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Abstract 

The goal of this work is to achieve the defect-free production of parts made using additive 

manufacturing (AM) processes. As a step towards this goal, the objective is to detect flaws in AM 

parts during the process by combining predictions from a physical model (simulation) with in-situ 

sensor signatures in a machine learning framework. We hypothesize that flaws in AM parts are 

detected with significantly higher statistical fidelity (F-score) when both in-situ sensor data and 

theoretical predictions are pooled together in a machine learning model, compared to an approach 

that is based exclusively on machine learning of sensor data (black-box model) or physics-based 

predictions (white-box model). We test the hypothesized efficacy of such a grey-box model or 

digital twin approach in the context of the laser powder bed fusion (LPBF) and directed energy 

deposition (DED) AM processes. For example, in the DED process, we first predicted the 

instantaneous spatiotemporal distribution of temperature in a thin-wall titanium alloy part using a 

computational heat transfer model based on graph theory. Subsequently, we combined the 

preceding physics-derived thermal trends with in-situ temperature measurements obtained from a 

pyrometer in a readily implemented supervised machine learning framework (support vector 

machine). We demonstrate that the integration of temperature predictions from an ab initio heat 

transfer model and in-situ sensor data is capable of detecting flaws in the DED-produced thin-wall 

part with F-score approaching 90%. By contrast, the F-score decreases to nearly 80% when either 

temperature measurements from the in-situ sensor or temperature distribution predictions from the 

theoretical model are used alone by themselves. This work thus demonstrates an early foray into 

the digital twin paradigm for real-time process monitoring in AM via seamless integration of 

physics-based modeling (simulation), in-situ sensing, and data analytics (machine learning). 

Key Words: Additive Manufacturing, Digital Twin, Thermal Simulations, Graph Theory, Data 

Analytics, Machine Learning, Sensors, Laser Powder Bed Fusion, Directed Energy Deposition, 

Thermal Camera, Photodetector, Pyrometer.   
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1 Introduction 

1.1 Overview and Objective 

The goal of this work is to ensure the defect-free production of parts made using additive 

manufacturing (AM) processes. The design and manufacturing flexibility offered by AM is 

valuable in a variety of strategic applications ranging from aerospace to biomedical [1]. For 

instance, using AM to make parts for the Cessna Denali aircraft engine decreased the number of 

components from 855 to 12, and increased the fuel efficiency of the engine, as well as its power 

by over 10 percent [2]. However, industries such as aerospace are hesitant to use AM-produced 

parts for mission-critical components due to the existing lack of process consistency and 

significant variation in physical properties between parts [3, 4].  

This work concerns two specific AM processes used for making metal parts, namely, directed 

energy deposition (DED) and laser powder bed fusion (LPBF) [3]. In both LPBF and DED, metal 

in the form of powder is fused (melted) layer-upon-layer using a high-energy laser. The 

instantaneous spatiotemporal distribution of temperature in the part during the printing process 

governs the formation of defects, e.g., porosity and distortion in part shape [5, 6].  

As a step toward the goal of defect-free AM, the objective of this work is to detect incipient 

faults in LPBF and DED processes. To realize this objective, we use a two-step approach. First we 

predict the temperature distribution in the part with a novel graph theory-based computational heat 

transfer approach [7].  Subsequently, we combine the theoretically-predicted temperature 

distribution with thermal signatures acquired using in-situ sensors during the printing process in a 

machine learning model, which is trained to detect process faults, such as porosity (supervised 

learning).  
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To provide an analogy, the theoretical model is a simulacrum – a digital twin – of the actual 

AM process, whose status is continually updated with in-situ real-time sensor data observations so 

that potentially deleterious process excursions are detected and corrected in real-time [8-10]. 

The central hypothesis of this paper is that such a or digital twin approach or grey-box model 

that combines the theoretical temperature predictions with in-situ sensor data leads to higher 

statistical fidelity of fault prediction in comparison to models that are based exclusively on either 

theoretical predictions or sensor-related information alone [11, 12].  We test the foregoing 

hypothesis in the context of two practical AM case studies; one from LPBF and another from DED 

[5, 6].   

1.2 Rationale and Significance 

The concept of the digital twin is exemplified in Figure 1. The digital twin approach or grey-

box modeling combines the advantages of physics-based models (white-box) and data-driven 

models (black-box). White-box models typically consist of deterministic equations that 

encapsulate the physics of a process. For instance, the spatiotemporal distribution of temperature 

in an AM part is captured in terms of the heat equation, which is a second-order partial differential 

equation (described later in Sec. 3). While physical models are essential to understand the causal 

process phenomena, they are ill-suited to capture stochasticity (uncertainty), and the computational 

burden increases with inclusion of multi-scale phenomena [14, 18, 19].  

 
Figure 1: The concept of the digital twin (gray box modeling) approach in the context of the 

DED AM process. 
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In contrast, black-box models are constructed from empirical data alone; they relate process 

signatures extracted from sensors to observations. While data-driven models are adept at 

accommodating the uncertainty (variation) in the physical processes, their ability to interpret and 

explain the phenomena at the root of a flaw is inferior in comparison to white-box models [11, 12]. 

The interpretability limitation of data-driven models also constrains their use for process 

correction, as there is no theoretical guideline to bring the process back to its fault-free status once 

an anomaly is detected.  

The digital twin approach can significantly impact AM in the following three ways [8-10]:  

(i) optimize the process parameters, such as laser power and scan speed, and provide guidelines 

for part design, build orientation and placement of supports based on process physics as 

opposed to expensive empirical testing;  

(ii) serve as a basis for detection and monitoring of incipient process faults by combining 

theoretical predictions with real-time sensor data, and thereby provide a basis for model-

based feedforward control in AM.  We note that faults could include those inherent to the 

process, as well as those introduced through malicious cyber-physical intrusions; and  

(iii) reduce the computational burden involved in multi-scale modeling, as well as storing and 

analyzing a large volume of in-situ sensor data. 

1.3 Novel Contribution 

The unique contribution of this work is in augmenting real-time in-situ sensor data obtained 

at the laser-material interaction zone, called the meltpool (100 μm scale), with theoretically-

derived part-level temperature distribution (millimeter scale) to monitor the LPBF and DED 

processes (see Figure 1, in Sec. 2.1).  
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This work overcomes one of the main challenges in realizing the digital twin for AM, viz., the 

computational burden involved in obtaining the part-level thermal distribution. It currently takes 

several hours, if not days, for non-proprietary mesh-based finite element (FE) models to predict 

the temperature distribution inside an AM part as it is being printed [13-15].  

While commercial solutions, such as Autodesk’s Netfabb, have reduced the computation time 

through adaptive meshing-based FE techniques, the underlying mathematics remain proprietary 

and are therefore not tractable for integrating in-situ sensor data [13].  This work reduces the 

challenge of computational burden in simulating the thermal profile in AM parts by applying a 

recently published graph-theoretic computational heat transfer approach [7]. This approach was 

shown to predict the temperature distribution in AM parts within 10% of the time required by FE 

analysis and with error less than 10% [7].  

However, the graph theory approach remains to be tested and applied to a practical AM data 

set. This paper applies the graph-theoretic heat transfer model for the first time to real-world AM 

data and demonstrates its effectiveness from a process monitoring viewpoint by integrating the 

model predictions with in-situ sensor data.    

In closing this section, we note that this paper uses in-situ sensor data described in the authors’ 

prior publications [16, 17]. However, these previous publications were focused exclusively on 

data-driven machine learning approaches for process monitoring and defect detection. None of 

these prior publications combined sensor data and thermal modeling. In the same vein, concerning 

the graph-theoretic thermal model published in Ref. [7], the approach has not yet been applied to 

any of the data sets described in Ref [16, 17].  
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1.4 Organization of the paper 

The rest of this paper is organized as follows. The rationale for the digital twin, along with a 

review of the prior work, is provided in Section 2. The graph-theoretic approach for modeling the 

temperature distribution in metal AM processes is explained in Section 3. Next, in Section 4 and 

Section 5 the efficacy of the digital twin approach to detect process flaws is demonstrated via case 

studies from the LPBF and DED metal AM processes, respectively. Finally, conclusions and 

avenues for future work are given in Section 6. 

2 Literature Review 

The burgeoning need for a digital twin strategy to overcome the process repeatability and part 

quality challenges in AM is motivated in the pioneering works of DebRoy et al. and Yang, who 

provided an overarching framework for its implementation and demonstrated its efficacy via 

practical case studies [8-12]. We note that DebRoy et al. [8-10] refer to the approach as the digital 

twin for AM, while grey-box modeling is a term used by Yang et al. [11, 12].   

This section has two parts; the first, Sec. 2.1, discusses the need for the digital twin in AM; 

the second part, Sec. 2.2,  reviews the pioneering work in the area. 

2.1 Need for a Digital Twin Approach in AM. 

Achieving the digital twin is valuable in AM in the following three ways [8-10].  

1) Physics-based optimization of the AM process 

The process parameters and part features in metal AM are currently finalized through 

empirical design of experiments-based optimization [20]. There are two drawbacks with a purely 

empirical approach. First, the vast part design, material and process parameter space in metal AM 

processes, such as LPBF and DED is compounded by the relatively expensive process 

consumables, slow speed, and the small batch size of parts produced [9].  
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Second, the process parameters optimized for one type of part design may not yield optimal 

results when used with a different part design even with the same material. This is because the 

microstructure evolved and mechanical properties are dependent on the spatiotemporal heat 

distribution in the part as it is printed, which in turn is a function of the shape (geometry) of the 

part, part orientation, scan strategy, support structures, layout of the build, among others [14]. 

Hence, an empirical build-and-test optimization strategy is prohibitively expensive and time-

consuming in AM, and provides no assurance that the part will have the desired properties [8].  

The digital twin approach provides a route to transition AM from the current status quo of 

empirical optimization to physics-based optimization.  

2) Real-time monitoring and model-based feedforward control of the process 

Process monitoring in AM can be viewed within the context of both faults intrinsic to the 

process, as well as malicious intrusions. At present process monitoring in AM is primarily based 

on analysis of in-situ sensor data, which are subsequently linked to part flaws, part geometries and 

process conditions using machine learning models [21, 22].  

For instance, machine learning techniques, such as neural networks are trained from previous 

data (supervised learning) to recognize patterns, such as melt pool shape and size, and these 

patterns are correlated with defect characteristics based on offline characterization of the part 

quality, such as using X-ray Computed Tomography (XCT) to stratify the severity and location of 

defects; XCT is a tedious undertaking [23]. Unsupervised machine learning techniques, such as 

self-organizing maps, have also been pioneered recently to cluster signal patterns, but these too 

rely on offline XCT analysis for ground-truth verification [17]. 

The specific drawbacks of using purely data-driven approaches for monitoring of process 

faults in AM are as follows.  
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(i) A large amount of heterogeneous in-situ streaming sensor data, ranging from 1-

dimensional temperature data to high-speed 2-dimensional video is often acquired. There 

is a ponderous computational burden involved with storage and analysis of such a high 

volume and variety of sensor data – a big data problem.  

(ii) Each part geometry, part orientation, build plan, and process parameter set is linked to a 

unique signal pattern, implying that the data-driven models will have to be retrained if any 

of the process conditions change, and which further impedes the transferability of the data-

driven model across different AM platforms. 

(iii)  The complex nature of machine learning techniques, such as deep learning, occludes 

interpretability of the causal physical mechanisms that cause defect formation [24-26];  

(iv) The training process for supervised machine learning mandates comprehensive 

observational data sets representing different types of process scenarios and faults, which 

are expensive to obtain [25]. Furthermore, machine learning approaches often require the 

extraction of a relatively large number of input features from the sensor signatures, which 

adds to model complexity and is liable to cause prediction uncertainty.  

(v)  Data-driven approaches do not provide a physical basis to correct the process once a flaw 

has been detected.  

3) Reducing the computational burden in modeling and data analytics 

The defects in AM parts are caused by distinctive scale-dependent mass and heat transfer 

phenomena [14]. These phenomena range from the laser-material interaction zone, called the 

meltpool-level (< 100 μm) to the part-scale (1 mm and above). It is computationally tortuous to 

encapsulate such multi-scale phenomena within a physical model [14].  
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An alternative strategy, demonstrated in this work, is to augment the part-scale temperature 

distribution predicted from a theoretical model with finer meltpool-scale temperature trends 

observed using in-situ sensors. This exchange of complementary information between the 

theoretical model and sensor data not only reduces the computational burden concerning the 

theoretical model, but also limits the volume of sensor data that needs to be stored and analyzed. 

2.2 Prior Work in the Digital Twin in AM.  

We review the work of DebRoy et al. [8-10] in depth, given its contextual similarity with our 

own. These papers underscore the importance of seamless integration of physical process 

modeling, sensing, and analytics as a keystone of the digital twin concept. 

 To create a digital twin for AM from the process optimization and control perspective, 

Mukherjee and DebRoy suggest that there is a need for three crucial components: a mechanistic 

model, sensor data, and an interface between the mechanistic model and sensor data, which can 

take the form of a machine learning model [10]. The authors posit that the mechanistic model 

should be able to determine the optimum processing conditions within a reasonable amount of 

time. The in-situ sensors should then monitor the process for drifts and control of the process 

should be guided by the mechanistic model to obtain a part with near-ideal properties. Finally, the 

purpose of the machine learning interface is to compare the results between the mechanistic model 

and the post-build results (obtained from offline characterization techniques, such as XCT) to 

suggest changes in the physical model, part design, and processing. 

DebRoy et al. assert that the digital twin cannot entirely supplant experimental studies, but 

will aid in reducing the number of experiments required to make AM parts with minimal defects 

[8]. To demonstrate the concept of the digital twin, DebRoy et al. present a novel framework of a 

mechanistic model to predict the meltpool-level phenomena such as solidification rates, 
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temperature gradients, cooling rates, velocity field, and as a consequence determine the 

microstructure and mechanical properties (hardness) of stainless steel 316L and Alloy 800H (iron-

nickel-chromium alloy) parts made using DED process [8].  

Two main differences can be distilled between our work and that of DebRoy et al. [8-10]. 

First, the work of DebRoy is focused on predicting the effect of meltpool-level phenomena and 

solidification rates on the microstructural evolution. In our work, the emphasis is on predicting the 

part-level thermal phenomena and its effect on defects, such as porosity and distortion.  In other 

words, we predict the temperature distribution at the overall part-level where the thermal 

phenomena are in the scale of millimeters and beyond; the work of Debroy et al. predicts the 

meltpool-level phenomena which ranges from tens of micrometers to few hundred micrometers. 

Predicting the shape and solidification rates at the meltpool-level is contingent on thermal and 

fluid flow phenomena, while the part-level thermal model used in this work ignores the meltpool 

phenomena, such as latent heat losses [14, 18, 19].   

The meltpool-level models are geared toward prediction of the microstructural evolution as a 

function of the process parameters. By contrast, prediction of the part-level thermal distribution is 

aimed at predicting large-scale effects, such relationship between the process parameters, part 

design, and build conditions (supports and orientation) on defects, such as porosity, distortion in 

the part geometry and thermal-induced stresses.  To summarize, the prediction of meltpool 

intrinsically involves merging of both computational fluid dynamics and heat transfer aspects, 

while the prediction of the part-level thermal distribution involves computational heat transfer.   

Second, and a key differentiator herein, is that we complement the theoretical prediction of 

the temperature distribution at the part-level with in-situ sensor data in a machine learning 

framework. Specifically, the digital twin is used in this work to monitor the build condition in the 
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LPBF and DED processes by merging the part-level thermal distribution predictions with in-situ 

sensor data, such as photodetectors and pyrometers that capture the meltpool-level phenomena. 

The near real-time nature of this digital twin is the first step towards a feedforward closed-loop 

control in AM.  Finally, we note that physical modeling in AM is a mature and vast area, and is a 

multi-scale domain; the challenges and recent research in the area are reviewed in [13-15, 19, 27].  

3 Thermal modeling using Graph Theory 

The aim of part-level thermal modeling in AM is to solve the following continuum heat 

diffusion equation. Solving the heat diffusion results in the spatiotemporal temperature distribution 

𝑇(𝑥, 𝑦, 𝑧, 𝑡) at every location (x, y, z) inside the body at time 𝑡.  

𝜌𝑐𝑝
𝜕

𝜕𝑡
𝑇(𝑥, 𝑦, 𝑧, 𝑡) − 𝑘 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
)𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑄(𝑥, 𝑦, 𝑧, 𝑡) (1) 

The material constants are, 𝜌 the density of the part material; 𝑐𝑝 specific heat; and k thermal 

conductivity. The right hand-side is the heat input 𝑄 at a location (x, y, z) at time t. In the context 

of the LPBF or DED , the heat input 𝑄 [J.m-3] is the energy supplied by the laser. 

The key concept in the heat equation is that a certain proportion of the heat supplied (𝑄) is 

used to increase the temperature of the body, represented by the first derivative term 
𝜕𝑇(𝑥,𝑦,𝑧,𝑡)

𝜕𝑡
 on 

the left-hand side, and is contingent on its material properties. The rest of the heat supplied is lost 

to the surroundings governed by the shape of the part, and is captured by the second derivative 

term (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
)𝑇(𝑥, 𝑦, 𝑧, 𝑡) called the continuous Laplacian operator 𝚫.  

The graph-theoretic approach for solving the continuum heat equation is based on discretizing 

the continuous Laplacian operator 𝚫, by a weighted and undirected graph over a grid of points 

(nodes) sampled within the geometry of the part [7]. The continuous Laplacian operator Δ is then 
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approximated by a discrete Laplacian operator (L) called the graph Laplacian matrix. As shown in 

our recently published work, the discrete heat equation is solved as a function of  the eigenvectors 

(𝛟) and eigenvalues (𝚲) of the Laplacian matrix. The solution takes the following form, with 𝑇0 

as the melting temperature of the material. 

𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝛟𝑒
−

𝑘
𝜌𝑐𝑝

𝑔𝚲𝑡
𝛟′𝑇0 

(2) 

In the graph-theoretic solution, 𝑔 is a model parameter added to reconcile the units and 

influence the rate of heat diffusion. The parameter g, called the gain factor, is calibrated offline for 

a specific type of material with experimental data and Green’s function analysis [7]. We further 

consider that the boundaries of the part to lose heat as per Newton’s law of convection.  

The advantage of the graph-theoretic solution is that instead of solving the heat equation for 

each element through element birth-and-death techniques as in finite element (FE) analysis, we 

track the temperature distribution in the AM part in terms of nodes of a planar graph projected 

onto its geometry [7]. While the FE-based approach requires computationally intensive matrix 

inversion at each time step, the graph-theoretic method instead relies on parsimonious matrix 

multiplication for each time step [13, 15].   

Our previous work shows that the time taken by the graph theory to predict the temperature 

distribution for a fixed error-level of 5% in reference to the exact analytical solution obtained using 

Green’s function is about 1/10th of the time required by FE analysis [7]. Computational 

benchmarking studies with AM test geometries also indicated that the graph theory approach 

results in a thermal distribution trend that is within 10% in the fraction of time required by the so-

called Goldak’s computational FE analysis model used in the AM literature [13, 15]. For instance, 

for a representative AM part the graph theory approach required less than 20 minutes to converge, 
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compared to over 3 hours with FE analysis, and the difference between the FE analysis and graph 

theory models was less than 10% [7]. 

4 Case 1 - Implementing the Digital Twin in Laser Powder Bed Fusion (LPBF) 

4.1 Rationale 

This section demonstrates the digital twin concept in the context of LPBF process. Many 

existing studies for the data-driven modeling of thermal history mainly focus on test artifacts with 

simple shapes [28]. However, due to the change of effective thermal conductivity, the data-driven 

features vary during the fabrication of parts with more complex geometries (e.g., overhang 

structure).  To implement accurate design and in-situ monitoring of LPBF, it is critical to 

understand and capture the changes in data-driven features as a function of the local geometry.  

The aim is to establish the thermal-geometry relationship based on the in-situ data guided by a 

priori predictions from the graph theory model.  

Accordingly, a part with a steep overhang geometry is built on a commercial LPBF platform 

(EOS M270) as shown in Figure 2. Overhang structures are challenging to build, and often fail to 

have desired properties [29, 30]. The main cause for the failure of parts with significant overhang 

geometries is the prevalence of high temperatures in the overhang region [31, 32]. This is because 

the area underneath the overhang feature, if unsupported, is composed of raw powder, which has 

poor thermal conductivity compared to a fully consolidated part. The high temperatures generated 

in the melting of the overhang features create aberrations in the meltpool leading to poor surface 

finish and microstructure heterogeneity [29, 32].  

Understanding the dynamical nature of the thermal field in an overhang structure is critical 

for adjusting the baseline for design and process monitoring. By simulating the temperature 

distribution of the overhang before-hand, practitioners can anticipate potential regions for failures. 
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The theoretical simulation also serves as a reference benchmark for data-driven analysis, for 

instance, instead of tracking every location of the build with sensors, resulting in extremely large 

data sets, only certain critical locations, prone to failures such as near the vicinity of overhang 

features can be monitored more closely. Accordingly, using a theoretical model will reduce the 

volume of sensor data that must be stored, thus making defect detection more computationally 

tractable, but also provide a forward-looking tool to guide part design and build planning.   

The developed graph-theory derived temperature trends are validated by benchmarking 

against the actual part geometry specified in the G-code. The exact location where the laser 

transitions from the bulk area of the part to the overhang region is precisely traceable from the 

design of the part and G-code implemented in the machine. This one-to-one matching of the laser 

position from the G-code, the temperature predicted from the graph theory model, and meltpool-

level data collected by the sensors provides the baseline information to rigorously benchmark the 

results before the digital twin can be implemented for in-practice complex parts. 

4.2 Experimental Setup and Data Acquisition Procedure 

An overhang nickel alloy 625 (popularly called Inconel 625) structure consisting of  800 

layers, as shown in Figure 2(a), was built using an EOS M270 LPBF machine at National Institute 

of Standards and Technology (NIST) [16]. The experimental details are described in Ref. [16]. An 

important aspect of the build that influences the thermal distribution in the part is the use of a 

stripe-wise scanning pattern. This laser scan strategy is described later in the context of Figure 4. 

To explain briefly, a stripe is a section of the part that is scanned by the laser in a meandering line-

by-line pattern. Each line segment inside a stripe is called a hatch.  Process signatures are acquired 

with a shortwave infrared (SWIR) thermal camera and a photodetector (Figure 2(b)). Close to 5 

gigabytes of sensor data are obtained per layer.  
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Given challenges with storage of such as large amount of heterogeneous data, the thermal 

camera is active for a few layers; we have analyzed data from one layer in this work which is at a 

height of 7.9 mm as shown in Figure 2(b).  The data acquired from these sensors display distinctive 

signatures while scanning the overhang and bulk (non-overhang) section of the part. For instance, 

in Figure 3 (b-d) it is evident from the thermal camera images that the meltpool in the overhang 

section is approximately 1.5 times in length as compared to the meltpool of the bulk section. 

 
Figure 2: (a) 3-D schematic representation of the overhang part. (b) Schematic of the sensing 

setup with respect to the part. Sensor data from layer at height 7.9 mm is used in this work. (c) A 

photograph showing the location of the thermal camera with respect to the LPBF machine. (All 

dimensions are in mm). 

 
Figure 3: (a) Photodetector signal and the corresponding thermal camera frames (right) of bulk 

and overhang section. (b-d) Accumulation of residual heat is observed in the thermal camera 

frame of the overhang section. 
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This can be attributed to the residual heat in the overhang section. Similarly, the photodetector 

signals in Figure 3 (a) show a fleeting difference in the overhang and bulk section. To reiterate, in 

this work, we use the data collected from the photodetector to distinguish between the overhang 

and bulk section of the test artifact to demonstrate the digital twin concept. The G-code in the 

machine provides the location of the laser so that the sensor data is matched precisely to the laser 

position. 

We note that there is an impetus to replace a high-fidelity sensor, such as a thermal camera, 

that requires intensive data storage and post-processing, with a low-fidelity and much less 

expensive sensing approach, such as a photodetector, which can also acquire data throughout the 

build process at sampling rates approaching 1 MHz. The thermal camera used in this work costs 

over three hundred thousand dollars, while a photodetector can be acquired for within $500. Thus, 

replacing a high-fidelity sensor such as thermal camera, with a low fidelity sensor yet inexpensive 

sensor will be advantageous practically. In this work, the thermal camera is used as a ground-truth 

against which the performance of the photodetector is assessed. 

However, the photodetector data is a time series data which provides no spatial information 

to distinguish between the overhang and bulk section of the test artifact. The photodetector data is 

therefore synchronized with the thermal camera data to establish spatial correlation. One image of 

the thermal camera corresponds to 500 data points of the photodetector. Since one hatch of the 

laser consists of 10 thermal camera images, thus the photodetector data is divided into 10 windows 

of ~500 data points to demarcate a hatch. 

We only used the data from stripe 2 and 3 (Figure 4) to demonstrate the concept and eliminate 

edge effects.  We considered three of the hatches from each stripe near the edge to represent the 
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overhang feature as shown in Figure 4. Thus, 60 windows of the photodetector data belong to the 

overhang section. Statistical features, such as mean and standard deviation of each of these 

windows are calculated from the photodetector signal, and from the intensity readings of the 

thermal camera.  

4.3 Thermal simulation of the LPBF test sample with overhang feature  

The thermal simulation is discretized into 10 blocks per hatch with 4 nodes per block. The 

simulation parameters are derived based on the calibration procedures described in Ref. [7]. The 

overhang part is built by adopting the below-explained laser scanning regime.  

1) Each layer of the part is built in a stripe-wise pattern as shown in Figure 4. The length of each 

stripe,  (𝑆𝐿) is set to be 4 mm, and there are four stripes per layer. 

2) A raster pattern is employed to sinter each stripe. A single stripe is a hatch with thickness ℎ𝑡 

(Figure 4). In this work, the hatch thickness is 0.1 mm. 

3) Each hatch is sintered in a block-by-block fashion to resemble the LPBF process (Figure 5). 

The length of each block, 𝑏𝐿 (Figure 4) is set to be 0.4 mm, and there are 10 blocks per hatch. 

The simulation of the LPBF process for a layer at 7.9 mm height is represented in Figure 4. 

The layer is sintered in a stripe-wise pattern identical to the physical build. Further, each stripe is 

sintered hatch-by-hatch, and subsequently, each hatch is sintered block-by-block as shown in 

Figure 5.  It is observed from Figure 4 that the overhang section of the part tends to accumulate 

heat due to the insulating nature of the surrounding powder.  

The temperature values predicted from simulation will be used as inputs to the machine 

learning model. Similar to the photodetector data, temperature readings 60 overhang section 

hatches and 60 bulk section hatches are recorded for the simulation. The mean and standard 

deviation of temperature for each block in a hatch is calculated based on the temperature at that 



Page 18 of 32 

 

particular instant from 15 preceding blocks to account for the thermal history of the process. The 

parameters used for simulation and thermal properties of the material are reported in Table 1. 

 Table 1: Parameters and their corresponding values used in simulation of the test artifact. 

Simulation Parameters Values 

Layer thickness [mm]  0.2 

Hatch thickness [mm] (ℎ𝑡)  0.1 

Stripe length [mm] (𝑆𝐿) 4 

Block length [mm] (𝑏𝐿) 0.4 

Total number of nodes in the part 12,400 

Neighborhood distance, 𝜀 [mm] 3 

Gain factor 3 × 106 

Thermal Properties Values 

Convection coefficient wall to powder, hw [W/m2. K] 1 × 10-6 

Convection coefficient substrate (sink), hs [W/m2. K]  1 × 10-2 

Thermal diffusivity (α), [m2/s]  3.4 × 10-6 

Density, 𝜌 [kg/m3] 8,440 

Ambient temperature, T∞ (K) 298 

 
Figure 4: LPBF simulation of a layer of the overhang part done using spectral graph theory. The 

simulation is done stripe-wise similar to the print strategy. Heat accumulation in the overhang 

edge is observed. 
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Figure 5: Block-by-block sintering of a hatch in the overhang part using a moving heat source. In 

this work, 𝑁 = 10, i.e., each block is sintered with 10 blocks, and each block has 4 nodes. 

4.4 Predicting the Signatures Belonging to Different Sections of the Part. 

The digital twin is implemented in the following manner. The aim is to classify the difference 

between the overhang and bulk sections of the part shown in Figure 4 by combining data from the 

photodetector and thermal model. The results are cross-verified with the thermal camera, which is 

treated as the ground truth. This is achieved by using the mean and standard deviation of the 

photodetector signal within a window of ~500 µs corresponding to ~500 data points. Likewise, 

the mean and standard deviation of the temperature predicted by the graph theory approach are 

used as features representing the theoretical side of the digital twin. The features are combined in 

a support vector machine (SVM) model with a linear kernel.  

The SVM model is chosen given its simplicity of implementation, ease of interpretation, and 

because it needs few hyper-parameters. The SVM model is trained and tested using the five-fold 

cross-validation technique. To explain further, the model is trained on 94 data points out of the 

118 data points available (4/5th of the total data), and the remaining 24 data points (1/5th of the 

total data) are used for testing. This procedure is repeated 5-times during which the training and 

testing data is randomly selected, and finally, the classification accuracy is reported in the form of 

F-score. The F-score is a measure between 0 and 1 (larger the better) that assess both Type I 

(precision) and Type II prediction errors (recall) simultaneously [16]. 
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 From Table 2, it is observed that the pooling of thermal simulation and in-situ sensor data 

results in a classification fidelity of 87%; in contrast when the simulation and in-situ sensor data 

is used alone, the F-score decreases to ≈76%. The resulting confusion matrix is appended in the 

bottom of Table 2.   To validate these results, the classification accuracy is compared against the 

thermal camera images of the meltpool; i.e., the high-resolution thermal camera images are 

considered as a baseline ground truth.  

Table 2: The performance (F-score) of using the sensor data features (meltpool intensity captured 

by the photodetector), simulation data, and both sensor and simulation data for predicting the 

process condition (bulk and overhang) in the LPBF-produced overhang geometry part. The 

results are compared to the thermal camera data (ground truth). 
Data Input features and Data F-score 

Photodetector data 

2: mean, standard deviation of intensity readings taken over 

60 consecutive hatches in a moving window. Data is 

available for 320 total hatches. 

79.6% (1.5) 

Simulation data 

2: mean, standard deviation of temperature predictions for 

15 consecutive blocks. There are 10 blocks per hatch, for a 

total of 3200 simulation blocks.  

76.3% (1.1) 

Digital Twin 

Photodetector +  

Simulation data 

2: mean, standard deviation of intensity readings + 

2: mean, standard deviation of temperature readings. 
87.5% (1.4) 

Ground truth: Thermal 

camera data 
2: mean, standard deviation of intensity readings. 93.2% (1.9) 

Confusion Matrix for two-Level Classification (Photodetector + Simulation) 

True Classes ↓ 
Predicted Classes 

Bulk Overhang 

Bulk 57 (out of 59) 2 (False Alarm) 

Overhang 12 (Failing to detect) 47 (out of 59) 

The F-score resulting from using the mean and standard deviation of the thermal camera 

images is close to 93%.  However, the thermal camera costs over $300,000, viz., nearly half as 

much as that of an LPBF machine. Instead, the photodetector and simulation data is significantly 

more cost-effective (~$500) and yet the prediction fidelity achieved by the photodetector when the 

data acquired therefrom is combined with a physics-based thermal model is within 6% of the 

infrared camera. On the suggestion of one of the anonymous reviewers  we also combined the 
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ground truth infrared thermal sensor data with theoretical simulation results, the F-score improved 

marginally by about 1.7 % from 93.2% to 94.9% (1.2% standard deviation). 

5 Case 2 – Implementing the Digital Twin in Directed Energy Deposition  

5.1 Experimental setup and data acquisition procedure 

A Titanium alloy (Ti6Al4V) thin-wall test part is built on an Optomec LENS 750 DED, which 

as shown in Figure 6, is instrumented with sensing array which consists of a coaxial dual-

wavelength pyrometer and an off-axis infrared thermal camera. The part is 55 mm × 1.78 mm × 

27.5 mm (length × width × height), and is built under the following conditions: laser power 300 

W, scan speed 12.7 mm/sec, and the layer thickness of 0.508 mm. It takes 50 layers and 4 hours 

to build the part. Further details of the sensing and experimental setup are described in Ref. [17]. 

 
Figure 6:  The sensing layout of the DED machine equipped with a pyrometer and an infrared 

thermal camera. 

After the part is built, it is examined using X-ray computed tomography (XCT), and locations 

of flaws of diameter larger than 100 μm are recorded. We hypothesize that flaws occur due to 

accumulation of heat as the layers are deposited and the part grows in size – one of the 

characteristic difficulties in building thin-wall DED parts. To impede flaws due to overheating of 
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the part, researchers often use a lower laser power near the top layers of tall and thin-wall builds 

[33].   

Figure 7 illustrates representative pyrometer images recorded in the regions where flaws were 

detected; the pyrometer signals depict a considerable difference in the shape of the meltpool for 

regions where flaws are absent versus those locations where flaws are present.  

 
Figure 7: Pyrometer frames depicting the irregular meltpool shapes and part flaws observed 

during offline characterization of a region in the thin-wall. A flaw-free region, in stark contrast, 

depicts a  uniformly shaped meltpool [17].  

5.2 Thermal simulation of the thin-wall DED part.  

In this work 26 pyrometer images are acquired per layer of the thin-wall. Hence, the simulation 

steps can be discretized per layer into 26 blocks, so that each block corresponds to a pyrometer 

image as shown in Figure 8. The simulation parameters for DED of the thin-wall part are given in 

Table 3. 

 

Figure 8: The discrete block-by-block heating of a hatch while simulating the DED process. A 

temperature gradient can be seen in the hatch by the time the simulation has reached time step 𝑡6. 

Each block has an equal number of nodes inside it. 
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The thermal distribution of the entire part recorded at layer 7 in terms of normalized 

temperature from the infrared thermal camera is shown in Figure 9(a) and qualitatively at various 

layers in Figure 9(b). We note that these temperatures recorded by the thermal camera have been 

normalized between 0 and 1, because the actual part temperature, in absence of the thermal 

emissivity parameters, cannot be precisely ascertained. The observed thermal trends are compared 

with those predicted using graph theory; the mean absolute percentage error (MAPE) between 

simulation and the data recorded by thermal camera data is assessed to be 8%. 

Table 3: The simulation parameters used for simulating the DED of the thin wall. 

Simulation Parameters Values 

Layer thickness (mm) 0.508 

Hatch thickness (mm) 1.78 

Block length (mm) 2.1 

Total number of nodes in the part 15,600 

Neighborhood distance,  𝜀 (mm) 3.5 

Gain factor (g) 2 × 106 

Thermal Properties Values 

Convection coefficient wall, hw (W/m2. K) 1 × 10-6 

Convection coefficient substrate (sink), hs (W/m2. K) 1 × 10-2 

Thermal diffusivity, α (m2/s) 7 × 10-6 

Density, 𝜌 (kg/m3) 4,300 

Ambient temperature, T∞ (K) 298 

Continuing with the analysis, we further isolate the meltpool from other sections of the part, 

the pyrometer signatures are filtered using the threshold value of 1600 oC which is considered as 

the melting temperature of Ti6Al4V, as described in our previous publication [17]. In Figure 10, 

the temperature derived from the graph-based simulation at each layer is compared with the 

pyrometer data layer-by-later.  The data reported at each layer is the mean of measurement from 

26 blocks.  The error bars in  Figure 10 are representative of ± 1 standard deviation from the mean 

temperature for that layer (data from 26 blocks). A clearly increasing trend is evident in both the 

simulated and measured temperature.  We note that the part-level temperature trends predicted by 

the graph theory approach are in normalized temperature units.  
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The increasing trend in part temperature with build height is to be expected in thin-wall 

geometries, because the increasing distance between the layer and substrate (which acts as a heat 

sink) impedes the conduction of heat away from the part, and hence the heat tends to accumulate 

near the topmost layers of the part  and consequently causes material consolidation errors and 

flaws, such as those seen in Figure 7  [34].  

 
Figure 9: (a) The experimental data observed for layer 7 from the IR thermal camera are juxtaposed 

against the graph-theoretic simulated results. (b) The visual depiction of the heat distribution in 

the thin wall part observed with a thermal camera, and predicted by the graph-theoretic simulation 

at various layers. 

 
Figure 10: Comparing the trends of simulated temperature in each layer to the measured 

meltpool temperature from the pyrometer. The error bars are ± 1 standard deviation long. 
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5.3 Predicting the Occurrence of Flaws in DED-processed Thin wall Parts. 

We now combine the block-by-block meltpool data in each layer recorded by the in-situ 

pyrometer and the corresponding graph-derived simulated temperature to detect the occurrence of 

flaws in a machine learning framework. As in the previous LPBF case study in Section 4, we chose 

the support vector machine (SVM) model, and use only four features (predictors) as inputs into 

the SVM to avoid overfitting of the model to the data. These four features are the mean and 

standard deviation of the normalized simulated temperature value for the node in each block, and 

the corresponding mean and standard deviation of the meltpool area, i.e., the meltpool shape 

characteristic. The output is a binary measure, i.e., the presence or absence of a flaw exceeding 

100 μm at each simulated block. We have not used the thermal camera data because it does not 

encapsulate the meltpool level phenomena and the temperature recorded is not absolute. 

The training data is manually labeled, in that the XCT data is stratified based on visual 

demarcation into two parts, namely, locations free from material consolidation flaws, and those 

locations where flaws are present. The flaw-afflicted locations are then grouped into the 26 blocks 

per layer in alignment with the pyrometer sensor measurements obtained per layer. We note that 

the number of flaw-free locations dominate those with flaws, in other words, the data is 

unbalanced. This unbalanced data set will cause the machine learning model to become unfairly 

biased towards prediction of flaw-free states causing high Type II errors. Further, to avoid 

overfitting, the data used for training and testing the SVM models are constrained to have equal 

number of blocks (38 blocks) that are defect-free and show porosity-related defects.  

The input vectors used for training the SVM consists of 61 out of a total of 76 blocks, and 15 

for testing. A five-fold cross-validation procedure is enforced, and the representative confusion 

matrix from this classification study is reported in Table 4; the F-score metric is ≈ 91% with a 

standard deviation of 1.2% over replications.  
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In comparison, as shown in Table 4, when only data from the simulation or sensor data is 

used, the F-score is in the range of 80% to 83%. The confusion matrix with the pyrometer and 

simulation data are reported in the bottom of Table 4. One also notes the decrease in prediction 

uncertainty resulting from the digital twin model. 

Table 4: The performance (F-score) of using the sensor data (meltpool area features from the 

pyrometer), simulation data, and both sensor and simulation data for predicting the occurrence of 

flaws in the DED-produced thin-wall part. 

Data Input features F-Score 

Pyrometer data 2: mean, standard deviation of meltpool area. 81.6% (3.2%) 

Simulation data 2: mean, standard deviation of temperature readings. 82.9% (2.7%) 

Digital Twin 

Pyrometer +  

Simulation data 

2: mean, standard deviation of pyrometer readings. 

+ 

2: mean, standard deviation of temperature readings. 

91.0% (1.2%) 

Confusion Matrix for two-level classification (Pyrometer + Simulation) 

True Classes ↓ Predicted Classes 

Flaw-free Flaws 

Flaw-free (38 total) 38 0 (False Alarm, 

Type I error) 

Flaws (38 total) 6 (Failing to detect, Type II error) 32 

The improvement in the prediction fidelity from 80% to 90% is important from a quality 

assurance perspective in AM [1]. The results reinforce the central message of this paper that 

pooling in-situ sensor measurements and predictions from a physical model results in more 

accurate prediction of defects compared to using either experimental data or simulation alone. 

Moreover, we used a very rudimentary machine learning approach, namely SVM, as opposed 

to relatively hyper-parameter intensive and computation-intensive techniques such as self-

organizing maps and deep learning neural networks to realize this aim [17, 24, 25]. Pertinently, 

the computational burden in storage and analysis of data is mitigated significantly using the digital 

twin approach as only the first two statistical moments (mean and standard deviation) from the 

sensor signatures need to be extracted. 
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6 Conclusions and Future Work 

This work demonstrates the concept of the digital twin in additive manufacturing (AM). The 

key idea is to combine physics-driven predictions with in-situ sensor data and machine learning to 

detect potential anomalies in the AM process. Specifically, this work shows that by augmenting 

the insight into the process physics gained through a theoretical model with real-time information 

from in-situ sensor data in a machine learning framework leads to higher statistical fidelity of 

detecting process flaws, compared to using only the theoretical model-derived predictions or in-

situ sensor data alone. 

The effectiveness of the digital twin approach proposed in this work was substantiated with 

experimental data obtained for the laser powder bed fusion (LPBF) and directed energy deposition 

(DED) metal AM processes as follows: 

(1) A novel graph theory-based approach is used to predict the instantaneous spatiotemporal 

temperature distribution in the LPBF and DED parts. This approach is considerably more 

computationally efficient than finite element models used in AM research while maintaining 

similar prediction accuracy [7].  

(2) In the LPBF process, an Inconel 625 part with an overhang feature was printed. While 

overhang features are not defects, they are challenging to build and often fail due to heat 

accumulation. Hence it is important to predict the impending failure of overhang features. The 

thermal distribution in the part was predicted using the graph-theoretic computational heat 

transfer model. By combining the part-level thermal history predicted by the graph theory 

model with in-situ meltpool intensity observations acquired using a photodetector, the process 

condition, i.e., whether a bulk or overhang feature is being printed is identified with accuracy 
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close to 88%. The prediction fidelity compares favorably with the ground truth data acquired 

from a meltpool thermal camera (≈ 92%).  

(3) A further important result from the LPBF case is that the digital twin considerably improves 

the prediction fidelity of a relatively inexpensive photodetector sensor (which costs less than 

$500), to the level of a much more expensive meltpool thermal camera costing over $300,000.  

(4) For the DED-related case, we use the graph theory approach to predict the temperature 

distribution in a thin-wall titanium alloy part, and subsequently, combined these predictions 

with meltpool temperature data acquired from a two-color, coaxial in-situ pyrometer. The 

statistical fidelity (F-score) in predicting locations with flaws is close to 80% when only either 

the thermal model or the meltpool sensor data is used without the other. However, when used 

together, the prediction fidelity improves to 90% - a significant improvement in the context 

of the AM field.  

(5) In both the DED and LPBF cases, rudimentary features, namely, mean and standard deviation 

were extracted from the sensor data and used as inputs for prediction of flaws. Accordingly, 

the digital twin approach considerably reduces the computational burden involved in the 

storage of raw sensor data and subsequent calculation of several dozen signal features that is 

typically required in complex data-driven machine learning methods.   

In our future work, we will further substantiate the concept of the digital twin in the context 

of the prediction of different types of flaws, such as cracking and deformation, with data acquired 

from multiple in-situ sensors. 
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