75%). <sup>67</sup> For the entire AC production process, at most 45% of the primary energy consumption can be recovered by burning flue gas from pyrolysis, indicating the importance of including energy recovery in AC production.

Figure 2b shows the average results of the carbon footprint of AC production from seven types of woody biomass. The  ${\rm CO_2}$  and  ${\rm CH_4}$  from pyrolysis and steam activation as byproducts, and in the case of energy recovery from flue gas combustion of the pyrolysis gases, are considered as biogenic as the carbon is originally from biomass. Figure 2b shows that without energy recovery most of the GHG emissions were from natural gas combustion. When energy recovery from

pyrolysis gas combustion is included most of the GHG emissions come from biogenic sources. The biogenic carbon emission can be sequestrated by the regrowth of the plant, which was not included in this study as the carbon sequestration capacity of different wood species is highly variable and depends on regional climate and forest management practices. However, carbon sequestration could be easily incorporated into this framework in future work. Given the large contribution of biogenic carbon in the results (69–74%) it is clear that the GHG emissions of AC production with energy recovery will be much lower if carbon sequestration from biomass is included.

To further understand the impacts of biomass feedstocks on AC production energy and carbon footprints, the results of 250 data samples were plotted with different biomass compositions (see Table S6). The results indicated that hydrogen content and hydrogen/carbon ratio (H/C ratio) are two parameters strongly correlated with GHG emissions (Figures S6-S7) and primary energy consumption as shown in Figure 3a,b. For both softwood and hardwood, increasing the hydrogen content increases the primary energy consumption, except for a few samples that show decreased energy consumption with hydrogen content higher than 6.5%. Since the carbon contents for these outliers are relatively higher than other data samples, Figure 3b plots energy consumption and H/C ratio to eliminate the influence of the carbon content, which shows similar trends as Figure 3a but with a more scattered distribution of results. The results of the scenario without energy recovery have similar trends and shown in Figure S7.

The large impacts of hydrogen and H/C ratios can be explained by their impacts on the AC yields. A high H/C ratio

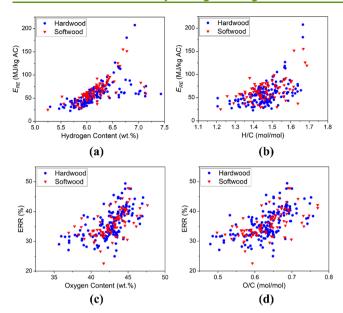



Figure 3. Impacts of feedstock characteristics on the primary energy consumption ((a) hydrogen content and (b) hydrogen to carbon ratio) and energy recovery ratio ((c) oxygen content and (d) oxygen to carbon ratio).

in biomass feedstock usually indicates a lower percentage of aromatic carbon, which may lead to low AC yields given the important role of aromatic carbon in steam activation. <sup>2,121</sup> Such information could be helpful for future biomass selection and process design, it also demonstrates the unique capability of the modeling framework presented in this study.

A similar approach was applied to ERR, the indicator of energy recovery (see Figure S9). Two parameters, oxygen content and O/C ratio, show correlations with ERR as shown in Figure 3c,d. For both hardwood and softwood, the higher oxygen content of biomass or atomic O/C ratio, the higher ERR in the steam AC production process. This higher O/C ratio is indicative of higher carbohydrate content, and hemicellulose in particular are known to be less stable and generate more gas and vapor products under pyrolysis conditions. Thus, feedstocks with higher O/C ratios will produce more gases and vapors that are important for energy recovery. Based on the discussion above, one conclusion is that choosing biomass with lower hydrogen contents, H/C ratio, and higher oxygen contents, O/C ratio is beneficial from energy and GHG emissions perspectives.

In addition to biomass characteristics, another set of parameters that have large impacts on pyrolysis and steam activation processes are operational conditions. To understand the impacts of these parameters, a sensitivity analysis was performed using the ranges shown in Table S5 and the results for primary energy consumption and biogenic GHG emissions are shown in Figure 4 (see Figure S10 for the results without energy recovery and the results for fossil-based GHG emissions). Figure 4 indicates that among different biomass characteristics, hydrogen content and ash content are both important. The importance of hydrogen is already discussed previously. The effects of ash are complex. Active alkali ash species (e.g., sodium, potassium, calcium, etc.) can impact the decomposition of the biomass carbohydrate fraction in particular during the pyrolysis process, which in turn will affect the ratio of biochar to pyrolysis vapors and thus the final AC yield will also be affected. 123

Among different operating parameters, the activation temperature has the greatest impact. This is due to its large impact on the final AC yield, and associated heat duty on the furnace and boiler. In general, choosing biomass with low hydrogen contents and setting the low temperature for steam activation and pyrolysis processes are beneficial from energy and GHG emissions perspectives.

There are some limitations of the modeling framework presented in this study. While understanding the primary energy consumption and GHG emissions for AC production are useful, the AC product must meet a series of performance specifications demanded by the market. For example, the adsorption capacity of AC is a key parameter determining the effectiveness of applications such as contamination removal in water and associated prices. This parameter was not included in this study due to the lack of data. The authors previously published a study that used ANN to predict the BET surface area of AC, which could be used as an initial proxy of the adsorption capacity of AC.<sup>45</sup> In that study, a contribution analysis was conducted to understand the impacts of variations in feedstocks and process operations on the yields and BET surface area of AC produced. The results indicated that both yields and BET surface area of AC are highly driven by the variations of feedstock compositions (e.g., ash and carbon content) and operational conditions of steam activation (e.g., activation temperature and steam to carbon ratio). Depending on the applications, other performance specifications may be expected for AC such as iodine number and methylene blue index. 124 Previous literature indicated that these specifications are affected by process and feedstock variations, which could

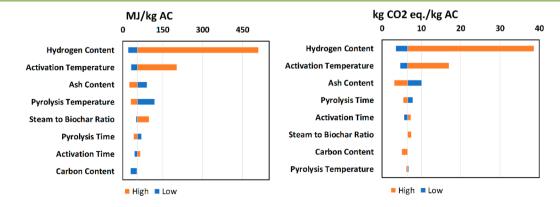



Figure 4. Sensitivity analysis for the energy consumption and biogenic GHG emissions (with energy recovery) of the steam AC production process

be the future research direction for the authors if sufficient experimental data are available. Another limitation is the procedure used to estimate the quality and heating value of the intermediate pyrolysis gases, which could be further improved with the improvement of pyrolysis kinetic models in the future. Finally, this study does not include other biomass-related parameters such as particle size due to their relative low impacts on the results based on previous studies. In addition, the oven-dried biomass used in the present study avoided the influence of the moisture content, which may have some impact and needs additional clarification when evaluating the cradle-to-gate AC production process that is a larger system boundary than this gate-to-gate study. This limitation can be addressed by adding additional drying processes in future work.

In conclusion, this work developed a modeling framework that integrates ANN and kinetic-based process simulation models to estimate the gate-to-gate primary energy consumption and GHG emissions across a variety of woody biomass. The LCI generated by the integrated models can be used as data sources for future LCAs of AC or industrial systems using AC materials. To understand opportunities for reducing energy consumption and GHG emissions from AC production, the key driving factors were identified and the impacts of variations were quantified. Furthermore, the results of this study indicated the importance of feedstock selection and operation of AC production from an environmental sustainability perspective. Both the results and modeling framework can be used by engineers and project managers to select biomass feedstocks and improve process operations. Although this study focused on woody biomass and AC production, the modeling framework can be applied to other types of biomass and other biomass utilization technologies. The ranges and distributions of the primary energy consumption and GHG emissions estimated in this study can also be used as transparent and reliable data sources for future LCA and Techno-Economic Assessment.

#### ASSOCIATED CONTENT

## **S** Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.9b06522.

Detailed information on literature review, modeling framework and settings, feedstock data set, additional results, and references (PDF)

Detailed Life Cycle Inventory generated for AC production using different biomass species (XLSX)

## **■** AUTHOR INFORMATION

#### **Corresponding Author**

\*Phone: (919)-515-8957. E-mail: Yuan\_Yao@ncsu.edu.

ORCID

Yuan Yao: 0000-0001-9359-2030

Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

The authors thank the funding support from the Department of Forest Biomaterials at North Carolina State University and the U.S. National Science Foundation. This material is based upon work supported by the National Science Foundation under Grant No. (1847182). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

#### REFERENCES

- (1) Suhas; Gupta, V. K.; Carrott, P. J. M.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: A Review as Natural, Modified and Activated Carbon Adsorbent. *Bioresour. Technol.* **2016**, 216, 1066–1076.
- (2) Yahya, M. A.; Al-Qodah, Z.; Ngah, C. W. Z. Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. *Renewable Sustainable Energy Rev.* **2015**, *46*, 218–235.
- (3) Tan, X.; Liu, S.; Liu, Y.; Gu, Y.; Zeng, G.; Hu, X.; Wang, X.; Liu, S.; Jiang, L. Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage. *Bioresour. Technol.* **2017**, 227, 359–372
- (4) Transparency Market Research. Activated Carbon Market (Powdered, Granular) for Liquid Phase and Gas Phase Applications Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013–2019; Albany, NY, 2013.
- (5) Mordor Intelligence. Activated Carbon Market Growth, Trends, and Forecast (2019–2024); Hyderabad, India, 2019.
- (6) Mohammad-Khah, A.; Ansari, R. Activated Charcoal: Preparation, Characterization and Applications: A Review Article. *Int. J. ChemTech Res.* **2009**, *1* (4), 859–864.
- (7) Thompson, K. A.; Shimabuku, K. K.; Kearns, J. P.; Knappe, D. R. U.; Summers, R. S.; Cook, S. M. Environmental Comparison of Biochar and Activated Carbon for Tertiary Wastewater Treatment. *Environ. Sci. Technol.* **2016**, *50* (20), 11253–11262.
- (8) Bonton, A.; Bouchard, C.; Barbeau, B.; Jedrzejak, S. Comparative Life Cycle Assessment of Water Treatment Plants. *Desalination* **2012**, 284, 42–54.
- (9) Jeswani, H. K.; Gujba, H.; Brown, N. W.; Roberts, E. P. L.; Azapagic, A. Removal of Organic Compounds from Water: Life Cycle Environmental Impacts and Economic Costs of the Arvia Process Compared to Granulated Activated Carbon. *J. Cleaner Prod.* **2015**, *89*, 203–213
- (10) Muñoz, I.; Peral, J.; Antonio Ayllón, J.; Malato, S.; José Martin, M.; Yves Perrot, J.; Vincent, M.; Domènech, X. Life-Cycle Assessment of a Coupled Advanced Oxidation-Biological Process for Wastewater Treatment: Comparison with Granular Activated Carbon Adsorption. *Environ. Eng. Sci.* **2007**, *24* (5), 638–651.
- (11) Hjaila, K.; Baccar, R.; Sarrà, M.; Gasol, C. M.; Blánquez, P. Environmental Impact Associated with Activated Carbon Preparation from Olive-Waste Cake via Life Cycle Assessment. *J. Environ. Manage.* **2013**, 130, 242–247.
- (12) Arena, N.; Lee, J.; Clift, R. Life Cycle Assessment of Activated Carbon Production from Coconut Shells. *J. Cleaner Prod.* **2016**, *125*, 68–77.
- (13) Gu, H.; Bergman, R.; Anderson, N.; Alanya-Rosenbaum, S. Life Cycle Assessment of Activated Carbon From Woody Biomass. *Wood Fiber Sci.* **2018**, *50* (3), 1–15.
- (14) Liu, Y.; Syberfeldt, A.; Strand, M. Review of Simulation-Based Life Cycle Assessment in Manufacturing Industry. *Prod. Manuf. Res.* **2019**, *7* (1), 490–502.
- (15) Parvatker, A. G.; Eckelman, M. J. Comparative Evaluation of Chemical Life Cycle Inventory Generation Methods and Implications for Life Cycle Assessment Results. *ACS Sustainable Chem. Eng.* **2019**, 7 (1), 350–367.
- (16) Montazeri, M.; Eckelman, M. J. Life Cycle Assessment of Catechols from Lignin Depolymerization. *ACS Sustainable Chem. Eng.* **2016**, *4* (3), 708–718.
- (17) Smith, R. L.; Ruiz-Mercado, G. J.; Meyer, D. E.; Gonzalez, M. A.; Abraham, J. P.; Barrett, W. M.; Randall, P. M. Coupling Computer-Aided Process Simulation and Estimations of Emissions

- and Land Use for Rapid Life Cycle Inventory Modeling. ACS Sustainable Chem. Eng. 2017, 5 (5), 3786–3794.
- (18) Parvatker, A. G.; Tunceroglu, H.; Sherman, J. D.; Coish, P.; Anastas, P.; Zimmerman, J. B.; Eckelman, M. J. Cradle-to-Gate Greenhouse Gas Emissions for Twenty Anesthetic Active Pharmaceutical Ingredients Based on Process Scale-Up and Process Design Calculations. ACS Sustainable Chem. Eng. 2019, 7 (7), 6580–6591.
- (19) Yao, Y.; Masanet, E. Life-Cycle Modeling Framework for Generating Energy and Greenhouse Gas Emissions Inventory of Emerging Technologies in the Chemical Industry. *J. Cleaner Prod.* **2018**, *172*, 768–777.
- (20) Song, R.; Keller, A. A.; Suh, S. Rapid Life-Cycle Impact Screening Using Artificial Neural Networks. *Environ. Sci. Technol.* **2017**, *51* (18), 10777–10785.
- (21) Wernet, G.; Hellweg, S.; Fischer, U.; Papadokonstantakis, S.; Hungerbühler, K. Molecular-Structure-Based Models of Chemical Inventories Using Neural Networks. *Environ. Sci. Technol.* **2008**, 42 (17), 6717–6722.
- (22) Crawford, R. H.; Bontinck, P. A.; Stephan, A.; Wiedmann, T.; Yu, M. Hybrid Life Cycle Inventory Methods A Review. *J. Cleaner Prod.* **2018**, *172*, 1273—1288.
- (23) Suh, S.; Huppes, G. Missing Inventory Estimation Tool Using Extended Input-Output Analysis. *Int. J. Life Cycle Assess.* **2002**, *7* (3), 134–140.
- (24) Bisinella de Faria, A. B.; Spérandio, M.; Ahmadi, A.; Tiruta-Barna, L. Evaluation of New Alternatives in Wastewater Treatment Plants Based on Dynamic Modelling and Life Cycle Assessment (DM-LCA). *Water Res.* **2015**, *84*, 99–111.
- (25) De Oliveira, L. P.; Hudebine, D.; Guillaume, D.; Verstraete, J. J. A Review of Kinetic Modeling Methodologies for Complex Processes. *Oil Gas Sci. Technol.* **2016**, *71* (3), 45.
- (26) Fahmi, I.; Cremaschi, S. Process Synthesis of Biodiesel Production Plant Using Artificial Neural Networks as the Surrogate Models. *Comput. Chem. Eng.* **2012**, *46*, 105–123.
- (27) Bugaeva, L. N.; Beznosik, Y. A.; Statjukha, G. A.; Kvitka, A. A. An Application of Expert System to Choice, Simulation and Development of Gases Purification Processes. *Comput. Chem. Eng.* 1996, 20 (S1), S401–S406.
- (28) Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S. S.; Hosseinzadeh-Bandbafha, H.; Chau, K.-w. Integration of Artificial Intelligence Methods and Life Cycle Assessment to Predict Energy Output and Environmental Impacts of Paddy Production. *Sci. Total Environ.* **2018**, 631–632, 1279–1294.
- (29) Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Chau, K.-w. Combined Life Cycle Assessment and Artificial Intelligence for Prediction of Output Energy and Environmental Impacts of Sugarcane Production. *Sci. Total Environ.* **2019**, *664*, 1005–1019.
- (30) Song, R. Machine Learning for Addressing Data Deficiencies in Life Cycle Assessment, University of Santa Barbara: Santa Barbara, CA, 2019.
- (31) Sepúlveda-Cervantes, C. V.; Soto-Regalado, E.; Rivas-García, P.; Loredo-Cancino, M.; Cerino-Córdova, F. d. J.; García Reyes, R. B. Technical-Environmental Optimisation of the Activated Carbon Production of an Agroindustrial Waste by Means Response Surface and Life Cycle Assessment. *Waste Manage. Res.* **2018**, 36 (2), 121–130
- (32) Manda, B. M. K.; Worrell, E.; Patel, M. K. Innovative Membrane Filtration System for Micropollutant Removal from Drinking Water Prospective Environmental LCA and Its Integration in Business Decisions. *J. Cleaner Prod.* **2014**, *72*, 153–166.
- (33) Kim, M. H.; Jeong, I. T.; Park, S. B.; Kim, J. W. Analysis of Environmental Impact of Activated Carbon Production from Wood Waste. *Environ. Eng. Res.* **2019**, 24 (1), 117–126.
- (34) Loya-González, D.; Loredo-Cancino, M.; Soto-Regalado, E.; Rivas-García, P.; Cerino-Córdova, F. de J.; García-Reyes, R. B.; Bustos-Martínez, D.; Estrada-Baltazar, A. Optimal Activated Carbon Production from Corn Pericarp: A Life Cycle Assessment Approach. *J. Cleaner Prod.* **2019**, 219, 316–325.

- (35) Kim, M.; Kim, G. Life Cycle Assessment of Activated Carbon Production System by Using Poplar. *J. Korean Soc. Environ. Eng.* **2014**, 36 (11), 725–732.
- (36) Sharifan, S. A Comparative Optimization Study of Activated Carbon Production from Hazelnut Shells by Thermal and Microwave Heating Methods, Imperial College London, 2013.
- (37) Joy Hung, J. The Production of Activated Carbon from Coconut Shells Using Pyrolysis and Fluidized Bed Reactors. 2012.
- (38) Campo, B. G. Production of Activated Carbon from Fast Pyrolysis Biochar and the Detoxification of Pyrolytic Sugars for Ethanol Fermentation, Iowa State University, 2015.
- (39) Heidari, A.; Khaki, E.; Younesi, H.; Ray, H. Evaluation of Fast and Slow Pyrolysis Methods for Bio-Oil and Activated Carbon Production from Eucalyptus Wastes Using a Life Cycle Assessment Approach. *J. Cleaner Prod.* **2019**, 241, 118394.
- (40) Bayer, P.; Heuer, E.; Karl, U.; Finkel, M. Economical and Ecological Comparison of Granular Activated Carbon (GAC) Adsorber Refill Strategies. *Water Res.* **2005**, *39* (9), 1719–1728.
- (41) Markus Andreas, M. Eco-Efficiency Evaluation of Waste Gas Purification Systems in the Chemical Industry; Swiss Federal Institute of Technology Zurich, 1997.
- (42) Gabarrell, X.; Font, M.; Vicent, T.; Caminal, G.; Sarrà, M.; Blánquez, P. A Comparative Life Cycle Assessment of Two Treatment Technologies for the Grey Lanaset G Textile Dye: Biodegradation by Trametes Versicolor and Granular Activated Carbon Adsorption. *Int. J. Life Cycle Assess.* 2012, 17 (5), 613–624.
- (43) Kodera, Y.; Kiho, M. Model Calculation of Heat Balance of Wood Pyrolysis. *J. Inst. Energy* **2016**, *95*, 881–889.
- (44) Hung, J. J. The Production of Activated Carbon from Coconut Shells Using Pyrolysis and Fluidized Bed Reactors, The University of Arizona, 2012.
- (45) Liao, M.; Kelley, S. S.; Yao, Y. Artificial Neural Network Based Modeling for the Prediction of Yield and Surface Area of Activated Carbon from Biomass. *Biofuels, Bioprod. Biorefin.* **2019**, *13*, 1015–1027.
- (46) Anca-Couce, A.; Scharler, R. Modelling Heat of Reaction in Biomass Pyrolysis with Detailed Reaction Schemes. *Fuel* **2017**, *206*, 572–579.
- (47) 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Vol. 1: Economic Availability of Feedstocks; U.S. Department of Energy: Oak Ridge, TN, 2016; Vol. 1160.
- (48) Cai, J.; He, Y.; Yu, X.; Banks, S. W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A. V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. *Renewable Sustainable Energy Rev.* **2017**, *76*, 309–322.
- (49) Aspen Plus User Guide; AspenTech: Cambridge, 2000.
- (50) Choi, M. k.; Park, H. C.; Choi, H. S. Comprehensive Evaluation of Various Pyrolysis Reaction Mechanisms for Pyrolysis Process Simulation. *Chem. Eng. Process.* **2018**, *130*, 19–35.
- (51) Ranzi, E.; Cuoci, A.; Faravelli, T.; Frassoldati, A.; Migliavacca, G.; Pierucci, S.; Sommariva, S. Chemical Kinetics of Biomass Pyrolysis. *Energy Fuels* **2008**, 22 (6), 4292–4300.
- (52) Ferreiro, A. I.; Giudicianni, P.; Grottola, C. M.; Rabaçal, M.; Costa, M.; Ragucci, R. Unresolved Issues on the Kinetic Modeling of Pyrolysis of Woody and Nonwoody Biomass Fuels. *Energy Fuels* **2017**, 31 (4), 4035–4044.
- (53) Anca-Couce, A.; Sommersacher, P.; Scharler, R. Online Experiments and Modelling with a Detailed Reaction Scheme of Single Particle Biomass Pyrolysis. *J. Anal. Appl. Pyrolysis* **2017**, 127, 411–425.
- (54) Debiagi, P.; Gentile, G.; Cuoci, A.; Frassoldati, A.; Ranzi, E.; Faravelli, T. A Predictive Model of Biochar Formation and Characterization. *J. Anal. Appl. Pyrolysis* **2018**, *134*, 326–335.
- (55) Blondeau, J.; Jeanmart, H. Biomass Pyrolysis at High Temperatures: Prediction of Gaseous Species Yields from an Anisotropic Particle. *Biomass Bioenergy* **2012**, *41*, 107–121.
- (56) Rowell, R. M. Handbook of Wood Chemistry and Wood Composites; Rowell, R. M., Ed.; CRC Press: Madison, WI, 2005.

- (57) Smook, G. A. Handbook for Pulp and Paper Technologists, Third ed., 3rd ed.; Kocurek, M. J., Ed.; Angus Wilde Publications, Inc.: Vancouver, Canada, 2003.
- (58) Debiagi, P. E. A.; Pecchi, C.; Gentile, G.; Frassoldati, A.; Cuoci, A.; Faravelli, T.; Ranzi, E. Extractives Extend the Applicability of Multistep Kinetic Scheme of Biomass Pyrolysis. *Energy Fuels* **2015**, 29 (10), 6544–6555.
- (59) Collard, F. X.; Blin, J. A Review on Pyrolysis of Biomass Constituents: Mechanisms and Composition of the Products Obtained from the Conversion of Cellulose, Hemicelluloses and Lignin. *Renewable Sustainable Energy Rev.* **2014**, 38, 594–608.
- (60) Wiedner, K.; Rumpel, C.; Steiner, C.; Pozzi, A.; Maas, R.; Glaser, B. Chemical Evaluation of Chars Produced by Thermochemical Conversion (Gasification, Pyrolysis and Hydrothermal Carbonization) of Agro-Industrial Biomass on a Commercial Scale. *Biomass Bioenergy* 2013, 59, 264–278.
- (61) Khor, K. H.; Lim, K. O.; Zainal, Z. A.; Mah, K. F. Small Industrial Scale Pyrolysis of Oil Palm Shells and Characterizations of Their Products. *Int. Energy J.* **2008**, 9 (4), 251–258.
- (62) Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of Hemicellulose, Cellulose and Lignin to the Mass and the Porous Properties of Chars and Steam Activated Carbons from Various Lignocellulosic Precursors. *Bioresour. Technol.* **2009**, *100* (1), 292–298.
- (63) Li, W.; Yang, K.; Peng, J.; Zhang, L.; Guo, S.; Xia, H. Effects of Carbonization Temperatures on Characteristics of Porosity in Coconut Shell Chars and Activated Carbons Derived from Carbonized Coconut Shell Chars. *Ind. Crops Prod.* **2008**, 28 (2), 190–198.
- (64) Liu, W. J.; Jiang, H.; Yu, H. Q. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. *Chem. Rev.* **2015**, *115* (22), 12251–12285.
- (65) Aguda, R. Preparation and Characterization of Modified Biomass as Functional Carbon-Based Materials, North Carolina State University, 2017.
- (66) Martín-Gullón, I.; Asensio, M.; Marcilla, A.; Font, R. Steam Activation of a Bituminous Coal in a Multistage Fluidized Bed Pilot Plant: Operation and Simulation Model. *Ind. Eng. Chem. Res.* **1996**, 35 (11), 4139–4146.
- (67) Klinar, D. Universal Model of Slow Pyrolysis Technology Producing Biochar and Heat from Standard Biomass Needed for the Techno-Economic Assessment. *Bioresour. Technol.* **2016**, 206, 112–120.
- (68) Gu, H.; Bergman, R. Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System. *Wood Fiber Sci.* **2016**, 48 (2), 129–141.
- (69) Wooley, R. J.; Putsche, V. Development of an ASPEN PLUS Physical Property Database for Biofuels Components; Golden, Colorado, 1996.
- (70) Yang, H.; Kudo, S.; Kuo, H. P.; Norinaga, K.; Mori, A.; Mašek, O.; Hayashi, J. I. Estimation of Enthalpy of Bio-Oil Vapor and Heat Required for Pyrolysis of Biomass. *Energy Fuels* **2013**, *27* (5), 2675–2686.
- (71) Anca-Couce, A.; Zobel, N. Numerical Analysis of a Biomass Pyrolysis Particle Model: Solution Method Optimized for the Coupling to Reactor Models. *Fuel* **2012**, *97*, 80–88.
- (72) Dornburg, V.; Faaij, A. P. C. Efficiency and Economy of Wood-Fired Biomass Energy Systems in Relation to Scale Regarding Heat and Power Generation Using Combustion and Gasification Technologies. *Biomass Bioenergy* **2001**, *21* (2), 91–108.
- (73) Peters, J. F.; Banks, S. W.; Bridgwater, A. V.; Dufour, J. A Kinetic Reaction Model for Biomass Pyrolysis Processes in Aspen Plus. *Appl. Energy* **2017**, *188*, 595–603.
- (74) U.S. DOE-OIT. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries. United States Department of Energy Office of Energy Efficiency and Renewable Energy: Washington, DC, 2002; pp 1–87.

- (75) U.S. Energy Information Administration. Natural gas explained Use of natural gas https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php (accessed Dec 14, 2019).
- (76) U.S. Department of Energy; Idaho National Laboratory. Bioenergy Feedstock Library bioenergylibrary.inl.gov (accessed Mar 13, 2019).
- (77) ECN.TNO. Phyllis2, database for biomass and waste https://phyllis.nl/ (accessed Mar 13, 2019).
- (78) González, J. F.; Román, S.; Encinar, J. M.; Martínez, G. Pyrolysis of Various Biomass Residues and Char Utilization for the Production of Activated Carbons. *J. Anal. Appl. Pyrolysis* **2009**, 85 (1–2), 134–141.
- (79) Garcìa-Pérez, M.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Roy, C. Vacuum Pyrolysis of Softwood and Hardwood Biomass. Comparison between Product Yields and Bio-Oil Properties. *J. Anal. Appl. Pyrolysis* **2007**, 78 (1), 104–116.
- (80) Salinas-Martínez de Lecea, C.; Linares-Solano, A.; Garcia, P.; Molina, A.; Ruiz-Colorado, A. A.; Romero-Anaya, A. J. Phosphoric Acid Activation of Recalcitrant Biomass Originated in Ethanol Production from Banana Plants. *Biomass Bioenergy* **2011**, *35* (3), 1196–1204.
- (81) Gueye, M.; Richardson, Y.; Kafack, F. T.; Blin, J. High Efficiency Activated Carbons from African Biomass Residues for the Removal of Chromium(VI) from Wastewater. *J. Environ. Chem. Eng.* **2014**, 2 (1), 273–281.
- (82) Güngör, A.; Önenç, S.; Uçar, S.; Yanik, J. Comparison between the "One-Step" and "Two-Step" Catalytic Pyrolysis of Pine Bark. *J. Anal. Appl. Pyrolysis* **2012**, *97*, 39–48.
- (83) Rambo, M. K. D.; Schmidt, F. L.; Ferreira, M. M. C. Analysis of the Lignocellulosic Components of Biomass Residues for Biorefinery Opportunities. *Talanta* **2015**, *144*, 696–703.
- (84) Sasmal, S.; Goud, V. V.; Mohanty, K. Characterization of Biomasses Available in the Region of North-East India for Production of Biofuels. *Biomass Bioenergy* **2012**, *45*, 212–220.
- (85) Wei, L.; Xu, S.; Zhang, L.; Zhang, H.; Liu, C.; Zhu, H.; Liu, S. Characteristics of Fast Pyrolysis of Biomass in a Free Fall Reactor. *Fuel Process. Technol.* **2006**, *87* (10), 863–871.
- (86) Mun, T. Y.; Seon, P. G.; Kim, J. S. Production of a Producer Gas from Woody Waste via Air Gasification Using Activated Carbon and a Two-Stage Gasifier and Characterization of Tar. *Fuel* **2010**, *89* (11), 3226–3234.
- (87) Jung, S. H.; Kim, S. J.; Kim, J. S. Characteristics of Products from Fast Pyrolysis of Fractions of Waste Square Timber and Ordinary Plywood Using a Fluidized Bed Reactor. *Bioresour. Technol.* **2012**, *114*, 670–676.
- (88) Lyu, G.; Wu, S.; Zhang, H. Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions. *Front. Energy Res.* **2015**, 3 (June), 1–11.
- (89) Grnli, M. A Theoretical and Experimental Study of the Thermal Degradation of Biomass; Norwegian University of Science and Technology, 1996.
- (90) Demirbaş, A. Calculation of Higher Heating Values of Biomass Fuels. *Fuel* **1997**, *76* (5), 431–434.
- (91) Janković, B. The Pyrolysis Process of Wood Biomass Samples under Isothermal Experimental Conditions-Energy Density Considerations: Application of the Distributed Apparent Activation Energy Model with a Mixture of Distribution Functions. *Cellulose* **2014**, *21* (4), 2285–2314.
- (92) Shen, D. K.; Gu, S.; Luo, K. H.; Bridgwater, A. V.; Fang, M. X. Kinetic Study on Thermal Decomposition of Woods in Oxidative Environment. *Fuel* **2009**, 88 (6), 1024–1030.
- (93) Chen, Z.; Hu, M.; Zhu, X.; Guo, D.; Liu, S.; Hu, Z.; Xiao, B.; Wang, J.; Laghari, M. Characteristics and Kinetic Study on Pyrolysis of Five Lignocellulosic Biomass via Thermogravimetric Analysis. *Bioresour. Technol.* **2015**, *192*, 441–450.
- (94) Butler, E.; Devlin, G.; Meier, D.; McDonnell, K. Characterisation of Spruce, Salix, Miscanthus and Wheat Straw for Pyrolysis Applications. *Bioresour. Technol.* **2013**, *131*, 202–209.

- (95) Burhenne, L.; Messmer, J.; Aicher, T.; Laborie, M. P. The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis. *J. Anal. Appl. Pyrolysis* **2013**, *101*, 177–184.
- (96) Xu, J.; Elkamel, A.; Taqvi, S. T. H.; Liu, C.-G.; Rahimuddin, S. A.; Gull, M.; Mehmood, M. A.; Ahmad, M. S. Pyrolysis, Kinetics Analysis, Thermodynamics Parameters and Reaction Mechanism of Typha Latifolia to Evaluate Its Bioenergy Potential. *Bioresour. Technol.* **2017**, 245, 491–501.
- (97) Chen, Z.; Zhu, Q.; Wang, X.; Xiao, B.; Liu, S. Pyrolysis Behaviors and Kinetic Studies on Eucalyptus Residues Using Thermogravimetric Analysis. *Energy Convers. Manage.* **2015**, *105*, 251–259.
- (98) Williams, C. L.; Westover, T. L.; Emerson, R. M.; Tumuluru, J. S.; Li, C. Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. *BioEnergy Res.* **2016**, *9* (1), 1–14.
- (99) Raveendran, K.; Ganesh, A.; Khilar, K. C. Influence of Mineral Matter on Biomass Pyrolysis Characteristics. *Fuel* **1995**, 74 (12), 1812–1822.
- (100) Phanphanich, M.; Mani, S. Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass. *Bioresour. Technol.* **2011**, *102* (2), 1246–1253.
- (101) Kataki, R.; Konwer, D. Fuelwood Characteristics of Some Indigenous Woody Species of North-East India. *Biomass Bioenergy* **2001**, 20 (1), 17–23.
- (102) López-González, D.; Fernandez-Lopez, M.; Valverde, J. L.; Sanchez-Silva, L. Thermogravimetric-Mass Spectrometric Analysis on Combustion of Lignocellulosic Biomass. *Bioresour. Technol.* **2013**, 143, 562–574.
- (103) Rousset, P.; Aguiar, C.; Labbé, N.; Commandré, J. M. Enhancing the Combustible Properties of Bamboo by Torrefaction. *Bioresour. Technol.* **2011**, *102* (17), 8225–8231.
- (104) Chen, W. H.; Hsu, H. C.; Lu, K. M.; Lee, W. J.; Lin, T. C. Thermal Pretreatment of Wood (Lauan) Block by Torrefaction and Its Influence on the Properties of the Biomass. *Energy* **2011**, *36* (5), 3012–3021.
- (105) Ramos-Carmona, S.; Martínez, J. D.; Pérez, J. F. Torrefaction of Patula Pine under Air Conditions: A Chemical and Structural Characterization. *Ind. Crops Prod.* **2018**, *118*, 302–310.
- (106) Zhou, C.; Liu, G.; Wang, X.; Qi, C. Co-Combustion of Bituminous Coal and Biomass Fuel Blends: Thermochemical Characterization, Potential Utilization and Environmental Advantage. *Bioresour. Technol.* **2016**, 218, 418–427.
- (107) Azeez, A. M.; Meier, D.; Odermatt, J.; Willner, T. Fast Pyrolysis of African and European Lignocellulosic Biomasses Using Py-GC/MS and Fluidized Bed Reactor. *Energy Fuels* **2010**, 24 (3), 2078–2085.
- (108) Jindal, M. K.; Jha, M. K. Catalytic Hydrothermal Liquefaction of Waste Furniture Sawdust to Bio-Oil. *Indian Chem. Eng.* **2016**, *58* (2), 157–171.
- (109) Di Blasi, C.; Signorelli, G.; Di Russo, C.; Rea, G. Product Distribution from Pyrolysis of Wood and Agricultural Residues. *Ind. Eng. Chem. Res.* **1999**, 38 (6), 2216–2224.
- (110) Luo, G.; Chandler, D. S.; Anjos, L. C. A.; Eng, R. J.; Jia, P.; Resende, F. L. P. Pyrolysis of Whole Wood Chips and Rods in a Novel Ablative Reactor. *Fuel* **2017**, *194*, 229–238.
- (111) Bridgeman, T. G.; Jones, J. M.; Shield, I.; Williams, P. T. Torrefaction of Reed Canary Grass, Wheat Straw and Willow to Enhance Solid Fuel Qualities and Combustion Properties. *Fuel* **2008**, 87 (6), 844–856.
- (112) López, F. A.; Centeno, T. A.; García-Díaz, I.; Alguacil, F. J. Textural and Fuel Characteristics of the Chars Produced by the Pyrolysis of Waste Wood, and the Properties of Activated Carbons Prepared from Them. J. Anal. Appl. Pyrolysis 2013, 104, 551–558.
- (113) Sajjadi, B.; Chen, W. Y.; Egiebor, N. O. A Comprehensive Review on Physical Activation of Biochar for Energy and Environmental Applications. *Rev. Chem. Eng.* **2019**, *35*, 735.

- (114) Demiral, H.; Demiral, I.; Karabacakoglu, B.; Tümsek, F. Production of Activated Carbon from Olive Bagasse by Physical Activation. *Chem. Eng. Res. Des.* **2011**, 89 (2), 206–213.
- (115) Zheng, Z.; Xia, H.; Srinivasakannan, C.; Peng, J.; Zhang, L. Steam Activation of Eupatorium Adenophorum for the Production of Porous Carbon and Hydrogen Rich Fuel Gas. *J. Anal. Appl. Pyrolysis* **2014**, *110* (1), 113–121.
- (116) Miner, R. A.; Abt, R. C.; Bowyer, J. L.; Buford, M. A.; Malmsheimer, R. W.; Laughlin, J. O.; Oneil, E. E.; Sedjo, R. A.; Skog, K. E. Forest Carbon Accounting Considerations in US Bioenergy Policy. *J. For.* **2014**, *112*, 591–606.
- (117) Ishikawa, S.; Hoshiba, S.; Hinata, T.; Hishinuma, T.; Morita, S. Evaluation of a Biogas Plant from Life Cycle Assessment (LCA). *Int. Congr. Ser.* **2006**, *1293*, 230–233.
- (118) Zhang, L. X.; Wang, C. B.; Song, B. Carbon Emission Reduction Potential of a Typical Household Biogas System in Rural China. *J. Cleaner Prod.* **2013**, *47*, 415–421.
- (119) Climate Change 2007: Synthesis Report; IPCC: Geneva, Switzerland, 2008.
- (120) Gunnar, M.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Jacob, D., Ravishankara, A. R., Shine, K., Eds.; Cambridge University Press: New York, 2013; pp 659–740.
- (121) Qiu, M.; Sun, K.; Jin, J.; Gao, B.; Yan, Y.; Han, L.; Wu, F.; Xing, B. Properties of the Plant- and Manure-Derived Biochars and Their Sorption of Dibutyl Phthalate and Phenanthrene. *Sci. Rep.* **2015**, *4*, 1–10.
- (122) Akhtar, J.; Saidina, N.; Wood, P. A Review on Operating Parameters for Optimum Liquid Oil Yield in Biomass Pyrolysis. *Renewable Sustainable Energy Rev.* **2012**, *16* (7), 5101–5109.
- (123) Edmunds, C. W.; Reyes Molina, E. A.; André, N.; Hamilton, C.; Park, S.; Fasina, O.; Adhikari, S.; Kelley, S. S.; Tumuluru, J. S.; Rials, T. G.; et al. Blended Feedstocks for Thermochemical Conversion: Biomass Characterization and Bio-Oil Production From Switchgrass-Pine Residues Blends. *Front. Energy Res.* **2018**, *6*, 1–16
- (124) González-García, P. Activated Carbon from Lignocellulosics Precursors: A Review of the Synthesis Methods, Characterization Techniques and Applications. *Renewable Sustainable Energy Rev.* **2018**, 82, 1393–1414.
- (125) Bergna, D.; Hu, T.; Prokkola, H.; Romar, H.; Lassi, U. Effect of Some Process Parameters on the Main Properties of Activated Carbon Produced from Peat in a Lab-Scale Process. *Waste Biomass Valorization* **2019**, 1–12.

| CIDAN | Ganaratas | for AC By | aduction : | with Eng | one Pacou |  |
|-------|-----------|-----------|------------|----------|-----------|--|

| Mathematical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The column   The   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table   Tabl   |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ## 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| \$2 No. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Alm   1.07   4.06   4.05   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4.06   4   |
| Natif   State   4900   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Class 1470 2-077 25588 6580 6-270 12-067 12-067 13-069 15-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25-069 25- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 3 D                                                                                                          | ata Generated for AC Producti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | leasts<br>Dry Homes                                         | Recovery                              | Nitrona                              |                                        | Natural Con                              | Outsuts<br>Region CO2                 | Name (NA                               | fuelent                                   | G=2794                                          | South W                                      | Other Carre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                            | Cisi<br>Alashu<br>Alashu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lig / lig AC product<br>7,8541<br>7,4566<br>4,3002<br>5,614 | kg/ kg AC product<br>3.5300<br>3.5456 | kg/kg AC product<br>£1797<br>£260    | kg / kg AC product<br>6.9700<br>7.7966 | MI / kg AC product<br>79-4361<br>95-6000 | kg / kg AC product<br>6.90%<br>1.2211 | kg / kg AC product<br>0.0268<br>0.0272 | kg / kg AC product<br>3.9940<br>4.9041    | kg /kg AC product<br>7.536-05<br>6006-05        | kg/kg AC product<br>7.59E-0s<br>9.89E-0s     | kg / kg AC product<br>10,7002<br>11,4665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4                                                                                                            | Alimond<br>Alimond<br>Alimond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.202<br>5.010<br>5.000                                     | 2.385<br>2.566<br>2.622               | 67834<br>69738<br>63565              | 3.8605<br>5.7300<br>4.9294             | 30.604<br>56.904<br>42.302               | 3,6871<br>5,399<br>4,769              | 0.0139<br>0.0296<br>0.0179             | 1.5317<br>2.856<br>2.16%                  | 2,965-05<br>5,165-05<br>4,056-05                | 2,865-0a<br>5,365-0a<br>6,055-0a             | 6.40%<br>9.000<br>3.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2                                                                                                            | Almond<br>Almond<br>Almond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.645<br>5.456<br>4.4711                                    | 3.1417<br>3.1857<br>2.5000            | 6967<br>69627<br>6762                | 5.2653<br>5.1137<br>4.1916             | 60,7307<br>57,9662<br>37,4564            | 5,3126<br>5,0127<br>3,9125            | 0.6206<br>0.6200<br>0.8657             | 3.0509<br>2.9029<br>1.8023                | 5.19E-05<br>5.8E-05<br>3.59E-05                 | 5.95-0s<br>5.65-0s<br>3.95-0s                | 8.4756<br>8.4756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10<br>11                                                                                                     | Almond<br>Almond<br>Almond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5,639<br>4,609<br>4,605<br>4,797                            | 3.790<br>2.909<br>2.460               | 6903<br>6460<br>6768                 | 5.2344<br>3.87%<br>4.3%                | 65.5377<br>34.9528<br>37.3645            | 5 107<br>3.569<br>4 159               | 03145<br>03145                         | 3 1005<br>1,7965<br>1,9029                | 3.36-65<br>3.36-65<br>3.56-65                   | 6245-00<br>3.315-00<br>3.595-00              | 8.7974<br>6.3801<br>7.0881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12                                                                                                           | Almond Two Promise<br>American Arks (White Arks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5549<br>13.3696                                           | 3.500<br>3.600<br>6.7349              | 6793<br>1169<br>2705                 | 6.566<br>6.566<br>13.6528              | 56,5153<br>56,3600<br>307,5661           | 6.792<br>6.792<br>14.210              | 0.000<br>0.000                         | 2,960<br>4,200<br>10,4007                 | 5.16E-05<br>1.9E-05<br>1.9E-05                  | 7.965-0s<br>7.965-0s<br>1.975-05             | 1,806<br>18,669<br>21,806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15                                                                                                           | Apraid<br>Bahassa<br>Bamboo (Bambasa Valgarin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.067<br>6.647                                              | 2.049<br>3.369                        | 1160<br>060<br>1060                  | 3.4251<br>5.2297                       | \$6.3333<br>27.3907<br>63.3844           | 3.5924<br>6.2932                      | 0336)<br>0336)                         | 1,200<br>1,200<br>3,200                   | 2.5%-05<br>5.0%-05                              | 2.5%-0s<br>6.0%-0s                           | 13,4669<br>21,806<br>13,666<br>4,267<br>8,4772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19<br>29                                                                                                     | Rambor (Rambora volunia) - Middle<br>Rambor (Rambora volunia) - Middle<br>Rambor (Vandra volunia) - Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02<br>6.00<br>4.00                                        | 3,966<br>3,462<br>2,462               | 1196                                 | 7.600<br>6.7519<br>4.607               | 29.1309<br>63.2251<br>13.5599            | 5,006<br>6,709<br>4,700               | 0.600<br>0.000<br>0.000                | 3,9965<br>3,1702<br>1,4864                | 7.895-05<br>5.995-05<br>3.195-05                | 7.4% or<br>5.9% or<br>1.1% or                | 12.0599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22<br>29<br>28                                                                                               | Hamboo Sawakat<br>Basak<br>Basak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.309<br>6.088<br>6.800                                     | 2 3059<br>2 6916<br>3 2054            | 6728<br>1609<br>1366                 | 6.786<br>6.738<br>6.728                | 36.4157<br>50.7161<br>12.4008            | 3.701<br>5.8169<br>6.5875             | 03151<br>03213<br>0.037                | 1.1005<br>2.501<br>3.630                  | 2.5(E-05<br>4.9(E-05<br>6.9(E-05                | 251E-04<br>4.81E-04<br>6.86E-04              | 6.1927<br>9.3683<br>18.3558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 25<br>26<br>22                                                                                               | Result Ward<br>Break Ward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.290<br>5.295                                              | 2,659<br>2,679<br>2,679               | 1,0417<br>6/602<br>6/07              | 6.1410<br>5.3240<br>5.3490             | 62.388<br>61.379<br>52.680               | 5.580<br>5.580                        | 03214<br>03210<br>03217                | 3.1301                                    | 5.90E-05<br>4.11E-05<br>4.96E-05                | 5.905-0s<br>4.115-0s<br>4.905-0s             | 9.4563<br>8.7276<br>8.0994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29<br>29<br>39                                                                                               | Mesh<br>Mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.460<br>7.462<br>5.969                                     | 2 4359<br>3 1743<br>3 2565<br>2 3989  | 1,0677<br>1,2440<br>6,9771           | 6.369<br>7.996<br>5.999                | 58,9995<br>13,6682<br>47,7890            | 5.90s<br>3.882<br>5.528               | 9336<br>9436<br>9310                   | 2.669<br>2.964<br>3.639<br>2.1965         | 5.5%-05<br>6.925-05<br>4.526-05                 | 5.995-0s<br>6.925-0s<br>4.925-0s             | 9.094<br>9.992<br>11.2130<br>9.92%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12<br>12<br>13                                                                                               | Bisch<br>Beshagen<br>Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.256<br>4.96%<br>6.868                                    | 5.4002<br>2.3905<br>3.3082            | 1,8736<br>6,9000<br>1,1116           | 11,0977<br>4,760<br>6,500              | 251 6659<br>47.1466<br>33.4433           | 11.692<br>4.5102<br>6.4777            | 03428<br>03369<br>03253                | 2.600<br>2.560<br>3.607                   | 1.65.00<br>4.65.00<br>6.96.00                   | 1.665-01<br>6.675-04<br>6.965-04             | 16,9965<br>7,2645<br>18,1663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15<br>16                                                                                                     | Oronina<br>Ordar<br>Ordar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.566<br>8.366<br>5.368                                     | 2,665<br>3,663<br>3,269               | 1468<br>1468<br>6968                 | 5.905<br>9.821<br>5.202                | 68,6560<br>92,309<br>69,6022             | 5.195<br>8.796<br>5.450               | 0335<br>0335<br>0336                   | 2.600<br>4.607<br>3.5077                  | \$105.05<br>\$1%.05<br>\$445.05                 | 6415-0s<br>8735-0s<br>6415-0s                | 8 507<br>1) 2652<br>8 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 23<br>28                                                                                                     | Chore tose Chory tose Chory tose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.200<br>5.2156<br>5.600                                    | 2.405<br>2.405<br>3.3125              | 6360<br>6360<br>6903                 | 5.000<br>5.000<br>5.0279               | 64.0029<br>64.0013<br>63.0005            | 4.891<br>4.891<br>5.391               | 03296<br>03288                         | 2.299<br>3.254                            | 5.79E-05<br>4.22E-05<br>6.06E-05                | 5.795-0s<br>4.225-0s<br>6.065-0s             | 1,909<br>1,909<br>8,469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6                                                                                                            | Conne<br>Conne<br>Conne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 101<br>3.750                                              | 2.5200<br>2.7357<br>2.9645<br>2.9777  | 0000<br>0000<br>0000                 | 3.905<br>3.905<br>2.940                | 40.9454<br>43.4759<br>45.1755            | 3.000                                 | 03165<br>03162                         | 2.879<br>2.676<br>2.198<br>2.362<br>2.360 | 198-6<br>116-6<br>417-6                         | 186 oc<br>416 oc<br>475 oc                   | 1.60%<br>8.46%<br>8.5902<br>6.40%<br>5.9024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 65                                                                                                           | Cocond<br>Occord<br>Occord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.6000<br>3.7656<br>3.8560                                  | 2.004<br>2.090<br>2.203               | 6936<br>6606<br>6606                 | 5.3666<br>3.4(39<br>3.573)             | 57,2710<br>31,4658<br>31,499             | 5.3054<br>3.2440<br>3.1535            | 03214<br>03117<br>0.007                | 2 9760<br>1 5622<br>1 5784                | 5.425.46<br>2.995.46<br>2.935.46                | 5.05 oc<br>2.95 oc<br>2.95 oc                | 8.507<br>5.605<br>6.1135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8                                                                                                            | Colline<br>Colline<br>Colline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4637<br>3.999<br>6.201                                    | 2.405<br>2.008<br>3.206               | 6746<br>6698<br>1065                 | 4.34%<br>3.77%<br>6.6402               | 32,5005<br>22,7519<br>66,4987            | 3,9090<br>3,4053<br>5,9592            | 03145<br>03127<br>03216                | 1.600<br>1.160<br>3.163                   | 3.06-65<br>2.19-65<br>6.36-65                   | 2155-04<br>6365-04                           | 6.9074<br>6.0000<br>9.5547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 53<br>51<br>52                                                                                               | Cottine<br>Cypenes<br>Decodes Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.2607<br>4.5689<br>7.2881                                  | 3.264<br>2.836<br>3.962               | 1001<br>6315<br>1390                 | 6.079<br>6.605<br>7.000                | 66, 6189<br>62,6800<br>82,7860           | 5,9935<br>4,5805<br>3,1360            | 03216<br>0.0368<br>03290               | 3.397<br>3.169<br>4.140                   | 5.29E-05<br>5.99E-05<br>7.99E-05                | 5.5% 0c<br>5.5% 0c<br>7.8% 0c                | 9.5510<br>7.3629<br>38.9653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 53<br>54<br>55                                                                                               | Dougles Fir<br>Dougles Fir Wood<br>Foobleck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.306<br>5.306                                              | 3.3421<br>3.3471<br>3.865             | 1,0%<br>1,25%<br>6/95H               | 5.809<br>7.608<br>5.407                | 78.2363<br>78.6128<br>99.2355            | 5.1967<br>7.586<br>5.4055             | 03287<br>03368<br>03218                | 3.906<br>3.903<br>2.9%2                   | 7.41E-05<br>7.39E-05<br>5.60E-05                | 7.41E-0s<br>7.36E-0s<br>5.61E-0s             | 9.4572<br>11.2980<br>8.4699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 55<br>52<br>58                                                                                               | Die<br>Die<br>Encolptus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.454<br>9.418<br>4.896                                     | 4.995<br>4.951<br>2.996               | 1500<br>1500<br>6506                 | 9.902<br>9.6256<br>4.999               | 215,300<br>213,3300<br>30,7385           | \$660<br>\$310<br>\$460               | 0.0342<br>0.0342                       | 5.7965<br>5.6971<br>1.5967                | 1.0%-04<br>1.0%-04<br>2.9%-05                   | 1.0%-01<br>1.0%-01<br>2.91E-01               | 14 1552<br>13.9654<br>7.1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60                                                                                                           | Faculation<br>Faculation<br>Faculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.1756<br>5.1607                                            | 2.892<br>2.892<br>2.425               | 5363<br>5363                         | 5.100<br>5.100<br>5.1011               | 27.568<br>27.568<br>29.5628              | 4.728<br>4.728<br>4.737               | 0.01%<br>0.01%<br>0.01%                | 2,003<br>1,809<br>2,003                   | 3.56E-65<br>3.76E-65                            | 1.365-00<br>1.365-00<br>1.365-00             | 7.8670<br>7.8670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 64                                                                                                           | Escalatos<br>Escalatos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.1865<br>6.00%                                             | 1 265<br>1 2862                       | 100H<br>10079                        | 5.9550<br>5.7384<br>4.675              | 68,7811<br>66,005)<br>49,4700            | 5.996<br>5.927                        | 03216<br>03219<br>0.0006               | 3.100                                     | 6.51E-05<br>6.25E-05                            | 6.51E-0s<br>6.21E-0s                         | 9,0009<br>9,0006<br>7,5746<br>2,1756<br>7,1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8                                                                                                            | Finaletic Sendet<br>Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.760<br>4.771<br>5.960                                     | 2.968<br>2.020<br>2.7540              | 6.7965<br>6.7962<br>6.9965           | 4.490<br>4.820<br>5.600                | 40 13157<br>29.4679<br>51.6727           | 42146<br>43227<br>5,662               | 0.0079<br>0.0066<br>0.0221             | 2.463<br>2.00%<br>1.4808<br>2.618         | 3,925-66<br>2,796-66<br>4,925-66                | 3 X25 0s<br>2 X6 0s<br>4 X25 0s              | 7,1756<br>7,1726<br>8,9546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 69<br>29<br>71                                                                                               | 6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.890<br>6.879<br>6.806                                     | 2.947<br>3.962<br>3.698               | 1100<br>1100<br>1000                 | 5.506<br>6.760<br>5.804                | 52 4840<br>71 7149<br>62 4250            | 5.540<br>6.700<br>5.60%               | 0.0218<br>0.0067<br>0.0241             | 2,665<br>3,604<br>3,1301                  | 4.96-05<br>6.96-05<br>5.96-05                   | 6.965-0s<br>5.965-0s                         | 9.5560<br>98.4045<br>9.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 72<br>79<br>74                                                                                               | For<br>For Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5529<br>5.6555<br>5.9514                                  | 3.000<br>3.004<br>3.336               | 6905<br>6905<br>6902                 | 5.362<br>5.362<br>5.5158               | 57.3625<br>59.9656<br>65.3999            | 5.294<br>5.350<br>5.500               | 0.6214<br>0.6229<br>0.8241             | 2.806<br>3.008<br>3.265                   | 5.69E-05<br>5.69E-05<br>6.19E-05                | 5.05-to<br>5.05-to<br>6.76-to                | 2.4864<br>8.4359<br>9.2569<br>7.7645<br>5.9947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 75<br>76<br>72                                                                                               | Chape<br>Chape<br>Chape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1014<br>3.6443<br>4.6009                                  | 2.4637<br>2.4172<br>2.4650            | 6350<br>6400<br>6700                 | 5.6677<br>3.7921<br>4.5142             | 40.1216<br>29.5768<br>56.2116            | 4,643<br>3,0627<br>4,2198             | 0.0174<br>0.0125<br>0.0566             | 2.0563<br>1.4963<br>2.7284                | 3.90E-05<br>2.90E-05<br>5.13E-05                | 3.805-0s<br>2.805-0s<br>5.05-0s              | 7,7945<br>5,9007<br>7,2190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 79<br>29                                                                                                     | Chape<br>Hardwood<br>Hardwood rick in three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.001<br>5.000                                              | 2.796<br>3.2405<br>3.1139             | 5916<br>1007<br>69211                | 5.9253<br>5.9268                       | 94.993<br>30.3625<br>56.695              | 5.760<br>5.760                        | 0.0240<br>0.0240<br>0.0000             | 3.5399<br>2.6392                          | 6.135-05<br>6.66E-05<br>5.19E-05                | 6.03-0s<br>6.66-0s<br>5.16-0s                | 7,364<br>9,550<br>9,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 82<br>83                                                                                                     | Harebet<br>Harebet<br>Harebet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,610<br>4,620<br>4,361                                     | 2.364<br>2.566<br>2.652               | 6769<br>6474<br>6709                 | 5.608<br>3.608<br>3.828                | 28,0008<br>36,969<br>42,974              | 1592<br>1592<br>1859                  | 0.0054<br>0.0054<br>0.0071             | 1.890<br>1.890<br>2.192                   | 2.6%-65<br>3.4%-65<br>4.062-65                  | 2.6%-0:<br>3.6%-0:<br>4.0%-0:                | 6.364<br>6.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 85<br>86<br>97                                                                                               | Holin Oak<br>Holin Oak<br>Holini Paplar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.939<br>4.7151                                             | 2.66<br>2.06                          | 67677<br>6769                        | 4.9727<br>4.6972<br>4.7995             | 35.3668<br>39.6127                       | 4,000<br>4,000<br>4,000               | 0.0170<br>0.0177<br>0.0177             | 1.790<br>2.007                            | 3.14E-05<br>3.79E-05                            | 3.36-0:<br>3.36-0:<br>1.95-0:                | 7,1794<br>7,2266<br>7,1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22<br>23                                                                                                     | Innine<br>Konaf (Inly)<br>Kevi Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.669<br>5.669<br>6.300                                     | 2.7188<br>2.905<br>2.6453             | 6706<br>69611<br>67182               | 3.992<br>4.923<br>3.926                | 89.9997<br>39.4429<br>89.7971            | 4,0757<br>4,56%                       | 0.6251<br>0.6569<br>0.8179             | 2.50%<br>1.90%<br>2.00%                   | 4.725-66<br>3.745-66<br>3.815-66                | 4.755-00<br>3.765-00<br>3.855-00             | 7,2296<br>7,1296<br>6,7065<br>7,7434<br>6,8766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 90<br>90<br>90                                                                                               | Editor<br>Lock<br>Lock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.965<br>7.960<br>8.260                                     | 2.5454<br>3.9304<br>3.9656            | 56%7<br>1307<br>1379                 | 3.951<br>7.866<br>8.163                | 68,6570<br>95,9628<br>98,6118            | 3.760<br>8.150<br>8.150               | 0.8174<br>0.8145<br>0.8145             | 2.490<br>4.8294<br>4.904                  | 1.66-65<br>1.06-65<br>1.13-65                   | 9,005-0s<br>9,005-0s<br>9,315-0s             | 6 560<br>11.816<br>12.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 95<br>95<br>96                                                                                               | Longo<br>Longo Polo Pino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.1345<br>5.3430<br>5.4460                                 | 6,9642<br>2,964<br>2,987              | 2.189<br>6.970<br>6.982              | 12.6112<br>5.1112<br>5.403             | 260,4306<br>43,2360<br>53,3662           | 14.000<br>4.000<br>5.000              | 0.6955<br>0.0179<br>0.0320             | 9,0601<br>2,1709<br>2,6829                | 1.71E-04<br>4.18E-05<br>5.06E-05                | 1.765-00<br>4.105-00<br>5.062-00             | 19.4272<br>9.0924<br>9.2609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 92<br>98<br>98                                                                                               | Logging Residue Chip<br>Medican<br>Mentanta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.000<br>5.000<br>5.440                                     | 2.1122<br>2.513<br>2.566              | 89093<br>90924                       | 5.5144<br>5.90%<br>5.2366              | 43.5124<br>44.7792<br>45.5854            | 5.409<br>5.109<br>4.8271              | 0.6245<br>0.6096<br>0.6086             | 2.3917<br>2.399<br>2.3984                 | 4.15E-65<br>4.26E-65<br>4.15E-65                | 4.05-0s<br>4.36-0s<br>4.35-0s                | 8.800<br>8.4000<br>8.4000<br>9.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 300<br>300<br>300                                                                                            | Magis<br>Magis<br>Manis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.4300<br>6.6664<br>6.3660                                  | 2.136<br>3.369<br>1.369               | 10%0<br>10%0                         | 5.909<br>5.909                         | 32.6627<br>68.6565<br>66.2550            | 5.092<br>5.799                        | 03234<br>03214<br>03210                | 3.490<br>3.196                            | 6.58-65<br>6.28-65                              | 6.965-0s<br>6.955-0s                         | 9.8511<br>9.2571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 304<br>305<br>306                                                                                            | Microl<br>Microl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.811<br>6.810<br>5.900                                     | 3.016<br>3.016<br>3.012               | 69752<br>19936<br>19936              | 5.5774<br>5.5774<br>5.9674             | 62.2551<br>59.5540<br>55.7647            | 5.948<br>5.739<br>5.631               | 0.005<br>0.005<br>0.021                | 3.126<br>3.009                            | 5.90E-05<br>5.60E-05<br>5.70E-05                | 5.95 oc<br>5.95 oc<br>5.95 oc                | 9.1129<br>9.1602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 307<br>308<br>309                                                                                            | Mitted<br>Mitted<br>Mitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.7139<br>5.963<br>5.7544                                   | 2.8543<br>3.896<br>2.7016             | 6903<br>6903<br>6903                 | 5.5123<br>5.6650<br>5.6532             | 55.3662<br>59.5423<br>50.3696            | 5.638<br>5.619<br>5.790               | 0.0211<br>0.0219<br>0.0213             | 2.7722<br>3.0022<br>2.5963                | 5.226-65<br>5.666-65<br>4.826-65                | 5.235-0s<br>5.665-0s<br>4.825-0s             | 1.4533<br>1.9660<br>1.4235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12   12   13   13   13   13   13   13                                                                        | Mitted<br>Maj<br>Mulharry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.3456<br>6.071<br>6.690                                    | 2.965)<br>2.9900<br>3.9019            | £3909<br>£0239<br>£0027              | 5.0219<br>6.0007<br>6.0008             | 58.3522<br>61.788<br>77.6532             | 5,969<br>5,969                        | 9.6205<br>9.6254<br>9.6257             | 2.9023<br>3.1025<br>3.9791                | 5.5%-65<br>5.8%-65<br>7.10E-65                  | 5.05 oc<br>5.05 oc<br>7.05 oc                | 9.20%<br>9.20%<br>9.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11)<br>114<br>115                                                                                            | Norwe Serace<br>Onli<br>Onli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5673<br>5.3693<br>6.3651                                  | 3.496<br>2.715)<br>2.499              | 1140<br>6963<br>1606                 | 6.6527<br>5.7351<br>6.2403             | 76 2602<br>68 6607<br>51 5840            | 6.70%<br>5.40%<br>5.768               | 0.0112<br>0.0212                       | 3.1901<br>2.405<br>2.502                  | 7.00E-05<br>4.60E-05<br>4.80E-05                | 1895-00<br>4,895-00                          | 98.9500<br>8.7544<br>9.2768<br>9.2166<br>6.8967<br>8.4293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 116<br>117<br>118                                                                                            | OME<br>OME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.360<br>4.500<br>5.516                                     | 2.7656<br>2.020<br>2.690              | 100%<br>67%2<br>6909                 | 6.199<br>4.51%<br>5.398                | 54.6962<br>29.3834<br>46.5921            | 5.909<br>4.007<br>5.2128              | 93218<br>93363<br>9.8992               | 2.7154<br>1.436<br>2.1584                 | 5.135-65<br>2.795-65<br>4.445-65                | 5125-0s<br>2765-0s<br>6.465-0s               | 9.21%<br>6.8967<br>8.4243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 129                                                                                                          | os<br>os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.539<br>7.612<br>5.539                                     | 2 9629<br>3 7359<br>2 8397            | 1220<br>1220<br>6956                 | 7.088<br>5.665                         | 60.7412<br>99.2460<br>53.2214            | 52HF<br>10ND<br>54R6                  | 0.004<br>0.004<br>0.013                | 1.604<br>4.696<br>2.636                   | \$ 192-05<br>\$ 162-05<br>\$ 08-05              | 5.765-0s<br>5.865-0s<br>5.865-0s             | 9,3067<br>11,3077<br>8,6215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 122<br>128<br>126                                                                                            | Chia<br>Chia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.956<br>9.5618                                             | 2.999<br>4.2955                       | 1903<br>5909<br>1649                 | 5.7410<br>5.7410<br>30.6412            | 58,4935<br>118,3154                      | 5.660<br>10003                        | 03256<br>03276<br>03270                | 2.964<br>5.964                            | 5.9E-65<br>1.135-04                             | 5.95-0:<br>1.05-0:                           | 8,996<br>8,996<br>16,624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 126<br>127<br>129                                                                                            | Out<br>Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.890<br>6.594<br>5.194                                     | 3.2558<br>2.8602<br>2.8727            | 6903<br>6756<br>6909                 | 5.5464<br>4.960<br>4.900               | 68.1721<br>68.6731<br>64.0678            | 3.505<br>4.169<br>4.899               | 0.0218                                 | 3.42%<br>2.2544<br>3.47%                  | 6.46E-05<br>4.13E-05                            | 6.45 to<br>41% to                            | 9,1294<br>6,9690<br>7,66%<br>1,3272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 126<br>127<br>128<br>129<br>130<br>131<br>132                                                                | Ulico<br>Ulico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00<br>6350<br>4450                                        | 2.4907<br>3.4974<br>2.9618            | 6892<br>1169<br>6776                 | 5.8977<br>6.7691                       | 39.5641<br>15.6912<br>50.7000            | 4.670<br>6.685                        | 0.074                                  | 1.992<br>3.992<br>3.699                   | 3.790-05<br>3.130-05<br>4.790-05                | 3.79E-04<br>7.77E-04<br>4.79E-04             | 7.6272<br>18.6989<br>7.1897<br>18.0060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 132<br>133<br>134                                                                                            | Olice<br>Olice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.942<br>5.942                                              | 3.166<br>3.366<br>3.600               | 1100<br>69049<br>1001                | 6.5332<br>6.9962<br>5.8771             | 79.5032<br>25.5094<br>26.6911            | 5.292<br>5.292                        | 0.0241<br>0.0211<br>0.0302             | 3.982<br>3.8151<br>3.9213                 | 7.5%-65<br>7.1%-65<br>7.3%-65                   | 7.53E-0s<br>7.19E-0s<br>7.39E-0s             | 13.0360<br>3.5065<br>9.6002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 110<br>134<br>135<br>136<br>138<br>139<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140 | Clino<br>Clino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5726<br>4.5564<br>4.6519                                  | 3.892<br>2.799<br>2.564               | 67621<br>6399<br>6729                | 3.966<br>4.579<br>4.3005               | 54,5000<br>59,6095<br>56,5656            | 4.298<br>4.467<br>4.105               | 0.6218<br>0.6087<br>0.6099             | 2.796<br>3.001<br>2.95%                   | 5.16E-05<br>5.6TE-05<br>5.16E-05                | 5.00E-00<br>5.00E-00<br>5.00E-00             | 7.0019<br>7.4907<br>7.1156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 139<br>139<br>140                                                                                            | Clina<br>Clina<br>Clina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.659<br>4.369<br>4.360                                     | 2.9546<br>2.9506<br>2.8481            | 6,7765<br>6,7169<br>6,7244           | 4.000<br>3.4272<br>3.769               | \$4,905<br>99,030<br>46,1144             | 4.0211<br>3.8572                      | 0.0010<br>0.0086<br>0.0082             | 2.1961<br>2.968<br>2.3134                 | 5.66-65<br>5.66-65<br>4.3%-65                   | 5 ME-0s<br>5 ME-0s<br>4 JTS-0s               | 7.607<br>7.1156<br>7.1969<br>6.5144<br>6.560<br>8.900<br>8.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 140<br>140                                                                                                   | Palm.<br>Palm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.400<br>5.300                                              | 3.000<br>3.200                        | 6908<br>6908                         | 5.003<br>4.023<br>1.055                | 61,990<br>65,5308<br>47,799              | 4305<br>4763                          | 0.090                                  | 3.100<br>3.306                            | 5.88E-05<br>6.28E-05                            | 5 865 00<br>6245 00                          | 8.554<br>8.656<br>6.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 145<br>146<br>147                                                                                            | Panis Pine<br>Presis<br>Presis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.360<br>4.363<br>4.903                                     | 2.9965<br>3.3425<br>3.0172            | 6760<br>1090<br>6897                 | 5.860<br>5.860<br>6.005                | 59.5779<br>71.5896<br>57.4058            | 6.000<br>6.000<br>6.000               | 0.6917<br>0.6254<br>0.6212             | 2,9999<br>3,6396<br>2,8962                | 5.66-05<br>6.90-05<br>5.66-05                   | 5.66E-0s<br>6.90E-0s<br>5.46E-0s             | 7,3963<br>9,4225<br>7,5888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 168<br>168<br>153                                                                                            | Promit<br>Promit<br>Promit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.766<br>4.369<br>4.3627                                    | 2347<br>2462<br>2566                  | 6.7977<br>6.7350<br>6.7971           | 4.962<br>4.9624<br>3.5486              | 99 5656<br>35 6734<br>33 5794            | 4.3031<br>3.8341<br>3.8138            | 0.0172<br>0.0150<br>0.0549             | 2,9750<br>1,7927<br>1,7925                | 5.60E-05<br>3.38E-05<br>3.22E-05                | 5 605 0s<br>3 305 0s<br>3 225 0s             | 3,299<br>6,795<br>6,594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 151<br>152<br>153                                                                                            | Peer<br>Pee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,360<br>1,360<br>1,360                                     | 2.5412<br>3.666<br>3.356<br>2.467     | 67507<br>12040<br>1,3000             | 4.2018<br>7.5896<br>7.8985             | 37.3549<br>66.925<br>77.3400             | 1125<br>1664                          | 0.6916<br>0.6916<br>0.6902             | 1.9872<br>3.1462<br>3.8365                | 3.565-65<br>5.365-65<br>7.315-65                | 1.355-0s<br>6.365-0s<br>7.355-0s             | 8,9687<br>38,954<br>11,7607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 155                                                                                                          | Fine<br>Fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.874<br>7.568<br>5.600                                     | 2.9%                                  | 6909<br>12511                        | 5.1347<br>7.2409<br>5.901              | 86,7698<br>85,6221<br>86,9617            | 5 067<br>1550                         | 0.015                                  | 2.269<br>4.992                            | 426-65<br>8.116-65                              | 426 de<br>8.116 de<br>4.45 de                | 11.004<br>11.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 158<br>159<br>160                                                                                            | Pine<br>Pine<br>Pine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.9272<br>5.761<br>6.465                                    | 3.3326<br>2.6650<br>3.4659            | 1156<br>6962<br>1000                 | 6.992<br>5.992<br>6.099                | 36.5477<br>64.7296<br>15.4558            | 5556<br>5,566<br>6,169                | 0.000<br>0.0142<br>0.0279              | 3.867<br>3.866<br>3.768                   | 7.290-05<br>5.990-05<br>7.190-05                | 7.255-0s<br>5.855-0s<br>7.255-0s             | 38.4266<br>8.7709<br>9.7127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 162<br>162<br>163                                                                                            | Fee<br>Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.675<br>6.655<br>6.754                                     | 3.490<br>3.590<br>3.550               | 1109<br>1100<br>1100                 | 6.3290<br>6.3715<br>6.4711             | 29.5308<br>\$1.3653<br>\$1.3094          | 6.45M<br>6.55M                        | 0.6250<br>0.6250<br>0.6311             | 3,996<br>4,009<br>4,009                   | 7.546-65<br>7.766-65<br>7.646-65                | 7.565-0x<br>7.565-0x<br>7.665-0x             | 10.0650<br>10.0651<br>0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 363<br>365<br>367<br>367<br>368<br>368<br>179                                                                | Fee<br>Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.000<br>6.00%<br>5.20%                                     | 3.207<br>2.800<br>3.3147              | 1.0085<br>1.1546<br>6.8796           | 5.760<br>7.042<br>6.760                | 69.7907<br>59.4652<br>67.6956            | 5.89d<br>6.767<br>5.000               | 0.0257<br>0.0256<br>0.0256             | 4.085<br>3.561<br>4.163<br>3.166          | 5.60E-05<br>7.90E-05<br>6.60E-05                | 6.605-00<br>7.905-00<br>6.605-00             | 9,000<br>9,101<br>10,002<br>9,1104<br>7,003<br>6,997<br>5,590<br>7,003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 367<br>368<br>369                                                                                            | Piec<br>Piec Berk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5348<br>4.4277<br>3.5906                                  | 2.9985<br>2.9983<br>2.2171            | 6,90%<br>6,736<br>6,766              | 4.1962<br>3.5547<br>3.7565             | 56.9812<br>53.1254<br>25.1363            | 4.004<br>4.000<br>1.000               | 0.6207<br>0.6566<br>0.6544             | 2.690<br>2.690<br>1.360                   | 5.19E-05<br>5.00E-05<br>2.19E-05                | 5.86 m<br>5.86 m<br>2.86 m                   | 7.4683<br>6.9997<br>5.9992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 179<br>171<br>172                                                                                            | Fac Chip<br>Fac Chip<br>Fac Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6609<br>7.8779                                           | 4.8323<br>3.7779                      | 1.842<br>1.928                       | 3.565<br>11.2122<br>7.366              | 219.5648<br>229.5648<br>88.4655          | 114501<br>114501<br>1.5940            | 0.006                                  | 4.004<br>4.4677                           | 1.1%-04<br>1.1%-04<br>1.4%-05                   | 1.0540<br>8.05-0                             | 16.416<br>12.1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 174<br>175<br>176                                                                                            | Papon Jusque<br>Papon Pine<br>Patoshio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.902<br>4.902<br>4.968<br>5.304                            | 2,586<br>2,586<br>2,580<br>2,690      | 0.686<br>0.798<br>0.896              | 3.6613<br>4.4684<br>5.3445             | 41.3714<br>54.9340<br>49.4714            | 3.7901<br>4.4693<br>4.9947            | 0.009<br>0.009<br>0.000<br>0.000       | 2,0760<br>2,7965<br>2,9667                | 3.192-05<br>5.196-05<br>4.696-44                | 3.95 to<br>3.95 to<br>3.96 to                | 12.000<br>9.2002<br>6.2007<br>7.3118<br>8.3004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 122<br>178<br>179                                                                                            | Patada<br>Patada<br>Paplar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,987<br>6,298<br>6,395                                     | 3,4658<br>3,2172<br>2,7566            | 1,266<br>1,050<br>1,064              | 7.460<br>6.005<br>6.3562               | \$6,9340<br>65,7230<br>51,7350           | 3.4938<br>6.1239<br>6.0548            | 0.004<br>0.000<br>0.017                | 4.2651<br>3.3627<br>2.586                 | 8.08-05<br>6.23-05<br>4.98-05                   | 8.045-0s<br>6.235-0s<br>6.955-0s             | 1.1007<br>9.5144<br>9.655<br>3.9411<br>9.8061<br>8.2900<br>9.0072<br>18.650<br>19.0075<br>19.0075<br>18.650<br>19.0075<br>18.650<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>19.0075<br>1                                                                                                                                                                                                                                                           |
| 190<br>191<br>192                                                                                            | Produc<br>Produc<br>Produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.229<br>6.525<br>5.801                                     | 2.4298<br>3.3155<br>3.3882            | \$79.3<br>\$79.1<br>\$399.3          | 5.3002<br>6.3254<br>5.5600             | 39.3400<br>30.6640<br>69.3065            | 4792<br>5396<br>5.675                 | 0.0179<br>0.0248<br>0.0218             | 1,9969<br>3,505<br>3,4758                 | 3.79E-65<br>6.78E-65<br>6.54E-65                | 1.785-0s<br>6.785-0s<br>6.585-0s             | 7.9681<br>9.993<br>9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 183<br>185<br>185                                                                                            | Papler - Heartmood<br>Papler - Septemb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.4067<br>9.5963<br>6.8665<br>7.6218                        | 2.9900<br>3.9900<br>3.4379            | 1400<br>1100                         | 5.000<br>3.900<br>6.047                | 56,3127<br>86,3479<br>13,7365            | 5.0%4<br>8.65%<br>6.6871              | 0.0211<br>0.0056<br>0.0280             | 2.009<br>5.298<br>3.7989                  | 5.14E-05<br>9.94E-05<br>6.94E-05                | 5.36-0s<br>9.96-0s<br>6.96-0s                | 12.999<br>12.999<br>9.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 197                                                                                                          | Prime<br>Prime<br>Primenson Claik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.500<br>4.690<br>5.200                                     | 3.056<br>3.7118<br>2.6212<br>2.7145   | 1766<br>1068<br>6736                 | 6.9852<br>6.966<br>4.9518<br>5.6823    | 36.933<br>99.8639<br>29.4639             | 4.960<br>4.190<br>4.199               | 0.0250<br>0.0260<br>0.000              | 3.892<br>4.4225<br>1.9933<br>2.4288       | 1.16-46<br>1.16-46<br>1.16-46<br>4.96-46        | 175 de<br>176 de<br>176 de<br>176 de         | 18.0057<br>18.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 190<br>190<br>190                                                                                            | Present Oak Word (2) These dissector. De-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.904<br>4.045<br>4.005                                     | 2.908<br>2.908<br>2.609               | 67997<br>67724<br>67724              | 5.8182<br>5.8182<br>6.4099<br>4.9953   | 60.8255<br>97.5752<br>45.7510            | 5.7%5<br>4.1622<br>4.2674             | 03345<br>03345<br>03344                | 3.0566<br>1.892<br>2.391                  | 5.79E-65<br>3.79E-65<br>4.79E-65                | 5.76E-00<br>3.76E-00<br>4.76E-00             | 8.8582<br>3.1174<br>1.47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 199<br>198                                                                                                   | Nalis<br>Nacional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53897<br>63915<br>53015                                     | 2.5475<br>2.6697<br>3.6514            | 69799<br>100%                        | 5.9365<br>5.930<br>4.6475              | 45,3907<br>60,5400<br>50,000             | 5.5308<br>5.800<br>5.000              | 03229<br>04210<br>04214                | 2.260<br>3.003<br>2.967                   | 4305-05<br>5396-05                              | 4365-04<br>5.795-04                          | 9.3194<br>9.3184<br>9.1495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 296<br>297<br>298                                                                                            | Inquis<br>Inquis<br>Short Willer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.2207<br>5.1748<br>4.961                                   | 2.813<br>2.8158<br>2.5117             | 63706<br>63625<br>63039              | 4.3530<br>4.7628<br>4.3539             | 58.4150<br>58.6924<br>41.4927            | 4.998<br>4.690<br>4.670               | 0.0223<br>0.0222<br>0.0226             | 2,9983<br>2,9983<br>2,0921                | 5.5%-65<br>5.5%-65<br>3.9%-65                   | 5.53E-0s<br>5.50E-0s<br>192E-0s              | 9.0005<br>7.4057<br>7.4968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 299<br>200<br>200                                                                                            | More Fir<br>Influent<br>Influent help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.961<br>7.6678<br>6.9562<br>6.9641                         | 3.514<br>3.516<br>3.265               | 1,2746<br>1,0927<br>6,9274           | 7.6327<br>6.7896<br>4.3289             | 96.3055<br>79.6032<br>63.2300            | 7.6768<br>6.2954<br>4.6757            | 0.6962<br>0.6275<br>0.6237             | 4.986<br>4.098<br>3.1%5                   | 3.18E-05<br>7.59E-05<br>5.99E-05                | 3.05-0:<br>7.35-0:<br>5.95-0:                | 11.4925<br>9.9029<br>7.4894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 300<br>200<br>204                                                                                            | The bank of the color of the | 1,366<br>4,896<br>1,475                                     | 3.660<br>2.028<br>3.602               | 1216<br>6398<br>1260                 | 7.365<br>4.979<br>7.588                | 68: 992<br>30: 059<br>71:5221            | 3,186<br>4,369<br>7,469               | 03119<br>03179<br>0.601                | 3.656<br>1.516<br>3.590                   | 5.86E-05<br>2.85E-05<br>5.73E-05                | 5.85 to<br>2.85 to<br>5.75 to                | \$.300.5 9.2144 8.1905 9.2144 9.1905 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 205<br>205<br>207                                                                                            | Spece<br>Spece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.3621<br>4.3617<br>5.4413<br>5.665                         | 2.6007<br>2.2143<br>2.8133<br>2.8133  | 1961<br>0163<br>2963                 | 6.394<br>4.917<br>5.951<br>5.913       | 59.0008<br>34.2165<br>52.5366<br>55.9812 | 6,007<br>4,422<br>5,268<br>5,795      | 0.8237<br>0.8279<br>0.8238<br>0.8227   | 2,9981<br>1,796<br>2,661<br>2,910         | \$ 600-46<br>3.240-46<br>4.960-45<br>5.340-46   | 5 ME 00<br>3.24E-00<br>4.96E-00<br>5 Vol. on | 9.5942<br>7.3489<br>8.5971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 209<br>233<br>231                                                                                            | larges<br>Sprice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9855<br>4.7609<br>4.7603<br>5.75**                        | 2.871<br>2.902<br>2.875<br>2.896      | 6795<br>6795<br>6797<br>63625        | 3.913<br>6.5432<br>4.6994<br>4.6994    | 55.9812<br>41.868<br>36.5527<br>45.699   | 5.796<br>4.169<br>4.373<br>4.885      | 0.0227<br>0.0277<br>0.0200<br>0.000    | 2.8132<br>2.0755<br>1.8369<br>2.3463      | \$.165.45<br>3.465.45<br>3.465.45               | 5.000 oz<br>3.000 oz<br>3.000 oz<br>4.000 oz | 7.565<br>7.565<br>7.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 212<br>213<br>214                                                                                            | Service<br>Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.000<br>5.000<br>5.050<br>4.668                            | 2,990<br>3,962<br>2,769<br>2,600      | 6963<br>6963<br>6968                 | 5.865<br>4.796<br>4.317                | 63 5366<br>51 356<br>38 534              | 5.504<br>5.602<br>4.602<br>4.007      | 0.8227<br>0.8227<br>0.8295             | 3 1995<br>2 59%<br>1,900                  | 4.89E-05<br>3.62E-05                            | 435 m<br>436 m                               | 1.000<br>1.000<br>1.004<br>6.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 215<br>216<br>217                                                                                            | Sprace<br>Sprace Stark<br>Sprace Ward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.31%<br>1.365<br>6.368                                     | 3.2136<br>4.0058<br>3.1735            | £9539<br>12190<br>11025              | 5.3440<br>6.5417<br>6.7905             | 64.6230<br>96.7667<br>62.2730            | 3,446<br>1166<br>6,759                | 0.0210<br>0.006<br>0.006               | 3,369<br>4,167<br>3,124                   | £125-05<br>£185-05<br>5.905-05                  | 6.126-0s<br>9.196-0s<br>5.966-0s             | 8.7656<br>11.1656<br>18.1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 218<br>219<br>229                                                                                            | Sprace Wand<br>Street Wand<br>Street Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.400<br>5.708                                              | 1.000<br>1.300<br>1.000               | 1000<br>1008<br>6950                 | 6.200<br>6.200<br>5.400                | 57.1757<br>74.9516<br>55.2716            | 6.28M<br>6.28M<br>5.4KS               | 0.004<br>0.004<br>0.004                | 3.766<br>3.776<br>2.77%                   | 5.425-45<br>3.196-45<br>5.296-45                | 5.05 to<br>1.05 to<br>5.26 to                | 9.523<br>9.900<br>8.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 221<br>222<br>223                                                                                            | Easter Wood East Oak East                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.3345<br>6.0009<br>5.5009                                  | 2,679<br>2,792<br>3,298               | 6.9874<br>1.0047<br>6.9921           | 5.1916<br>6.1279<br>5.1667             | 44.379<br>50.4965<br>50.2089             | 5.7654<br>5.1760                      | 0.097<br>0.039<br>0.0212               | 2.291<br>2.56%<br>3.501                   | 4.29E-05<br>4.89E-05<br>6.69E-05                | 4.305-0s<br>4.805-0s<br>6.865-0s             | 8.1602<br>9.2904<br>8.7904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 225<br>225<br>226                                                                                            | temporal Control of Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.600<br>6.2054<br>5.3000                                   | 2.5636<br>3.5803<br>3.6804            | 1090<br>1090<br>5386                 | 5.7308<br>6.1117<br>4.9072             | 45.4127<br>66.7109<br>58.6549            | 5.4051<br>6.0768<br>4.9662            | 0.029<br>0.028<br>0.000                | 2.2851<br>3.1554<br>2.9054                | 4.315-05<br>6.325-05<br>5.495-05                | 4315-04<br>6325-04<br>5-865-04               | 8.690<br>9.556<br>8.1828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 228<br>228<br>229<br>23P                                                                                     | Controlled<br>Controlled<br>Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.5800<br>6.1040<br>6.3090<br>5.6022                        | 2.8564<br>2.8564<br>2.7962<br>3.2562  | 6.7567<br>1.6067<br>1.6052<br>6.9954 | 1 9907<br>6.8917<br>6.2113<br>5.7988   | 56 566)<br>57.1655<br>13.6608<br>67.7008 | 5.856<br>5.856<br>5.876<br>5.386      | 0.6179<br>0.0230<br>0.0226<br>0.0247   | 2.7901<br>2.8707<br>3.7902<br>3.4991      | \$ 190-46<br>\$ 400-46<br>7.000-46<br>\$ 400-46 | 5.195-06<br>5.415-06<br>7.005-06<br>6.415-06 | 9.2006<br>9.2006<br>9.2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 230<br>232<br>233                                                                                            | Vine<br>Walnut<br>Walnut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.3725<br>5.264<br>5.369                                    | 2.3641<br>2.5545<br>2.5600            | 6.7298<br>6.9674<br>6.9777           | 6.2516<br>5.1652<br>5.1658             | 29.4094<br>43.5033<br>44.2283            | 3849<br>4807<br>4807                  | 0.6647<br>0.6685<br>0.3186             | 2.1961<br>2.22%                           | 2.765.65<br>4.125.65<br>4.196.65                | 2.765-00<br>4.035-00<br>4.195-00             | 5.694<br>7.663<br>7.663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 216<br>216<br>216                                                                                            | Walnut<br>Walnut<br>Walnut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.4074<br>4.5087<br>4.7794                                  | 2.3925<br>2.3975<br>2.3629            | 6766<br>6754<br>6766                 | 4.3655<br>4.4068<br>4.4638             | 31 3900<br>31 3400<br>34 3656            | 4.092<br>4.069<br>4.460               | 03157<br>03158<br>03179                | 1.504<br>1.539<br>1.700                   | 2.962-05<br>2.976-05<br>3.246-05                | 295 m<br>295 m<br>336 m                      | 6.9291<br>6.9870<br>7.1275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 292<br>298<br>239                                                                                            | Nobel<br>Walnut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.6615<br>4.6955<br>4.6902                                  | 2.954<br>2.954<br>2.980               | 6/462<br>6/730                       | 5.200<br>3.400<br>4.2251               | 64 3300<br>50 3665<br>62 5663            | 5.168<br>3.7974<br>4.1392             | 0.0210<br>0.0210<br>0.0210             | 3 592<br>2 592<br>3 192                   | 6.095-05                                        | 47% or<br>53% or                             | \$ 5,021<br>\$ 5,001<br>\$ 6,000<br>\$ 1,000<br>\$ 1,00 |
| 260<br>260<br>261                                                                                            | Waste Ondeary Physical<br>Waste Square Tender<br>Willers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.7058<br>4.9071<br>11.6402<br>6.7086                       | 2.8983<br>2.8988<br>5.3616<br>3.0277  | 679-0<br>650-2<br>1,640<br>1,041     | 4.3464<br>4.5917<br>93.9985<br>6.4238  | 61.8542<br>37.4732<br>125.826<br>64.6239 | 4.462<br>4.550<br>11.6777             | 0.0227<br>0.0200<br>0.0099<br>0.0227   | 3.1133<br>1.890<br>4.320<br>3.2154        | 5.8%-05<br>3.5%-05<br>1.1%-04<br>6.0%-05        | 5.8%-0s<br>3.5%-0s<br>1.3%-0s<br>6.06-0s     | 7.1472<br>7.4549<br>16.4607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 266<br>265<br>266                                                                                            | Vilor<br>Vilor<br>Vilor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.595<br>5.368<br>5.368<br>5.901                            | 2.5422<br>2.5422<br>2.5353<br>3.5543  | 2001<br>5973<br>5967<br>5969         | 5.6647<br>5.6500<br>5.7174             | 99.9677<br>54.3998<br>59.3663            | 5 1073<br>5 1073<br>5 1067<br>5 5001  | 0326<br>0326<br>0326<br>0326           | 2.005<br>2.726<br>2.726                   | 5.68E-05<br>5.13E-05<br>5.63E-05                | 5.005 do<br>5.116 do<br>5.535 do             | 9.0799<br>9.0799<br>9.0799<br>9.0799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 267<br>269<br>269                                                                                            | Widow<br>Wood Back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.009<br>6.000<br>4.500                                     | 3.4277<br>6.3447<br>2.2704            | 1,940<br>1,000<br>6,760              | 8.1251<br>5.6652<br>6.4627             | 99.5668<br>92.500                        | 8.150<br>6.260<br>3.852               | 03319                                  | 4.500<br>4.604<br>1.461                   | 1.46-05<br>1.76-05                              | 3.465-0s<br>3.365-0s                         | 11.9099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Generating Energy and Greenhouse Gas Inventory Data of Activated Carbon Production Using Machine Learning and Kinetic Based Process Simulation

## **Supporting Information**

Mochen Liao<sup>†</sup>, Stephen Kelley<sup>†</sup>, Yuan Yao<sup>\*,†</sup>

† Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States

\* Y. Yao. Phone: (919)-515-8957. E-mail: Yuan Yao@ncsu.edu

Number of pages: 40

Number of figures: 10

Number of tables: 6

## **Table of Contents**

- 1. Literature Review of LCA and Relevant Analysis of Activated Carbon Production
- 2. Modeling Framework Methods
  - 2.1. The Kinetic Model for Pyrolysis
  - 2.2. Artificial Neural Network
  - 2.3. Aspen Plus Simulation
  - 2.4. Other Assumptions
  - 2.5. Sensitivity Analysis
- 3. Woody Biomass Feedstock Characterization Dataset
- 4. Additional Results
  - 4.1. Correlations Between Simulation Results and Biomass Feedstock Properties
  - 4.2. Additional Sensitivity Analysis Results
- 5. References

# 1. Literature Review of LCA and Relevant Analysis for Activated Carbon Production

Previous studies have estimated the energy consumption and Global Warming Potential (GWP) of activated carbon (AC) produced from different feedstock and technological routes as shown in Table S1. All of these data were normalized to the functional unit as 1 kg of AC product. Since different energy sources are provided by different studies, the energy consumption from electricity was converted to primary energy consumption using the efficiency of 32.9%.

**Table S1** Primary Energy Consumption (PEC) and Global Warming Potential (GWP) of Activated Carbon Production (Functional Unit: 1 kg of AC)

| Def  | System       | Eas data als  | Activating                     | DEC (MI/I-a)             | GWP                          |  |
|------|--------------|---------------|--------------------------------|--------------------------|------------------------------|--|
| Ref. | Boundaries   | Feedstock     | Agent                          | PEC (MJ/kg)              | (kg CO <sub>2</sub> -eq./kg) |  |
| 2    | Activation   | Coal          | Steam                          | 30.71 <sup>a</sup>       | 5.321                        |  |
|      | Gate-to-gate | Coal          | Steam                          | -                        | 11.00                        |  |
| 3    | Gate-to-gate | Coal          | Steam                          | 196.2ª                   | -                            |  |
| 4    | Gate-to-gate | Coal          | Steam                          | -                        | 8.292                        |  |
| 5    | Gate-to-gate | Coal          | Steam                          | -                        | 8.410                        |  |
| 6    | Gate-to-gate | Coal          | Steam                          | -                        | 9.423                        |  |
| 7    | Gate-to-gate | Coal          | Steam                          | -                        | 9.620                        |  |
|      | Gate-to-gate | Wood          | Steam                          | -                        | 1.790                        |  |
| 8    | Drying       | Olive Waste   | $H_3PO_4$                      | 47.47                    | 2.777                        |  |
|      | Pyrolysis    | Olive Waste   | $H_3PO_4$                      | 43.67                    | 3.388                        |  |
|      | Impregnation | Olive Waste   | H <sub>3</sub> PO <sub>4</sub> | 52.15                    | 3.317                        |  |
|      | Gate-to-gate | Olive Waste   | $H_3PO_4$                      | 167.6                    | 11.10                        |  |
| 9    | Gate-to-gate | Coconut shell | Steam                          | 10.40-11.80 <sup>b</sup> | 0.8752-1.000                 |  |
| 10   | Drying       | Soybean shell | $ZnCl_2$                       | 0.3900 <sup>a</sup>      | -                            |  |
|      | Pyrolysis    | Soybean shell | $ZnCl_2$                       | 7.560-10.25 <sup>a</sup> | -                            |  |
|      | Impregnation | Soybean shell | $ZnCl_2$                       | 43.16-143.8 <sup>a</sup> | -                            |  |
|      | Gate-to-gate | Soybean shell | $ZnCl_2$                       | 51.68-152.0 <sup>a</sup> | 5.860-47.15                  |  |
| 11   | Chipping     | Wood waste    | Steam                          | 2.168                    | 0.003246                     |  |
|      | Drying       | Wood waste    | Steam                          | 1.252 <sup>a</sup>       | 0.05661                      |  |
|      | Pyrolysis    | Wood waste    | Steam                          | 7.613                    | 0.01136                      |  |
|      | Activation   | Wood waste    | Steam                          | 2.271 <sup>a</sup>       | 0.01652                      |  |
|      | Gate-to-gate | Wood waste    | Steam                          | 13.30 <sup>a</sup>       | 0.08814                      |  |
|      | Gate-to-gate | Coconut shell | Steam                          | -                        | 1.150                        |  |
| 12   | Chipping     | Poplar        | Steam                          | 0.2564                   | -                            |  |

| Drying                  | Poplar                                                                                                                                                                                                                  | Steam                                                                                                                                                                                                                                                                                                                                | 11.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pyrolysis               | Poplar                                                                                                                                                                                                                  | Steam                                                                                                                                                                                                                                                                                                                                | 1.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Activation              | Poplar                                                                                                                                                                                                                  | Steam                                                                                                                                                                                                                                                                                                                                | 0.7791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gate-to-gate            | Poplar                                                                                                                                                                                                                  | Steam                                                                                                                                                                                                                                                                                                                                | 13.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Activation              | Wood chip                                                                                                                                                                                                               | Steam                                                                                                                                                                                                                                                                                                                                | 106.4 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Activation              | Wood chip                                                                                                                                                                                                               | Steam                                                                                                                                                                                                                                                                                                                                | 73.50°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Activation              | Coal                                                                                                                                                                                                                    | Steam                                                                                                                                                                                                                                                                                                                                | 141.9 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cradle-to-gate          | Wood chip                                                                                                                                                                                                               | Steam                                                                                                                                                                                                                                                                                                                                | 158.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cradle-to-gate          | Coal                                                                                                                                                                                                                    | Steam                                                                                                                                                                                                                                                                                                                                | 241.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pyrolysis               | Hazelnut shell                                                                                                                                                                                                          | Steam                                                                                                                                                                                                                                                                                                                                | 23.18 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Activation              | Hazelnut shell                                                                                                                                                                                                          | Steam                                                                                                                                                                                                                                                                                                                                | $20.00^{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pyrolysis               | Coconut shell                                                                                                                                                                                                           | Steam                                                                                                                                                                                                                                                                                                                                | 85.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Activation <sup>e</sup> | Coconut shell                                                                                                                                                                                                           | Steam                                                                                                                                                                                                                                                                                                                                | -7.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Drying                  | Corn stover                                                                                                                                                                                                             | Steam                                                                                                                                                                                                                                                                                                                                | 5.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pyrolysis <sup>f</sup>  | Corn stover                                                                                                                                                                                                             | Steam                                                                                                                                                                                                                                                                                                                                | 18.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Activation              | Corn stover                                                                                                                                                                                                             | Steam                                                                                                                                                                                                                                                                                                                                | 11.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gate-to-gate            | Eucalyptus wood                                                                                                                                                                                                         | $ZnCl_2$                                                                                                                                                                                                                                                                                                                             | 118.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Gate-to-gate            | Eucalyptus wood                                                                                                                                                                                                         | H <sub>3</sub> PO <sub>4</sub>                                                                                                                                                                                                                                                                                                       | 153.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | Pyrolysis Activation Gate-to-gate Activation Activation Activation Cradle-to-gate Cradle-to-gate Pyrolysis Activation Pyrolysis Activation  Pyrolysis Activation  Activation  Cradle-to-gate Activation  Cradle-to-gate | Pyrolysis Poplar Activation Poplar Gate-to-gate Poplar Activation Wood chip Activation Coal Cradle-to-gate Wood chip Cradle-to-gate Coal Pyrolysis Hazelnut shell Activation Hazelnut shell Pyrolysis Coconut shell Activation Corn stover Pyrolysis Corn stover Activation Corn stover Eucalyptus wood Gate-to-gate Eucalyptus wood | Pyrolysis Poplar Steam Activation Poplar Steam Gate-to-gate Poplar Steam Activation Wood chip Steam Activation Wood chip Steam Activation Coal Steam Cradle-to-gate Wood chip Steam Cradle-to-gate Coal Steam Pyrolysis Hazelnut shell Steam Activation Hazelnut shell Steam Pyrolysis Coconut shell Steam Activation Corn stover Steam Pyrolysis Corn stover Steam Activation Corn stover Steam Activation Corn stover Steam Activation Corn stover Steam Activation Corn stover Steam Gate-to-gate Eucalyptus wood Gate-to-gate Eucalyptus wood Gate-to-gate Eucalyptus wood Gate-to-gate Eucalyptus wood H3PO4 | PyrolysisPoplarSteam1.325ActivationPoplarSteam0.7791Gate-to-gatePoplarSteam13.72ActivationWood chipSteam106.4aActivationWood chipSteam73.50cActivationCoalSteam141.9aCradle-to-gateWood chipSteam158.3Cradle-to-gateCoalSteam241.6PyrolysisHazelnut shellSteam23.18dActivationHazelnut shellSteam20.00dPyrolysisCoconut shellSteam85.64ActivationcCoconut shellSteam-7.821DryingCorn stoverSteam5.950PyrolysisfCorn stoverSteam18.45ActivationCorn stoverSteam11.90Gate-to-gateEucalyptus woodZnCl2118.6Gate-to-gateEucalyptus woodH3PO4153.8 |

<sup>&</sup>lt;sup>a</sup> Assume the electricity is purchased from the grid and the average energy efficiency is 32.9%<sup>1</sup>

Bayer et al. completed the first life cycle assessment (LCA) study of AC production from coal in 2005.<sup>2</sup> Steam activation was implemented to convert hard coal to granular activated carbon (GAC). In this study, 3 metric tons of hard coal and 1,600 kWh were needed to produce 1 ton of GAC. In addition, 330 m<sup>3</sup> of natural gas was combusted to provide 12 tons of steam as the activating agent for 1 ton GAC. The cradle-to-gate GWP of GAC production in this study was 11.0 kg CO<sub>2</sub> eq./kg AC.<sup>2</sup> However, if the GAC can be recycled and used as the feedstock of GAC production, the GWP of the process was reduced to 1.17 kg CO<sub>2</sub> eq./kg AC.<sup>2</sup>

<sup>&</sup>lt;sup>b</sup> The study assumed that flue gas is fully combusted to compensate the energy use

<sup>&</sup>lt;sup>c</sup> Activation in an upscaled reactor with a capacity of 33.3 kg biochar per hour, the result fixed the yield from the LCI of the present study<sup>13</sup>

<sup>&</sup>lt;sup>d</sup> The theoretical energy consumptions presented by the author are considered and normalized to the functional unit

<sup>&</sup>lt;sup>e</sup> The activation step was mixed with some oxygen to achieve partial oxidation

<sup>&</sup>lt;sup>f</sup> The carbonization step applied fast pyrolysis

Many studies then have developed LCA models for coal-based AC based on the process data by Bayer et al.<sup>2</sup> In these studies, the GWP of coal-based AC varied between 8.29-9.62 kg CO<sub>2</sub> eq./kg AC.<sup>4–7</sup> Manda et al. made a comparison between the coal-based GAC and wood-based GAC using the data from Azargohar.<sup>18</sup> The normalized results showed a significant reduction (81.4%) of GWP by changing the feedstock from coal to wood.<sup>7</sup>

A few studies have developed LCA models for AC from biomass. Hjaila et al. developed an LCA model for AC produced from olive waste cake using phosphoric acid as the activation agent. In this study, the system boundary is gate-to-gate, including all processes from the acquisition of olive waste cake to the production of AC. The LCI was developed based on the experimental data and the results were compared to coal-based AC. Arena et al. constructed the LCA of coconut shell based AC production via steam activation with the similar system boundary as Hjaila et al. Different scenarios were developed to compare different energy sources, coconut shell applications, and different byproduct disposal strategies. In this study, the life cycle inventory (LCI) data was developed based on the literature data. In this study highlighted the potential of low-carbon electricity energy sources and environmental management methods in reducing the environmental impact of AC production.

Some researchers have tried to generate detailed process data using experimental studies. Sepúlveda-Cervantes et al. developed an LCA for AC from soybean shell using zinc chloride activation, and the LCI data were developed based on the lab-scale experiments. The experiments and optimal operational conditions for high AC yields were determined by response surface methodology (RSM). A similar approach was used in another study for AC from corn pericarp by potassium hydroxide activation. The brew waste-based AC produced by sulfuric acid activation is also studied by the lab-scale experiments and LCA. In this study, it is

concluded that the impact of AC disposal is ignorable and the impact of untreated brew waste disposal is significant.<sup>21</sup> Gu et al. used steam to activate wood chip derived biochar in a pilot-scale test calciner (1.54 or 1.13 kg/h biochar precursor) and an upscaled commercial calciner (33.6 kg biochar precursor).<sup>13</sup> The cradle-to-gate LCA results demonstrate that the cumulative energy demand (CED) and GWP of wood chip-based AC production are 158.33 MJ/kg AC product and 8.60 kg CO<sub>2</sub> eq,/kg AC product, respectively.<sup>13</sup> The CED and GWP were higher for AC from hard coal.<sup>13</sup> A similar process was established by Kim et al. at a larger scale (4 tons a day).<sup>11</sup> In this study, the steam AC production from wood waste showed lower energy consumption and environmental impact compared with previous LCA studies.<sup>9,11,13</sup>

Some studies have used simulations and/or experiments to quantify the energy consumption of AC production. Hung simulated the AC production using coconut shell and steam activation processes by ChemCAD for an industrial-scale fluidized bed reactor (14.5 tons a day). Since the steam activation was implemented with high-pressure, the activation in the fluidized bed reactor was exothermic rather than endothermic. Another study simulated an industrial scale steam AC production using corn stover feedstock and fast pyrolysis. Sharifan used a lab-scale experiment to investigate the energy consumption of steam AC production from hazelnut shell.

production. These variations could be caused by different system boundaries, feedstock, and technologies (e,g., activation agent as shown in Table S1). Note that a few studies estimated energy consumption based on theoretical energy demand without considering the energy efficiency of energy end uses such as boilers. <sup>14</sup> In this study, the energy and mass balance was simulated in Aspen Plus based on the input variables collected either from literature or ANN models. The energy efficiency of different energy end uses was considered. The energy

Table S1 shows large variations for both primary energy consumption and GWP of AC

efficiency of the reactor was assumed to be 90%, the efficiency of the boiler was assumed to be 82%.  $^{22,23}$ 

## 2. Modeling Framework Methods

The input and output parameters of the modeling framework developed in this study are listed in Table S2.

Table S2 Model Input and Output Parameters

| Inpu                        | t Parameters   |  |  |
|-----------------------------|----------------|--|--|
| Parameters                  | Unit           |  |  |
| Feedstock Properties        | ·              |  |  |
| Carbon Content              | wt%, dry basis |  |  |
| Hydrogen Content            | wt%, dry basis |  |  |
| Oxygen Content              | wt%, dry basis |  |  |
| Ash Content                 | wt%, dry basis |  |  |
| Pyrolysis                   |                |  |  |
| Pyrolysis Time              | minute         |  |  |
| Pyrolysis Temperature       | K              |  |  |
| Activation                  |                |  |  |
| Activation Time             | minute         |  |  |
| Activation Temperature      | K              |  |  |
| Steam to Biochar Mass Ratio | kg/kg          |  |  |
| Outpu                       | ıt Parameters  |  |  |
| Parameters                  | Unit           |  |  |
| Pyrolysis Reactor           |                |  |  |
| Feedstock – Woody Biomass   | kg/kg AC       |  |  |
| Product – Biochar           | kg/kg AC       |  |  |
| Syngas – Carbon Dioxide     | kg/kg AC       |  |  |
| Syngas – Methane            | kg/kg AC       |  |  |
| Thermal Energy Consumption  | MJ/kg AC       |  |  |
| Combustor                   |                |  |  |
| Flue Gas – Carbon Dioxide   | kg/kg AC       |  |  |
| Flue Gas – Methane          | kg/kg AC       |  |  |
| Thermal Energy Recovery     | MJ/kg AC       |  |  |
| Steam Boiler                |                |  |  |
| Water Consumption           | kg/kg AC       |  |  |
| Thermal Energy Consumption  | MJ/kg AC       |  |  |
| Activation Furnace          |                |  |  |
| Flue Gas – Carbon Dioxide   | kg/kg AC       |  |  |

| Thermal Energy Consumption  | MJ/kg AC       |
|-----------------------------|----------------|
| Biochar Properties          |                |
| Carbon Content              | wt%, dry basis |
| Hydrogen Content            | wt%, dry basis |
| Oxygen Content              | wt%, dry basis |
| Ash Content                 | wt%, dry basis |
| Activated Carbon Properties |                |
| Carbon Content              | wt%, dry basis |
| Hydrogen Content            | wt%, dry basis |
| Oxygen Content              | wt%, dry basis |
| Ash Content                 | wt%, dry basis |

## 2.1 The Kinetic Model for Pyrolysis

The reactions in the slow pyrolysis stage were simulated by the multi-step reaction mechanism where biomass is decomposed to lignocellulosic components (cellulose, hemicellulose and lignin). Model compounds were chosen to represent major biomass lignocellulosic components based on literature.<sup>24</sup> Glucose (C<sub>6</sub>H<sub>10</sub>O<sub>5</sub>) was chosen to represent cellulose and xylose (C<sub>5</sub>H<sub>8</sub>O<sub>4</sub>) was chosen to represent hemicellulose. Given the complexity of lignin structure, three types of chemical compounds were chosen to present lignin: Lignin-C, lignin-O and lignin-H. The structures of these compounds are shown in Figure S1.

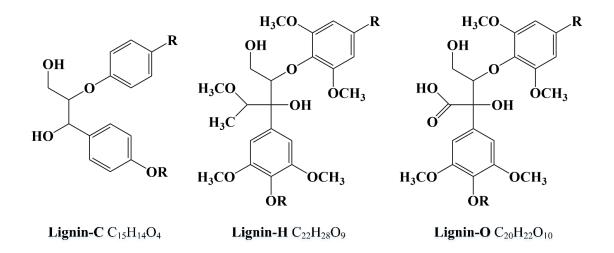
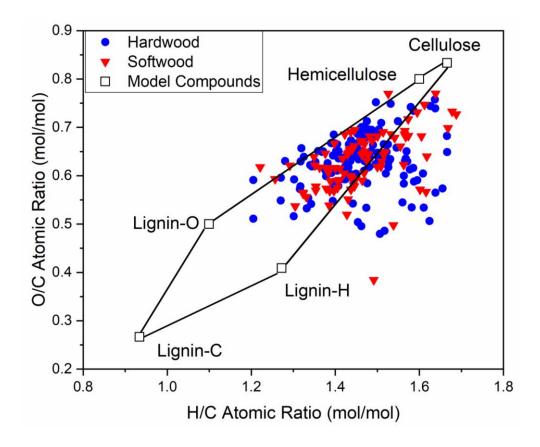



Figure S1 Structures and Chemical Formulas of lignin-C, lignin-O and lignin-H<sup>24</sup>

Since only ultimate analysis data were collected in the present study, the contents of these model compounds should be estimated by the ultimate analysis data. The triangle method developed by Debiagi et al. was used in this study as shown in Figure S2.<sup>25</sup> Considering the chemical composition of model compounds, the contents of different model compounds can be calculated by Equation 1-5. Then the triangle method was used to construct 3 reference components to replace 5 model compounds in order to reduce the degree of freedom in Equation 1-5 to be solvable.

$$x_{CELL}C_{CELL} + x_{HEMI}C_{HEMI} + x_{LIGC}C_{LIGC} + x_{LIGH}C_{LIGH} + x_{LIGO}C_{LIGO} = C_{BIOMASS}$$
 (1)

$$x_{CELL}H_{CELL} + x_{HEMI}H_{HEMI} + x_{LIGC}H_{LIGC} + x_{LIGH}H_{LIGH} + x_{LIGO}H_{LIGO} = H_{BIOMASS}$$
 (2)


$$x_{CELL}O_{CELL} + x_{HEMI}O_{HEMI} + x_{LIGC}O_{LIGC} + x_{LIGH}O_{LIGH} + x_{LIGO}O_{LIGO} = O_{BIOMASS}$$
(3)

$$x_{CELL} + x_{HEMI} + x_{LIGC} + x_{LIGH} + x_{LIGO} = 1 (4)$$

$$x_{CELL}, x_{HEMI}, x_{LIGC}, x_{LIGH}, x_{LIGO} \ge 0 \tag{5}$$

Note for equations:  $x_t$  – Mass fraction of compound t;  $C_t$  – Carbon content of compound t;  $H_t$  – Hydrogen content of compound t;  $O_t$  – Oxygen content of compound t; CELL – Cellulose; HEMI – Hemicellulose; LIGC – Lignin-C; LIGH – Lignin-H; LIGO – Lignin-O.

However, some biomass samples in Figure S2 are outside the model compounds. In this study, the components of model compounds in the samples outside the range were determined by fixing the variables in Equation 1-5 (fix  $x_{CELL}$  and  $x_{HEMI}$ ) by the experimental compositional analysis result of the corresponding biomass sample, and then solve the Equation 1-4. Since some solution may be negative when Equation 5 is not considered, these negative values are set as 0 and the remaining positive values are normalized to satisfy Equation 5.



**Figure S2** Biomass characterization representation for model compounds and collected woody biomass samples by Krevelen diagram

After determining the model compounds of the woody biomass samples, the kinetic model was developed based on the multi-step reaction mechanism that provides a series of reactions. The reactants are model compounds and corresponding products. In this study, the pyrolysis kinetic model was based on the model developed by Anca-Couce et al.<sup>26</sup>, which was modified by adding gas-phase tar cracking reactions <sup>27</sup> and fitting the differences between different types of biomass.<sup>28</sup> The reactions, corresponding kinetic parameters, and other relevant parameters are listed in Table S3.

 Table S3 Pyrolysis Kinetic Model Reactions and Parameters<sup>26–28</sup>

| Prin      | nary          | Kinetic Reactions (T = Pyrolysis Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e, t = Pyroly         | sis 7 | Γime)       |
|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|-------------|
| Reactions |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $k(s^{-1})$           | n     | E (kJ/mol)  |
|           |               | Cellulose ( $x_{CELL} = 0.1$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |       |             |
| CELL      | $\rightarrow$ | CELLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4×10 <sup>13</sup>    | 0     | 188.37      |
| CELLA     | $\rightarrow$ | $(1-x_{CELL})*(0.45 \text{ HAA} + 0.2 \text{ GLYOX} + 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2×10 <sup>6</sup>     | 0     | 80.0        |
|           |               | $C_3H_6O + 0.25 \text{ HMFU} + 0.05 H_2 + 0.31 CO +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |             |
|           |               | $0.41 \text{ CO}_2 + 0.4 \text{ CH}_2\text{O} + 0.15 \text{ CH}_3\text{OH} + 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |       |             |
|           |               | $CH_3CHO + 0.83 H_2O + 0.02 HCOOH + 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |             |
|           |               | $G-H_2 + 0.2 G-CH_4 + 0.61 Char$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |             |
| CELLA     | $\rightarrow$ | $x_{CELL}*(5.5 Char + 4 H2O + 0.5 CO2 + H2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2 \times 10^{6}$     | 0     | 80.0        |
| CELLA     | $\rightarrow$ | $(1-x_{CELL})*(0.45 \text{ HAA} + 0.2 \text{ GLYOX} + 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                     | 1     | 41.86       |
|           |               | $C_3H_6O + 0.25 \text{ HMFU} + 0.05 H_2 + 0.31 \text{ CO} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |       |             |
|           |               | $0.41 \text{ CO}_2 + 0.4 \text{ CH}_2\text{O} + 0.15 \text{ CH}_3\text{OH} + 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |       |             |
|           |               | $CH_3CHO + 0.83 H_2O + 0.02 HCOOH + 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |             |
|           |               | $G-H_2 + 0.2 G-CH_4 + 0.61 Char$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |             |
| CELLA     | $\rightarrow$ | $x_{CELL}*(5.5 \text{ Char} + 4 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + \text{H}_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                     | 1     | 41.86       |
|           | Hemi          | cellulose (XYHW for hardwood; GMSW for soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |       | <del></del> |
| GMSW      | $\rightarrow$ | 0.7  HCE1 + 0.3  HCE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1×10 <sup>10</sup>    | 0     | 129.70      |
| XYHW      | $\rightarrow$ | 0.35  HCE1 + 0.65  HCE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.25 \times 10^{11}$ | 0     | 131.38      |
| HCE1      | $\rightarrow$ | $(1-x_{HCE})*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2×10 <sup>9</sup>   | 0     | 125.58      |
|           |               | $0.8 \text{ CH}_2\text{O} + 0.1 \text{ CH}_3\text{OH} + 0.25 \text{ C}_2\text{H}_4 + 0.125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |       |             |
|           |               | ETOH + $0.025 \text{ H}_2\text{O} + 0.025 \text{ HCOOH} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |       |             |
|           |               | $0.275 \text{ G-CO}_2 + 0.4 \text{ G-COH}_2 + 0.125 \text{ G-H}_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |             |
|           |               | 0.45 G-CH <sub>3</sub> OH + 0.875 Char)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5.1.00              |       | 12.7.70     |
| HCE1      | $\rightarrow$ | $x_{HCE}*(4.5 \text{ Char} + 3 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + \text{H}_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2×10 <sup>9</sup>   | 0     | 125.58      |
| HCE1      | $\rightarrow$ | ( HeL) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15                  | 1     | 33.5        |
|           |               | $0.25 \text{ H}_2\text{O} + 0.05 \text{ HCOOH} + 0.15 \text{ G-CO}_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |       |             |
|           |               | $0.15 \text{ G-CO} + 1.2 \text{ G-COH}_2 + 0.2 \text{ G-H}_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |             |
| HOE1      |               | $0.625 \text{ G-CH}_4 + 0.375 \text{ G-C}_2\text{H}_4 + 0.875 \text{ Char}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.15                  |       | 22.5        |
| HCE1      | $\rightarrow$ | $x_{HCE}*(4.5 \text{ Char} + 3 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + \text{H}_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15                  | 1     | 33.5        |
| HCE1      | $\rightarrow$ | $(1-x_{HCE})*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 + 0.00 CH_2)*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 + 0.00 CH_2)*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 + 0.00 CH_2)*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 + 0.00 CH_2)*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 + 0.00 CH_2)*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 + 0.00 CH_2)*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 + 0.00 CH_2)*(0.5 CO + 0.5 CO_2 + 0.325 CH_4 + 0.00 CH_2)*(0.5 CO_2 + 0.325 CH_4)*(0.5 CO_2 + 0.32$ | 3                     | 1     | 46.05       |
|           |               | $0.8 \text{ CH}_2\text{O} + 0.1 \text{ CH}_3\text{OH} + 0.25 \text{ C}_2\text{H}_4 + 0.125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |       |             |
|           |               | ETOH + $0.025 \text{ H}_2\text{O} + 0.025 \text{ HCOOH} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |       |             |
|           |               | $0.275 \text{ G-CO}_2 + 0.4 \text{ G-COH}_2 + 0.125 \text{ G-H}_2 + 0.45 \text{ G-CH}_2 + 0.875 \text{ Ghar}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |       |             |
| HCE1      |               | $0.45 \text{ G-CH}_3\text{OH} + 0.875 \text{ Char}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                     | 1     | 16.05       |
| HCE1      | <b>→</b>      | $x_{HCE}*(4.5 \text{ Char} + 3 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + \text{H}_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       | 46.05       |
| HCE2      | $\rightarrow$ | $(1-x_{HCE})^*(0.2 \text{ HAA} + 0.175 \text{ CO} + 0.275 \text{ CO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5×10 <sup>9</sup>     | 0     | 138.14      |
|           |               | $+0.5 \text{ CH}_2\text{O} + 0.1 \text{ ETOH} + 0.2 \text{ H}_2\text{O} + 0.025$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |             |
|           |               | HCOOH + 0.4 G-CO <sub>2</sub> + 0.925 G-COH <sub>2</sub> + 0.25 G-CH <sub>4</sub> + 0.3 G+CH <sub>3</sub> OH + 0.275 G-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |       |             |
|           |               | $0.23 \text{ G-CH}_4 + 0.3 \text{ G+CH}_3 \text{ OH} + 0.273 \text{ G-}$ $C_2H_4 + \text{Char}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |             |
| HCE2      | $\rightarrow$ | $x_{HCE}*(4.5 \text{ Char} + 3 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + \text{H}_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5×10 <sup>9</sup>     | 0     | 138.14      |
| 11002     |               | AHOE (7.3 CHai + 3 1120 + 0.3 CO2 + 112)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 510                   | U     | 130.17      |

|                                 |               | $Lignin (x_{LIG} = 0.3)$                                                                                                                                                                                                                                                                                |                       |          |             |
|---------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|-------------|
| LIG-C                           | $\rightarrow$ | 0.35 LIG-CC + 0.1 pCoumaryl + 0.08<br>PHENOL +0.32 CO + 0.3 CH <sub>2</sub> O + H <sub>2</sub> O + 0.7<br>G-COH <sub>2</sub> + 0.495 G-CH <sub>4</sub> + 0.41 G-C <sub>2</sub> H <sub>4</sub> + 5.735 Char                                                                                              | 1.33×10 <sup>15</sup> | 0        | 203.02      |
| LIG-H                           | $\rightarrow$ | LIG-OH + 0.25 HAA + 0.5 C <sub>3</sub> H <sub>6</sub> O + 0.5 G-<br>C <sub>2</sub> H <sub>4</sub>                                                                                                                                                                                                       | 6.7×10 <sup>12</sup>  | 0        | 156.97      |
| LIG-O                           | $\rightarrow$ | $LIG-OH + CO_2$                                                                                                                                                                                                                                                                                         | $3.3 \times 10^{8}$   | 0        | 106.74      |
| LIG-CC                          | $\rightarrow$ | (1-x <sub>LIG</sub> )*(0.35 HAA + 0.3 pCoumaryl + 0.2<br>PHENOL + 0.4 CO + 0.65 CH <sub>4</sub> + 0.6 C <sub>2</sub> H <sub>4</sub> + 0.7 H <sub>2</sub> O + 0.4 G-CO + G-COH <sub>2</sub> + 6.75 Char)                                                                                                 | 3×10 <sup>7</sup>     | 0        | 131.86      |
| LIG-CC                          | $\rightarrow$ | $x_{LIG}*(15 Char + 4 H2O + 3 H2)$                                                                                                                                                                                                                                                                      | 3×10 <sup>7</sup>     | 0        | 131.86      |
| LIG-OH                          | $\rightarrow$ | LIG + 0.55 CO + 0.05 CO <sub>2</sub> + 0.1 CH <sub>4</sub> + 0.6<br>CH <sub>3</sub> OH + 0.9 H <sub>2</sub> O + 0.05 HCOOH + 0.6 G-<br>CO + 0.85 G-COH <sub>2</sub> + 0.1 G-H <sub>2</sub> + 0.35 G-<br>CH <sub>4</sub> + 0.3 G-CH <sub>3</sub> OH + 0.2 G-C <sub>2</sub> H <sub>4</sub> + 4.15<br>Char | 1×10 <sup>8</sup>     | 0        | 125.58      |
| LIG                             | $\rightarrow$ | (1-x <sub>LIG</sub> )*FE2MACR                                                                                                                                                                                                                                                                           | 4                     | 1        | 50.2        |
| LIG                             | $\rightarrow$ | $x_{LIG}*(10.5 \text{ Char} + 3 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + 3 \text{ H}_2)$                                                                                                                                                                                                                | 4                     | 1        | 50.2        |
| LIG                             | $\rightarrow$ | (1-x <sub>LIG</sub> )*(0.2 C3H6O + CO + 0.2 CH <sub>4</sub> + 0.2<br>CH <sub>2</sub> O + 0.4 CH <sub>3</sub> OH + 0.2 CH <sub>3</sub> CHO + 0.95<br>H <sub>2</sub> O + 0.05 HCOOH + 0.45 G-CO + 0.5 G-<br>COH <sub>2</sub> + 0.4 CH <sub>4</sub> + 0.65 C <sub>2</sub> H <sub>4</sub> + 5.5 Char)       | 4×10 <sup>8</sup>     | 0        | 125.58      |
| LIG                             | $\rightarrow$ | $x_{LIG}*(10.5 \text{ Char} + 3 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + 3 \text{ H}_2)$                                                                                                                                                                                                                | 4×10 <sup>8</sup>     | 0        | 125.58      |
| LIG                             | $\rightarrow$ | (1-x <sub>LIG</sub> )*(0.4 CO + 0.2 CH <sub>4</sub> + 0.4 CH <sub>2</sub> O + 0.6 H <sub>2</sub> O + 0.2 G-CO + 2 G-COH <sub>2</sub> + 0.4 CH <sub>4</sub> + 0.4 G-CH <sub>3</sub> OH + 0.5 C <sub>2</sub> H <sub>4</sub> + 6 Char)                                                                     | 0.083                 | 1        | 33.5        |
| LIG                             | $\rightarrow$ | $x_{LIG}*(10.5 \text{ Char} + 3 \text{ H}_2\text{O} + 0.5 \text{ CO}_2 + 3 \text{ H}_2)$                                                                                                                                                                                                                | 0.083                 | 1        | 33.5        |
|                                 | 1             | $Metaplastic (x_G = 0.4)$                                                                                                                                                                                                                                                                               | L                     |          | I.          |
| G-CO <sub>2</sub>               | $\rightarrow$ | $CO_2$                                                                                                                                                                                                                                                                                                  | 4×10 <sup>5</sup>     | 0        | 100.46      |
| G-CO                            | $\rightarrow$ | $(1-x_G)*CO + x_G*(0.5 Char + 0.5 CO_2)$                                                                                                                                                                                                                                                                | 3×10 <sup>13</sup>    | 0        | 209.3       |
| G-COH <sub>2</sub>              | $\rightarrow$ | 0.75 G2-COH <sub>2</sub> + 0.25*(H <sub>2</sub> + 0.5 CO + 0.25<br>CO <sub>2</sub> + 0.25 Char)                                                                                                                                                                                                         | 1×10 <sup>6</sup>     | 0        | 100.46      |
| G-H <sub>2</sub>                | $\rightarrow$ | $H_2$                                                                                                                                                                                                                                                                                                   | 1×10 <sup>12</sup>    | 0        | 313.96      |
| G-CH <sub>4</sub>               | $\rightarrow$ | CH <sub>4</sub>                                                                                                                                                                                                                                                                                         | 2×10 <sup>13</sup>    | 0        | 300.0       |
| G-CH <sub>3</sub> OH            | $\rightarrow$ | $(1-x_G)*CH_3OH + x_G*(Char + H_2O + H_2)$                                                                                                                                                                                                                                                              | 1.2×10 <sup>13</sup>  | 0        | 209.3       |
| G-C <sub>2</sub> H <sub>4</sub> | $\rightarrow$ | $0.3 C_2H_4 + 0.7 CH_4 + 0.7 Char$                                                                                                                                                                                                                                                                      | 1×10 <sup>6</sup>     | 0        | 100.46      |
| G2-COH <sub>2</sub>             | $\rightarrow$ | $0.2 \text{ G3-COH}_2 + 0.8*(\text{H}_2 + \text{CO})$                                                                                                                                                                                                                                                   | 1.5×10 <sup>9</sup>   | 0        | 209.3       |
|                                 |               | Cracking Reactions (T = Pyrolysis Temperatu                                                                                                                                                                                                                                                             | re, t = Gas           | <br>Resi | dence Time) |
|                                 |               | $s = 3.08 \times 10^3 \text{ s}^{-1}, n = 0, E = 66.3 \text{ kJ/mol}$                                                                                                                                                                                                                                   |                       |          |             |
| HAA                             | $\rightarrow$ | $1.5 \text{ H}_2 + 1.5 \text{ CO} + 0.25 \text{ CO}_2 + 0.25 \text{ CH}_4$                                                                                                                                                                                                                              |                       |          |             |
| GLYOX                           | $\rightarrow$ | $H_2 + 2CO$                                                                                                                                                                                                                                                                                             |                       |          |             |

| C <sub>3</sub> H <sub>6</sub> O              | $\rightarrow$ | $0.5 \text{ CO}_2 + \text{C}_2\text{H}_4 + 0.5 \text{ CH}_4$               |
|----------------------------------------------|---------------|----------------------------------------------------------------------------|
| C <sub>3</sub> H <sub>4</sub> O <sub>2</sub> | $\rightarrow$ | $CO_2 + C_2H_4$                                                            |
| HMFU                                         | $\rightarrow$ | $3 \text{ CO} + 1.5 \text{ C}_2\text{H}_4$                                 |
| pCoumaryl                                    | $\rightarrow$ | 2 CO + 1.5 C <sub>2</sub> H <sub>4</sub> + CH <sub>4</sub> + 3 Char        |
| PHENOL                                       | $\rightarrow$ | $CO + C_2H_4 + 0.5 CH_4 + 2.5 Char$                                        |
| FE2MACR                                      | $\rightarrow$ | 4 CO + C <sub>2</sub> H <sub>4</sub> + 2 CH <sub>4</sub> + 3 Char          |
| CH <sub>2</sub> O                            | $\rightarrow$ | $H_2 + CO$                                                                 |
| CH <sub>3</sub> OH                           | $\rightarrow$ | $1.5 \text{ H}_2 + 0.5 \text{ CO} + 0.25 \text{ CO}_2 + 0.25 \text{ CH}_4$ |
| CH <sub>3</sub> CHO                          | $\rightarrow$ | $CO + CH_4$                                                                |
| ЕТОН                                         | $\rightarrow$ | $H_2 + CO + CH_4$                                                          |
| НСООН                                        | $\rightarrow$ | $H_2 + CO_2$                                                               |

Note1 (Solid): CELL – Cellulose; CELLA – Activated cellulose; XYHW – Hardwood hemicellulose; GMSW – Softwood hemicellulose; HCEA1 or HCEA2 – Activated hemicellulose 1 or 2; LIG-C – Carbon rich lignin (Lignin-C); LIG-H – Hydrogen rich lignin (Lignin-H); LIG-O – Oxygen rich lignin (Lignin-O); LIG-CC – Carbon rich lignin 2; LIG-OH – OH rich lignin; LIG – Intermediate lignin; G-X – Trapped substance X; Char – Biochar.

Note2 (Volatiles): HAA – Hydroxyacetaldehyde acid; HCOOH – Formic acid; GLYOX – Glyoxal; C<sub>3</sub>H<sub>6</sub>O – Acetone; C<sub>3</sub>H<sub>4</sub>O<sub>2</sub> – Propanedial; HMFU – 5-hydroxymethyl-furfural; pCoumaryl – Paracoumaryl alcohol; PHENOL – Phenol; FE2MACR – Sinapaldehyde; CH<sub>2</sub>O – Formaldehyde; ETOH – Ethanol.

#### 2.2 Artificial Neural Network

The integration of machine learning (ML) methods and LCA has been developed in recent years. Nabavi-Pelesaraei et al. integrated artificial neural network (ANN) models with LCA to estimate process energy output and environmental impacts of agricultural processes (e.g., paddy and sugarcane production).<sup>29,30</sup> However, this type of integration of LCA and ML is still limited by data availability. Therefore in this section, we coupled the ML with the simulation model to provide the required data for LCA, since the availability of the combination of ML and process simulation has been identified by the previous studies.<sup>31</sup>

In the presented study, ANN was used to predict the total yield of the overall steam AC production for different biomass feedstocks. The details of the trained ANN were documented in the authors' previous publication.<sup>32</sup> Then the yield of the biochar-to-AC process can be determined using Equation 6 and the biomass-to-biochar yield provided by the kinetic model. In

addition, it was assumed that the ash content from the biomass feedstock is retained in the biochar and the AC. Hence, the burn-off rate of organic components in biochar, which is the ratio of mass loss in the activation stage to the ash-free biochar mass, should be calculated by Equation 6.

$$Burn - off = (1 - \frac{Total\ AC\ Yield\ -\ Ash\ Content}{Pyrolysis\ Yield\ -\ Ash\ Content}) \times 100\% \tag{6}$$

The main reaction in the steam activation is shown in Equation 7:

$$C + H_2O \to H_2 + CO \tag{7}$$

Previous LCA of steam AC production assumed that only steam-carbon reaction exists in the activation process and as a result, the activation flue gas should not contain any CO<sub>2</sub>. However, experimental studies showed significant carbon dioxide content in the activation flue gas, which contradicts with this assumption. One study indicated that different types of reactions may happen in the steam activation process, including water-gas shift reaction (Equation 8), methanation reactions and steam-reforming reactions (Equation 9), and Boudouard reaction (Equation 10). However, the extent of these reactions in the specified temperature and time was hard to determine. Therefore, in this study, the reaction formula developed by Martín-Gullón et al. was used, which covered all products occurred in Equation 8-10. Even the aforementioned formula was established by fitting the data from bituminous coal-based AC production, it can be transferred to the biomass-based AC production due to the similar reaction mechanism of steam activation for coal and biochar.

$$CO + H_2O \to H_2 + CO_2$$
 (8)

$$C + 2H_2 \rightarrow CH_4; 2CO + 2H_2 \rightarrow CH_4 + CO_2; CO + 3H_2 \leftrightarrow CH_4 + H_2O; CO + 4H_2 \leftrightarrow CH_4 + 2H_2O \quad (9)$$

 $C + CO_2 \leftrightarrow 2CO \tag{10}$ 

## 2.3 Aspen Plus Simulation

The pyrolysis kinetic model and ANN provide essential data inputs of Aspen Plus process simulation models. Aspen Plus software provides different types of reactor, including RYield, RGibbs, RCSTIR, RStoic and RBatch.<sup>35</sup> In this study, RBatch is chosen as it is a common reactor type for pyrolysis simulations.<sup>36</sup> The process flowsheet of pyrolysis was shown in Figure S3.

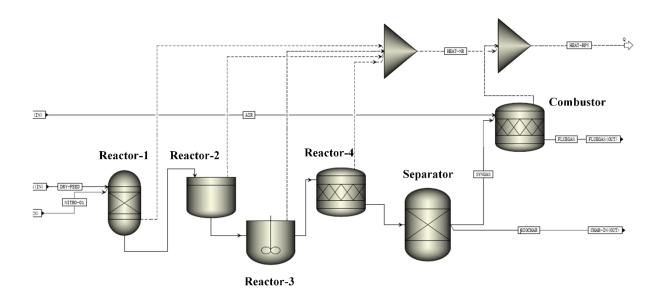



Figure S3 Process Flowsheet of Pyrolysis

The pyrolysis reaction process consists of four continuous sub-reactors. The Reactor-1, which is set as RYield reactor, decomposed the biomass feedstock into model compounds and ash content. Then the primary kinetic reactions mentioned in Table S3 were implemented in the Reactor-2 (RBatch). The Reactor-3 calculated gas-phase tar cracking reactions in Table S3.

Finally, the RStoic Reactor-4 converted the remaining metaplastic components into biochar. After the pyrolysis kinetic reactions, the Separator unit moved the solid components out and the hot volatiles was sent to the Combustor unit. The Combustor unit was set as RStoic, which oxidized all of the combustible components in the syngas with the burn-off rate of 80%. The heat generated from the Combustor unit was recovered to compensate for the energy consumption of Reactor units. The components of output flows from Separator and Combustor were tracked to generate the Life Cycle Inventory (LCI) data.

The assumed reaction provided by Martín-Gullón et al. can be directly simulated by the RStoic reactor in Aspen Plus, thus the process flowsheet of steam activation of biochar can be constructed, which is shown in Figure S4. The steam boiler rises the temperature of water from the room temperature to the desired temperature in order to generate the superheated steam. The Activation Reactor unit was set as the RStoic reactor, which implemented the reaction between water and biochar with the predefined reaction extent. Detailed information of the unit operations presented in Figure S3 and S4 are given in Table S4.

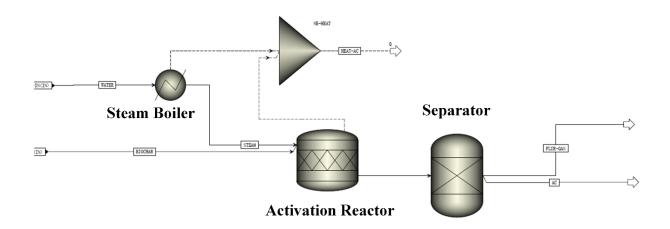



Figure S4 Process Flowsheet of Activation

Table S4 Parameter Settings for Unit Operators in the Aspen Process Simulation

| Parameters                     | Values                                                              |  |  |  |  |
|--------------------------------|---------------------------------------------------------------------|--|--|--|--|
| Figure S3 – Reactor-1          |                                                                     |  |  |  |  |
| Reactor Type                   | RYield                                                              |  |  |  |  |
| Temperature <sup>a</sup>       | 773 K                                                               |  |  |  |  |
| Pressure                       | 1 atm                                                               |  |  |  |  |
| Reactions                      | Conversion of biomass to lignocellulosic components and ash         |  |  |  |  |
| Figure S3 – Reactor-2          | •                                                                   |  |  |  |  |
| Reactor Type                   | RBatch                                                              |  |  |  |  |
| Temperature <sup>a</sup>       | 773 K                                                               |  |  |  |  |
| Pressure                       | 1 atm                                                               |  |  |  |  |
| Catalyst Loading               | 0 kg                                                                |  |  |  |  |
| Reaction time <sup>b</sup>     | 3600 s                                                              |  |  |  |  |
| Reactions                      | Primary kinetic reactions in Table S3                               |  |  |  |  |
| Figure S3 – Reactor-3          |                                                                     |  |  |  |  |
| Reactor Type                   | RCSTR                                                               |  |  |  |  |
| Temperature <sup>a</sup>       | 773 K                                                               |  |  |  |  |
| Pressure                       | 1 atm                                                               |  |  |  |  |
| Residence Time                 | 2 s                                                                 |  |  |  |  |
| Reactions                      | Gas phase tar cracking reactions in Table S3                        |  |  |  |  |
| Figure S3 – Reactor-4          |                                                                     |  |  |  |  |
| Reactor Type                   | RStoic                                                              |  |  |  |  |
| Temperature <sup>a</sup>       | 773 K                                                               |  |  |  |  |
| Pressure                       | 1 atm                                                               |  |  |  |  |
| Reactions                      | Conversion of trapped substances (see notes in Table S3) to biochar |  |  |  |  |
| Figure S4 – Activation Reactor |                                                                     |  |  |  |  |
| Temperature <sup>c</sup>       | 1073 K                                                              |  |  |  |  |
| Pressure                       | 1 atm                                                               |  |  |  |  |
| Reactions                      | Activation reactions                                                |  |  |  |  |
| (B) 1 :                        | : T 11 C2 C 4 : : : : T 11 C2                                       |  |  |  |  |

<sup>&</sup>lt;sup>a</sup> Pyrolysis temperature in Table S2; <sup>b</sup> Pyrolysis time in Table S2; <sup>c</sup> Activation temperature in Table S2. Note: The values for parameters that are indiced <sup>a,b,c</sup> are the default value.

The Aspen Simulation Workbook was used to automatically inputs the results of ANN models into the Aspen Plus simulation. Aspen Simulation Workbook was the plugin in the Microsoft excel which allows running simulations with different input parameters automatically. The thermal efficiencies of reactors and pyrolysis combustion rate can be seen in Table 1 in the manuscript. The combustion rate is set as 80% due to the heavy oil products from slow pyrolysis that is hard to combust. By fitting the characterization of products from slow pyrolysis of beech

at 500°C, around 20% of the non-solid products cannot be identified, which are considered as the heavy oil products.<sup>36</sup> Therefore the combustion rate is set as 80% in the present study.

When the simulation is finished, LCI of AC production can be established from the simulation results. An example AC production process material and energy flow chart that is generated from Aspen Plus simulation data is shown in Figure S5, and additional LCI information of the simulation scenarios are summarized in the attached excel file.

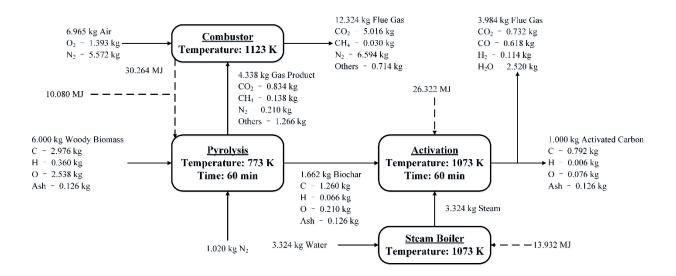



Figure S5 An Example of Material and Energy Flows of AC Production

## 2.4 Other Assumptions

The thermodynamic properties of the substances were collected from the Aspen Plus databank or the report from National Renewable Energy Laboratory (NREL).<sup>37,38</sup> The higher heating value (HHV) of solid compounds, a key parameter needed to calculate the DHSFRM parameters for process simulation<sup>39</sup>, was calculated by Dulong's equation (Equation 11), where  $m_C$ ,  $m_H$  and  $m_O$  represent the weight percentage (wt.%) of carbon, hydrogen, and oxygen in the biochar or AC.<sup>40</sup>

$$HHV(MJ/kg) = 0.338m_C + 1.442m_H - 0.182m_O$$
(11)

For the HHV of woody biomass, the equation was modified by Demirbaş in order to reflects the effect of considerable nitrogen content in the biomass.<sup>41</sup> The updated equation was shown in Equation 12:

$$HHV(MJ/kg) = 0.335m_C + 1.423m_H - 0.154m_O - 0.145m_N$$
(12)

Based on the previous equations, the ultimate analysis data of biochar and AC are needed. The pyrolysis kinetic model generates some metaplastic substances which trap the volatile components into the biochar. Therefore, based on the method developed by Debiagi et al., the carbon, hydrogen and oxygen content of biochar can be determined by normalizing the elemental composition of char (elemental carbon) and trapped substances (containing carbon, hydrogen, and oxygen).<sup>28</sup> In this study, the elemental compositions of AC were derived from the biochar by Equation 13-15, whose constants are fitted by the literature data.<sup>42</sup> All these data are in the dryash-free basis.

$$C_{AC} = 1.097 * C_{Biochar} \tag{13}$$

$$H_{AC} = 0.215 * H_{Biochar} \tag{14}$$

$$O_{AC} = 100 - C_{Biochar} - H_{Biochar} \tag{15}$$

With these equations, the produced AC contains higher carbon content and lower hydrogen content, which is consistent with the literature. One limitation is that Equation 13-15 were derived based on activation temperature – 1073K, activation time – 60 min, and steam to biochar ratio – 2 kg/kg. More experimental data are needed if the operational conditions are changed.

Besides, the Aspen Plus software also requires the parameters for the calculation of viscosity, which are categorized as VSPOLY parameters. In the present study, the VSPOLY parameters for

the substances were assumed to be either the default values in Aspen Plus database or from literature data. 37,38,43

## 2.5 Sensitivity Analysis

The sensitivity analysis was conducted in this study using the baseline and upper and lower bounds of parameters as shown in Table S5. For feedstock characteristics, the average value were used as baselines. For the operational conditions, the typical values used in literature were used. The upper and lower bound of biomass characteristics were determined based on the maximum and minimum value of feedstock datasets. The upper bound and lower bound of operational conditions were establish by referencing several literature conditions. 32,44–47

Table S5 The baseline and ranges of input parameters used in the sensitivity analysis

|                                | Baseline | Lower Bound | Upper Bound | Ref. |
|--------------------------------|----------|-------------|-------------|------|
| Carbon Content (wt%)           | 49.59    | 42.55       | 55.52       | а    |
| Hydrogen Content (wt%)         | 6.02     | 5.05        | 7.19        | а    |
| Ash Content (wt%)              | 2.14     | 0.1         | 10.62       | а    |
| Pyrolysis Temperature (°C)     | 500      | 300         | 700         | 44   |
| Pyrolysis Time (min)           | 60       | 10          | 120         | 32   |
| Activation Temperature (°C)    | 800      | 750         | 900         | 45   |
| Activation Time (min)          | 60       | 45          | 75          | 46   |
| Steam to Biochar Ratio (kg/kg) | 2        | 1.35        | 5.4         | 47   |

<sup>&</sup>lt;sup>a</sup> Based on the dataset

## 3. Woody Biomass Feedstock Characterization Dataset

In this study, large datasets of woody biomass characterization samples were collected from different databases and publications as shown in Table S6. The lignocellulosic components calculated based on ultimate analysis data and the triangle method were also presented in the

same table. There are four different data sources in this study: The biomass feedstock composition and property database from National Renewable Energy Laboratory<sup>48</sup>, the bioenergy feedstock library from Idaho National Laboratory<sup>49</sup>, the Phyllis2 database for biomass and waste from ECN<sup>50</sup>, and other literature references.<sup>25</sup> These data were used to create different simulation scenarios in order to understand the impacts of biomass feedstock. All these data are listed in Table S6, which can be useful in replicating the results and becoming the basis of further researches.

 Table S6 Woody Biomass Feedstock Characterization Dataset

|              |          | ]        | Raw Data | a (dry ba | sis, wt%) | )    | Triangle Method Result (dry basis, wt%) |       |       |       |       |
|--------------|----------|----------|----------|-----------|-----------|------|-----------------------------------------|-------|-------|-------|-------|
| Feedstock    | Type     | C        | Н        | О         | N         | Ash  | CELL                                    | HEMI  | LIGC  | LIGH  | LIGO  |
| Data from Na | tional R | enewable |          | aborator  | $v^{48}$  |      |                                         |       |       |       |       |
| Ailanthus    | HW       | 50.77    | 6.36     | 42.05     | 0.31      | 0.51 | 42.87                                   | 30.71 | 6.27  | 1.22  | 18.43 |
| Pistachio    | HW       | 48.79    | 5.91     | 43.41     | 0.56      | 1.28 | 45.08                                   | 32.04 | 2.44  | 0.49  | 18.66 |
| White Ash    | HW       | 49.75    | 6.91     | 43.04     | 0.00      | 0.30 | 45.22                                   | 32.06 | 2.88  | 0.54  | 19.00 |
| Manzanita    | HW       | 48.27    | 5.95     | 44.77     | 0.17      | 0.82 | 47.03                                   | 33.28 | 0.66  | 0.20  | 18.02 |
| Robinia      | HW       | 50.86    | 5.72     | 42.04     | 0.57      | 0.80 | 42.07                                   | 29.63 | 7.90  | 1.20  | 18.40 |
| Teak         | HW       | 51.60    | 6.00     | 40.04     | 0.26      | 2.10 | 39.62                                   | 26.58 | 14.33 | 1.21  | 16.17 |
| Almond       | HW       | 48.31    | 6.00     | 42.73     | 0.68      | 2.24 | 48.56                                   | 32.37 | 2.23  | 0.00  | 14.59 |
| Oak          | HW       | 49.83    | 6.23     | 42.99     | 0.13      | 0.82 | 44.42                                   | 29.57 | 4.67  | 0.27  | 20.25 |
| Almond       | HW       | 47.12    | 5.97     | 40.07     | 1.19      | 5.55 | 43.14                                   | 28.23 | 0.06  | 11.70 | 11.30 |
| Cherry tree  | HW       | 50.03    | 5.87     | 42.41     | 0.31      | 1.36 | 43.32                                   | 27.94 | 6.93  | 0.25  | 20.19 |
| Mixed        | HW       | 49.09    | 5.93     | 42.49     | 0.33      | 2.10 | 44.23                                   | 27.89 | 5.32  | 0.09  | 20.38 |
| Prune        | HW       | 50.35    | 6.69     | 39.66     | 1.30      | 1.90 | 41.51                                   | 25.40 | 12.58 | 0.24  | 18.36 |
| Spruce       | SW       | 49.60    | 5.63     | 40.81     | 0.20      | 3.66 | 39.85                                   | 23.64 | 0.13  | 9.52  | 23.20 |
| Eucalyptus   | HW       | 48.20    | 5.30     | 42.20     | 0.00      | 4.30 | 44.03                                   | 26.11 | 5.83  | 0.00  | 19.73 |
| Mixed        | SW       | 50.30    | 5.80     | 40.65     | 0.42      | 2.80 | 37.87                                   | 21.77 | 0.18  | 6.82  | 30.57 |
| Oak          | HW       | 50.93    | 5.96     | 41.46     | 0.20      | 1.30 | 43.32                                   | 24.58 | 12.29 | 0.02  | 18.49 |
| Spruce       | SW       | 50.05    | 5.63     | 42.65     | 0.10      | 1.48 | 45.85                                   | 26.00 | 1.77  | 21.10 | 3.79  |
| Olive        | HW       | 51.38    | 6.32     | 40.02     | 0.45      | 1.69 | 39.01                                   | 22.06 | 4.29  | 31.71 | 1.25  |
| Spruce       | SW       | 50.90    | 6.40     | 42.00     | 0.00      | 0.70 | 44.95                                   | 25.07 | 2.99  | 21.57 | 4.72  |
| Cedar        | SW       | 48.80    | 6.40     | 44.40     | 0.00      | 0.40 | 53.77                                   | 29.55 | 0.00  | 11.95 | 4.33  |
| Maple        | HW       | 49.54    | 6.00     | 43.84     | 0.10      | 0.50 | 50.18                                   | 27.46 | 0.58  | 14.59 | 6.69  |
| Larch        | SW       | 50.67    | 6.38     | 42.51     | 0.00      | 0.45 | 46.46                                   | 25.18 | 2.99  | 17.77 | 7.16  |
| Pine         | SW       | 52.13    | 6.36     | 41.01     | 0.07      | 0.37 | 41.57                                   | 22.45 | 7.55  | 24.55 | 3.51  |
| Douglas Fir  | SW       | 52.30    | 6.30     | 40.32     | 0.10      | 0.98 | 39.97                                   | 21.35 | 9.67  | 26.08 | 1.94  |

| Pine         | SW | 48.40 | 6.31 | 44.23 | 0.21 | 0.82  | 53.57 | 28.61 | 0.00  | 10.41 | 6.58  |
|--------------|----|-------|------|-------|------|-------|-------|-------|-------|-------|-------|
| Olive        | HW | 45.15 | 5.63 | 37.56 | 1.55 | 10.01 | 41.45 | 22.09 | 3.66  | 15.70 | 7.10  |
| Cotton       | HW | 48.48 | 6.12 | 41.48 | 0.97 | 2.85  | 46.80 | 24.91 | 2.14  | 14.66 | 8.64  |
| Cotton       | HW | 48.48 | 6.12 | 41.48 | 0.97 | 2.85  | 46.80 | 24.91 | 2.14  | 14.66 | 8.64  |
| Olive        | HW | 48.71 | 6.18 | 42.16 | 0.52 | 2.39  | 47.91 | 25.49 | 1.49  | 13.85 | 8.86  |
| Pine         | SW | 50.10 | 6.00 | 38.17 | 0.10 | 5.63  | 37.33 | 19.84 | 10.39 | 26.02 | 0.80  |
| Spruce       | SW | 48.82 | 5.84 | 42.44 | 0.17 | 2.73  | 47.44 | 24.95 | 1.85  | 13.46 | 9.57  |
| Babassu      | HW | 50.38 | 5.38 | 42.35 | 0.26 | 1.59  | 44.75 | 23.44 | 5.31  | 16.83 | 8.08  |
| Almond       | HW | 47.15 | 5.91 | 40.04 | 1.20 | 5.61  | 44.92 | 23.51 | 2.88  | 13.86 | 9.23  |
| Cocoa        | HW | 46.31 | 5.57 | 36.12 | 3.21 | 8.60  | 38.30 | 19.99 | 9.70  | 20.21 | 3.20  |
| Mulberry     | HW | 49.84 | 6.14 | 41.00 | 0.42 | 2.60  | 44.22 | 23.04 | 5.58  | 16.44 | 8.12  |
| Ailanthus    | HW | 49.50 | 6.20 | 42.30 | 0.30 | 1.70  | 47.22 | 24.56 | 2.68  | 13.66 | 10.17 |
| Birch        | SW | 48.74 | 6.26 | 44.09 | 0.19 | 0.54  | 52.28 | 26.98 | 0.00  | 9.83  | 10.38 |
| Pine         | SW | 51.99 | 6.28 | 41.16 | 0.14 | 0.41  | 42.94 | 22.14 | 9.86  | 19.35 | 5.30  |
| Olive        | HW | 50.77 | 5.90 | 37.07 | 1.36 | 4.61  | 34.30 | 17.53 | 13.78 | 29.78 | 0.00  |
| Olive        | HW | 50.18 | 6.85 | 37.78 | 1.11 | 4.00  | 40.10 | 20.46 | 12.93 | 20.35 | 2.16  |
| Willow       | HW | 49.29 | 5.98 | 42.72 | 0.57 | 1.38  | 48.03 | 24.39 | 2.42  | 11.89 | 11.89 |
| Poplar       | HW | 50.19 | 6.06 | 40.43 | 0.60 | 2.70  | 43.33 | 21.81 | 8.95  | 15.67 | 7.54  |
| Willow       | HW | 48.50 | 6.12 | 43.00 | 0.50 | 1.86  | 49.67 | 24.92 | 0.75  | 9.79  | 13.01 |
| Douglas Fir  | SW | 50.63 | 6.23 | 42.54 | 0.12 | 0.47  | 46.78 | 23.38 | 5.02  | 12.79 | 11.56 |
| Pine         | SW | 51.85 | 6.21 | 41.23 | 0.13 | 0.42  | 43.85 | 21.83 | 11.22 | 16.22 | 6.46  |
| Pine         | SW | 51.48 | 6.16 | 41.14 | 0.16 | 0.97  | 43.97 | 21.75 | 10.86 | 15.29 | 7.16  |
| Pistachio    | HW | 49.55 | 6.12 | 42.32 | 0.62 | 1.27  | 47.45 | 23.43 | 3.73  | 11.16 | 12.96 |
| Peach        | HW | 51.21 | 6.14 | 41.14 | 0.40 | 1.07  | 44.27 | 21.78 | 10.43 | 14.56 | 7.89  |
| Unidentified | SW | 52.10 | 6.10 | 39.90 | 0.20 | 1.70  | 42.04 | 20.59 | 16.97 | 17.48 | 1.22  |
| Cedar        | SW | 52.74 | 6.14 | 39.98 | 0.10 | 1.03  | 41.92 | 20.42 | 18.59 | 18.04 | 0.00  |
| Almond       | HW | 48.60 | 5.70 | 37.51 | 0.62 | 7.46  | 40.05 | 19.49 | 15.30 | 15.39 | 2.31  |
| Walnut       | HW | 51.00 | 6.04 | 40.31 | 0.78 | 1.78  | 43.46 | 21.13 | 13.01 | 14.68 | 5.94  |
| Poplar       | HW | 49.93 | 6.10 | 42.26 | 0.29 | 1.36  | 46.94 | 22.76 | 4.97  | 10.80 | 13.18 |
| Poplar       | HW | 47.67 | 6.15 | 45.29 | 0.20 | 0.68  | 56.36 | 27.22 | 0.00  | 5.04  | 10.70 |
| Camphor      | HW | 50.30 | 6.10 | 42.50 | 0.10 | 0.80  | 47.24 | 22.38 | 5.72  | 9.90  | 13.96 |
| Willow       | HW | 48.98 | 5.99 | 42.09 | 0.65 | 2.24  | 47.46 | 22.47 | 3.90  | 8.97  | 14.96 |
| Palm         | HW | 47.28 | 6.25 | 38.82 | 2.83 | 4.59  | 41.83 | 33.02 | 3.91  | 2.92  | 13.73 |
| Unidentified | HW | 47.10 | 5.52 | 36.92 | 0.43 | 9.94  | 40.16 | 18.97 | 14.36 | 12.11 | 4.45  |
| Fir          | SW | 50.35 | 6.14 | 43.18 | 0.05 | 0.28  | 48.30 | 22.74 | 4.32  | 9.02  | 15.35 |
| Peanut       | HW | 45.77 | 5.46 | 39.56 | 1.63 | 7.46  | 45.05 | 21.20 | 3.60  | 8.17  | 14.52 |
| Beech        | SW | 48.37 | 6.10 | 44.51 | 0.34 | 0.65  | 53.12 | 24.94 | 0.00  | 5.77  | 15.52 |
| Spruce       | SW | 50.17 | 5.94 | 40.44 | 0.42 | 3.01  | 44.29 | 20.78 | 11.70 | 11.30 | 8.91  |
| Eucalyptus   | HW | 50.43 | 6.01 | 41.53 | 0.17 | 1.76  | 45.85 | 21.24 | 9.33  | 9.87  | 11.95 |
| Eucalyptus   | HW | 50.50 | 6.02 | 41.59 | 0.27 | 1.58  | 45.95 | 21.28 | 9.33  | 9.86  | 12.00 |
| Maple        | HW | 50.64 | 6.02 | 41.74 | 0.25 | 1.35  | 46.16 | 21.25 | 9.44  | 9.58  | 12.23 |

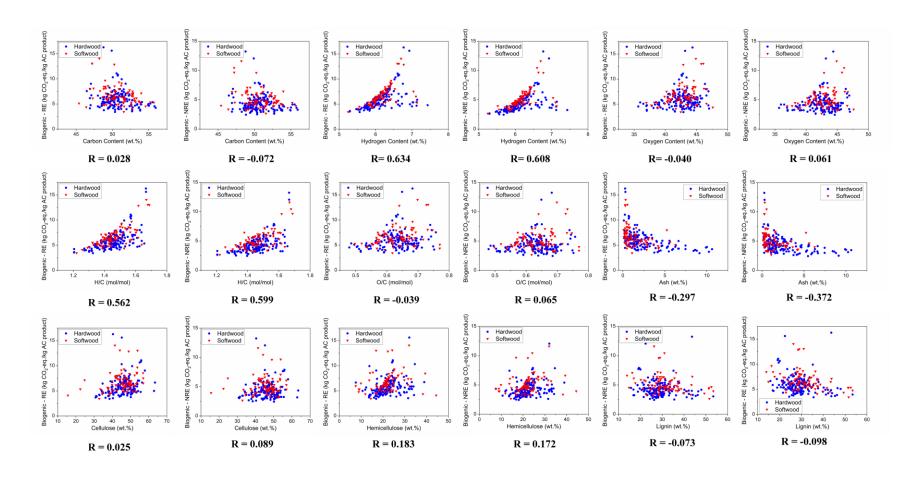
| Olive         | HW | 52.70 | 5.90 | 38.04 | 1.05 | 2.06  | 38.29 | 17.50 | 23.43 | 18.72 | 0.00  |
|---------------|----|-------|------|-------|------|-------|-------|-------|-------|-------|-------|
| Oak           | HW | 48.82 | 6.06 | 44.17 | 0.15 | 0.78  | 51.25 | 23.37 | 0.04  | 5.80  | 18.75 |
| Maple         | HW | 50.60 | 6.00 | 41.70 | 0.30 | 1.40  | 46.27 | 21.04 | 9.84  | 9.04  | 12.40 |
| Walnut        | HW | 53.66 | 6.50 | 36.04 | 1.34 | 2.36  | 37.83 | 29.83 | 14.76 | 12.40 | 2.81  |
| Unidentified  | HW | 50.48 | 6.04 | 42.43 | 0.17 | 0.78  | 47.34 | 21.51 | 7.31  | 8.35  | 14.71 |
| Birch         | SW | 49.85 | 6.72 | 42.54 | 0.10 | 0.29  | 49.02 | 22.25 | 3.82  | 7.23  | 17.38 |
| Kenaf (italy) | HW | 46.60 | 5.80 | 42.62 | 1.00 | 3.67  | 50.74 | 23.00 | 0.00  | 4.97  | 17.62 |
| Tan Oak       | HW | 48.50 | 6.08 | 44.98 | 0.05 | 0.35  | 53.86 | 24.40 | 0.00  | 4.49  | 16.90 |
| Pine          | SW | 52.55 | 6.08 | 41.25 | 0.00 | 0.12  | 45.59 | 20.65 | 17.77 | 10.70 | 5.17  |
| Oak           | HW | 48.78 | 6.09 | 44.98 | 0.00 | 0.15  | 53.41 | 24.19 | 0.00  | 4.75  | 17.50 |
| Palm          | HW | 48.11 | 6.64 | 36.79 | 2.81 | 5.50  | 43.19 | 19.55 | 16.44 | 10.02 | 5.30  |
| Peanut        | HW | 46.97 | 5.64 | 40.11 | 1.85 | 5.25  | 45.93 | 20.74 | 5.27  | 7.18  | 15.63 |
| Spruce        | SW | 49.53 | 6.06 | 43.92 | 0.11 | 0.37  | 50.23 | 22.65 | 1.73  | 6.22  | 18.80 |
| Birch         | SW | 48.89 | 6.04 | 44.43 | 0.22 | 0.35  | 51.81 | 23.19 | 0.00  | 5.12  | 19.53 |
| Spruce        | SW | 50.20 | 5.90 | 41.14 | 0.20 | 2.56  | 45.79 | 20.46 | 11.01 | 8.34  | 11.84 |
| Oak           | HW | 49.89 | 5.98 | 42.57 | 0.21 | 1.29  | 47.89 | 21.37 | 5.83  | 7.10  | 16.52 |
| Mixed         | HW | 50.00 | 5.97 | 42.80 | 0.21 | 0.95  | 48.18 | 21.49 | 5.53  | 7.01  | 16.84 |
| Casuarina     | HW | 48.59 | 5.94 | 43.37 | 0.45 | 1.62  | 50.00 | 22.14 | 1.30  | 5.38  | 19.56 |
| Grape         | HW | 47.57 | 5.85 | 43.14 | 0.81 | 2.61  | 50.42 | 22.31 | 0.03  | 4.80  | 19.84 |
| Spruce        | SW | 48.46 | 5.84 | 44.88 | 0.21 | 0.60  | 53.12 | 23.48 | 0.00  | 4.12  | 18.68 |
| Cocoa         | HW | 49.21 | 5.34 | 33.87 | 3.04 | 8.42  | 31.42 | 13.87 | 23.88 | 22.41 | 0.00  |
| Cocoa         | HW | 48.23 | 5.23 | 33.19 | 2.98 | 10.25 | 30.79 | 13.60 | 23.40 | 21.96 | 0.00  |
| Oak           | HW | 49.74 | 5.96 | 42.56 | 0.23 | 1.47  | 48.04 | 21.17 | 5.67  | 6.54  | 17.11 |
| Spruce        | SW | 48.39 | 5.55 | 41.67 | 0.10 | 4.19  | 46.73 | 20.59 | 5.47  | 6.35  | 16.67 |
| Oak           | HW | 49.90 | 5.97 | 42.88 | 0.36 | 0.88  | 48.49 | 21.37 | 5.25  | 6.46  | 17.55 |
| Fir           | SW | 49.00 | 5.98 | 43.91 | 0.05 | 1.04  | 50.52 | 22.22 | 1.03  | 5.11  | 20.07 |
| Coconut       | HW | 50.29 | 5.05 | 39.63 | 0.45 | 4.14  | 36.26 | 15.91 | 5.79  | 0.27  | 37.62 |
| Hazelnut      | HW | 51.00 | 5.40 | 40.50 | 1.30 | 1.80  | 31.13 | 13.66 | 7.08  | 0.32  | 46.01 |
| Walnut        | HW | 53.52 | 6.52 | 35.37 | 1.53 | 2.95  | 34.14 | 14.98 | 6.18  | 40.81 | 0.94  |
| Cypress       | SW | 54.98 | 6.54 | 38.08 | 0.00 | 0.40  | 33.42 | 14.66 | 6.65  | 42.56 | 2.31  |
| Olive         | HW | 50.18 | 6.30 | 32.09 | 1.40 | 9.90  | 34.98 | 15.35 | 5.13  | 33.77 | 0.88  |
| Grape         | HW | 54.01 | 6.83 | 35.00 | 1.46 | 2.50  | 39.85 | 17.48 | 5.18  | 34.95 | 0.04  |
| Walnut        | HW | 47.86 | 5.75 | 34.60 | 1.07 | 10.62 | 32.77 | 14.38 | 5.44  | 36.56 | 0.23  |
| Spruce        | SW | 51.10 | 5.50 | 42.30 | 0.10 | 1.00  | 38.88 | 17.06 | 5.71  | 0.23  | 37.12 |
| Olive         | HW | 51.25 | 6.29 | 36.46 | 1.10 | 4.70  | 37.75 | 16.56 | 5.29  | 34.40 | 1.30  |
| Almond        | HW | 48.55 | 5.33 | 40.74 | 0.81 | 4.50  | 37.73 | 16.55 | 5.46  | 0.19  | 35.56 |
| Almond        | HW | 48.43 | 5.98 | 39.90 | 0.94 | 4.71  | 43.29 | 18.99 | 4.38  | 0.22  | 28.42 |
| Grape         | HW | 45.72 | 5.05 | 38.95 | 1.07 | 9.13  | 38.46 | 16.87 | 4.71  | 0.24  | 30.58 |
| Olive         | HW | 50.00 | 6.50 | 36.30 | 0.80 | 6.30  | 47.16 | 20.69 | 3.33  | 21.78 | 0.74  |
| Peach         | HW | 53.15 | 7.19 | 35.86 | 0.60 | 3.20  | 55.60 | 24.39 | 2.17  | 14.59 | 0.06  |
| Cherry        | HW | 53.41 | 7.04 | 38.05 | 0.30 | 0.90  | 52.35 | 22.97 | 3.07  | 20.07 | 0.64  |

| Grape        | HW | 49.73 | 6.67 | 35.41 | 1.83 | 6.24 | 53.21 | 23.34 | 2.22  | 14.90 | 0.09  |
|--------------|----|-------|------|-------|------|------|-------|-------|-------|-------|-------|
| Pine         | SW | 52.60 | 7.02 | 40.07 | 0.00 | 0.31 | 56.99 | 25.00 | 2.28  | 15.31 | 0.11  |
| Unidentified | SW | 50.96 | 6.86 | 38.49 | 0.19 | 3.11 | 57.02 | 25.02 | 1.91  | 12.87 | 0.06  |
| Olive        | HW | 49.85 | 6.59 | 39.06 | 0.70 | 3.40 | 54.14 | 23.75 | 2.41  | 15.91 | 0.39  |
| Oak          | HW | 49.16 | 6.46 | 40.16 | 1.64 | 2.55 | 54.75 | 24.02 | 2.41  | 15.95 | 0.33  |
| Elm          | HW | 50.35 | 6.57 | 42.34 | 0.00 | 0.74 | 55.07 | 24.16 | 2.58  | 17.45 | 0.00  |
| Elm          | HW | 50.40 | 6.60 | 42.30 | 0.00 | 0.70 | 55.76 | 24.46 | 2.46  | 16.54 | 0.08  |
| Oak          | HW | 50.44 | 6.59 | 42.73 | 0.00 | 0.24 | 55.91 | 24.53 | 2.49  | 16.29 | 0.54  |
| Coconut      | HW | 50.64 | 5.09 | 39.91 | 0.45 | 3.75 | 40.33 | 31.54 | 8.13  | 5.05  | 11.21 |
| Mixed        | HW | 50.09 | 5.94 | 42.30 | 0.26 | 1.31 | 47.63 | 20.87 | 7.48  | 6.76  | 15.95 |
| Pistachio    | HW | 48.85 | 6.29 | 42.86 | 0.50 | 1.30 | 49.72 | 21.75 | 2.22  | 5.32  | 19.68 |
| Poplar       | HW | 50.84 | 5.89 | 41.06 | 0.59 | 1.60 | 46.24 | 20.18 | 14.22 | 7.81  | 9.95  |
| Peach        | HW | 53.00 | 5.90 | 39.14 | 0.32 | 1.59 | 42.36 | 18.43 | 25.69 | 11.93 | 0.00  |
| Olive        | HW | 47.73 | 5.86 | 43.60 | 0.58 | 2.23 | 51.25 | 22.25 | 0.00  | 4.05  | 20.22 |
| Fir          | SW | 51.36 | 5.99 | 42.20 | 0.06 | 0.36 | 47.35 | 20.52 | 11.79 | 7.17  | 12.82 |
| Spruce       | SW | 50.25 | 5.99 | 43.36 | 0.10 | 0.30 | 49.09 | 21.24 | 5.11  | 5.77  | 18.49 |
| Unidentified | SW | 50.00 | 6.00 | 43.60 | 0.00 | 0.30 | 49.57 | 21.43 | 3.89  | 5.45  | 19.35 |
| Almond       | HW | 48.04 | 5.79 | 42.32 | 0.72 | 3.06 | 48.66 | 21.04 | 2.75  | 5.03  | 19.47 |
| Fir          | SW | 49.84 | 5.99 | 43.60 | 0.18 | 0.38 | 49.67 | 21.48 | 3.57  | 5.36  | 19.55 |
| Eucalyptus   | HW | 48.29 | 5.93 | 44.28 | 0.39 | 1.10 | 52.18 | 22.53 | 0.00  | 3.81  | 20.37 |
| Cotton       | HW | 44.88 | 5.54 | 41.57 | 1.04 | 6.66 | 50.16 | 21.64 | 0.00  | 3.20  | 18.34 |
| Beech        | SW | 49.69 | 6.07 | 42.80 | 0.41 | 1.01 | 48.86 | 21.01 | 4.97  | 5.50  | 18.65 |
| Peanut       | HW | 46.50 | 5.55 | 40.19 | 1.66 | 5.98 | 46.40 | 19.96 | 4.72  | 5.22  | 17.71 |
| Prune        | HW | 49.47 | 6.25 | 42.67 | 0.58 | 0.96 | 49.13 | 21.12 | 4.31  | 5.33  | 19.15 |
| Mixed        | SW | 49.73 | 5.95 | 43.40 | 0.22 | 0.67 | 49.45 | 21.25 | 3.89  | 5.23  | 19.50 |
| Pine         | SW | 49.45 | 5.95 | 43.59 | 0.30 | 0.61 | 49.96 | 21.47 | 2.80  | 4.94  | 20.22 |
| Madrone      | HW | 48.56 | 6.02 | 44.99 | 0.05 | 0.36 | 53.64 | 23.00 | 0.00  | 3.24  | 19.76 |
| Unidentified | HW | 50.52 | 5.80 | 40.35 | 0.40 | 2.86 | 45.80 | 19.63 | 16.51 | 7.19  | 8.01  |
| Pine         | SW | 52.30 | 5.80 | 38.76 | 0.20 | 2.90 | 42.61 | 18.20 | 26.03 | 10.25 | 0.00  |
| Sequoia      | SW | 52.30 | 5.90 | 40.30 | 0.20 | 1.30 | 46.45 | 19.82 | 24.01 | 7.72  | 0.71  |
| Mixed        | HW | 50.49 | 5.95 | 42.83 | 0.16 | 0.54 | 48.47 | 20.61 | 7.60  | 5.65  | 17.14 |
| Mixed        | HW | 50.48 | 5.94 | 42.80 | 0.16 | 0.54 | 48.46 | 20.59 | 7.66  | 5.63  | 17.11 |
| Pine         | SW | 52.19 | 5.67 | 37.37 | 0.41 | 4.30 | 39.21 | 16.47 | 27.77 | 12.25 | 0.00  |
| Sequoia      | SW | 50.67 | 5.98 | 42.91 | 0.05 | 0.36 | 48.68 | 20.44 | 7.95  | 5.26  | 17.32 |
| Fir          | SW | 50.55 | 5.82 | 41.22 | 0.10 | 2.21 | 46.89 | 19.60 | 13.84 | 5.81  | 11.66 |
| Poplar       | HW | 48.51 | 5.88 | 44.29 | 0.29 | 1.00 | 51.75 | 21.53 | 0.00  | 3.17  | 22.54 |
| Eucalyptus   | HW | 48.50 | 5.89 | 44.43 | 0.28 | 0.75 | 52.22 | 21.72 | 0.00  | 3.05  | 22.26 |
| Ecoblock     | HW | 51.48 | 5.92 | 42.03 | 0.14 | 0.43 | 47.87 | 19.88 | 14.08 | 5.66  | 12.08 |
| Oak          | HW | 49.47 | 5.73 | 44.03 | 0.45 | 0.26 | 50.58 | 20.94 | 2.69  | 3.83  | 21.69 |
| Coconut      | HW | 51.27 | 5.88 | 41.78 | 0.23 | 0.65 | 47.84 | 19.75 | 14.52 | 5.47  | 11.78 |
| Fir          | SW | 50.40 | 5.80 | 41.40 | 0.10 | 2.20 | 47.23 | 19.49 | 12.96 | 5.22  | 12.90 |

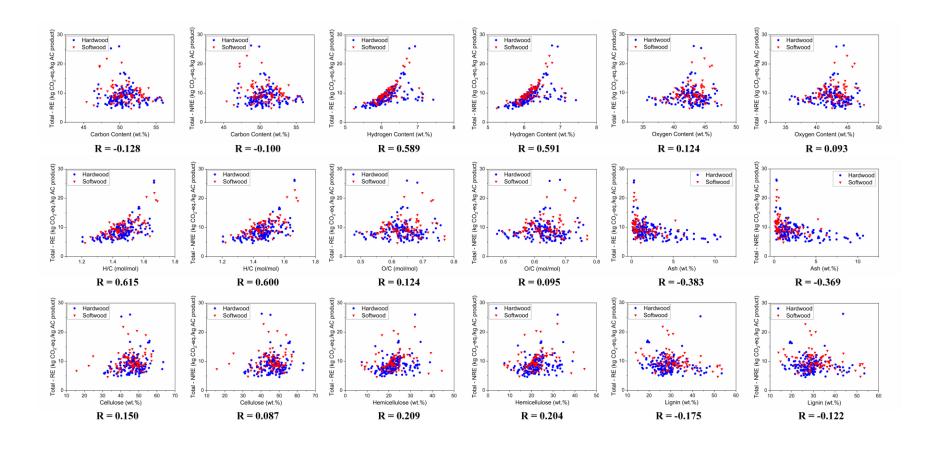
| Sequoia       | SW | 53.50 | 5.90 | 40.15 | 0.10 | 0.30 | 45.78 | 18.84 | 27.56 | 7.52  | 0.00  |
|---------------|----|-------|------|-------|------|------|-------|-------|-------|-------|-------|
| Eucalyptus    | HW | 49.04 | 5.88 | 44.01 | 0.30 | 0.76 | 50.95 | 20.95 | 1.48  | 3.35  | 22.51 |
| Hazelnut      | HW | 47.79 | 5.78 | 43.79 | 0.76 | 1.43 | 51.86 | 21.31 | 0.00  | 2.77  | 22.64 |
| Sequoia       | SW | 53.50 | 5.90 | 40.30 | 0.10 | 0.20 | 46.29 | 18.93 | 27.60 | 6.98  | 0.00  |
| Eucalyptus    | HW | 48.32 | 5.89 | 45.12 | 0.15 | 0.52 | 54.18 | 22.10 | 0.00  | 1.97  | 21.24 |
| Oak           | HW | 49.50 | 5.70 | 41.30 | 0.20 | 3.30 | 47.29 | 19.14 | 10.81 | 4.27  | 15.19 |
| Cherry tree   | HW | 49.52 | 5.81 | 42.97 | 0.31 | 1.35 | 49.36 | 19.95 | 5.46  | 3.62  | 20.26 |
| Unidentified  | HW | 49.00 | 6.00 | 44.60 | 0.00 | 0.30 | 52.14 | 20.90 | 0.10  | 2.42  | 24.14 |
| Robinia       | HW | 48.73 | 5.66 | 41.71 | 1.00 | 2.90 | 48.28 | 19.28 | 7.36  | 3.49  | 18.68 |
| Walnut        | HW | 49.86 | 5.83 | 43.30 | 0.22 | 0.78 | 49.80 | 19.88 | 5.57  | 3.30  | 20.68 |
| Walnut        | HW | 49.80 | 5.82 | 43.25 | 0.22 | 0.85 | 49.76 | 19.87 | 5.56  | 3.29  | 20.66 |
| Oak           | HW | 47.81 | 5.93 | 44.12 | 0.12 | 2.00 | 52.61 | 20.95 | 0.00  | 1.76  | 22.69 |
| Fir           | SW | 48.52 | 5.81 | 44.66 | 0.25 | 0.72 | 52.72 | 20.73 | 0.00  | 1.75  | 24.08 |
| Apricot       | HW | 51.39 | 6.29 | 41.82 | 0.20 | 0.20 | 49.07 | 19.26 | 14.29 | 3.65  | 13.53 |
| Palm          | HW | 47.98 | 5.26 | 36.61 | 1.17 | 8.81 | 44.16 | 17.28 | 25.77 | 3.98  | 0.00  |
| Olive         | HW | 49.20 | 5.40 | 37.90 | 0.70 | 6.60 | 46.06 | 17.90 | 25.99 | 3.45  | 0.00  |
| Almond        | HW | 46.49 | 5.44 | 41.22 | 0.97 | 5.87 | 48.24 | 18.65 | 3.24  | 2.06  | 21.95 |
| Spruce        | SW | 49.53 | 5.77 | 44.01 | 0.19 | 0.48 | 51.27 | 19.44 | 3.36  | 1.72  | 23.73 |
| Vine          | HW | 48.15 | 5.61 | 42.84 | 0.81 | 2.59 | 50.23 | 19.05 | 3.14  | 1.67  | 23.33 |
| Almond        | HW | 50.30 | 5.62 | 41.71 | 0.64 | 1.72 | 49.04 | 18.54 | 13.77 | 2.44  | 14.49 |
| Almond        | HW | 48.85 | 5.51 | 40.94 | 0.80 | 3.90 | 48.30 | 18.01 | 11.73 | 1.95  | 16.10 |
| Hazelnut      | HW | 52.90 | 5.60 | 38.70 | 1.40 | 1.40 | 45.44 | 16.82 | 32.09 | 4.25  | 0.00  |
| Walnut        | HW | 49.98 | 5.71 | 43.35 | 0.21 | 0.71 | 50.68 | 18.75 | 6.85  | 1.50  | 21.51 |
| Oak           | HW | 49.67 | 5.93 | 44.02 | 0.07 | 0.30 | 51.67 | 19.10 | 3.49  | 1.18  | 24.27 |
| Spruce        | SW | 51.06 | 5.75 | 42.29 | 0.11 | 0.77 | 50.10 | 18.34 | 14.40 | 1.61  | 14.79 |
| Cotton        | HW | 45.97 | 5.35 | 41.99 | 0.84 | 5.48 | 50.16 | 18.05 | 0.74  | 0.32  | 25.25 |
| Oak           | HW | 49.76 | 5.40 | 39.29 | 0.15 | 5.30 | 48.48 | 17.44 | 23.89 | 1.00  | 3.89  |
| Cherry tree   | HW | 46.93 | 5.97 | 39.29 | 1.11 | 6.63 | 47.74 | 17.12 | 9.47  | 0.92  | 18.12 |
| Walnut        | HW | 49.74 | 5.63 | 43.16 | 0.37 | 1.08 | 50.93 | 18.25 | 7.25  | 0.81  | 21.69 |
| Walnut        | HW | 49.72 | 5.63 | 43.14 | 0.37 | 1.07 | 50.94 | 18.25 | 7.25  | 0.81  | 21.69 |
| Oak           | HW | 48.99 | 5.93 | 42.58 | 0.33 | 2.10 | 44.20 | 34.00 | 2.53  | 1.64  | 15.53 |
| Kukui         | HW | 55.12 | 5.54 | 37.55 | 0.34 | 1.43 | 40.61 | 13.94 | 38.54 | 5.48  | 0.00  |
| Leucaena      | HW | 47.89 | 5.84 | 43.29 | 0.41 | 2.50 | 50.29 | 21.72 | 0.43  | 4.30  | 20.78 |
| Hickory       | HW | 49.70 | 6.50 | 43.10 | 0.00 | 0.70 | 45.14 | 34.61 | 2.22  | 1.47  | 15.86 |
| Willow        | HW | 49.25 | 5.99 | 42.66 | 0.60 | 1.40 | 44.20 | 33.11 | 3.07  | 1.29  | 16.93 |
| Maple         | HW | 49.88 | 6.09 | 43.26 | 0.14 | 0.60 | 44.59 | 33.22 | 3.09  | 1.21  | 17.30 |
| Pine          | SW | 50.22 | 6.17 | 43.17 | 0.16 | 0.26 | 44.41 | 32.89 | 3.59  | 1.23  | 17.62 |
| Data from Ida |    |       |      | 41.00 | 6.22 | 1.22 | 20.00 | 11.00 | 0.07  | 7.50  | 20.16 |
| Eucalyptus    | HW | 50.87 | 5.70 | 41.99 | 0.22 | 1.22 | 39.80 | 11.90 | 8.86  | 7.52  | 30.16 |
| Hybrid Poplar | HW | 49.95 | 6.12 | 41.98 | 0.31 | 1.64 | 52.24 | 15.87 | 8.08  | 22.16 | 0.00  |
| Juniper       | SW | 52.67 | 6.08 | 37.83 | 0.55 | 2.87 | 34.79 | 8.91  | 7.77  | 45.66 | 0.00  |

| Lodge Pole                 | SW                         | 50.25           | 6.54          | 41.70 | 0.14 | 1.36 | 52.47 | 7.51  | 0.00  | 38.66 | 0.00  |
|----------------------------|----------------------------|-----------------|---------------|-------|------|------|-------|-------|-------|-------|-------|
| Pine<br>Pine               | SW                         | 50.80           | 6.22          | 41.01 | 0.54 | 1.43 | 45.25 | 9.89  | 0.00  | 43.43 | 0.00  |
| Pinyon                     | SW                         | 50.98           | 5.89          | 38.61 | 0.27 | 4.25 | 34.44 | 11.94 | 6.98  | 39.19 | 3.16  |
| Juniper                    |                            |                 |               |       |      |      |       |       |       |       |       |
| Pinyon Pine                | SW                         | 52.62           | 6.27          | 38.69 | 0.55 | 1.87 | 37.79 | 8.96  | 2.85  | 48.53 | 0.00  |
| Shrub Willow               | HW                         | 49.20           | 6.09          | 42.71 | 0.31 | 1.69 | 46.79 | 16.97 | 0.10  | 32.60 | 1.81  |
| Data from Phy<br>Bamboo    | yllis2 <sup>50</sup><br>HW | 48.04           | 6.11          | 42.57 | 0.58 | 2.70 | 47.46 | 21.89 | 0.20  | 27.74 | 0.00  |
| Bamboo                     | HW                         | 44.16           | 5.64          | 44.08 | 0.75 | 5.37 | 45.78 | 20.01 | 0.20  | 11.13 | 17.70 |
| Bamboo                     | HW                         | 46.06           | 5.75          | 46.18 | 0.73 | 1.83 | 43.78 | 28.03 | 0.00  | 1.13  | 24.86 |
| Sawdust                    | пw                         | 40.00           | 3.73          | 40.18 | 0.19 | 1.65 | 43.37 | 28.03 | 0.00  | 1.90  | 24.60 |
| Pine Wood                  | SW                         | 48.23           | 6.30          | 43.75 | 0.13 | 1.59 | 45.15 | 39.36 | 2.92  | 10.97 | 0.00  |
| Douglas Fir<br>Wood        | SW                         | 49.95           | 6.31          | 42.80 | 0.17 | 0.77 | 56.93 | 14.03 | 3.77  | 24.49 | 0.00  |
| Pyrenean Oak<br>Wood       | HW                         | 48.87           | 6.37          | 38.01 | 2.70 | 4.05 | 49.79 | 12.31 | 0.20  | 33.65 | 0.00  |
| Pyrenean Oak<br>Wood       | HW                         | 48.71           | 6.53          | 39.25 | 2.51 | 3.00 | 51.44 | 17.21 | 0.00  | 28.35 | 0.00  |
| Literature Da              | ta <sup>41,51,60</sup> –   | -69,52,70-79,53 | 3,80–86,54–59 | )     |      |      |       |       |       |       |       |
| Olive Branch               | HW                         | 48.77           | 6.08          | 40.59 | 1.06 | 3.50 | 34.67 | 24.02 | 0.00  | 37.81 | 0.00  |
| Kiwi Branch                | HW                         | 49.01           | 5.59          | 42.42 | 0.78 | 2.20 | 32.98 | 34.24 | 14.30 | 0.00  | 16.27 |
| Pine Bark                  | SW                         | 51.00           | 5.19          | 42.02 | 0.69 | 1.10 | 32.81 | 14.46 | 12.69 | 0.00  | 38.94 |
| Almond Tree<br>Pruning     | HW                         | 50.63           | 6.42          | 40.82 | 0.79 | 1.34 | 42.19 | 25.17 | 2.88  | 28.42 | 0.00  |
| Softwood<br>bark           | SW                         | 51.87           | 5.85          | 39.39 | 0.39 | 2.50 | 22.40 | 22.28 | 7.13  | 31.92 | 13.52 |
| Hardwood rich in fibres    | HW                         | 49.00           | 5.89          | 43.01 | 0.29 | 1.80 | 43.27 | 30.00 | 14.31 | 7.78  | 2.79  |
| Softwood                   | SW                         | 51.67           | 6.05          | 40.67 | 0.20 | 1.41 | 45.98 | 24.50 | 17.22 | 10.89 | 0.00  |
| Hardwood                   | HW                         | 49.11           | 6.27          | 41.53 | 0.39 | 2.70 | 44.79 | 31.01 | 4.48  | 17.02 | 0.00  |
| Wood Bark                  | SW                         | 52.25           | 6.00          | 39.95 | 0.19 | 1.60 | 24.80 | 29.80 | 13.60 | 30.20 | 0.00  |
| Spruce Wood                | SW                         | 51.54           | 6.06          | 40.61 | 0.29 | 1.50 | 50.29 | 20.99 | 16.70 | 10.52 | 0.00  |
| Beech Wood                 | HW                         | 50.67           | 6.35          | 42.17 | 0.41 | 0.40 | 45.84 | 31.83 | 6.93  | 14.99 | 0.00  |
| Beech Wood                 | HW                         | 46.90           | 6.20          | 45.90 | 0.30 | 0.70 | 50.53 | 24.83 | 0.00  | 21.26 | 2.69  |
| Spruce Wood                | SW                         | 48.30           | 6.30          | 44.60 | 0.40 | 0.40 | 47.59 | 22.89 | 0.00  | 29.12 | 0.00  |
| Wood Chips                 | SW                         | 46.17           | 5.87          | 47.39 | 0.08 | 0.48 | 38.31 | 38.31 | 0.00  | 2.47  | 20.42 |
| Jatropha De-<br>oiled Cake | SW                         | 56.78           | 7.06          | 29.10 | 5.56 | 1.51 | 55.47 | 17.21 | 8.38  | 17.43 | 0.00  |
| Willow                     | HW                         | 49.55           | 6.45          | 39.62 | 2.68 | 1.70 | 57.90 | 16.91 | 3.53  | 19.96 | 0.00  |
| Silver Fir                 | SW                         | 50.96           | 6.37          | 42.00 | 0.20 | 0.47 | 53.46 | 15.39 | 5.07  | 25.61 | 0.00  |
| Holm Oak                   | HW                         | 46.78           | 5.75          | 44.44 | 0.49 | 2.54 | 40.32 | 27.56 | 0.00  | 8.14  | 21.43 |
| Stone Pine                 | SW                         | 50.01           | 5.95          | 42.96 | 0.30 | 0.78 | 44.08 | 21.61 | 9.38  | 15.06 | 8.93  |
| Pyrenean Oak               | HW                         | 47.19           | 5.74          | 43.88 | 0.49 | 2.70 | 36.41 | 27.39 | 0.00  | 11.14 | 22.37 |
| Bonbogori                  | HW                         | 54.05           | 6.00          | 38.37 | 0.22 | 1.36 | 62.94 | 10.66 | 23.51 | 1.53  | 0.00  |
| Moj                        | HW                         | 51.35           | 6.09          | 40.58 | 0.30 | 1.68 | 63.48 | 7.56  | 15.55 | 11.73 | 0.00  |
| Woody Waste                | SW                         | 48.09           | 6.68          | 44.80 | 0.10 | 0.33 | 41.42 | 31.96 | 0.00  | 26.29 | 0.00  |
| Waste Square<br>Timber     | SW                         | 46.94           | 6.56          | 45.85 | 0.10 | 0.55 | 44.17 | 24.26 | 0.00  | 31.03 | 0.00  |

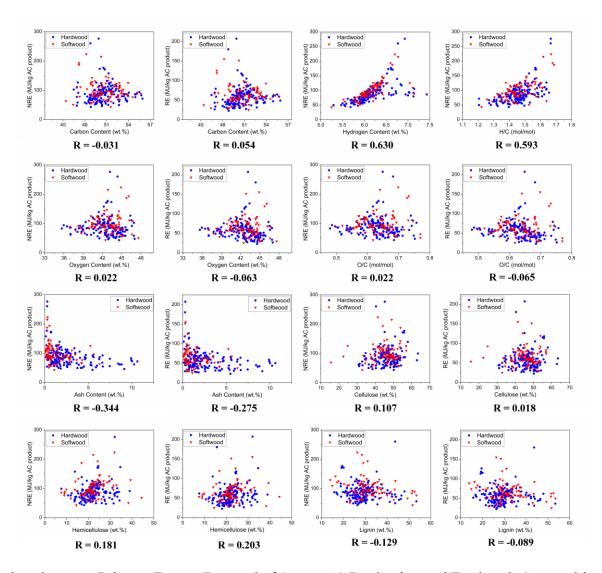
| Plywood                 | SW | 42.55 | 5.81 | 43.68 | 1.69 | 6.27 | 40.77 | 24.58 | 0.00  | 21.37 | 7.01  |
|-------------------------|----|-------|------|-------|------|------|-------|-------|-------|-------|-------|
| Spruce Wood             | SW | 49.03 | 6.13 | 44.55 | 0.08 | 0.21 | 48.78 | 13.74 | 0.00  | 25.85 | 11.42 |
| Pine                    | SW | 48.55 | 5.76 | 44.37 | 0.02 | 1.30 | 48.15 | 22.20 | 9.04  | 0.00  | 19.31 |
| Birch                   | HW | 47.00 | 6.19 | 46.50 | 0.11 | 0.20 | 39.92 | 38.92 | 0.00  | 17.51 | 3.45  |
| Spruce                  | SW | 47.37 | 6.30 | 46.17 | 0.07 | 0.10 | 43.96 | 26.97 | 0.00  | 24.99 | 3.98  |
| Pine                    | SW | 46.87 | 6.30 | 46.67 | 0.07 | 0.10 | 42.96 | 26.97 | 0.00  | 24.03 | 5.94  |
| Pine                    | SW | 48.33 | 5.88 | 43.23 | 0.49 | 2.07 | 46.81 | 17.33 | 1.11  | 18.34 | 14.09 |
| Beech                   | SW | 49.73 | 6.29 | 43.04 | 0.40 | 0.53 | 46.15 | 31.53 | 5.39  | 16.39 | 0.00  |
| Pinewood<br>Sawdust     | SW | 49.19 | 6.10 | 44.08 | 0.08 | 0.56 | 53.70 | 21.88 | 8.82  | 15.05 | 0.00  |
| Spruce                  | SW | 48.76 | 6.23 | 44.60 | 0.15 | 0.26 | 49.38 | 22.66 | 0.00  | 27.71 | 0.00  |
| Salix                   | HW | 47.23 | 5.94 | 44.65 | 1.03 | 1.16 | 49.98 | 23.20 | 0.00  | 15.07 | 10.58 |
| Poplar -<br>Sapwood     | HW | 51.47 | 6.13 | 42.20 | 0.00 | 0.20 | 48.82 | 17.30 | 13.06 | 20.62 | 0.00  |
| Poplar -<br>Heartwood   | HW | 51.21 | 6.51 | 42.16 | 0.00 | 0.12 | 50.91 | 13.79 | 0.10  | 35.08 | 0.00  |
| Norway<br>Spruce        | SW | 50.28 | 6.20 | 43.19 | 0.10 | 0.23 | 42.33 | 26.20 | 4.86  | 26.38 | 0.00  |
| Spruce Bark             | SW | 46.39 | 6.21 | 42.16 | 0.00 | 5.24 | 41.89 | 26.93 | 0.00  | 25.93 | 0.00  |
| Eucalyptus<br>Sawdust   | HW | 49.35 | 5.72 | 43.90 | 0.17 | 0.86 | 42.31 | 30.89 | 13.37 | 0.00  | 12.56 |
| Pine                    | SW | 49.33 | 6.39 | 43.44 | 0.20 | 0.63 | 38.77 | 24.21 | 0.00  | 36.38 | 0.00  |
| Hybrid Poplar           | HW | 50.05 | 5.91 | 42.54 | 0.30 | 1.20 | 50.34 | 21.04 | 19.11 | 6.17  | 2.11  |
| Subabul<br>Wood         | HW | 48.16 | 5.89 | 45.06 | 0.00 | 0.89 | 44.57 | 26.88 | 2.51  | 7.00  | 17.83 |
| Pine Chip               | SW | 47.19 | 6.64 | 45.74 | 0.17 | 0.27 | 53.87 | 16.85 | 0.00  | 29.01 | 0.00  |
| Logging<br>Residue Chip | SW | 46.87 | 6.15 | 44.79 | 0.42 | 1.77 | 47.89 | 16.94 | 0.00  | 26.79 | 6.62  |
| Fir Wood                | SW | 48.30 | 5.92 | 41.87 | 0.42 | 3.49 | 39.86 | 31.47 | 9.13  | 16.05 | 0.00  |
| Pine Bark               | SW | 51.25 | 5.37 | 40.55 | 0.01 | 2.82 | 15.60 | 44.39 | 18.30 | 0.00  | 18.89 |
| Bambusa<br>vulgaris     | HW | 46.01 | 6.24 | 45.63 | 0.18 | 1.95 | 46.50 | 24.08 | 0.00  | 24.75 | 2.72  |
| Bambusa<br>vulgaris     | HW | 46.37 | 6.33 | 45.70 | 0.18 | 1.43 | 47.26 | 24.65 | 0.00  | 26.66 | 0.00  |
| Bambusa<br>vulgaris     | HW | 45.35 | 6.19 | 45.79 | 0.26 | 2.40 | 46.49 | 24.98 | 0.00  | 22.47 | 3.66  |
| Lauan                   | HW | 48.64 | 6.75 | 44.24 | 0.10 | 0.27 | 40.38 | 15.70 | 0.00  | 43.65 | 0.00  |
| Patula Pine             | SW | 55.52 | 7.12 | 36.85 | 0.19 | 0.32 | 48.79 | 9.21  | 4.90  | 36.78 | 0.00  |


Note: db – dry basis; C – Carbon content; H – Hydrogen content; O – Oxygen content; N – Nitrogen content; Ash – Ash content; CELL – Cellulose content; HEMI – Hemicellulose content; LIGC – Lignin-C content; LIGH – Lignin-H content; LIGO – Lignin-O content.

## 4. Additional Results


## 4.1 Correlations between Simulation Results and Biomass Feedstock Properties

The correlations between different biomass characteristics and other indicators for AC production energy and carbon footprints are summarized in Figure S6-9. The biomass characteristics used in Figure S6-9 include the main elements of biomass ultimate analysis (Carbon, hydrogen and oxygen content), lignocellulosic components (cellulose, hemicellulose and lignin content), ash content and two other indicators derived from ultimate analysis (Hydrogen to carbon ratio (H/C) and oxygen to carbon ratio (O/C)). The value of all these variables can be found or deduced from the data given in Table S6. The indicators for Figure S6-9 are biogenic GHG emission, total GHG emission, primary energy demand and energy recovery ratio (ERR), respectively.


Besides the main insights that are concluded in the article, some additional findings can be summarized from Figure S6-9 with the given R-value (correlation coefficient) of each plot. Overall the correlation between most of the biomass characterization data and the proposed indicators are weak (with R-value < 0.2), except the hydrogen content, H/C ratio and ash content. In addition, the ash content is negatively correlated to all the proposed indicators, which is because ash has no reactions in the AC production process and retained in final AC production. However, the high ash content may reduce the quality of AC in some specific applications (e.g., adsorbent, supercapacitor.



**Figure S6** Correlations between the Biogenic GHG Emission of Steam AC Production and Feedstock Composition (RE: Process with Energy Recovery; NRE: Process without Energy Recovery)



**Figure S7** Correlations between the Total GHG Emission of Steam AC Production and Biomass Feedstock Composition (RE: Process with Energy Recovery; NRE: Process without Energy Recovery)



**Figure S8** Correlations between Primary Energy Demand of Steam AC Production and Feedstock Composition (RE: Process with Energy Recovery; NRE: Process without Energy Recovery)

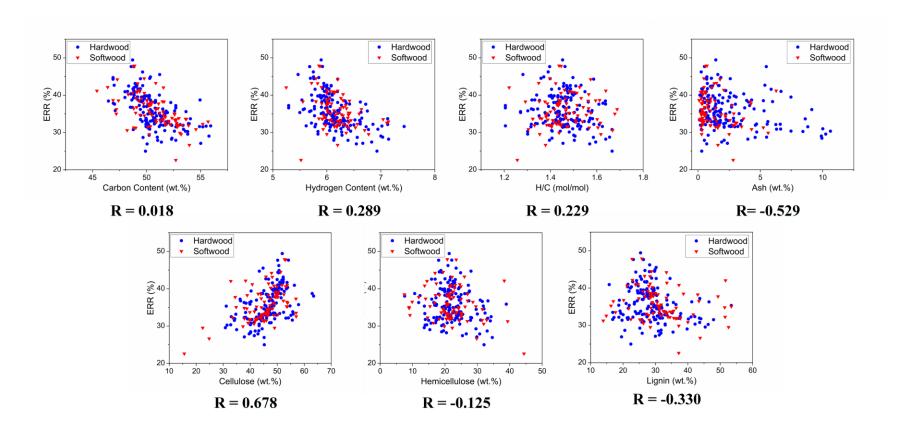




Figure S9 Correlations between Energy Recovery Ratio of Steam AC Production and Biomass Feedstock Composition

## 4.2 Additional Sensitivity Analysis Results



**Figure S10** Sensitivity Analysis for the Energy Consumption, Biogenic GHG Emission (without Energy Recovery) and Fossil-based GHG Emission (with/without Energy Recovery) of Steam AC Production Process

## 5. References

- (1) U.S. Energy Information Administration. *Annual Energy Review 2011*; Washington, DC, 2012.
- (2) Bayer, P.; Heuer, E.; Karl, U.; Finkel, M. Economical and Ecological Comparison of Granular Activated Carbon (GAC) Adsorber Refill Strategies. *Water Res.* **2005**, *39* (9), 1719–1728. https://doi.org/10.1016/j.watres.2005.02.005.
- (3) Markus Andreas, M. Eco-Efficiency Evaluation of Waste Gas Purification Systems in the Chemical Industry, Swiss Federal Institute of Technology Zurich, 1997.
- (4) Jeswani, H. K.; Gujba, H.; Brown, N. W.; Roberts, E. P. L.; Azapagic, A. Removal of Organic Compounds from Water: Life Cycle Environmental Impacts and Economic Costs of the Arvia Process Compared to Granulated Activated Carbon. *J. Clean. Prod.* **2015**, *89*, 203–213. https://doi.org/10.1016/j.jclepro.2014.11.017.
- (5) Gabarrell, X.; Font, M.; Vicent, T.; Caminal, G.; Sarrà, M.; Blánquez, P. A Comparative Life Cycle Assessment of Two Treatment Technologies for the Grey Lanaset G Textile Dye: Biodegradation by Trametes Versicolor and Granular Activated Carbon Adsorption. *Int. J. Life Cycle Assess.* **2012**, *17* (5), 613–624. https://doi.org/10.1007/s11367-012-0385-z.
- (6) Muñoz, I.; Peral, J.; Antonio Ayllón, J.; Malato, S.; José Martin, M.; Yves Perrot, J.; Vincent, M.; Domènech, X. Life-Cycle Assessment of a Coupled Advanced Oxidation-Biological Process for Wastewater Treatment: Comparison with Granular Activated Carbon Adsorption. *Environ. Eng. Sci.* 2007, 24 (5), 638–651. https://doi.org/10.1089/ees.2006.0134.
- (7) Manda, B. M. K.; Worrell, E.; Patel, M. K. Innovative Membrane Filtration System for Micropollutant Removal from Drinking Water - Prospective Environmental LCA and Its Integration in Business Decisions. *J. Clean. Prod.* 2014, 72, 153–166. https://doi.org/10.1016/j.jclepro.2014.02.045.
- (8) Hjaila, K.; Baccar, R.; Sarrà, M.; Gasol, C. M.; Blánquez, P. Environmental Impact Associated with Activated Carbon Preparation from Olive-Waste Cake via Life Cycle Assessment. *J. Environ. Manage.* **2013**, *130*, 242–247. https://doi.org/10.1016/j.jenvman.2013.08.061.
- (9) Arena, N.; Lee, J.; Clift, R. Life Cycle Assessment of Activated Carbon Production from Coconut Shells. *J. Clean. Prod.* **2016**, *125*, 68–77. https://doi.org/10.1016/j.jclepro.2016.03.073.
- (10) Sepúlveda-Cervantes, C. V.; Soto-Regalado, E.; Rivas-García, P.; Loredo-Cancino, M.; Cerino-Córdova, F. d. J.; García Reyes, R. B. Technical-Environmental Optimisation of the Activated Carbon Production of an Agroindustrial Waste by Means Response Surface and Life Cycle Assessment. *Waste Manag. Res.* **2018**, *36* (2), 121–130.

- https://doi.org/10.1177/0734242X17741680.
- (11) Kim, M. H.; Jeong, I. T.; Park, S. B.; Kim, J. W. Analysis of Environmental Impact of Activated Carbon Production from Wood Waste. *Environ. Eng. Res.* **2018**, *24* (1), 117–126. https://doi.org/10.4491/eer.2018.104.
- (12) Kim, M.; Kim, G. Life Cycle Assessment of Activated Carbon Production System by Using Poplar. *J. Korean Soc. Environ. Eng.* **2014**, *36* (11), 725–732.
- (13) Gu, H.; Bergman, R.; Anderson, N.; Alanya-Rosenbaum, S. Life Cycle Assessment of Activated Carbon From Woody Biomass. *Wood Fiber Sci.* **2018**, *50* (3), 1–15.
- (14) Sharifan, S. A Comparative Optimization Study of Activated Carbon Production from Hazelnut Shells by Thermal and Microwave Heating Methods, Imperial College London, 2013.
- (15) Hung, J. J. The Production of Activated Carbon from Coconut Shells Using Pyrolysis and Fluidized Bed Reactors, The University of Arizona, 2012.
- (16) Campo, B. G. Production of Activated Carbon from Fast Pyrolysis Biochar and the Detoxification of Pyrolytic Sugars for Ethanol Fermentation, Iowa State University, 2015.
- (17) Heidari, A.; Khaki, E.; Younesi, H.; Ray, H. Evaluation of Fast and Slow Pyrolysis Methods for Bio-Oil and Activated Carbon Production from Eucalyptus Wastes Using a Life Cycle Assessment Approach. *J. Clean. Prod.* **2019**, *241*, 118394. https://doi.org/10.1016/j.jclepro.2019.118394.
- (18) Azargohar, R. Production Of Activated Carbon And Its Catalytic Application For Oxidation Of Hydrogen Sulphide, University of Saskatchewan, 2009.
- (19) Fagbemi, L.; Khezami, L.; Capart, R. Pyrolysis Products from Different Biomasses: Application to the Thermal Cracking of Tar. *Appl. Energy* **2001**, *69* (4), 293–306. https://doi.org/10.1016/S0306-2619(01)00013-7.
- (20) Loya-González, D.; Loredo-Cancino, M.; Soto-Regalado, E.; Rivas-García, P.; Cerino-Córdova, F. de J.; García-Reyes, R. B.; Bustos-Martínez, D.; Estrada-Baltazar, A. Optimal Activated Carbon Production from Corn Pericarp: A Life Cycle Assessment Approach. *J. Clean. Prod.* **2019**, *219*, 316–325. https://doi.org/10.1016/j.jclepro.2019.02.068.
- (21) Suganya, S.; Senthil Kumar, P. Evaluation of Environmental Aspects of Brew Waste-Based Carbon Production and Its Disposal Scenario. *J. Clean. Prod.* **2018**, *202*, 244–252. https://doi.org/10.1016/j.jclepro.2018.08.143.
- (22) Dornburg, V.; Faaij, A. P. C. Efficiency and Economy of Wood-Fired Biomass Energy Systems in Relation to Scale Regarding Heat and Power Generation Using Combustion and Gasification Technologies. *Biomass and Bioenergy* **2001**, *21* (2), 91–108. https://doi.org/10.1016/S0961-9534(01)00030-7.
- (23) U.S. DOE-OIT. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries. United States Department of Energy Office of Energy Efficiency and Renewable Energy: Washington, DC 2002, pp 1–87.

- (24) Ranzi, E.; Cuoci, A.; Faravelli, T.; Frassoldati, A.; Migliavacca, G.; Pierucci, S.; Sommariva, S. Chemical Kinetics of Biomass Pyrolysis. *Energy & Fuels* **2008**, *22* (6), 4292–4300. https://doi.org/10.1021/ef800551t.
- (25) Debiagi, P. E. A.; Pecchi, C.; Gentile, G.; Frassoldati, A.; Cuoci, A.; Faravelli, T.; Ranzi, E. Extractives Extend the Applicability of Multistep Kinetic Scheme of Biomass Pyrolysis. *Energy and Fuels* **2015**, *29* (10), 6544–6555. https://doi.org/10.1021/acs.energyfuels.5b01753.
- (26) Anca-Couce, A.; Scharler, R. Modelling Heat of Reaction in Biomass Pyrolysis with Detailed Reaction Schemes. *Fuel* **2017**, *206*, 572–579. https://doi.org/10.1016/j.fuel.2017.06.011.
- (27) Anca-Couce, A.; Sommersacher, P.; Scharler, R. Online Experiments and Modelling with a Detailed Reaction Scheme of Single Particle Biomass Pyrolysis. *J. Anal. Appl. Pyrolysis* **2017**, *127*, 411–425. https://doi.org/10.1016/j.jaap.2017.07.008.
- (28) Debiagi, P.; Gentile, G.; Cuoci, A.; Frassoldati, A.; Ranzi, E.; Faravelli, T. A Predictive Model of Biochar Formation and Characterization. *J. Anal. Appl. Pyrolysis* **2018**, *134* (June), 326–335. https://doi.org/10.1016/j.jaap.2018.06.022.
- (29) Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S. S.; Hosseinzadeh-Bandbafha, H.; Chau, K. wing. Integration of Artificial Intelligence Methods and Life Cycle Assessment to Predict Energy Output and Environmental Impacts of Paddy Production. *Sci. Total Environ.* **2018**, *631–632*, 1279–1294. https://doi.org/10.1016/j.scitotenv.2018.03.088.
- (30) Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Chau, K. wing. Combined Life Cycle Assessment and Artificial Intelligence for Prediction of Output Energy and Environmental Impacts of Sugarcane Production. *Sci. Total Environ.* **2019**, *664*, 1005–1019. https://doi.org/10.1016/j.scitotenv.2019.02.004.
- (31) Fahmi, I.; Cremaschi, S. Process Synthesis of Biodiesel Production Plant Using Artificial Neural Networks as the Surrogate Models. *Comput. Chem. Eng.* **2012**, *46*, 105–123. https://doi.org/10.1016/j.compchemeng.2012.06.006.
- (32) Liao, M.; Kelley, S. S.; Yao, Y. Artificial Neural Network Based Modeling for the Prediction of Yield and Surface Area of Activated Carbon from Biomass. *Biofuels, Bioprod. Biorefining* **2019**, *13*, 1015–1027. https://doi.org/10.1002/bbb.1991.
- (33) Aguda, R. Preparation and Characterization of Modified Biomass as Functional Carbon-Based Materials, North Carolina State University, 2017.
- (34) Martín-Gullón, I.; Asensio, M.; Marcilla, A.; Font, R. Steam Activation of a Bituminous Coal in a Multistage Fluidized Bed Pilot Plant: Operation and Simulation Model. *Ind. Eng. Chem. Res.* **1996**, *35* (11), 4139–4146. https://doi.org/10.1021/ie950759x.
- (35) AspenTech. Aspen Plus User Guide; Cambridge, 2000.
- (36) Peters, J. F.; Banks, S. W.; Bridgwater, A. V.; Dufour, J. A Kinetic Reaction Model for Biomass Pyrolysis Processes in Aspen Plus. *Appl. Energy* **2017**, *188*, 595–603. https://doi.org/10.1016/j.apenergy.2016.12.030.

- (37) AspenTech. Aspen Plus Getting Started Modeling Processes with Solids. **2013**, *128*, 594–601. https://doi.org/10.1016/j.jenvman.2013.06.008.
- (38) Wooley, R. J.; Putsche, V. Development of an ASPEN PLUS Physical Property Database for Biofuels Components; Golden, Colorado, 1996.
- (39) Atienza-Martínez, M.; Ábrego, J.; Mastral, J. F.; Ceamanos, J.; Gea, G. Energy and Exergy Analyses of Sewage Sludge Thermochemical Treatment. *Energy* **2018**, *144*, 723–735. https://doi.org/10.1016/j.energy.2017.12.007.
- (40) Yang, H.; Kudo, S.; Kuo, H. P.; Norinaga, K.; Mori, A.; Mašek, O.; Hayashi, J. I. Estimation of Enthalpy of Bio-Oil Vapor and Heat Required for Pyrolysis of Biomass. *Energy and Fuels* **2013**, *27* (5), 2675–2686. https://doi.org/10.1021/ef400199z.
- (41) Demirbaş, A. Calculation of Higher Heating Values. *Fuel* **1997**, 76 (5), 431–434. https://doi.org/10.1002/er.
- (42) Silva, H. S.; Ruiz, S. V; Granados, D. L.; Santángelo, J. M. Adsorption of Mercury (II) from Liquid Solutions Using Modified Activated Carbons. *Mater. Res.* 2010, 13 (2), 129–134. https://doi.org/10.1590/S1516-14392010000200003.
- (43) Ou, L.; Kim, H.; Kelley, S.; Park, S.; Biomaterials, F.; Carolina, N. Impacts of Feedstock Properties on the Process Economics of Fast-Pyrolysis Biorefineries. *Biofuels, Bioprod. Biorefining* **2018**, *12*, 442–452. https://doi.org/10.1002/bbb.1860.
- (44) Sajjadi, B.; Chen, W. Y.; Egiebor, N. O. A Comprehensive Review on Physical Activation of Biochar for Energy and Environmental Applications. *Rev. Chem. Eng.* **2018**. https://doi.org/10.1515/revce-2017-0113.
- (45) Demiral, H.; Demiral, I.; Karabacakoĝlu, B.; Tümsek, F. Production of Activated Carbon from Olive Bagasse by Physical Activation. *Chem. Eng. Res. Des.* **2011**, *89* (2), 206–213. https://doi.org/10.1016/j.cherd.2010.05.005.
- (46) Zheng, Z.; Xia, H.; Srinivasakannan, C.; Peng, J.; Zhang, L. Steam Activation of Eupatorium Adenophorum for the Production of Porous Carbon and Hydrogen Rich Fuel Gas. *J. Anal. Appl. Pyrolysis* **2014**, *110* (1), 113–121. https://doi.org/10.1016/j.jaap.2014.08.007.
- (47) Li, W.; Yang, K.; Peng, J.; Zhang, L.; Guo, S.; Xia, H. Effects of Carbonization Temperatures on Characteristics of Porosity in Coconut Shell Chars and Activated Carbons Derived from Carbonized Coconut Shell Chars. *Ind. Crops Prod.* 2008, 28 (2), 190–198. https://doi.org/10.1016/j.indcrop.2008.02.012.
- (48) National Renewable Energy Laboratory. Biomass Feedstock Composition and Property Database. 2015.
- (49) U.S. Department of Energy; Idaho National Laboratory. Bioenergy Feedstock Library bioenergylibrary.inl.gov (accessed Mar 13, 2019).
- (50) ECN.TNO. Phyllis2, database for biomass and waste https://phyllis.nl/ (accessed Mar 13, 2019).

- (51) Ferreiro, A. I.; Giudicianni, P.; Grottola, C. M.; Rabaçal, M.; Costa, M.; Ragucci, R. Unresolved Issues on the Kinetic Modeling of Pyrolysis of Woody and Nonwoody Biomass Fuels. *Energy and Fuels* **2017**, *31* (4), 4035–4044. https://doi.org/10.1021/acs.energyfuels.6b03445.
- (52) González, J. F.; Román, S.; Encinar, J. M.; Martínez, G. Pyrolysis of Various Biomass Residues and Char Utilization for the Production of Activated Carbons. *J. Anal. Appl. Pyrolysis* **2009**, *85* (1–2), 134–141. https://doi.org/10.1016/j.jaap.2008.11.035.
- (53) Garcia-Pérez, M.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Roy, C. Vacuum Pyrolysis of Softwood and Hardwood Biomass. Comparison between Product Yields and Bio-Oil Properties. *J. Anal. Appl. Pyrolysis* **2007**, *78* (1), 104–116. https://doi.org/10.1016/j.jaap.2006.05.003.
- (54) Kataki, R.; Konwer, D. Fuelwood Characteristics of Some Indigenous Woody Species of North-East India. *Biomass and Bioenergy* **2001**, *20* (1), 17–23. https://doi.org/10.1016/S0961-9534(00)00060-X.
- (55) Azeez, A. M.; Meier, D.; Odermatt, J.; Willner, T. Fast Pyrolysis of African and European Lignocellulosic Biomasses Using Py-GC/MS and Fluidized Bed Reactor. *Energy and Fuels* **2010**, *24* (3), 2078–2085. https://doi.org/10.1021/ef9012856.
- (56) Jindal, M. K.; Jha, M. K. Catalytic Hydrothermal Liquefaction of Waste Furniture Sawdust to Bio-Oil. *Indian Chem. Eng.* **2016**, *58* (2), 157–171. https://doi.org/10.1080/00194506.2015.1006145.
- (57) Di Blasi, C.; Signorelli, G.; Di Russo, C.; Rea, G. Product Distribution from Pyrolysis of Wood and Agricultural Residues. *Ind. Eng. Chem. Res.* 1999, 38 (6), 2216–2224. https://doi.org/10.1021/ie980711u.
- (58) Luo, G.; Chandler, D. S.; Anjos, L. C. A.; Eng, R. J.; Jia, P.; Resende, F. L. P. Pyrolysis of Whole Wood Chips and Rods in a Novel Ablative Reactor. *Fuel* **2017**, *194*, 229–238. https://doi.org/10.1016/j.fuel.2017.01.010.
- (59) Sharma, R.; Sheth, P. N.; Gujrathi, A. M. Kinetic Modeling and Simulation: Pyrolysis of Jatropha Residue de-Oiled Cake. *Renew. Energy* **2016**, *86*, 554–562. https://doi.org/10.1016/j.renene.2015.08.066.
- (60) Bridgeman, T. G.; Jones, J. M.; Shield, I.; Williams, P. T. Torrefaction of Reed Canary Grass, Wheat Straw and Willow to Enhance Solid Fuel Qualities and Combustion Properties. *Fuel* **2008**, *87* (6), 844–856. https://doi.org/10.1016/j.fuel.2007.05.041.
- (61) López, F. A.; Centeno, T. A.; García-Díaz, I.; Alguacil, F. J. Textural and Fuel Characteristics of the Chars Produced by the Pyrolysis of Waste Wood, and the Properties of Activated Carbons Prepared from Them. *J. Anal. Appl. Pyrolysis* **2013**, *104*, 551–558. https://doi.org/10.1016/j.jaap.2013.05.014.
- (62) Salinas-Martínez de Lecea, C.; Linares-Solano, A.; Garcia, P.; Molina, A.; Ruiz-Colorado, A. A.; Romero-Anaya, A. J. Phosphoric Acid Activation of Recalcitrant Biomass Originated in Ethanol Production from Banana Plants. *Biomass and Bioenergy* **2010**, *35* (3), 1196–1204. https://doi.org/10.1016/j.biombioe.2010.12.007.

- (63) Gueye, M.; Richardson, Y.; Kafack, F. T.; Blin, J. High Efficiency Activated Carbons from African Biomass Residues for the Removal of Chromium(VI) from Wastewater. *J. Environ. Chem. Eng.* **2014**, *2* (1), 273–281. https://doi.org/10.1016/j.jece.2013.12.014.
- (64) Güngör, A.; Önenç, S.; Uçar, S.; Yanik, J. Comparison between the "One-Step" and "Two-Step" Catalytic Pyrolysis of Pine Bark. *J. Anal. Appl. Pyrolysis* **2012**, *97*, 39–48. https://doi.org/10.1016/j.jaap.2012.06.011.
- (65) Rambo, M. K. D.; Schmidt, F. L.; Ferreira, M. M. C. Analysis of the Lignocellulosic Components of Biomass Residues for Biorefinery Opportunities. *Talanta* **2015**, *144*, 696–703. https://doi.org/10.1016/j.talanta.2015.06.045.
- (66) Sasmal, S.; Goud, V. V.; Mohanty, K. Characterization of Biomasses Available in the Region of North-East India for Production of Biofuels. *Biomass and Bioenergy* **2012**, *45*, 212–220. https://doi.org/10.1016/j.biombioe.2012.06.008.
- (67) Wei, L.; Xu, S.; Zhang, L.; Zhang, H.; Liu, C.; Zhu, H.; Liu, S. Characteristics of Fast Pyrolysis of Biomass in a Free Fall Reactor. *Fuel Process. Technol.* **2006**, *87* (10), 863–871. https://doi.org/10.1016/j.fuproc.2006.06.002.
- (68) Mun, T. Y.; Seon, P. G.; Kim, J. S. Production of a Producer Gas from Woody Waste via Air Gasification Using Activated Carbon and a Two-Stage Gasifier and Characterization of Tar. *Fuel* **2010**, *89* (11), 3226–3234. https://doi.org/10.1016/j.fuel.2010.05.042.
- (69) Jung, S. H.; Kim, S. J.; Kim, J. S. Characteristics of Products from Fast Pyrolysis of Fractions of Waste Square Timber and Ordinary Plywood Using a Fluidized Bed Reactor. *Bioresour. Technol.* **2012**, *114*, 670–676. https://doi.org/10.1016/j.biortech.2012.03.044.
- (70) Lyu, G.; Wu, S.; Zhang, H. Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions. *Front. Energy Res.* **2015**, *3* (June), 1–11. https://doi.org/10.3389/fenrg.2015.00028.
- (71) Grnli, M. A Theoretical and Experimental Study of the Thermal Degradation of Biomass, The Norwegian University of Science and Technology, 1996.
- (72) Janković, B. The Pyrolysis Process of Wood Biomass Samples under Isothermal Experimental Conditions-Energy Density Considerations: Application of the Distributed Apparent Activation Energy Model with a Mixture of Distribution Functions. *Cellulose* **2014**, *21* (4), 2285–2314. https://doi.org/10.1007/s10570-014-0263-x.
- (73) Shen, D. K.; Gu, S.; Luo, K. H.; Bridgwater, A. V.; Fang, M. X. Kinetic Study on Thermal Decomposition of Woods in Oxidative Environment. *Fuel* **2009**, *88* (6), 1024–1030. https://doi.org/10.1016/j.fuel.2008.10.034.
- (74) Chen, Z.; Hu, M.; Zhu, X.; Guo, D.; Liu, S.; Hu, Z.; Xiao, B.; Wang, J.; Laghari, M. Characteristics and Kinetic Study on Pyrolysis of Five Lignocellulosic Biomass via Thermogravimetric Analysis. *Bioresour. Technol.* **2015**, *192*, 441–450. https://doi.org/10.1016/j.biortech.2015.05.062.
- (75) Butler, E.; Devlin, G.; Meier, D.; McDonnell, K. Characterisation of Spruce, Salix, Miscanthus and Wheat Straw for Pyrolysis Applications. *Bioresour. Technol.* **2013**, *131*, 202–209. https://doi.org/10.1016/j.biortech.2012.12.013.

- (76) Burhenne, L.; Messmer, J.; Aicher, T.; Laborie, M. P. The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis. *J. Anal. Appl. Pyrolysis* **2013**, *101*, 177–184. https://doi.org/10.1016/j.jaap.2013.01.012.
- (77) Xu, J.; Elkamel, A.; Taqvi, S. T. H.; Liu, C.-G.; Rahimuddin, S. A.; Gull, M.; Mehmood, M. A.; Ahmad, M. S. Pyrolysis, Kinetics Analysis, Thermodynamics Parameters and Reaction Mechanism of Typha Latifolia to Evaluate Its Bioenergy Potential. *Bioresour. Technol.* **2017**, *245* (August), 491–501. https://doi.org/10.1016/j.biortech.2017.08.162.
- (78) Chen, Z.; Zhu, Q.; Wang, X.; Xiao, B.; Liu, S. Pyrolysis Behaviors and Kinetic Studies on Eucalyptus Residues Using Thermogravimetric Analysis. *Energy Convers. Manag.* **2015**, *105*, 251–259. https://doi.org/10.1016/j.enconman.2015.07.077.
- (79) Williams, C. L.; Westover, T. L.; Emerson, R. M.; Tumuluru, J. S.; Li, C. Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. *Bioenergy Res.* **2016**, *9* (1), 1–14. https://doi.org/10.1007/s12155-015-9694-y.
- (80) Raveendran, K.; Ganesh, A.; Khilar, K. C. Influence of Mineral Matter on Biomass Pyrolysis Characteristics. *Fuel* 1995, 74 (12), 1812–1822. https://doi.org/10.1016/0016-2361(95)80013-8.
- (81) Phanphanich, M.; Mani, S. Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass. *Bioresour. Technol.* **2011**, *102* (2), 1246–1253. https://doi.org/10.1016/j.biortech.2010.08.028.
- (82) López-González, D.; Fernandez-Lopez, M.; Valverde, J. L.; Sanchez-Silva, L. Thermogravimetric-Mass Spectrometric Analysis on Combustion of Lignocellulosic Biomass. *Bioresour. Technol.* **2013**, *143*, 562–574. https://doi.org/10.1016/j.biortech.2013.06.052.
- (83) Rousset, P.; Aguiar, C.; Labbé, N.; Commandré, J. M. Enhancing the Combustible Properties of Bamboo by Torrefaction. *Bioresour. Technol.* **2011**, *102* (17), 8225–8231. https://doi.org/10.1016/j.biortech.2011.05.093.
- (84) Chen, W. H.; Hsu, H. C.; Lu, K. M.; Lee, W. J.; Lin, T. C. Thermal Pretreatment of Wood (Lauan) Block by Torrefaction and Its Influence on the Properties of the Biomass. *Energy* **2011**, *36* (5), 3012–3021. https://doi.org/10.1016/j.energy.2011.02.045.
- (85) Ramos-Carmona, S.; Martínez, J. D.; Pérez, J. F. Torrefaction of Patula Pine under Air Conditions: A Chemical and Structural Characterization. *Ind. Crops Prod.* **2018**, *118* (March), 302–310. https://doi.org/10.1016/j.indcrop.2018.03.062.
- (86) Zhou, C.; Liu, G.; Wang, X.; Qi, C. Co-Combustion of Bituminous Coal and Biomass Fuel Blends: Thermochemical Characterization, Potential Utilization and Environmental Advantage. *Bioresour. Technol.* 2016, 218, 418–427. https://doi.org/10.1016/j.biortech.2016.06.134.