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Abstract
The objective of this work is to detect in sifu the occurrence of lack-of-fusion defects in

titanium alloy (Ti-6Al-4V) parts made using directed energy deposition (DED) additive
manufacturing (AM). We use data from two types of in-process sensors, namely, a spectrometer
and an optical camera which are integrated into an Optomec MR-7 DED machine. Both sensors
are focused on capturing the dynamic phenomena around the melt pool region. To detect lack-of-
fusion defects, we fuse (combine) the data from the in-process sensors invoking the concept of
Kronecker product of graphs. Subsequently, we use the features derived from the graph Kronecker
product as inputs to a machine learning algorithm to predict the severity (class or level) of average
length of lack-of-fusion defects within a layer, which is obtained from offline X-ray computed
tomography of the test parts. We demonstrate that the severity of lack-of-fusion defects is
classified with statistical fidelity (F-score) close to 85% for a two-level classification scenario, and
approximately 70% for a three-level classification scenario. Accordingly, this work demonstrates
the use of heterogeneous in-process sensing and online data analytics for in sifu detection of defects

in DED metal AM process.

Keywords: Directed Energy Deposition; Lack-of-fusion Defects; In-process Optical Emission
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1 Introduction

1.1 Background and Motivation
Directed energy deposition (DED) additive manufacturing (AM) offers the ability to produce

and repair high-value components. The process is also known popularly as Direct Metal
Deposition (DMD, a trademark of DM3D), and Laser Engineered Net Shaping (LENS, a
trademark of Optomec). However, as currently implemented, the process suffers from a lack of

part consistency and quality [1].

Empirical process mapping approaches, such as those utilizing dimensionless numbers to
determine the appropriate process parameters to avoid part flaws have been implemented [2, 3].

Nevertheless, such approaches are most appropriate for the DED process under static conditions
which produce stable (time-independent) build quality. Unfortunately, seemingly-random defects
in DED can occur despite empirical optimization of processing parameters [4]. Such seemingly
random, or stochastic flaws, necessitate extensive post-process inspection with X-ray computed

tomography (XCT) for quality assurance purposes.

Moreover, XCT is expensive, time-consuming, and becomes progressively less effective with
part size and complexity. In-situ identification of defects using sensor signatures offers the promise
of reduced inspection cost and increased confidence in part quality. However, sensing and control
of DED is complicated by the many material-process-machine interactions involved [5]. For a
review of these material-process-machine interactions and strategies to sense and mitigate defects
in DED, the reader is referred to one of several works [6-9]. In general, research efforts may be

categorized into four groups.
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(1) Melt pool monitoring chiefly involves measuring the shape, size or temperature of the melt
pool, typically, using CMOS or CCD cameras fitted with near infrared (NIR) filter or infrared
pyrometers [10-12].

(i1)) Powder delivery rate monitoring: involves the use of photodiodes and acoustic methods [13]
or imaging [14] coupled to the delivery tube [15] or the nozzle [16] to measure the powder
flow rates.

(ii1)) Layer morphology monitoring involves assessing the geometry of the deposited layer. For
instance, Davim ef al. projected a line laser is on a deposited layer, the reflection from which
is captured using a camera, and subsequently analyzed to ascertain the height of the deposited
layer (clad height) [17].

(iv) Optical emission monitoring: involves monitoring of optical emission above the melt pool,
generated by the highly-excited vapor plume. In laser welding and cladding, the utility of
optical emission spectroscopy is well established for process characterization and quality
monitoring [18, 19]. More recently, the use of optical emission spectroscopy has been

demonstrated for monitoring DED processes [20, 21].

An example of the use of optical emission spectroscopy to monitor the DED process is
presented in the work of Song and Mazumder [20], where spectroscopy was used to monitor the
elemental composition of chromium-based steel deposits. In a related work, Mazumder et al. [22]
also use optical spectrometry to identify elemental phase transformation in various powder

compositions, including, Iron-Nickel, Iron-Titanium, and Iron-chromium binary powders.

More recently, optical emissions spectroscopy has been applied to measure DED build quality.
Nassar et al. [21] used a spectrometer, in a setup similar to the one used herein, to identify the

onset of lack-of-fusion during DED of Ti-6Al-4V. The experimental results reported by Nassar et
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al. show a significant rise in the relative intensities of emissions, corresponding to Titanium lines,
relative to the intensity of continuum emissions, in the portions of a part where a non-ideal hatch
spacing caused lack-of-fusion defects. Taking this rationale forward, Nassar et al. [2] use the line-
to-continuum ratio at the 550 nm and 430 nm wavelength regions, derived from the spectrometer

as a monitoring statistic to detect defect locations in the part.

Researchers have also recently begun to integrate in-process sensor data with contemporary
machine learning approaches to extract patterns and relate sensor data to process conditions and
part quality. For instance, Khanzadeh et al. [23] investigated the effect of heat affected zone on
the emergence of flaws in DED. They demonstrated that by monitoring the features of melt pool
images, obtained from functional principal component analysis (FPCA) of dual-wavelength
imaging pyrometer data, the onset of lack-of-fusion defects could be predicted through machine
learning. A related work by Khanzadeh et al. [24] also uses a type of a neural network called self-
organizing map to analyze the pyrometer signals and subsequently detect defect locations in DED

parts.

1.2 Objective and Hypothesis

The objective of this work is to detect the occurrence of lack-of-fusion defects in the DED of
titanium alloy (Ti-6Al1-4V) parts by fusing data acquired from multiple in-process sensors. To
realize this objective, we develop and apply the concept of Kronecker product of graphs to combine
data from two types of sensors: an optical emissions spectrometer and images of the vapor plume
obtained from a filtered CCD camera [25, 26]. Three signal features are derived from the sensor
data, namely, two line-to-continuum ratio signatures from the spectrometer, and the area of the
meltpool plume from the CCD camera. These three features are used in graph-theoretic supervised

machine learning, with post-processes XCT data serving as ground truth, to predict defects.
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The central hypothesis of this work is that process signatures derived from the graph
Kronecker product analysis of the three signal features are statistically significant discriminants of
the lack-of-fusion defects that manifest in DED Ti-6Al-4V parts. As a consequence of testing this
hypothesis, we show that the severity level of lack-of-fusion defects in a layer is identified with
significantly higher statistical fidelity when the signal features derived from the Kronecker graph
product approach are used as independent variables, compared to statistical moments-based signal
features, such as signal mean and standard deviation. This work thus addresses both the burgeoning

need for heterogeneous sensor data fusion and for feature extraction for defect detection in DED.

2  Methods

2.1 Part Build Conditions and Sensor Instrumentation

The salient aspects of the DED process are schematically represented in Figure 1. A stream
of powder, aerosolized in an inert carrier gas (typically Argon), is directed onto a substrate via
nozzles on a laser processing head. The powder is melted onto the substrate through the thermal
action of a laser that is located coaxially with the processing head. By translating the processing
head relative to the substrate in the horizontal and vertical planes, the desired part geometry is built

layer-upon-layer.

Laser I Laser.
Processi Iy FOCl:lsmg
Head = 0pt|c
Fowder i
Delivery L Substrate

Nozzle

.

4

Figure 1: Schematic of the DED process.
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This work utilized the data collected by Stutzman, Nassar, and Reutzel described in Ref. [4].
Key experimental details are reiterated here for the convenience of the reader. An Optomec Laser
Engineered Net Shaping (LENS) MR-7 DED system is used in this work. In this work, three
process parameters were varied: laser power (P, Watt), powder flow rate (F, g/min), and hatch
pattern (H, cross, and parallel). The translation speed (10.6 mm/sec), layer height (0.254 mm), and
hatch spacing (1 mm) were kept constant. Cuboid-shaped coupons with the dimension of 15 mm
x 15 mm x 10 mm (length x width x build height), were built under the ten combinations of DED

process parameters settings reported in Figure 2.

These test coupons were built using titanium alloy Ti-6Al-4V powder, with a median powder
diameter (D50) of 37.72 um. Each test coupon is comprised of 40 layers with 12 hatches per layer
and is built on a 6.35 mm thick Ti-6AI-4V substrate. A photograph of a representative coupon and
an offline XCT slice taken at the second layer for each test coupon are shown in Figure 2. A
spectrometer and a CCD camera captured position and time-synchronized data during
processing—see Table 1 and Figure 3. The features extracted from the spectrometer signal and

plume camera images are the line-to-continuum ratio and total plume area, respectively.

Two line-to-continuum ratios are estimated around wavelengths of 430 nm and 520 nm that
corresponds to the emission of atomically-excited titanium (Ti I)[27]. The concept of the line-to-
continuum ratio and optical emission spectroscopy for AM applications is explained in recent
publications by Nassar et al. [4, 21]. The total plume area is calculated after the binarization of the

plume images.

Nassar et al. in a series of publications have explained implementation details and the physical
meaning of the line-to-continuum ratio — i.e., the relationship of the line-to-continuum emission to

the elemental excitation of alloy constituents of the powder feedstock, and through it to the quality
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of the build [4, 21, 28]. Key details are reiterated here for the convenience of the reader. The

spectrometer measures the intensity of optical emission at different wavelengths [29]. Titanium

makes up close to 90%, by mass, of the composition of Ti-6Al-4V, and exhibits strong, atomically-

excited emission lines around 430 nm and 520 nm. Continuum emissions of the plume, meltpool,

including blackbody radiations and other extraneous sources are accounted in the rest of the

spectrum.

Table 1: Process monitoring sensor information.

Specifications Plume Camera

Spectrometer

Basler Pilot piA640-210gm CCD camera

Ocean optics HR2000+ UV-VIS-IR
spectrometer

Locations 152 mm from laser interaction zone
inclined at 30° angle relative to the
substrate in the vertical plane.

109 mm from laser interaction zone
inclined at 20° angle relative to the
substrate in the vertical plane.

Detail Exposure time: 10 ms

Frame Rate: 50 Hz

Integration time: 20 ms
Wavelength: [200 nm -1100 nm]
Slit width: 10 ps

Resolution: ~1 nm (FWHM)
Optical fiber: 600 pm core diameter

Laser Power (P, Watt)

300

425

475

Hatch

Pattern (H) Parallel

Parallel

Cross Parallel Cross

Powder Flow Rate (F, g/min)
w

Figure 2: The ten selected printing conditions along with their XCTs related to the second layer.
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Figure 3: The image of the spectrometer and plume camera integrated into the DED machine.

2.2 Porosity Measurement

Subsequent to deposition, parts were analyzed with X-ray Computed Tomography (XCT)
using a voxel size of 15 um. Image stacks (slices), representing a height of 1 voxel, are extracted
from the XCT data along the build direction (z-axis). Each XCT slice is analyzed using four steps,

summarized in Figure 4.

Original XCT Cropped & Rctated XCT Extracted Pores

lr”‘l ‘I'-r'!"-' 2 i i o f"?"tﬁ"l P : 2y
Figure 4: The image processing steps used for extraction of defects characterlstlcs from each XCT slice.

The part area is 15 mm x 15 mm.

1. Cropping and rotation of the XCT slices is used to eliminate edge effects and to spatially index
the XCT data to the synchronized sensor data, which is in DED machine coordinates.
2. XCT images are converted to black and white (binarized) using a constant threshold value for

all images.
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3. XCT slices (15 um thick) are then reduced by projecting slices representing one DED layer
(250 pum thick) onto a single plane. This resulted in ~17 XCT slices forming a combined XCT
image at each DED layer.

4. Finally, the length of each lack-of-fusion defect on a combined XCT image is determined as

the length of the major axis of an ellipse that encompasses the defect.

2.3 Statistical analysis of processing parameters influencing lack-of-fusion porosity

To statistically quantify the effect of process conditions on lack-of-fusion defects, we conduct
a generalized linear regression analysis, with the process parameters as inputs and the average
length of a lack-of-fusion defect in a layer as output. The three main processing parameter, power
(P), powder flow rate (F), and hatch spacing (H), along with their interactions, are assessed to
determine if they provide a statically-significant (95% confidence level) determination of average
pore length per layer. The regression coefficient (R*-adj.) is also calculated with and without

processing parameter interactions.

2.4 Graph Kronecker product analysis of in-situ sensor data

As an alternative to statistical analysis, which uses the process parameters alone as inputs to
predict the average pore length, the main approach presented here is to synthesize data from the
spectrometer and plume imaging camera, and subsequently, use the sensor information to detect
the level of lack-of-fusion defects in a layer. The approach consists of three steps, as summarized
in Figure 5. The first step is to combine data acquired from the spectrometer and plume imaging
camera from one layer in the form of a network graph. Following this, the data are analyzed across
multiple layers using the concept of Kronecker product of graphs, and thus forming a dictionary
of signal patterns. Finally, a machine learning algorithm is trained to predict the average length of
lack-of-fusion defects in a layer as a function of the dictionary (input) and tested using a new

(unseen) set of sensor data.
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The main advantage of the graph Kronecker product approach over traditional statistical signal
processing approaches, as will become evident shortly, is that the former encapsulates the inter-
relationships between the data obtained at different layers, whereas, the latter considers data from

each layer to be independent of preceding and subsequent layers.

Step 3: Use the
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sensors in the form of a network graph. signal patterns through e ihg  geverity of
Kronecker product of graphs | 5k_of-fusion

Optical emission spectrum eltpool plume intensity
15000 7

g ‘u JM

Arbitrary Units
High Sever

{ &)

i

5000

i

-

W

400 600 800 1000
Wayelength (nm)

T‘WW*M U A

430 nm Line J 520nmLine
to Continuum  “ps1f  s25+753k t;a%onhnuum

{ o
Ratio 51k szt s3t

0

G,
KGraph of sensor data Graph of sensor
from of Layer 1 data from Layer N

Dictionary from the Kronecker Product

X =

Q
c
(&
>
—
O
—
(@]
()
>
4
—
(@)
Q.
Q
>S5
wv

kG, ®G) - kG ®Gy

D, = ; . :
Gy ®G) - &Gy ®Gy)

Sk s2t 53k
1L szt s3k

Low Severity  Medium Severity

Figure 5: The three steps in the approach to capture data from multiple sensors across layers.
Step 1: Combining the data from multiple sensors into a network graph.

Representative features are extracted from the spectrometer (line-to-continuum ratio around the
430 nm and 520 nm) and meltpool plume camera (the total projected area of the image). Given the
different sampling frequencies for the spectrometer and plume camera, the number of data points

in line-to-continuum ratios and the plume total area data not identical.

The spectrometer and the plume camera are down-sampled to 30 data points per layer
(approximately 15 to 18 individual readings were averaged) to ensure identical data lengths.
Labeling the two line-to-continuum measurements at a given instant ¢ in layer L as S1¢ (430 nm
wavelength) and S2% (520 nm wavelength), and the corresponding plume area as S3%, the three

channels of sensor data for a particular layer (L) can be represented in matrix form X; as follows:
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S1k 52k §3k
515 525 3%

X, = (1)

s1t sab s3]
ls1t  s2k  s3k|
In matrix X;, each row is a data point obtained at the time instant ¢, indexed by a sensor along each
column. This data is converted into a weighted network graph as discussed in our previous works,
and is only briefly described here [30, 31]. The Mahalanobis distance between each row of the
data X; is calculated as follows,

way = (g —75)C G —75)7 2

Where 7L and 7}are the ™ and 5™ row of the matrix X, and C~? is the inverse of the variance-
covariance matrix of X;. The calculated distances using Eqn. (2) will be represented as a matrix

G,.

G = [Wgp] G)
The matrix G is the weighted, undirected graph representation of the data in layer L. The

Mahalanobis kernel is used because it normalizes the data.

Step 2: Building a dictionary D, of graph theoretic features related to the severity level of lack-of-

fusion defects.

Given a graph G, for each layer L, every test part can be described as a set of N graphs (N =

40 layers in this study) through the following Kronecker product random walk kernel [26],

k(Gl ® Gl) k(G1 ® GN)

Dc = 4

k(Gy ®G) k(G ® Gy))

The matrix D, is called the dictionary and the subscript ¢ refers to the part condition; ¢ = {1,

2, ..., 10} in this work, since there are 10 process setting combinations. Further, G; & G; is the
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Kronecker product of graphs G; and G; which are representative of the sensors data for layers / and
Jj, respectively, for a particular part. The Kronecker product for matrices X and Y, viz., X ® Y is

described as:

10 1
Given, X =0 0 1];1/:[1 1
01 0

11 1 1 11
_ 1. 0. 1.
X(1,1).Y X(1,2).Y X(1,3).Y [ [% (1J] [% (1J] [% ﬂ
XQY=|x@21).Y X(22).Y X(23).Y =|0.[1 0] 0.[1 0] 1.[1 |
X(31).Y X(32).Y X(33).Y lo L1 1J
1 ol tli ol oy o
1100 1 1
100010
_lo oo o0 11
00001 0f
00110 0
0 01 0 0 O (5)

The random walk kernel, k(G; @ G;), representative of the similarity between graphs G; and

Gj, is obtained from the Kronecker product (X & Y) as [25],
-1
k(G ®G)) = z (1-7(6®6))

Vrows,
columns

(6)
where I is the identity matrix and y; ; is the decay constant. The decay constant y; ; is the inverse
of the maximal sum taken over the rows (or columns) of (G; ® G;). In graph theoretic terminology,
a random walk encapsulates the number of sequential nodes and edges that need to be traversed to
reach a random node B from a starting node A.

A key aspect of the dictionary (D.) obtained using the Kronecker graph product is that it
compares input data from a layer against preceding and subsequent layers, and therefore, captures

the inter-dependencies in the data across layers that would be lost if data from each layer is

considered independent of other layers as done in statistical signal processing.
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Step 3: Training a support vector machine to predict the severity level of the lack-of-fusion flaws

based on the dictionary D,.

Supervised machine learning is used to train a support vector machine (SVM) with a linear
discriminant kernel to predict the severity level (low or high) of the lack-of-fusion defects in a
layer [32]. The input sensor signals, encapsulated in the dictionary (D.), are used as input data.
We use principal component analysis (PCA) to dimensionally reduce the dictionary D, such that
only the components representative of 95% variation in the dataset are used as inputs to predict
the severity of lack-of-fusion defect in each layer. The PCA procedure convolves all the
information in the matrix D, into a few variables, which makes prediction via machine learning

more tractable, stable, and reduces the possibility of over-training.

We have purposely chosen the SVM approach, instead of more sophisticated machine
learning models for two reasons. First, in an SVM only a handful of hyper-parameters need to be
trained. Second, and more importantly, to support our argument that the features derived from the
graph Kronecker product results in higher prediction accuracy compared to statistical features

despite using the most rudimentary of machine learning models.

The data against which the inputs are trained is the severity level of lack-of-fusion defects in
each layer. This is measured by applying a threshold to the average length of lack-of-fusion defects
per layer, derived for the XCT analysis. Two and three-level classification is conducted using
threshold values based on XCT analysis—additional discussion of the choice of threshold values
is provided in Section 3.1. Low severity of a layer is defined as an average lack-of-fusion flaw size
less than or equal to 50 um. For the two-level classification, high severity was defined as an

average lack-of-fusion flaw length greater than 50 pm.
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For the three-level classification, the threshold values were 50 um for low severity, between
50 um and 200 pm for medium severity, and over 200 um for high severity. These threshold
values were chosen so that there were sufficient number of data points (close to 30) in each class,
while perturbation of the threshold does not have any significant effect on the two-level
classification scenario, it drastically reduces the data points available for the medium class of

severity in the three-level case.

The approach for predicting severity level using unseen input data is as follows. Consider a
data stream Xy,,, for a new layer identical to the matrix X; in Eqn. (1), which has not yet been
seen by the SVM model. Following the procedure described in Eqn. (2) and (3), we first convert
the data X,,.,, to the corresponding graph form G,,,,. Next, we obtain the matrix 6,,,,, as follows,

where G; to Gy are the older data already seen by the model.

Onew = [k(Gnew X G) - k(Gpew b3y GN)] (7)

The input vector in Eqn. (7), 0,,., 1s presented to the a priori trained SVM machine learning
model after the PCA procedure to obtain the corresponding severity level or class of the lack-of-

fusion defects.

The described methods are used to study two cases. The first case in which the machine
processing conditions (laser power (P), flow rate (F), and hatch pattern (H), shown in Figure 2 and
Figure 6) are assumed to be known and thus included in the machine learning model, and second
where the processing conditions are assumed to be unknown and excluded from the machine

learning model. In either case the unseen data are later tested following Eqn. (7).

In the first testing scenario, termed the known process condition scenario we randomly select
sensor data from 30 out of the available 40 layers from each of the 10 test parts to train the

corresponding dictionary, D, (30x30 matrix) for each part using Eqn. (4). The unseen 10 layers
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in each of the 10 parts are later used for testing. This implies there is sensor signature and
corresponding porosity data from 100 layers (= 10 parts x 10 layers) available for testing. In the
second case, called the unknown process conditions scenario, the dictionary D, (300300 matrix)
is built based on the random sampling of 300 layers from the data available from all of the 10 test
parts (each part has 40 layers, hence there are 400 layers to sample). As in the previous case, once
again we quarantine sensor signatures and porosity data from 100 layers for testing purposes.
Testing results are provided in the form of the confusion matrix shown in Table 2 and using
the Precision, Recall, and F-score values calculated using Eqn. (8). This training and testing
procedure are repeated five times (5-fold validation procedure), and the average F-score over the

training data set is reported.

Table 2: Classification outputs and measures arranged in the form of a confusion matrix.

Predicted Classes
True Classes | Predicted Condition Positive ~ Predicted Condition Negative
True Condition Positive True Positive 1;;5561)10:223
True Condition False Negative True Negative
Negative (Type II error) &

Precisi Number of True Positives
recision =
Y Predicted Condition Positive

Number of True Positives

Recall =
eca > True Condition Positive (8)

Precision . Recall

F =2
score * Precision + Recall
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3
3 Results and Discussion

This section is divided into two parts. In Sec. 3.1 we analyze the statistical significance of
three process parameters, namely: laser power (P, Watt), powder flow rate (F, g/min), and hatch
pattern (H, cross vs. parallel) on the average length of lack-of-fusion defect in each layer. In Sec.
3.2, we use the graph Kronecker analysis of the in-process sensor, to predict the severity level of

the lack-of-fusion defects per layer.

3.1 Offline Statistical Analysis of Lack-of-fusion Defect Characteristics from XCT Slices

Aggregated values for the average length of lack-of-fusion defects across all 40 layers for each
test parts used in this work are provided in Table 3. Three out of ten samples have an average lack-
of-fusion length, across all layers, less than 50 pm. Qualitative XCT analysis of these samples
reveals low flaw severity. Another three samples contain an average lack-of-fusion flaw length
between 50 um and 200 pm—these are categorized as having medium flaw severity. All other
samples have high flaw severity. These severity levels demarcated based on average pore length

are used in Section 3.2 for two- and three-level classification of each layer.

Table 3: Printing conditions of 10 parts and their estimated average pore length (descending order).

Laser  Powder Hatch  Average length of Two-level Three-level

Power Feed Pattern lack-of-fusion Classification State Classification State
[W] Rate defects in a layer

[¢/min] [um]

300 4 Parallel 302 High Severity High Severity
300 3 Parallel 294 High Severity High Severity
300 3 Cross 235 High Severity High Severity
300 2 Parallel 213 High Severity High Severity
300 4 Cross 189 High Severity Medium Severity
300 2 Cross 165 High Severity Medium Severity
475 4 Cross 70 High Severity Medium Severity
425 3 Cross 39 Low Severity Low Severity
425 3 Parallel 34 Low Severity Low Severity
475 4 Parallel 26 Low Severity Low Severity
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The effect of the three process parameters, power (P), powder flow rate (F), and hatch pattern
(H) on the average length of lack-of-fusion defect in a layer is shown in Figure 6. Generalized
linear regression analysis indicates that P, F, and H along with the interactions P x H and P x F
are statistically significant determinants of the aggregated average pore length of all layers of a
build. However, the linear regression coefficient (R?-adj.) was only 47% with main and interaction
terms included and 42% with only main P, F, and H. In other words, if the process parameters are
the sole predictors of the average length of lack-of-fusion defect in a layer, the fidelity of the
prediction would be less than 50%. Accordingly, there is a need to augment the process parameters

with in-process sensor signatures to predict pore formation in DED.

— 300 T ™

-t-tl\:"l\(!
2 8¢5 8

Average Pore Length (um
8

o

300 425 475 2 3 4 Par.allel Crc-Jss
(a) P - Laser Power (W) (b) F — Powder Flow Rate (g/min) (¢} H - Hatch Pattern

Figure 6: Individual plots representing the effect of each process parameters (a) laser power, (b) powder
flow rate, (c) and hatch pattern. The error bars represent a variation of one standard deviation.

Qualitative differences in the line-to-continuum and total plume area data are observed across
layers of varying degrees of lack-of-fusion. This is illustrated in Figure 7, where histograms
(empirical probability distributions) of the line-to-continuum ratio at 520 nm and the total plume
area are provided for three layers, of the same build, with varying severity of lack-of-fusion. While
subtle distinction in the shape of the empirical probability distribution are evident in Figure 6(a)
and (b), quantification of these differences is challenging; thus, no attempt at a purely statistical

correlation of sensor data to flaw severity is made.

Page 17 of 26




Layer 2 Layer 6 Layer 9

q e
Printing Condition: 475 Wetls i O R
Matarial feed rate : 4 g/min ol o g
Cross Hatch Pattern 2mm

045 v " " 04 - .

-e-Layer 2 -eo-Layer 2
--&--Layer 6 i Layer 2 --o--Layer 6
e Layer 9 0.35 ?" ¥ i La;e: 9
1o3f =
: o
m | ; ';l
1 o Ve
02 « ;i
' AViR Layer 6
ossl %L 7
104 1 & ‘i Layer 9
1 L ‘t‘_.
e ] o'w ' :u," \\. ...'-.'. .‘/I
~o- t‘ﬁ---.' ';' oy a ® “'_Q.-.?._-:“‘-M.- P
04 08 68 o 0.05 01 0.1
(@) Line-to-Continuum Ratio (b) Total Piume Area (mm?)

Figure 7: (a) the discrete probability distributions of the (a) line-to-continuum ratio and (b) total plume
area, all are related to three different layers when the printing conditions set at laser power = 475 W, flow
rate = 4 g/min, and hatch pattern is of the cross-type.

More pertinently, we note that while the overall quality of the 10 parts shown in Table 3 are
labeled based on the average length of lack-of-fusion defects, however, Figure 7 shows that the
defects can be different in different layers even with the same part. Accordingly, in this work, the
layers in a part are not labeled in the same category as that of the part they belong to in Table 3.
Instead, the pore severity of each layer is individually labeled as belonging to a particular category
through measurement of pore length from XCT slices as described in Sec. 2.2 independent of the
label of the part from which the layer originates.

3.2 Online detection of lack-of-fusion defects using sensor data

Results for the two training scenarios tested, known process condition and unknown process
conditions are presented in the confusion matrix in Table 4. From Table 4(a), it is evident that
treating the process conditions as known leads to a higher classification fidelity compared to the
scenario where the process conditions are unknown (Table 4(b)).
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Further examination of the confusion matrix in the known process condition scenario reveals
that classifying the average pore length into two levels is accomplished with greater statistical
fidelity compared to the three-level case.

Table 4(a): Representative confusion Matrix for detection of lack-of-fusion defects stratified into

two-level and three-levels of severity with graph random-walk technique assuming process
conditions are known. (X refers to average length of the lack-of-fusion defect per layer).

Confusion Matrix for two-Level Classification (known process condition)
Predicted Classes

True Classes |

Low Severity (X <50 pm) High Severity (X > 50 um)
Low Severity 20 (out of 26) 6 (False Alarm)
High Severity 12 (Failing to detect) 62 (out of 74)
Confusion Matrix for Three-Level Classification (known process condition)
Predicted Classes
True Classes | Low Severity (X <50 Medium Severity High Severity
um) (50 pm <X <200 um) (X>200 um)
Low Severity 20 (out of 26) 0 6
Medium Severity 4 21 (out of 37) 12
High Severity 6 9 22 (out of 37)

Table 4(b): Confusion Matrix for detection of lack-of-fusion defects stratified into two-level and
three-levels of severity with graph random-walk technique assuming process conditions are
unknown. (X refers to average length of the lack-of-fusion defect per layer).

Confusion Matrix for two-Level Classification (unknown process conditions)

Predicted Classes
True Classes | Low Severity High Severity
(X <50 pm) (X>50 pm)
Low Severity 2 (out of 34) 32 (False Alarm)
High Severity 7 (Failing to detect) 59 (out of 66)
Confusion Matrix for Three-Level Classification (unknown process conditions)
Predicted Classes
True Classes | Low Severity Medium Severity High Severity
(X <50 pm) (50 pm <X <200 pum) (X>200 um)
Low Severity 5 (out of 34) 0 29
Medium Severity 3 0 (out of 34) 31
High Severity 5 0 27 (out of 32)
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In Table 5 the statistical fidelity of classification for the two scenarios is expressed in terms
of the F-score, which captures both the Type I and Type II statistical errors (a higher F-score is
desirable). For the known process condition scenario, the two-level classification fidelity in terms
of the F-score is = 85% compared to ~<70% for the three-level case. The results from Table 5
indicate that the prediction accuracy using the input sensor data or process parameters alone is
poor, but when the sensor data and process information are combined together, the predictive

power of the approach is substantially improved (almost doubled).

Moreover, prediction fidelity (F-score) does not improve when more than one sensor is used
in the Kronecker graph product analysis. This is reasonable considering that all the sensors used
in this work are focused on the acquisition of data from the meltpool plume region, and hence,
capture the same phenomena [4]. The effectiveness of the sensor fusion approach could potentially

be magnified with multi-phenomena sensing.

Table 5: Performance of the graph classification approach (F-score) in comparison with the
statistical features for discriminating between 2-level and 3-levels of lack-of-fusion severity. The
numbers in the parenthesis is the standard deviation from a 5-fold cross-validation study.

2-level F Score (%) 3-level F Score (%)
Input Data Conditions Conditions Conditions Conditions
Known unknown Known unknown

Line-to-Continuum Ratio

(430 nm) 84.8 (8.0) 40.0(1.0) 72.4 (2.5) 23.4(5.7)

Graph . . .
P Line-to-Continnum Ratio g6 4(50)  41.033)  72.2(2.8) 26.9 (6.9)
Kronecker (520 nm)

Product

Plume Imaging Sensor 85.4(9.5) 40.0(1.0) 71.4(6.2) 30.3(3.7)
All Sensors 84.6 (6.3) 43.6 (4.6) 71.5(3.9) 21.2(3.1)
Principal Components of 40.3 (1.0) 37.3(2.5)

Statistical Features (with all sensors)

Raw Statistical Features

87.9 (3.0 69.4 (3.3
(18 features total with all sensors) (3.0) (3-3)
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An obvious question is whether the Kronecker graph product approach is worth the
complexity of implementation—why not just use statistical features and inputs to the machine
learning method? To address this, we repeat our analysis using only statistical features (instead of
the graph theoretic features). Input features included the mean, standard deviation, range,
skewness, kurtosis, and interquartile range from the two line-to-continuum ratio data streams from
the spectrometer, as well as the plume image as features, for a total of 18 features (6 features from

each signal).

Further, the statistical features are subjected to the PCA procedure, and to ensure equitable
comparison with the Kronecker graph product approach, the number of components that captured
95% of the variation are used. The results from the Kronecker graph features and statistical features
after PCA are juxtaposed in Table 5. As shown in Table 5, the graph-theoretic Kronecker product
features extracted from sensor signatures lead to a much better prediction of part quality, with an
F-score nearly double of that when using the traditional statistical features, in both the two-level

and three-level classification cases, thus validating our approach.

Lastly, we cross-verified the graph Kronecker product results against those obtained using
eighteen raw statistical features, without PCA reduction, as inputs to the SVM model. The raw
statistical features showed accuracy comparable to the graph Kronecker product, which uses only
two input features, for both two- and three-level classification. However, the fact that 18 statistical
features are required to reach a similar F-score as the graph Kronecker product, which has only
two features from principal components once again demonstrates the advantage of the Kronecker
product approach. Additionally, using such a large number of statistical features makes a machine

learning model susceptible to overfitting.
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We note that the F-score results from applying the PCA procedure to the raw statistical
features are significantly inferior to those obtained using the raw statistical features alone (last two
rows of Table 5). This is probably because of two inherent limitations in the PCA procedure. First,
PCA tends to neutralize the effect of outliers as it scales each feature based on its corresponding
mean value taken over all data points. Since layers with flaws tend to have signal features values
that cluster significantly away than the mean, the information concerning layers with flaws may
be lost. Second, the PCA is a linear dimension reduction technique which is most effective when
the underlying signal distribution and signal noise are both Gaussian, however, as evident from
Figure 7, the line-to-continuum ratio and total plume area signatures are both distinctly non-

Gaussian [33].

4 Conclusions and Future Work

This work developed and applied a new Kronecker graph product approach for combining
data from multiple sensors to detect the onset of defects related to insufficient material fusion
(lack-of-fusion defects) in DED AM processing of titanium alloy (Ti-6Al-4V) parts. Three
channels of in-process sensor data were acquired during the build: two channels of line-to-
continuum optical emission obtained around 430 nm and 520 nm wavelengths and the total area
of the plume area from a CCD camera filtered at 430 nm. X-ray computed tomography (XCT) data
were used as ground truth to train machine learning algorithms to predict the severity (class or
level) of the average length of lack-of-fusion defects within a layer. A limitation of this approach
is that only flaws observed within the XCT data (limited to a voxel size of 15 microns) can be used

for training and testing. Specific outcomes from this work are enumerated as follows.
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1. The effect laser power, powder flow rate, and hatch pattern on the average pore length was
quantified. All have a statistically significant effect on the average pore length, with the laser
power having the largest effect.

2. Using a Kronecker product analysis of input sensor data together with support vector machine,
we demonstrate prediction of the severity of lack-of-fusion defects across a layer with
statistical fidelity (F-score) approaching 75% to 85% . In comparison, the traditional statistical-
feature-based machine learning approach had a corresponding fidelity of 35% to 40%.

3. Information obtained from both sensor data and process parameters are necessary to obtain

statistically viable accuracy (above chance).

This work lays the foundation for a qualify-as-you-build framework in AM processes,
whereby defects are identified before the next layer is deposited, thus allowing corrective action.
In the forthcoming work, we will analyze the statistical fidelity of the approach in detecting
different types of defects given data from heterogeneous sensors.
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