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Abstract 

The objective of this work is to detect in situ the occurrence of lack-of-fusion defects in 

titanium alloy (Ti-6Al-4V) parts made using directed energy deposition (DED) additive 

manufacturing (AM). We use data from two types of in-process sensors, namely, a spectrometer 

and an optical camera which are integrated into an Optomec MR-7 DED machine. Both sensors 

are focused on capturing the dynamic phenomena around the melt pool region. To detect lack-of-

fusion defects, we fuse (combine) the data from the in-process sensors invoking the concept of 

Kronecker product of graphs. Subsequently, we use the features derived from the graph Kronecker 

product as inputs to a machine learning algorithm to predict the severity (class or level) of average 

length of lack-of-fusion defects within a layer, which is obtained from offline X-ray computed 

tomography of the test parts. We demonstrate that the severity of lack-of-fusion defects is 

classified with statistical fidelity (F-score) close to 85% for a two-level classification scenario, and 

approximately 70% for a three-level classification scenario. Accordingly, this work demonstrates 

the use of heterogeneous in-process sensing and online data analytics for in situ detection of defects 

in DED metal AM process. 

Keywords: Directed Energy Deposition; Lack-of-fusion Defects; In-process Optical Emission 
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1 Introduction 

1.1 Background and Motivation 

Directed energy deposition (DED) additive manufacturing (AM) offers the ability to produce 

and repair high-value components. The process is also known popularly as Direct Metal 

Deposition (DMD, a trademark of DM3D), and Laser Engineered Net Shaping (LENS, a 

trademark of Optomec).  However, as currently implemented, the process suffers from a lack of 

part consistency and quality [1].  

Empirical process mapping approaches, such as those utilizing dimensionless numbers to 

determine the appropriate process parameters to avoid part flaws have been implemented [2, 3].  

Nevertheless, such approaches are most appropriate for the DED process under static conditions 

which produce stable (time-independent) build quality.  Unfortunately, seemingly-random defects 

in DED can occur despite empirical optimization of processing parameters [4].  Such seemingly 

random, or stochastic flaws, necessitate extensive post-process inspection with X-ray computed 

tomography (XCT) for quality assurance purposes. 

Moreover, XCT is expensive, time-consuming, and becomes progressively less effective with 

part size and complexity. In-situ identification of defects using sensor signatures offers the promise 

of reduced inspection cost and increased confidence in part quality. However, sensing and control 

of DED is complicated by the many material-process-machine interactions involved [5].   For a 

review of these material-process-machine interactions and strategies to sense and mitigate defects 

in DED, the reader is referred to one of several works [6-9]. In general, research efforts may be 

categorized into four groups. 
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(i) Melt pool monitoring chiefly involves measuring the shape, size or temperature of the melt 

pool, typically, using CMOS or CCD cameras fitted with near infrared (NIR) filter or infrared 

pyrometers [10-12].   

(ii) Powder delivery rate monitoring: involves the use of photodiodes and acoustic methods [13] 

or imaging [14] coupled to the delivery tube [15] or the nozzle [16] to measure the powder 

flow rates.  

(iii) Layer morphology monitoring involves assessing the geometry of the deposited layer. For 

instance, Davim et al. projected a line laser is on a deposited layer, the reflection from which 

is captured using a camera, and subsequently analyzed to ascertain the height of the deposited 

layer (clad height)  [17].  

(iv) Optical emission monitoring: involves monitoring of optical emission above the melt pool, 

generated by the highly-excited vapor plume. In laser welding and cladding, the utility of 

optical emission spectroscopy is well established for process characterization and quality 

monitoring [18, 19]. More recently, the use of optical emission spectroscopy has been 

demonstrated for monitoring DED processes [20, 21]. 

An example of the use of optical emission spectroscopy to monitor the DED process is 

presented in the work of Song and Mazumder [20], where spectroscopy was used to monitor the 

elemental composition of chromium-based steel deposits. In a related work, Mazumder et al. [22] 

also use optical spectrometry to identify elemental phase transformation in various powder 

compositions, including, Iron-Nickel, Iron-Titanium, and Iron-chromium binary powders.  

More recently, optical emissions spectroscopy has been applied to measure DED build quality.  

Nassar et al. [21] used a spectrometer, in a setup similar to the one used herein, to identify the 

onset of lack-of-fusion during DED of Ti-6Al-4V. The experimental results reported by Nassar et 
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al. show a significant rise in the relative intensities of emissions, corresponding to Titanium lines, 

relative to the intensity of continuum emissions, in the portions of a part where a non-ideal hatch 

spacing caused lack-of-fusion defects. Taking this rationale forward, Nassar et al. [2] use the line-

to-continuum ratio at the 550 nm and 430 nm wavelength regions, derived from the spectrometer 

as a monitoring statistic to detect defect locations in the part.  

Researchers have also recently begun to integrate in-process sensor data with contemporary 

machine learning approaches to extract patterns and relate sensor data to process conditions and 

part quality. For instance, Khanzadeh et al. [23] investigated the effect of heat affected zone on 

the emergence of flaws in DED. They demonstrated that by monitoring the features of melt pool 

images, obtained from functional principal component analysis (FPCA) of dual-wavelength 

imaging pyrometer data, the onset of lack-of-fusion defects could be predicted through machine 

learning. A related work by Khanzadeh et al. [24] also uses a type of a neural network called self-

organizing map to analyze the pyrometer signals and subsequently detect defect locations in DED 

parts.  

1.2 Objective and Hypothesis 

The objective of this work is to detect the occurrence of lack-of-fusion defects in the DED of 

titanium alloy (Ti-6Al-4V) parts by fusing data acquired from multiple in-process sensors. To 

realize this objective, we develop and apply the concept of Kronecker product of graphs to combine 

data from two types of sensors: an optical emissions spectrometer and images of the vapor plume 

obtained from a filtered CCD camera [25, 26]. Three signal features are derived from the sensor 

data, namely, two line-to-continuum ratio signatures from the spectrometer, and the area of the 

meltpool plume from the CCD camera. These three features are used in graph-theoretic supervised 

machine learning, with post-processes XCT data serving as ground truth, to predict defects.  
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The central hypothesis of this work is that process signatures derived from the graph 

Kronecker product analysis of the three signal features are statistically significant discriminants of 

the lack-of-fusion defects that manifest in DED Ti-6Al-4V parts. As a consequence of testing this 

hypothesis, we show that the severity level of lack-of-fusion defects in a layer is identified with 

significantly higher statistical fidelity when the signal features derived from the Kronecker graph 

product approach are used as independent variables, compared to statistical moments-based signal 

features, such as signal mean and standard deviation. This work thus addresses both the burgeoning 

need for heterogeneous sensor data fusion and for feature extraction for defect detection in DED.   

2 Methods 

2.1 Part Build Conditions and Sensor Instrumentation 

The salient aspects of the DED process are schematically represented in Figure 1. A stream 

of powder, aerosolized in an inert carrier gas (typically Argon), is directed onto a substrate via 

nozzles on a laser processing head. The powder is melted onto the substrate through the thermal 

action of a laser that is located coaxially with the processing head. By translating the processing 

head relative to the substrate in the horizontal and vertical planes, the desired part geometry is built 

layer-upon-layer. 

 
Figure 1: Schematic of the DED process. 
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This work utilized the data collected by Stutzman, Nassar, and Reutzel described in Ref. [4]. 

Key experimental details are reiterated here for the convenience of the reader. An Optomec Laser 

Engineered Net Shaping (LENS) MR-7 DED system is used in this work. In this work, three 

process parameters were varied: laser power (P, Watt), powder flow rate (F, g/min), and hatch 

pattern (H, cross, and parallel). The translation speed (10.6 mm/sec), layer height (0.254 mm), and 

hatch spacing (1 mm) were kept constant.  Cuboid-shaped coupons with the dimension of 15 mm 

× 15 mm × 10 mm (length × width × build height), were built under the ten combinations of DED 

process parameters settings reported in Figure 2.   

These test coupons were built using titanium alloy Ti-6Al-4V powder, with a median powder 

diameter (D50) of 37.72 μm. Each test coupon is comprised of 40 layers with 12 hatches per layer 

and is built on a 6.35 mm thick Ti-6Al-4V substrate. A photograph of a representative coupon and 

an offline XCT slice taken at the second layer for each test coupon are shown in Figure 2.  A 

spectrometer and a CCD camera captured position and time-synchronized data during 

processing—see Table 1 and Figure 3. The features extracted from the spectrometer signal and 

plume camera images are the line-to-continuum ratio and total plume area, respectively.  

Two line-to-continuum ratios are estimated around wavelengths of 430 nm and 520 nm that 

corresponds to the emission of atomically-excited titanium (Ti I)[27]. The concept of the line-to-

continuum ratio and optical emission spectroscopy for AM applications is explained in recent 

publications by Nassar et al. [4, 21]. The total plume area is calculated after the binarization of the 

plume images. 

Nassar et al. in a series of publications have explained implementation details and the physical 

meaning of the line-to-continuum ratio – i.e., the relationship of the line-to-continuum emission to 

the elemental excitation of alloy constituents of the powder feedstock, and through it to the quality 
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of the build [4, 21, 28]. Key details are reiterated here for the convenience of the reader.  The 

spectrometer measures the intensity of optical emission at different wavelengths [29]. Titanium 

makes up close to 90%, by mass, of the composition of Ti-6Al-4V, and exhibits strong, atomically-

excited emission lines around 430 nm and 520 nm.  Continuum emissions of the plume, meltpool, 

including blackbody radiations and other extraneous sources are accounted in the rest of the 

spectrum.  

Table 1: Process monitoring sensor information. 

Specifications Plume Camera Spectrometer 

Basler Pilot piA640-210gm CCD camera Ocean optics HR2000+ UV-VIS-IR 

spectrometer 

Locations 152 mm from laser interaction zone 

inclined at 30o angle relative to the 

substrate in the vertical plane. 

109 mm from laser interaction zone 

inclined at 20o angle relative to the 

substrate in the vertical plane. 

Detail Exposure time: 10 ms 

Frame Rate: 50 Hz  

Integration time: 20 ms 

Wavelength: [200 nm -1100 nm] 

Slit width: 10 µs 

Resolution: ~1 nm (FWHM) 

Optical fiber: 600 μm core diameter 

 
Figure 2: The ten selected printing conditions along with their XCTs related to the second layer. 
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Figure 3: The image of the spectrometer and plume camera integrated into the DED machine.  

2.2 Porosity Measurement 

Subsequent to deposition, parts were analyzed with X-ray Computed Tomography (XCT) 

using a voxel size of 15 µm. Image stacks (slices), representing a height of 1 voxel, are extracted 

from the XCT data along the build direction (z-axis). Each XCT slice is analyzed using four steps, 

summarized in Figure 4. 

 
Figure 4: The image processing steps used for extraction of defects characteristics from each XCT slice. 

The part area is 15 mm × 15 mm. 

1. Cropping and rotation of the XCT slices is used to eliminate edge effects and to spatially index 

the XCT data to the synchronized sensor data, which is in DED machine coordinates.  

2. XCT images are converted to black and white (binarized) using a constant threshold value for 

all images. 
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3. XCT slices (15 µm thick) are then reduced by projecting slices representing one DED layer 

(250 µm thick) onto a single plane. This resulted in ~17 XCT slices forming a combined XCT 

image at each DED layer.  

4. Finally, the length of each lack-of-fusion defect on a combined XCT image is determined as 

the length of the major axis of an ellipse that encompasses the defect. 

2.3 Statistical analysis of processing parameters influencing lack-of-fusion porosity 

To statistically quantify the effect of process conditions on lack-of-fusion defects, we conduct 

a generalized linear regression analysis, with the process parameters as inputs and the average 

length of a lack-of-fusion defect in a layer as output. The three main processing parameter, power 

(P), powder flow rate (F), and hatch spacing (H), along with their interactions, are assessed to 

determine if they provide a statically-significant (95% confidence level) determination of average 

pore length per layer. The regression coefficient (R2-adj.) is also calculated with and without 

processing parameter interactions.    

2.4 Graph Kronecker product analysis of in-situ sensor data 

As an alternative to statistical analysis, which uses the process parameters alone as inputs to 

predict the average pore length, the main approach presented here is to synthesize data from the 

spectrometer and plume imaging camera, and subsequently, use the sensor information to detect 

the level of lack-of-fusion defects in a layer. The approach consists of three steps, as summarized 

in Figure 5. The first step is to combine data acquired from the spectrometer and plume imaging 

camera from one layer in the form of a network graph. Following this, the data are analyzed across 

multiple layers using the concept of Kronecker product of graphs, and thus forming a dictionary 

of signal patterns. Finally, a machine learning algorithm is trained to predict the average length of 

lack-of-fusion defects in a layer as a function of the dictionary (input) and tested using a new 

(unseen) set of sensor data. 
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The main advantage of the graph Kronecker product approach over traditional statistical signal 

processing approaches, as will become evident shortly, is that the former encapsulates the inter-

relationships between the data obtained at different layers, whereas, the latter considers data from 

each layer to be independent of preceding and subsequent layers. 

 
Figure 5: The three steps in the approach to capture data from multiple sensors across layers. 

Step 1: Combining the data from multiple sensors into a network graph. 

Representative features are extracted from the spectrometer (line-to-continuum ratio around the 

430 nm and 520 nm) and meltpool plume camera (the total projected area of the image). Given the 

different sampling frequencies for the spectrometer and plume camera, the number of data points 

in line-to-continuum ratios and the plume total area data not identical.  

The spectrometer and the plume camera are down-sampled to 30 data points per layer 

(approximately 15 to 18 individual readings were averaged) to ensure identical data lengths. 

Labeling the two line-to-continuum measurements at a given instant t in layer L as 𝑆1𝑡
𝐿 (430 nm 

wavelength) and 𝑆2𝑡
𝐿 (520 nm wavelength), and the corresponding plume area as 𝑆3𝑡

𝐿, the three 

channels of sensor data for a particular layer (L) can be represented in matrix form 𝑋𝐿 as follows: 
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𝑋𝐿 =

[
 
 
 
 
 
𝑆11

𝐿

𝑆12
𝐿

⋮
𝑆1𝑡

𝐿

𝑆21
𝐿

𝑆22
𝐿

⋮
𝑆2𝑡

𝐿

𝑆31
𝐿

𝑆32
𝐿

⋮
𝑆32

𝐿

𝑆1𝑁
𝐿 𝑆2𝑁

𝐿 𝑆3𝑁
𝐿 ]
 
 
 
 
 

. (1) 

In matrix 𝑋𝐿, each row is a data point obtained at the time instant t, indexed by a sensor along each 

column. This data is converted into a weighted network graph as discussed in our previous works, 

and is only briefly described here [30, 31]. The Mahalanobis distance between each row of the 

data 𝑋𝐿 is calculated as follows, 

𝑤𝑎𝑏
𝐿 = (𝑟𝑎

𝐿 − 𝑟𝑏
𝐿)𝐶−1(𝑟𝑎

𝐿 − 𝑟𝑏
𝐿)T (2) 

Where 𝑟𝑎
𝐿 and 𝑟𝑏

𝐿are the ath and bth row of the matrix 𝑋𝐿, and 𝐶−1 is the inverse of the variance- 

covariance matrix of 𝑋𝐿. The calculated distances using Eqn. (2) will be represented as a matrix 

𝐺𝐿. 

𝐺𝐿 = [𝑤𝑎𝑏
𝐿 ] (3) 

The matrix 𝐺𝐿 is the weighted, undirected graph representation of the data in layer L. The 

Mahalanobis kernel is used because it normalizes the data.  

Step 2: Building a dictionary D𝑐 of graph theoretic features related to the severity level of lack-of-

fusion defects.  

Given a graph 𝐺𝐿 for each layer L, every test part can be described as a set of N graphs (N = 

40 layers in this study) through the following Kronecker product random walk kernel [26], 

D𝑐 = [
𝑘(𝐺1 ⊗ 𝐺1) ⋯ 𝑘(𝐺1 ⊗ 𝐺𝑁)

⋮ ⋱ ⋮
𝑘(𝐺𝑁 ⊗ 𝐺1) ⋯ 𝑘(𝐺𝑁 ⊗ 𝐺𝑁)

]. (4) 

The matrix D𝑐 is called the dictionary and the subscript c refers to the part condition; c = {1, 

2, …, 10} in this work, since there are 10 process setting combinations. Further, 𝐺𝑖 ⊗ 𝐺𝑗  is the 
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Kronecker product of graphs 𝐺𝑖 and 𝐺𝑗 which are representative of the sensors data for layers i and 

j, respectively, for a particular part. The Kronecker product for matrices X and Y, viz., 𝑋 ⊗ 𝑌 is 

described as: 

Given,  𝑋 = [
1 0 1
0 0 1
0 1 0

] ;  𝑌 = [
1 1
1 0

] 

𝑋 ⊗ 𝑌 = [
𝑋(1,1). 𝑌 𝑋(1,2). 𝑌 𝑋(1,3). 𝑌
𝑋(2,1). 𝑌 𝑋(2,2). 𝑌 𝑋(2,3). 𝑌

𝑋(3,1). 𝑌 𝑋(3,2). 𝑌 𝑋(3,3). 𝑌

] =

[
 
 
 
 
 1. [

1 1
1 0

]

0. [
1 1
1 0

]

0. [
1 1
1 0

]

0. [
1 1
1 0

]

0. [
1 1
1 0

]

1. [
1 1
1 0

]

1. [
1 1
1 0

]

1. [
1 1
1 0

]

0. [
1 1
1 0

]]
 
 
 
 
 

 

=

[
 
 
 
 
 
1 1 0
1 0 0
0 0 0
0 0 0
0 0 1

0 1 1
0 1 0
0 1 1
0 1 0
1 0 0

0 0 1 0 0 0]
 
 
 
 
 

. 

(5) 

The random walk kernel, 𝑘(𝐺𝑖 ⊗ 𝐺𝑗), representative of the similarity between graphs 𝐺𝑖 and 

𝐺𝑗, is obtained from the Kronecker product (𝑋 ⊗ 𝑌) as [25], 

𝑘(𝐺𝑖 ⊗ 𝐺𝑗) = ∑ (I − 𝛾𝑖𝑗(𝐺𝑖 ⊗ 𝐺𝑗))
−1

∀rows,
columns 

, 
(6) 

where I is the identity matrix and 𝛾𝑖,𝑗 is the decay constant. The decay constant 𝛾𝑖,𝑗 is the inverse 

of the maximal sum taken over the rows (or columns) of (𝐺𝑖 ⊗ 𝐺𝑗). In graph theoretic terminology, 

a random walk encapsulates the number of sequential nodes and edges that need to be traversed to 

reach a random node B from a starting node A.   

A key aspect of the dictionary (D𝑐) obtained using the Kronecker graph product is that it 

compares input data from a layer against preceding and subsequent layers, and therefore, captures 

the inter-dependencies in the data across layers that would be lost if data from each layer is 

considered independent of other layers as done in statistical signal processing.    
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Step 3: Training a support vector machine to predict the severity level of the lack-of-fusion flaws 

based on the dictionary D𝑐. 

Supervised machine learning is used to train a support vector machine (SVM) with a linear 

discriminant kernel to predict the severity level (low or high) of the lack-of-fusion defects in a 

layer [32]. The input sensor signals, encapsulated in the dictionary (D𝑐), are used as input data. 

We use principal component analysis (PCA) to dimensionally reduce the dictionary D𝑐, such that 

only the components representative of 95% variation in the dataset are used as inputs to predict 

the severity of lack-of-fusion defect in each layer. The PCA procedure convolves all the 

information in the matrix D𝑐 into a few variables, which makes prediction via machine learning 

more tractable, stable, and reduces the possibility of over-training. 

 We have purposely chosen the SVM approach, instead of more sophisticated machine 

learning models for two reasons. First, in an SVM only a handful of hyper-parameters need to be 

trained. Second, and more importantly, to support our argument that the features derived from the 

graph Kronecker product results in higher prediction accuracy compared to statistical features 

despite using the most rudimentary of machine learning models.   

The data against which the inputs are trained is the severity level of lack-of-fusion defects in 

each layer. This is measured by applying a threshold to the average length of lack-of-fusion defects 

per layer, derived for the XCT analysis. Two and three-level classification is conducted using 

threshold values based on XCT analysis—additional discussion of the choice of threshold values 

is provided in Section 3.1. Low severity of a layer is defined as an average lack-of-fusion flaw size 

less than or equal to 50 µm. For the two-level classification, high severity was defined as an 

average lack-of-fusion flaw length greater than 50 µm.  
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For the three-level classification, the threshold values were 50 µm for low severity, between 

50 µm and 200 µm for medium severity, and over 200 µm for high severity.  These threshold 

values were chosen so that there were sufficient number of data points (close to 30) in each class, 

while perturbation of the threshold  does not have any significant effect on the two-level 

classification scenario, it drastically reduces the data points available for the medium class of 

severity in the three-level case.  

The approach for predicting severity level using unseen input data is as follows. Consider a 

data stream 𝑋𝑁𝑒𝑤 for a new layer identical to the matrix 𝑋𝐿 in Eqn. (1), which has not yet been 

seen by the SVM model.  Following the procedure described in Eqn. (2) and (3), we first convert 

the data 𝑋𝑛𝑒𝑤 to the corresponding graph form 𝐺𝑛𝑒𝑤. Next, we obtain the matrix 𝜃𝑛𝑒𝑤 as follows, 

where 𝐺1 to 𝐺𝑁 are the older data already seen by the model. 

𝜃𝑛𝑒𝑤 = [𝑘(𝐺𝑛𝑒𝑤 ⊗ 𝐺1) … 𝑘(𝐺𝑛𝑒𝑤 ⊗ 𝐺𝑁)] (7) 

The input vector in Eqn. (7), 𝜃𝑛𝑒𝑤, is presented to the a priori trained SVM machine learning 

model after the PCA procedure to obtain the corresponding severity level or class of the lack-of-

fusion defects.   

The described methods are used to study two cases. The first case in which the machine 

processing conditions (laser power (P), flow rate (F), and hatch pattern (H), shown in Figure 2 and 

Figure 6) are assumed to be known and thus included in the machine learning model, and second 

where the processing conditions are assumed to be unknown and excluded from the machine 

learning model. In either case the unseen data are later tested following Eqn. (7).  

In the first testing scenario, termed the known process condition scenario we randomly select 

sensor data from 30 out of the available 40 layers from each of the 10 test parts to train the 

corresponding dictionary, D𝑐, (30×30 matrix) for each part using Eqn. (4).  The unseen 10 layers 
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in each of the 10 parts are later used for testing. This implies there is sensor signature and 

corresponding porosity data from 100 layers (= 10 parts × 10 layers) available for testing.  In the 

second case, called the unknown process conditions scenario, the dictionary D𝑐 (300×300 matrix) 

is built based on the random sampling of 300 layers from the data available from all of the 10 test 

parts (each part has 40 layers, hence there are 400 layers to sample). As in the previous case, once 

again we quarantine sensor signatures and porosity data from 100 layers for testing purposes.   

Testing results are provided in the form of the confusion matrix shown in Table 2 and using 

the Precision, Recall, and F-score values calculated using Eqn. (8). This training and testing 

procedure are repeated five times (5-fold validation procedure), and the average F-score over the 

training data set is reported. 

Table 2: Classification outputs and measures arranged in the form of a confusion matrix. 

 

True Classes ↓ 

Predicted Classes 

Predicted Condition Positive Predicted Condition Negative 

True Condition Positive True Positive 
False Positive 

(Type I error) 

True Condition 

Negative 

False Negative 

 (Type II error) 
True Negative 

 

Precision =
Number of True  Positives

∑Predicted Condition Positive
 

Recall =  
Number of True Positives

∑True Condition Positive
 

Fscore = 2 ∗
Precision . Recall

Precision + Recall
 

 

 

(8) 
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3 Results and Discussion 

3 

This section is divided into two parts. In Sec. 3.1 we analyze the statistical significance of 

three process parameters, namely: laser power (P, Watt), powder flow rate (F, g/min), and hatch 

pattern (H, cross vs. parallel) on the average length of lack-of-fusion defect in each layer. In Sec. 

3.2, we use the graph Kronecker analysis of the in-process sensor, to predict the severity level of 

the lack-of-fusion defects per layer. 

3.1 Offline Statistical Analysis of Lack-of-fusion Defect Characteristics from XCT Slices 

Aggregated values for the average length of lack-of-fusion defects across all 40 layers for each 

test parts used in this work are provided in Table 3. Three out of ten samples have an average lack-

of-fusion length, across all layers, less than 50 µm. Qualitative XCT analysis of these samples 

reveals low flaw severity. Another three samples contain an average lack-of-fusion flaw length 

between 50 µm and 200 µm—these are categorized as having medium flaw severity. All other 

samples have high flaw severity. These severity levels demarcated based on average pore length 

are used in Section 3.2 for two- and three-level classification of each layer.   

Table 3: Printing conditions of 10 parts and their estimated average pore length (descending order). 

Laser 

Power 

[W] 

Powder 

Feed 

Rate 

[g/min] 

Hatch 

Pattern 

Average length of 

lack-of-fusion 

defects in a layer 

[µm] 

Two-level 

Classification State  

Three-level 

Classification State  

300 4 Parallel 302 High Severity  High Severity  

300 3 Parallel 294 High Severity  High Severity  

300 3 Cross 235 High Severity  High Severity  

300 2 Parallel 213 High Severity  High Severity  

300 4 Cross 189 High Severity  Medium Severity 

300 2 Cross 165 High Severity  Medium Severity 

475 4 Cross 70 High Severity  Medium Severity 

425 3 Cross 39 Low Severity Low Severity 

425 3 Parallel 34 Low Severity  Low Severity  

475 4 Parallel 26 Low Severity  Low Severity  
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The effect of the three process parameters, power (P), powder flow rate (F), and hatch pattern 

(H) on the average length of lack-of-fusion defect in a layer is shown in Figure 6. Generalized 

linear regression analysis indicates that P, F, and H along with the interactions P × H and P × F 

are statistically significant determinants of the aggregated average pore length of all layers of a 

build.  However, the linear regression coefficient (R2-adj.) was only 47% with main and interaction 

terms included and 42% with only main P, F, and H. In other words, if the process parameters are 

the sole predictors of the average length of lack-of-fusion defect in a layer, the fidelity of the 

prediction would be less than 50%. Accordingly, there is a need to augment the process parameters 

with in-process sensor signatures to predict pore formation in DED.  

 
Figure 6: Individual plots representing the effect of each process parameters (a) laser power, (b) powder 

flow rate, (c) and hatch pattern. The error bars represent a variation of one standard deviation. 

Qualitative differences in the line-to-continuum and total plume area data are observed across 

layers of varying degrees of lack-of-fusion. This is illustrated in Figure 7, where histograms 

(empirical probability distributions) of the line-to-continuum ratio at 520 nm and the total plume 

area are provided for three layers, of the same build, with varying severity of lack-of-fusion. While 

subtle distinction in the shape of the empirical probability distribution are evident in Figure 6(a) 

and (b), quantification of these differences is challenging; thus, no attempt at a purely statistical 

correlation of sensor data to flaw severity is made.  
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Figure 7: (a) the discrete probability distributions of the (a) line-to-continuum ratio and (b) total plume 

area, all are related to three different layers when the printing conditions set at laser power = 475 W, flow 

rate = 4 g/min, and hatch pattern is of the cross-type. 

More pertinently, we note that while the overall quality of the 10 parts shown in Table 3 are 

labeled based on the average length of lack-of-fusion defects, however, Figure 7 shows that the 

defects can be different in different layers even with the same part. Accordingly, in this work, the 

layers in a part are not labeled in the same category as that of the part they belong to in Table 3. 

Instead, the pore severity of each layer is individually labeled as belonging to a particular category 

through measurement of pore length from XCT slices as described in Sec. 2.2 independent of the 

label of the part from which the layer originates.  

3.2 Online detection of lack-of-fusion defects using sensor data 

Results for the two training scenarios tested, known process condition and unknown process 

conditions are presented in the confusion matrix in Table 4. From Table 4(a), it is evident that 

treating the process conditions as known leads to a higher classification fidelity compared to the 

scenario where the process conditions are unknown (Table 4(b)).  
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Further examination of the confusion matrix in the known process condition scenario reveals 

that classifying the average pore length into two levels is accomplished with greater statistical 

fidelity compared to the three-level case.  

Table 4(a): Representative confusion Matrix for detection of lack-of-fusion defects stratified into 

two-level and three-levels of severity with graph random-walk technique assuming process 

conditions are known. (X refers to average length of the lack-of-fusion defect per layer). 

Confusion Matrix for two-Level Classification (known process condition) 

True Classes ↓ 
Predicted Classes 

Low Severity (X < 50 µm) High Severity (X > 50 µm) 

Low Severity 20 (out of 26) 6 (False Alarm) 

High Severity 12 (Failing to detect) 62 (out of 74) 

Confusion Matrix for Three-Level Classification (known process condition) 

True Classes ↓ 

Predicted Classes 

Low Severity (X < 50 

µm) 

Medium Severity 

(50 µm < X < 200 µm) 

High Severity 

(X > 200 µm) 

Low Severity 20 (out of 26) 0 6 

Medium Severity 4 21 (out of 37) 12 

High Severity 6 9 22 (out of 37) 

 

Table 4(b): Confusion Matrix for detection of lack-of-fusion defects stratified into two-level and 

three-levels of severity with graph random-walk technique assuming process conditions are 

unknown. (X refers to average length of the lack-of-fusion defect per layer). 

Confusion Matrix for two-Level Classification (unknown process conditions) 

True Classes ↓ 

Predicted Classes 

Low Severity 

(X < 50 µm) 

High Severity 

(X > 50 µm) 

Low Severity 2 (out of 34) 32 (False Alarm) 

High Severity 7 (Failing to detect) 59 (out of 66) 

Confusion Matrix for Three-Level Classification (unknown process conditions) 

True Classes ↓ 

Predicted Classes 

 Low Severity 

(X < 50 µm) 

Medium Severity  

(50 µm < X < 200 µm) 

High Severity 

(X > 200 µm) 

Low Severity 5 (out of 34) 0 29 

Medium Severity 3 0 (out of 34) 31 

High Severity 5 0 27 (out of 32) 
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In Table 5 the statistical fidelity of classification for the two scenarios is expressed in terms 

of the F-score, which captures both the Type I and Type II statistical errors (a higher F-score is 

desirable). For the known process condition scenario, the two-level classification fidelity in terms 

of the F-score is ≈ 85% compared to ≈70% for the three-level case.  The results from Table 5 

indicate that the prediction accuracy using the input sensor data or process parameters alone is 

poor, but when the sensor data and process information are combined together, the predictive 

power of the approach is substantially improved (almost doubled). 

Moreover, prediction fidelity (F-score) does not improve when more than one sensor is used 

in the Kronecker graph product analysis. This is reasonable considering that all the sensors used 

in this work are focused on the acquisition of data from the meltpool plume region, and hence, 

capture the same phenomena [4]. The effectiveness of the sensor fusion approach could potentially 

be magnified with multi-phenomena sensing.  

Table 5: Performance of the graph classification approach (F-score) in comparison with the 

statistical features for discriminating between 2-level and 3-levels of lack-of-fusion severity. The 

numbers in the parenthesis is the standard deviation from a 5-fold cross-validation study. 

Input Data 

2-level F Score (%) 3-level F Score (%) 

Conditions 

Known 

Conditions 

unknown 

Conditions 

Known 

Conditions 

unknown 

Graph  

Kronecker 

Product  

Line-to-Continuum Ratio 

(430 nm) 
84.8 (8.0) 40.0 (1.0) 72.4 (2.5) 23.4 (5.7) 

Line-to-Continuum Ratio 

(520 nm) 
86.4 (5.2) 41.0 (3.3) 72.2 (2.8) 26.9 (6.9) 

Plume Imaging Sensor 85.4 (9.5) 40.0 (1.0) 71.4 (6.2) 30.3 (3.7) 

All Sensors 84.6 (6.3) 43.6 (4.6) 71.5 (3.9) 21.2 (3.1) 

Principal Components of 

Statistical Features (with all sensors) 

40.3 (1.0) 

 

37.3 (2.5) 

 

Raw Statistical Features  

(18 features total with all sensors) 
87.9 (3.0) 69.4 (3.3) 
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An obvious question is whether the Kronecker graph product approach is worth the 

complexity of implementation—why not just use statistical features and inputs to the machine 

learning method? To address this, we repeat our analysis using only statistical features (instead of 

the graph theoretic features). Input features included the mean, standard deviation, range, 

skewness, kurtosis, and interquartile range from the two line-to-continuum ratio data streams from 

the spectrometer, as well as the plume image as features, for a total of 18 features (6 features from 

each signal).  

Further, the statistical features are subjected to the PCA procedure, and to ensure equitable 

comparison with the Kronecker graph product approach, the number of components that captured 

95% of the variation are used. The results from the Kronecker graph features and statistical features 

after PCA are juxtaposed in Table 5.  As shown in Table 5,  the graph-theoretic Kronecker product 

features extracted from sensor signatures lead to a much better prediction of part quality, with an 

F-score nearly double of that when using the traditional statistical features, in both the two-level 

and three-level classification cases, thus validating our approach. 

Lastly, we cross-verified the graph Kronecker product results against those obtained using 

eighteen raw statistical features, without PCA reduction, as inputs to the SVM model. The raw 

statistical features showed accuracy comparable to the graph Kronecker product, which uses only 

two input features, for both two- and three-level classification. However, the fact that 18 statistical 

features are required to reach a similar F-score as the graph Kronecker product, which has only 

two features from principal components once again demonstrates the advantage of the Kronecker 

product approach. Additionally, using such a large number of statistical features makes a machine 

learning model susceptible to overfitting.   
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We note that the F-score results from applying the PCA procedure to the raw statistical 

features are significantly inferior to those obtained using the raw statistical features alone (last two 

rows of Table 5). This is probably because of two inherent limitations in the PCA procedure. First, 

PCA tends to neutralize the effect of outliers as it scales each feature based on its corresponding 

mean value taken over all data points. Since layers with flaws tend to have signal features values 

that cluster significantly away than the mean, the information concerning layers with flaws may 

be lost. Second, the PCA is a linear dimension reduction technique which is most effective when 

the underlying signal distribution and signal noise are both Gaussian, however, as evident from 

Figure 7, the line-to-continuum ratio and total plume area signatures are both distinctly non-

Gaussian [33].   

4 Conclusions and Future Work 

This work developed and applied a new Kronecker graph product approach for combining 

data from multiple sensors to detect the onset of defects related to insufficient material fusion 

(lack-of-fusion defects) in DED AM processing of titanium alloy (Ti-6Al-4V) parts. Three 

channels of in-process sensor data were acquired during the build: two channels of line-to-

continuum optical emission obtained around 430 nm and 520 nm wavelengths and the total area 

of the plume area from a CCD camera filtered at 430 nm. X-ray computed tomography (XCT) data 

were used as ground truth to train machine learning algorithms to predict the severity (class or 

level) of the average length of lack-of-fusion defects within a layer. A limitation of this approach 

is that only flaws observed within the XCT data (limited to a voxel size of 15 microns) can be used 

for training and testing.  Specific outcomes from this work are enumerated as follows. 
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1. The effect laser power, powder flow rate, and hatch pattern on the average pore length was 

quantified. All have a statistically significant effect on the average pore length, with the laser 

power having the largest effect.  

2. Using a Kronecker product analysis of input sensor data together with support vector machine, 

we demonstrate prediction of the severity of lack-of-fusion defects across a layer with 

statistical fidelity (F-score) approaching 75% to 85% . In comparison, the traditional statistical-

feature-based machine learning approach had a corresponding fidelity of 35% to 40%.  

3. Information obtained from both sensor data and process parameters are necessary to obtain 

statistically viable accuracy (above chance). 

This work lays the foundation for a qualify-as-you-build framework in AM processes, 

whereby defects are identified before the next layer is deposited, thus allowing corrective action. 

In the forthcoming work, we will analyze the statistical fidelity of the approach in detecting 

different types of defects given data from heterogeneous sensors. 
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