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Abstract 

A key challenge in metal additive manufacturing is the prevalence of defects, such as discontinuities 

within the part (e.g., porosity). The objective of this work is to monitor porosity in laser powder bed fusion 

(L-PBF) additive manufacturing of nickel alloy 718 (popularly called Inconel 718) test parts using in-

process optical emission spectroscopy. To realize this objective, cylinder-shaped test parts are built under 

different processing conditions on a commercial L-PBF machine instrumented with an in-situ multispectral 

photodetector sensor. Optical emission signatures are captured continuously during the build by the 

multispectral sensor.  Following processing, the porosity-level within each layer of a test part is quantified 

using X-ray computed tomography (CT). The graph Fourier transform coefficients are derived layer-by-

layer from signatures acquired from the multispectral photodetector sensor. These graph Fourier transform 

coefficients are subsequently invoked as input features within various machine learning models to predict 

the percentage porosity-level in each layer with CT data taken as ground truth. This approach is found to 

predict the porosity on a layer-by-layer basis with an accuracy of ~90% (F-score) in a computation time 

less than 0.5 seconds. In comparison, statistical moments, such as mean, variation, etc., are less accurate 

(F-score ≈ 80%) and require a computation time exceeding 5 seconds.  
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1 Introduction 

1.1 Background and Motivation 

The goal of this work is the identification and isolation of defects, such as porosity, in laser powder 

bed fusion (L-PBF) additive manufacturing using in-process sensor data. In L-PBF, material in the form of 

powder is rolled or raked across a build plate. The part is formed by selectively melting areas of the powder, 

layer-by-layer, using a laser (Gibson, Rosen et al. 2010, Sames, List et al. 2016). The laser position is 

controlled using a galvanometric mirror assembly. The focusing optic (typically) is a f-theta lens that 

maintains a stable diameter and focus of the laser beam on the build plate.  

 

Figure 1: A schematic of the laser powder bed fusion (L-PBF) additive manufacturing process. 

Despite the demonstrated potential of laser powder bed fusion (L-PBF) to revolutionize 

manufacturing, process repeatability, and part consistency remain open challenges (2013, Huang, Leu et al. 

2015).  Defects in L-PBF are diverse and result from complex, poorly understood interactions amongst 

process phenomena, materials, processing conditions, and machine dynamics (Grasso and Colosimo 2017). 

Although the critical process parameters, such as laser power (P, W), hatch spacing (H, mm), scan velocity 

(V, mm/s), and layer height (mm) can be optimized for certain part geometries, and aggregated in terms of 

the global volumetric energy density (EV = 
P

V×H×T
 J/mm3 ), part defects can still occur (Olakanmi, 

Cochrane et al. 2015, Yusuf and Gao 2017).  
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In part, this is because the global energy density does not account for the magnitude and direction of 

the heat flow in the part (heat flux), which may change depending on the part geometry, orientation, and its 

location on the build plate (Yavari, Cole et al. 2019). Nor does energy density account for the subtle 

machine-related malfunctions and random flaws. 

 

Figure 2: In L-PBF part quality tends to be inconsistent, for instance, out of the seven different 

orientations of the same part geometry built under identical process conditions, only two (part D 

and part G) were completed without any visible defects. 

The quality assurance-related challenges in L-PBF are exemplified in Figure 2, which shows seven 

identical parts built simultaneously on a commercial L-PBF machine by the authors. The parts vary only in 

their build orientation; all other process conditions are identical. Notwithstanding, extensive process 

automation, and besides using the default process parameters settings for the material recommended by the 

machine manufacturer, only two parts out of seven were built successfully. The rest of the five builds were 

afflicted with various other types of defects, which renders them unfit for operational use. Such low process 

reliability makes L-PBF difficult to scale commercially (Lewandowski and Seifi 2016, Mazumder 2015, 

Seifi, Gorelik et al. 2017). 

Due to the high-probability of defects occurring within L-PBF components, quality inspection of 

components for aerospace and defense applications using X-Ray Computed Tomography (CT) is the norm. 

Unfortunately, CT is expensive, and its resolution progressively degrades with increasing part size and 
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density (Seifi, Gorelik et al. 2017). Detection of defects during part production using in-process monitoring 

may thus provide a less expensive and more scalable approach for part certification. 

One such strategy is to build a library of sensor signatures corresponding to specific defects for 

representative parts. Subsequently, this library can be used for rapid qualification of part quality 

(Lewandowski and Seifi 2016, Mazumder 2015, Seifi, Gorelik et al. 2017). If such a strategy for the in-

process qualification of part quality is successful, it will lead to a qualify-as-you-build paradigm in AM, 

thus expanding the reach of AM to strategically important sectors (Mies, Marsden et al. 2016, Peralta, 

Enright et al. 2016).  

1.2 Objective and Hypothesis 

The objective of this work is to predict the presence and level or severity of porosity in LPBF parts 

using in-process optical emission spectroscopy signatures. To realize this objective, first, the line-to-

continuum ratio of chromium emission around 520 nm are monitored during L-PBF of nickel alloy 718 

(UNS N07718, popularly called Inconel 718) powder feedstock (Dunbar and Nassar 2018). Next, we 

develop and apply a graph theoretic approach to analyze the acquired line-to-continuum optical emission 

signatures.  

The graph theoretic approach transforms the line-to-continuum measurements into features called 

graph Fourier transform coefficients. These graph Fourier transform coefficients are subsequently used as 

derived process signatures to predict the presence and level of porosity, layer-by-layer, using machine 

learning models. The correlation between the predicted and actual level of porosity is verified via offline 

CT of the parts. Accordingly, the underlying hypothesis is that the graph Fourier transform coefficients 

extracted from the in-process optical spectroscopy signatures are capable of discriminating the level of 

porosity in L-PBF parts with a higher fidelity compared to conventional statistical features, such as mean 

and standard deviation extracted from the optical emission spectroscopy signal.  

Graph theoretic approaches have been used in our prior work for monitoring of process anomalies in 

L-PBF, such as detecting aberrations in the meltpool behavior from thermal imaging data (Montazeri and 
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Rao 2018). However, this work uses a different graph theoretic approach, based on the concept of graph 

Fourier coefficients to detect porosity in a layer-by-layer manner from data obtained from optical emission 

signals. In other words, the experimental data, type of defect monitored, sensor signatures obtained, and 

analytical approach used differ significantly from our previous studies and represent a novel approach for 

identification of L-PBF defects using in-situ sensor data. 

The rest of this paper is organized as follows. A review of the literature, focused on optical 

spectroscopy monitoring in metal AM, is provided in Section 2. In Section 3, we describe the research 

methodology and explain the graph theoretic technique used to analyze the data. This is followed by 

discussion of the results and conclusions in Sections 4 and  5, respectively. 

2 Literature Review 

Several comprehensive review articles have been recently published describing sensing techniques for 

process monitoring in metal AM processes (Everton, Hirsch et al. 2016, Foster, Reutzel et al. 2015, Grasso 

and Colosimo 2017, Mani, Lane et al. 2017, Sharrat 2015, Spears and Gold 2016, Tapia and Elwany 2014).  

Here, we primarily focus on optical emission-based techniques utilizing single-point photodetectors (e.g. 

photodiode and spectrometers). While imaging sensors, such as infrared and optical cameras are capable of 

providing spatially-resolved data indicative of build quality (Gobert, Reutzel et al. 2018, Jacobsmuhlen, 

Kleszczynski et al. 2013, Khanzadeh, Chowdhury et al. 2017, Krauss, Eschey et al. 2012, Lane, Lane et al. 

2016, Lane, Whitenton et al. 2016, Mahmoudi, Ezzat et al. 2019), an advantage of single-point 

photodetectors is their fast response rates (sampling rates exceeding 100 kHz are possible) and relatively 

low cost (Song, Bagavath-Singh et al. 2012).  

The early use of photodetector for process monitoring has been exemplified largely in the context of 

the directed energy deposition (DED) metal AM process, hence this review cites articles from the DED 

perspective. Mazumder et al. have pioneered the use of photodetectors for closed-loop control in metal 

DED (Mazumder, Dutta et al. 2000, Mazumder and Song 2016, Mazumder, Song et al. 2017, Song and 

Mazumder 2011, Song and Mazumder 2015). One of their early works describes the use of three 
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photodetectors for closed-loop control of the surface finish, geometry, and microstructure of the part by 

modulating the energy density via changes in the build height (Mazumder, Dutta et al. 2000). As a result 

of this closed-loop control strategy, the surface roughness improved by as much as 20%, and parts with 

unusual bulk properties, such as negative coefficient of thermal expansion, were produced.  Recent patents 

by Mazumder et al. also describe the use of optical spectrometery-based closed-loop control in DED 

(Mazumder and Song 2016, Mazumder, Song et al. 2017).  Through various examples, including DED of 

titanium and Nickel-based superalloys, Muzumder et al. show that the intensity of the optical spectroscopy 

line emissions correlate with phase transformation in the material, this relationship is further extended for 

prediction of the microstructure of the resulting material.  

Spectroscopy has also been investigated for detection of defects and undesirable process conditions, 

such as lack of deposition and overbuilding in DED.  For example, Mazumder et al. have  proposed a smart 

additive manufacturing system wherein emission are used as an input into a closed-loop control schema for 

processing parameters (e.g. laser power, beam spot size) to  tailoring the microstructure (Mazumder and 

Song 2016).  In a similar vein, Nassar et al. have demonstrated a correlation between the line-to-continuum 

ratios around specific spectral emission wavelengths during DED of Ti-6Al-4V titanium alloys and the 

occurrence of lack-of-fusion defects (Stutzman, Nassar et al. 2018). They isolated lack-of-fusion in Ti-6Al-

4V using optical emissions spectroscopy around 430 nm and 520 nm wavelength, as well as using an optical 

camera filtered around 430 nm.  More recently, spectroscopy has been applied to the L-PBF process by 

Dunbar and Nassar and optical emissions have been demonstrated to correlate to processing conditions and 

part porosity (Dunbar and Nassar 2018). Here, we build on the work of Dunbar and Nassar by developing 

and applying spectral graph theory together with machine learning to predict the presence and level or 

severity of porosity using in-process optical emission spectroscopy signatures in L-PBF. 

From a data analytics perspective, machine learning approaches using in-process sensor data are being 

intensively applied in AM for defect detection (Grasso and Colosimo 2017). For instance, neural networks 

are trained (both unsupervised and supervised learning) to recognize patterns from in-situ sensors, such as 
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meltpool shape and size, and these patterns are correlated with defect severity based on offline 

characterization of the part quality, typically with X-ray computed tomography (Grasso, Laguzza et al. 

2016, Imani, Gaikwad et al. 2018, Imani, Gaikwad et al. 2018, Khanzadeh, Chowdhury et al. 2017, 

Montazeri and Rao 2018, Montazeri, Yavari et al. 2018, Repossini, Laguzza et al. 2017, Tapia, Elwany et 

al. 2016, Williams, Dryburgh et al. 2018). However, using machine learning is fraught with two major 

drawbacks.  

First, generalizability of machine learning models remains poor, because, supervised machine learning 

models are trained on labeled outputs, typically CT scans,  pertaining to a specific part geometry and sensor 

data stream to detect one type of defect. Therefore, they have to be re-trained for new parts because each 

new geometry and process condition will impose a unique signal pattern.  Second, obtaining a large labeled 

set of data for machine learning is not viable in AM due to the slow process speed, small batch sizes, 

expensive consumables, and time required for sample characterization. Lastly, machine learning algorithms 

have been trained to detect part defects in rudimentary geometries, such as thin-walls, cylinders and cubes. 

The validity of the machine learning algorithms to detect defects in the AM of complex freeform geometries 

is still in its infancy (Abdelrahman, Reutzel et al. 2017). 

We acknowledge that some of these drawbacks inherent to machine learning are shared by the graph 

theory approach presented in this work. Two particular drawbacks stand out. First, the line-to-continuum 

ratio measured in this work is specific to Chromium emissions in Inconel 718, hence, the sensing system 

will have to be adjusted accordingly when a different material is used – this is rather tractable as only two 

optical filters have to be replaced. The proposed method is also a supervised learning approach which relies 

on a priori labeled CT data, and is geared towards detection of one type of defect, namely, lack-of-fusion 

porosity.   

In closing this section, we note that direct observation of porosity from sensor data without the need 

for intervening machine learning techniques remains an active research challenge. This is because porosity 

occurs in the range of 10 μm to 100 μm, with pinhole-type porosity at the lower end, and lack-of-fusion 
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porosity in the higher range (Maskery, Aboulkhair et al. 2016). To capture porosity at the part-level would 

require the thermal or optical sensor to have commensurate resolution, while at the same time have a large 

enough field-of-view. Recently, researchers at Lawrence Livermore National Laboratories have 

demonstrated the use of in-situ synchrotron X-Ray imaging for detection of keyhole porosity (Calta, Wang 

et al. 2018). This instrument tracks the meltpool at frame rates of 4 kHz. However, the scale of the substrate 

on which the instrument capabilities are demonstrated is approximately 2 mm. The recent advancement of 

a new in-process sensing approach called Spatially Resolved Acoustic Spectroscopy (SRAS) pioneered by 

the research group in Nottingham University UK by Smith et al. and Clare et al. presents a viable 

opportunity for direct visualization of porosity in larger samples  (Smith, Li et al. 2014, Williams, Dryburgh 

et al. 2018). 

3 Methods 

3.1 Sensor Data Collection 

Part Build Conditions 

Cylindrical test parts (discs) are built simultaneously on a 3D Systems ProX DMP 200 L-PBF machine. 

Each disc is 12 mm in diameter and 6.6 mm in height. The build direction is parallel to the vertical axis of 

each cylinder. Laser power (P, W), laser scan velocity (V, mm/s), and hatch spacing (H, mm) are varied for 

each disk. Four discs, labeled A through D, are selected for analysis — processing parameters for these 

discs are noted in Figure 3. The layer thickness is held constant at ≈ 30 μm. We note that the intent of these 

experiments is not to conduct a parameter optimization study, but rather to generate distinct levels of pore 

severity within the samples.  

Sensor Instrumentation and Operating Principle 

The ProX 200 machine is equipped with a photodetector-based sensor, i.e. multispectral sensor, 

detailed in Ref. (Dunbar and Nassar 2018, Stutzman, Nassar et al. 2018). As shown in Figure 4, the sensor 

array consisted of two off-axis photodetectors (photodiodes) that capture light from the laser-material 

interaction zone.   A custom optical system is used to image the build plate of the L-PBF machine (140 mm 



Page 9 of 39 

 

× 140 mm) onto the sensor of each photodiode. Bandpass optical filters are used to capture emissions around 

520 nm and 530 nm (10 nm FWHM) —this approach is detailed in the authors previous works (Dunbar and 

Nassar 2018, Nassar, Spurgeon et al. 2014, Stutzman, Nassar et al. 2018). The output current of each 

photodetector is amplified and converted to a voltage, which is sampled at 100 kHz.  

 
Figure 3: The four discs used for analysis in this work made by varying the power (P), velocity (V), and 

hatch spacing (H) settings. 

Photodetector outputs are synchronized with the laser scanner position, laser trigger, and laser power 

output. Hence, the part geometry and scan pattern are matched one-to-one.  The NIST atomic spectra 

database is used as the reference for selecting the line and continuum wavelengths (Kramida, Ralchenko et 

al. 2017). Nassar et al. in a series of publications have explained implementation details and the physical 

meaning of the line to continuum ratio – i.e., the relationship of the line-to-continuum emission to the 

elemental excitation of alloy constituents of the powder feedstock, and through it to the quality of the build 

(Dunbar and Nassar 2018, Nassar, Starr et al. 2015, Stutzman, Nassar et al. 2018).  

Key details are reiterated here for the convenience of the reader.  The multispectral sensor is designed 

to measure the line-to-continuum ratio of chromium emission (Cr I) (Nassar, Starr et al. 2015). Chromium 

makes up 17-21%, by mass, of the composition of nickel alloy 718, and exhibits strong, atomically-excited 

emission lines around 520 nm.  Continuum emissions of the plume, meltpool, including blackbody 

radiations and other extraneous sources are accounted for by measuring emission around 530 nm. The 

underlying principle is illustrated in Figure 5. 
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Figure 4: Schematic of the multispectral sensor installed within the AM machine.  

 
Figure 5: The operating principle of the multispectral sensing system used in this work.  

The line-to-continuum ratio is described in Eq. (1), where  𝑆𝐿𝑖𝑛𝑒 is the sum (integration) of  spectral 

line emission amplitudes in the 520 nm ± 5 nm band, and 𝑆𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 is the amplitude of the continuum 

emission summed under the 530 nm ± 5 nm wavelength region. Nassar et al. (Dunbar and Nassar 2018, 

Nassar, Spurgeon et al. 2014, Stutzman, Nassar et al. 2018) have shown that the numerator term, 𝑆𝐿𝑖𝑛𝑒 −

𝑆𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚, in Eqn. (1) ensures that the part of the frequency spectrum corresponding to the extraneous 

noise is suppressed.  

𝑆𝐿𝑖𝑛𝑒−𝑡𝑜−𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 =
𝑆𝐿𝑖𝑛𝑒 − 𝑆𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚

𝑆𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚
 

(1) 
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3.2  Porosity Measurement 

The parts are characterized post-process using X-Ray Computed Tomography (CT); Figure 6 

exemplifies a representative. CT is selected over other density measurement techniques because it provides 

a layer-by-layer measurement of the distribution, size and type of defects in the part in a non-destructive 

manner (Slotwinski, Garboczi et al. 2014, Spierings, Schneider et al. 2011).  This enables calculation of 

porosity on a layer-by-layer basis, which is not possible with measurements of bulk density (e.g. 

Archimedes density).  

CT of the four discs is carried out on a GE Phoenix v|tome|x m system using a beam voltage of 170 

kV and a voxel resolution of 0.015 mm (15 μm). Porosity information is extracted using three image 

processing steps to detect the boundary of each pore and label its interior: 

1. The boundary of each disc is identified cropped and the brightness and contrast of the CT slice is 

enhanced using heuristically-selected values for each disk (Figure 6(b)). 

2. Canny edge detection is used to identify edges of pores and the image is binarized (Figure 6(c)) (Canny 

1987). 

3. This is followed by iterative image dilation and segmentation of pores (pixel value=1) from dense 

material (pixel value=0) (Figure 6(d)). Note that some of the smallest pores, were identified as dense 

material, however this appeared consistent across all disks. 

 
Figure 6: Image processing steps to extract the porosity from CT slices for layer 18 Disc C with (a)the 

original  unprocessed CT slice, (b) the cropped image after image enhancement, (c) the detected edges 

located around the pores and disc cross section in a binary format, and (d) the dilated edges that are filled 

with pixel values equal to 1 to construct the whole pores in a layer of the disc. 
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Porosity Quantification. 

From the binary image from Figure 6(d), we extract the following metrics to characterize porosity as 

functions of build layer: 

i. The proportion of area in a layer affected by porosity (𝜌1),  

ii. Frequency of occurrence, i.e., number of discrete pores in a layer (𝜌2),  

iii. The average distance between a pair of pores (𝜌3), and 

iv. Finally, the above three metrics are combined into a single metric, called the normalized porosity 

level (μ).  

The proportion of area covered by pores in a layer (ρ1, unitless) defines the ratio of the pore pixels  divided 

by all pixels on a layer. If the binary image of a layer is represented as a matrix with M rows and N columns, 

with each element (pixel) 𝑝𝑖,𝑗 then, 

𝜌1(𝑙𝑎𝑦𝑒𝑟) =
 Pixels related to the pores

All pixels in the image
=

∑ ∑ 𝑝𝑖,𝑗
𝑗=𝑁
𝑗=1

𝑖=𝑀
𝑖=1

M × N
 (2) 

The number of the pores in a layer (ρ2, unitless) is defined as the number of pores in a layer. This is found 

by counting the number of distinct pore centroids on each layer.  If the centroids are marked as 𝑐1 …𝑐𝑘, 

then 𝜌2 is given as,  

𝜌2(𝑙𝑎𝑦𝑒𝑟) = |𝑐𝑖|0 ∀𝑖;   𝑖 = {1…𝑘} (3) 

The average distance between pores in a layer (ρ3, pixels) is the mean pairwise distances between the 

centroid of the pores. The numerator in Eq. (3) is the sum of the Euclidean distance between pores, and the 

denominator is the number of pairs of pores. 

𝜌3(𝑙𝑎𝑦𝑒𝑟) =
∑ ‖𝑐𝑖 − 𝑐𝑗‖2∀𝑖,𝑗

(
𝜌2

2
)

[pixles]  ∀𝑖, 𝑗; 𝑖, 𝑗 = {1…𝑘} (4) 

The normalized porosity level (μ, unitless) combines 𝜌1, 𝜌2, and 𝜌3 into a dimensionless number (𝜇) 

between 0 and 1. We assume that 𝜌1, 𝜌2, and 𝜌3 are all non-zero. According, 𝜇 is obtained in two steps, 

first, in Eq. (5) the porosity measure 𝜌4 is obtained for each layer. Subsequently, the 𝜌4 value is normalized, 

in Eq. (6) to obtain a value between 0 and 1.  
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𝜌4(𝑙𝑎𝑦𝑒𝑟) =
𝜌1 × M × N

𝜌2 × 𝜌3

[pixles2]

[pixles]
=

∑ ∑ 𝑝𝑖,𝑗
𝑗=𝑁
𝑗=1

𝑖=𝑀
𝑖=1

𝜌2 × 𝜌3
[pixles] (5) 

𝜇(𝑙𝑎𝑦𝑒𝑟) =  
𝜌4 − min(𝜌4)

max (𝜌4) − min(𝜌4)
 (6) 

The metric 𝜇 is thus a normalized value whose physical significance can be explained as follows. The 

area occupied by pores in a layer is represented in 𝜌1, hence a small 𝜌1 is desirable for a fully-dense 

component. However, 𝜌1 does not capture how many pores account for this area. For example, one big pore 

of a certain area A may have a more deleterious effect on the physical properties of the part than multiple 

pores which add up to the same area A, i.e., the smaller the ratio  
𝜌1

𝜌2
⁄  the better, at least in terms of fatigue 

properties (Yadollahi, Mahtabi et al. 2018). Next, having pores farther away from each other is more 

desirable than having two pores closer together. Hence, the average distance between the pores (𝜌3) should 

also be taken into account with the physical contention that the severity of porosity is inversely proportional 

to 𝜌3. We note that if 𝜌1 is zero for a layer, such as in Disc D, the number 𝜇 is forced to zero, representing 

a fully dense layer.   

In Sec. 4, we will use these quantifiers of porosity, namely, 𝜌1 , 𝜌2, 𝜌3 and 𝜇, as the response (output) 

to be predicted for each layer as a function of graph theoretic Laplacian Eigenvectors and Eigenvalues 

extracted from the multispectral sensor data. The procedure to derive these graph theoretic process 

signatures is described in the forthcoming section, Sec. 3.3.  

3.3 Extraction of Graph Fourier Transform Features from Sensor Data 

Graph  Fourier transform coefficients are extracted from the line-to-continuum signatures and used to 

predict the pore severity in each layer. The mathematical underpinnings of the methodology have been 

addressed in the authors’ previous work, we have restated some of it here for the sake of continuity 

(Montazeri and Rao 2018, Montazeri, Yavari et al. 2018). Detailed mathematical justifications for the 

approach are available in Ref. (Montazeri and Rao 2018, Tootooni, Rao et al. 2018). In the previous works 

we mainly correlated the sensor signatures with defects due to overhang and contamination in LPBF, these 

are described in Ref. (Montazeri and Rao 2018), and Ref. (Montazeri, Yavari et al. 2018), respectively. 
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Graph theoretic approaches have also been used in the context of surface finish assessment in 

semiconductor nanomanufacturing and machining (Rao, Beyca et al. 2015, Tootooni, Liu et al. 2016). This 

work builds on the prior publications but is novel because, for the first time, sensor data are reconstructed 

into undirected weighted graphs to extract the graph Fourier coefficients for each layer. These graph Fourier 

coefficients are then used to predict the level of porosity in each layer.  

Step 1: Transforming the one-dimensional multi-spectral signal into a graph. 

In this step, the aim is to convert the one-dimensional line-to-continuum ratio signatures into a 

weighted, undirected graph 𝐺(𝑉, 𝐸,𝑊). Where 𝑉, 𝐸 and W are the vertices, edges and weight between the 

edges, of a network graph, respectively. To begin with the graph conversion process, the multi-spectral data 

for each layer of a disc (approximately 56,000 to 157,000 points) are represented as a signal matrix (𝑿𝑙), 

where l is the layer number. The number of data points per layer depends upon the scan velocity and hatch 

spacing – a higher scan speed and greater hatch spacing results in fewer data points given the constant data 

acquisition rate of 100 kHz. The total number of data points per layer for each disc is detailed in Table 1.  

Line-to-continuum data, synchronized with scanner position and system time, are available for 110 

layers for each disc, i.e., l = 1, 2, …, 110 indexed. For each layer of each disk, data are separated into 

windows of 50 data points, which corresponds to approximately 1 mm and 1.25 mm of scan length for the 

lowest (1.875 m/sec, Discs C and D) and highest scan velocity (2.5 m/sec, Discs A and B), respectively. 

The approach is illustrated in Figure 7.  

Based on extensive offline studies, summarized in Appendix I, the window size of 50 data points was 

found to be the smallest possible window found to have the highest statistical fidelity. This windowing 

approach allows the signal to be converted into a matrix with a fixed number of columns. That is, each row 

of the matrix 𝑿𝑙  is a 50 data point signal segment of a layer (l). The window size is the only heuristic 

parameter used in the approach. The matrix 𝑿𝑙 thus has N rows and d (=50) columns. The value number of 

rows, N, varies between ~3100 to ~1100 and is inversely proportional to the laser velocity and hatch spacing 

(Table 1).  
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Table 1: Approximate number of data points available per layer for a particular disc, and the corresponding 

number of rows (N) for each layer (d = 50). 

Discs mean and standard deviation 

of the line-to-continuum 

ratio  

Average number of line-

to-continuum ratio data 

points per layer 

Number of rows (N) in 

the signal matrix 𝑿𝒍 with 

window size of 50 data 

poins. 

Disc A 18.6 (4.5) 157000 3140 

Disc B 4.0 (0.9) 76000 1620 

Disc C 4.9 (0.4) 56000 1120 

Disc D 10.3 (0.8) 113000 2260 

 

 
Figure 7: Illustration of the approach taken to window the signal in each layer into 50 data point long 

segments. The diagram is not to scale.  

The signal matrix (𝑿𝑙) is setup for each layer as follows,   

𝑿𝑙 = [
𝑥1

1 ⋯ 𝑥1
𝑑

⋮ ⋱ ⋮
𝑥𝑁

1 ⋯ 𝑥𝑁
𝑑
] ∀𝑙 = {𝑙 =  1,2,… , 𝐿 =  110}, and 𝑑 = 50. (7) 

Next, a pairwise comparison is made between each of the rows of the matrix 𝑿𝑙. Such a pairwise 

comparison implies that the change in the signal across a layer is tracked, and each of the N rows in  𝑿𝑙 

becomes a node or vertex in the graph. The weight of an edge connecting one node (q) to another (r) in the 

graph is the pairwise distance between them. The distance 𝓌𝑞𝑟 is computed using a normed kernel function 

Ω per Eqn. (8), the kernel function can relate to a similarity measure, such as a Euclidean distance, between 

the set of data points in row r and q of the matrix 𝑿𝑙. Thus if  𝒙𝑞 and 𝒙𝑟 are the qth and rth row vectors in  

𝑿𝑙, the similarity distance between them (𝓌𝑞𝑟) is written as, 

𝓌𝑞𝑟 = Ω(𝒙𝑞 , 𝒙𝑟) ∀ 𝑞, 𝑟 ∈ (1⋯𝑘). (8) 
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Different types of kernel functions Ω can be selected,such as the radial basis or Euclidean kernel. In this 

work we use the Mahalanobis kernel shown in Eqn. (9) because it tends to normalize the data in matrix 𝑿𝑙 

with respect to its covariance 𝜮. 

𝓌𝑞𝑟 = (𝒙𝑞 − 𝒙𝑟)𝜮−1(𝒙𝑞 − 𝒙𝑟) (9) 

Because, there are N rows in the matrix 𝑿𝑙, we obtain a weighted undirected graph with N nodes and 
𝑁(𝑁−1)

2
 

edges. Once the pairwise distances 𝓌𝑞𝑟 are computed, they can be compacted into a similarity matrix. The 

similarity matrix 𝑺𝒍
𝑁×𝑁 = [𝓌𝑞𝑟], which is symmetric, represents a weighted and undirected graph 𝐺. 

Hence, 𝑺𝒍  is the matrix representation of the signal 𝑿𝑙 in terms of the graph.  Each row (or column) of 𝑺𝒍  

is a node in the graph. Each element is the weight of the edge connecting two nodes indexed by its row and 

column. For instance, the element 𝑺𝒍(𝑖, 𝑗) = 𝑺𝒍(𝑗, 𝑖) represents the weight of the edge connecting node i 

and node j. In other words, the graph 𝐺(𝑉, 𝐸,𝑊) is a lower dimensional, planar 2D graph representation of 

the relationship between each segment of the signal 𝑿𝑙 in terms of the similarity matrix 𝑺𝒍.  

Step 2: Calculating the Eigen spectrum (topological information) of the graph 

This step aims to extract topological information from the graph 𝐺 by calculating the Laplacian 

Eigenvalues (𝚲𝑙) and Eigenvectors (𝑽𝑙), which are subsequently used to derive the graph Fourier transform 

coefficients. The graph Fourier transform coefficients are in turn used to predict the porosity-level (μ) in a 

layer.  The normalized Laplacian matrix is first calculated in Eqn. (10) ‒ Eqn. (12) based on the similarity 

matrix (𝑺𝑙) and degree matrix (𝓓𝑙), where the degree matrix Eqn. (11) is the sum of each row in the 

similarity matrix. To be more specific, the degree of each node in the graph is described as the sum of 

weight of edges that are incident upon a node. In Eqn. (10), q represents a node on the graph.  

𝑑𝑞 = ∑ 𝑤𝑞𝑟

𝑁

𝑟=1

 ∀ 𝑞 = {1…𝑁} (10) 

𝓓𝑙 ≝ diag(𝑑1,⋯ , 𝑑𝑁). (11) 

Using the degree matrix, the normalized Laplacian 𝓛 of the graph 𝐺 can be defined as, 

𝓛𝑙  ≝ 𝓓𝑙  
−
1
2 × (𝓓𝑙 − 𝑺𝑙) × 𝓓𝑙  

−
1
2, 

where, 𝓓𝑙  
−

1

2 = diag (1
√𝑑1

⁄ ,⋯ , 1
√𝑑𝑁

⁄ ). 
(12) 
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Accordingly, the Eigen spectrum of 𝓛 is computed as, 

𝓛𝑙𝑽𝑙 = 𝚲𝑙𝑽𝑙. (13) 

 And the graph Laplacian eigenvalues (𝚲𝑙) and Eigenvectors (𝑽𝑙) can be described as follows, 

𝚲𝑙 = [ 𝝀𝑙,1;  𝝀𝑙,2; … ; 𝝀𝑙,𝑁] 

𝑽𝑙 = [[𝒗𝑙,1]; [𝒗𝑙,2];… ; [𝒗𝑙,𝑁]] 
(14) 

Where, 𝑽𝑙 is composed of N individual Eigenvectors 𝒗𝑙,(∙), and 𝚲𝑙 contains the corresponding number 

of Eigenvalues 𝝀𝑙,(∙). All Eigenvalues are real and non-negative, and Eigenvectors are orthogonal to each 

other (because the matrix 𝓛𝑙 is symmetric and positive semi-definite). In other words, the Eigenvectors of 

the Laplacian matrix of a graph present an orthogonal basis, akin to a Fourier basis. These properties are 

encapsulated in Eqn. (15), with the caveat that the first Eigenvector is a unit vector (𝒗𝑙,1 = 1⃗ ) and the first 

Eigenvalue of 𝓛𝑙 is zero (𝝀𝑙,1 = 0).  

𝒗𝑙,2 ⊥ 𝒗𝑙,3 ⊥ 𝒗𝑙,𝑖 ⋯ ⊥ 𝒗𝑙,𝑁, ⇒ 〈𝒗𝑙,𝑖, 𝒗𝑙,𝑗〉 = 0 ∀𝑖 ≠ 𝑗,  

and 〈𝒗𝑙,𝑖, 𝒗𝑙,𝑗〉 = 1 ∀𝑖 = 𝑗, noting 𝒗𝑙,1 = 1⃗  (15) 

𝝀𝑙,(∙) ≥ 0,  and 𝝀𝑙,1 = 0 

Step 3: Constructing the signal basis to obtain graph Fourier coefficients 

In this step, the Eigenvectors 𝑽𝑙 are used to transform a raw line-to-continuum signal into so-called 

graph Fourier coefficients. To realize this aim, a universal Eigenvector basis space is constructed. We frame 

a universal basis, (𝓥𝑏𝑎𝑠𝑖𝑠  ) as a time-weighted average of the Eigenvectors across layers for Disc D , which 

represents a prototype/ideal Eigenvector. This is necessary to account for noise and variance in 

Eigenvectors 𝑽𝑙 across layers within each disk.  

The procedure for obtaining the 𝓥𝑏𝑎𝑠𝑖𝑠 is a layer-wise simple update schema. It is started with the 

Eigenvector of the first layer of (𝑽𝑙=1) of a disk. This Eigenvector are continually updated by a small portion 

(∆ < 0.01) of the difference between the eigenvectors for the next consecutive layers for the disk, and so 

on. The procedure is mathematically represented as follows, 

𝓥𝑙+1 = 𝓥𝒍 + ∆(𝒗𝑙+1,𝑖 − 𝒗𝑙,𝑖), ∀  𝑙 ∈  {1…𝐿 = 110}, 𝑖 ∈  {1…𝑁}  

𝓥𝑏𝑎𝑠𝑖𝑠  = 𝓥𝐿 

(16) 
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We define the spectral graph transform 𝑪 using Eqn. (17), which is analogous to the discrete Fourier 

transform, as follows, where 𝑿𝑙 is a sensor signal for a layer l which is a N data point long column vector 

(Shuman, Ricaud et al. 2012). 

𝑪 = [(𝑿𝑙)
𝑇(𝓥𝑏𝑎𝑠𝑖𝑠  )] (17) 

As the 𝓥𝑏𝑎𝑠𝑖𝑠  is fixed, using the above inner product through all the layers (𝑿𝑙) results in the graph 

coefficient matrix 𝑪. The graph Fourier transform (𝑪) in this study is a 1×N vector that results from the dot 

product of the 1 × N line-to-continuum signals for each layer (𝑿𝑙
𝑇) with the N × N dimensional Eigenvector 

basis (𝓥𝑏𝑎𝑠𝑖𝑠  ) (Sandryhaila and Moura 2013, Shuman, Narang et al. 2013, Shuman, Ricaud et al. 2012). 

However, to reduce the computational burden, we only use the first ten non-zero values of the 𝑪 as input 

features for machine learning. Subsequent principal component analysis revealed that more than 85% of 

the variation in the dataset are captured within these first ten Eigenvectors in 𝓥𝑏𝑎𝑠𝑖𝑠  .  

3.4 Predicting the porosity level using graph Fourier coefficients.  

We use a two-fold strategy for predicting the porosity in a disc based on the coefficient matrix 𝑪.  

1) Classifying or binning the four porosity metrics, namely, proportion of area in a layer affected by 

porosity (𝜌1), Frequency of occurrence, i.e., number of discrete pores in a layer (𝜌2),  average distance 

between a pair of pores (𝜌3), and  normalized porosity level (µ) into discrete categories. 

2) Estimating the value of the normalized porosity level (µ), instead of classifying into discrete levels. 

The Eigenvectors basis (𝓥𝑏𝑎𝑠𝑖𝑠  ) are extracted from the nominally defect-free part, which in our case 

is Disc D. The Eigenvectors (𝓥𝑏𝑎𝑠𝑖𝑠  ) serve as basis or projection space for the sensor data. The key idea is 

explained as follows. When Fourier transform coefficients 𝑪 belonging to nominal defect-free conditions, 

such as any layer of Disc D, are projected onto this space, they will cluster closely. Conversely, signals 

belonging to pore-afflicted layers will cluster away from the coefficients belonging to nominally porosity-

free layers. The advantage of this approach is that the sensor data are transformed into a set of coefficients 

by obtaining a simple inner product multiplication (dot product) of the Laplacian Eigenvector with the 

signal of equal length as described in Eqn. (17).  
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Approach for classifying the normalized porosity level into discrete categories 

We investigated a two-class (high and low) and three-class (high, medium, and low) classification of 

porosity level. Class groupings or labels are made per a threshold limit value of the various porosity metrics. 

The threshold values were selected so as to avoid highly unequal populations between classes and thus 

minimize the possibility of overfitting the data with machine learning models. Accordingly, we required 

each classes to have at least 100 corresponding measurements of a porosity-level. 

For the two-class classification case, since 𝜇 ranges between [0,1], we set the threshold at  0.5.  A 

normalized porosity level (𝜇) less than or equal to 0.5 for a layer is considered acceptable, while a value of 

𝜇 over 0.5 is unacceptably high. In a similar vein, we demarcate 𝜌1 <  0.5% as acceptable-level, 𝜌1 ≥  0.5% 

as unacceptable–level; 𝜌2 <  30 as acceptable-level, 𝜌2 ≥  30 as unacceptable –level; 𝜌3 < 200 pixels as 

acceptable-level, 𝜌3  ≥  200 pixels as unacceptable-level. 

 For the three-class problem µ = 0 is labeled as a low-level, 0 < µ < 0.6 is a medium-level, and 0.6  ≤  

µ is a high-level.  The three-levels for the other metrics are as follows: 𝜌1  ≤  0.5 as low-level, 0.5 < 𝜌1  ≤  

1.2 as medium-level, and 1.2 < 𝜌1 as high-level; 𝜌2 ≤ 20 as low-level, 20 < 𝜌2 ≤ 60 as medium-level, and 

60 < 𝜌2 as high-level; 𝜌3 ≤  200 pixels as low-level,  200 pixels < 𝜌3 ≤ 240 pixels as medium-level, and 

240 < 𝜌3   pixels as high-level. 

Six popular machine learning classification algorithms, namely, Support Vector Machine (SVM), 

Decision Tree (DT), K-Nearest Neighborhood (KNN), Linear Discriminant Analysis (LDA), K-Means, and 

a shallow Neural Network (NN) are used to classify the level of porosity. The aim of using six different 

algorithms is to show that irrespective of the machine learning approach used, the ability to accurately 

identify the level of porosity in a layer is higher with graph Fourier transform coefficients as features 

compared to statistical signal features.  

In other words, we test the hypothesis that the graph Fourier transform coefficients extracted from the 

in-process spectral signatures are capable of discriminating the level of porosity in L-PBF parts with a 

higher statistical fidelity compared to conventional statistical signal features, such as mean and standard 
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deviation of the signal notwithstanding the type of modeling technique used.  The fidelity of each input 

type is assessed based on the F-score, which is a combination of both Type I (false error) and Type II 

(failing to detect) statistical errors (Montazeri and Rao 2018). Extensive offline studies were done to 

optimize the parameters for these algorithms. The input features to the algorithms selected are one of the 

following two types, which correspond to 440 deposited layers (4 printed discs with 110 layers for each 

disc).  

• Input Type 1: The graph Fourier coefficients (𝑪) obtained from the first ten non-zero Laplacian 

Eigenvectors (𝓥𝑏𝑎𝑠𝑖𝑠  ) shown in Sec. 3.2, Eqn. (17). 

• Input Type 2: Using five statistical features extracted from the line-to-continuum ratio, namely, the 

mean, standard deviation, range, skewness, kurtosis, interquartile range. 

Each feature set is finally subjected to principal component analysis (PCA) to further compress the 

dimension of the data. This PCA-based dimension reduction transforms the features into orthogonal 

components. Further, to ensure equitable comparison between the input features, the number of principal 

components chosen corresponds to those capturing at least 85% of the variation in the data. Lastly, to keep 

the development tractable, we note that the graph theoretic Fourier transform coefficients are used as input 

features within a KNN model.  

Training and testing are conducted using a 5-fold cross-validation procedure. The approach taken is as 

follows. For training, the dataset is split randomly into five groups with equal number of layers represented 

per group (110 layers per part = 440 layers for four part; 440/5 = 88 layers per group). Each of the algorithms 

studied is trained using data from the four groups; the training data set comprises 352 layers (4 groups for 

training × 88 layers per group = 352 layers for training). The trained model is then tested on the data from 

the fifth, i.e., the last remaining group (88 layers). This training-testing process is replicated five times, and 

then the average prediction fidelity in terms of the F-score obtained from the testing data set over these five 

repetitions are reported.  
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Estimating the normalized porosity value from in-situ data  

We also use the in-process optical emission spectroscopy to predict the normalized porosity level, 

instead of classifying porosity values into discrete classes; the results are reported in Section 4. We 

implemented a simple feed-forward neural network with one hidden layers and ten neurons in the hidden 

layer designed to predict the exact porosity value (μ). In this neural network sigmoid activation functions 

are used in the hidden layer, and a linear activation function is used in the output layer. The backpropagation 

algorithm via Levenberg-Marquardt optimization is implemented to minimize the sum of squared error 

between the predicted (𝜇̂𝑙) and observed (𝜇𝑙) normalized porosity level over one layer (Demuth, Beale et 

al. 2014).  

To evaluate the accuracy of the prediction we use the symmetric mean absolute percent error (SMAPE) 

and normalized root mean square deviation (NRMSD), defined in Eqn. (18). Both these measures are based 

on the difference between the porosity values (𝜇𝑙) extracted for a layer l ∀  𝑙 ∈  {1…𝐿 = 110} from the 

offline CT scans and the predicted porosity values (𝜇𝑙̂) for that layer obtained using the neural network. 

𝑆𝑀𝐴𝑃𝐸 =
1

L
∑

|𝜇𝑙 − 𝜇̂𝑙|

(|𝜇𝑙| + |𝜇̂𝑙|)/2

𝑙=𝐿

𝑙=1

;   𝑁𝑅𝑀𝑆𝐷 =
√∑ (𝜇𝑙 − 𝜇̂𝑙)

2𝑙=𝐿
𝑙=1

√∑ 𝜇̂𝑙
𝑙=𝐿
𝑙=1

 (18) 

4 Results and Discussion 

4.1 Porosity  

The degree of porosity was found to vary as a function of processing conditions. Figure 8 shows a 

representative result before and after applying the pore extraction procedure described in Sec. 3.2.  

Measurements of the mean percentage of area covered by pores (𝜌1), the mean number of pores (𝜌2), the 

mean distance between pores (𝜌3), and the normalized porosity (𝜇) are provided in Table 2. The empirically 

observed frequency distribution (histogram, empirical probability mass function) of each porosity metric 

across each disc is also visualized in Figure 9. Disc D did not contain any pores and is not shown.  
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From Figure 9 and Table 2 it is apparent that Disc A has the most severe level of porosity; Disc A has 

the highest mean porosity proportion of pores per layer (𝜌1), highest mean number of pores per layer (𝜌2), 

smallest average distance between pores (𝜌3), and consequently, the largest mean normalized porosity level 

(μ). The samples in terms of descending level of pore severity are: Disc A, Disc B and Disc C, and Disc D.   

Likewise, the empirically derived frequency distribution (histogram) of line-to-continuum ratio for 

50,000 randomly selected data points from the same layer (layer 60) for the four discs A through D are 

overlaid in Figure 10(a), from which it is evident that there are clear differences in the distribution of the 

line-to-continuum ratios for the four discs, with the data from Disc A having an unusually large spread.  

Further, the mean line-to-continuum ratio versus the layer number are shown in Figure 10(b), from 

which it is evident that there is a distinctive difference in the signal patterns for the four discs concerning 

their statistical characteristics, particularly, the mean line-to-continuum ratio is largely proportional to the 

input energy density. Nevertheless, as we will demonstrate herewith these statistical trends are not at par 

with graph theoretic features for capturing the layer-by-layer occurrence of porosity.  

Table 2: The mean value of the three metrics 𝜌1, 𝜌2, and 𝜌3 over 110 layers of the three discs 

extracted from their CT scans. The number in the parenthesis is the standard deviation. 

Disc 

𝜌1 

Mean percentage of area 

covered by pores in each 

layer. 

𝜌2 

Mean number of 

pores in each 

layer (rounded) 

𝜌3 

Mean distance in 

pixels between 

pores in each layer  

𝜇 

Mean normalized 

porosity measure in 

each layer. 

Disc A 1.8% (0.828%) 102 (48) 223 (15.7) 0.64 (0.076) 

Disc B 1.3% (0.997%) 78 (52) 233 (23.3) 0.57 (0.080) 

Disc C 0.7% (0.810%) 40 (40) 263 (34.6) 0.57 (0.097) 

Table 3 and Table 4 represent the classification accuracy of the predictions for two-level porosity and 

three-level porosity, respectively, in terms of F-score. The graph theory approach is compared therein with 

six different popular machine learning techniques using the principal components of the statistical features 

as inputs. We reiterate that the graph Fourier coefficients are used with a rudimentary KNN model. A 

summary of the model conditions used in these machine learning models are listed in Appendix II.   
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Figure 8: The pore extraction procedure is applied to the CT of layer 18 for Disc A through Disc D. The 

proportion of pores, their number, and spatial distribution are observed to vary across the discs.  

 
Figure 9: The three different porosity metrics (𝜌1, 𝜌2, and 𝜌3) shown in (a), (b), and (c) respectively. The 

normalized porosity level (μ) is charted in (d). In all these three metrics Disc A is observed to embody the 

most deletrious characteristics. Disc D is not represented because of the near-absolute absence of pores.  
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Figure 10(a): The frequency distribution (empirical probability mass function) of 50,000 randomly selected 

measurements of the line-to-continuum ratio for one layer (layer 60) of  Disc A through D indicating the 

prominent differences in the signal characteristics. (b) The statistical mean of the line-to-continuum ratio 

charted layer-by-layer for the four Discs (A-D).  

For the two-level classification case (Table 3(a)), the proposed method provides appreciably good results 

(F-score > 80%) with at least ~10% higher classification accuracy than other machine learning algorithms 

using all specified porosity measures (𝜌1, 𝜌2, 𝜌3, 𝑎𝑛𝑑 𝜇). From these results, it is evident that using he 

normalized porosity level (𝜇) as the output leads to higher F-score compared to the other metrics. For the 

three-level classification study, as reported in Table 4(a), the graph Fourier coefficients result in a 

classification accuracy approaching 80%, whereas with the statistical features the F-score is between 60% 

to 65%.  The corresponding confusion matrices related to the two-level and three-level classification levels 

using the graph Fourier coefficients for the normalized porosity level (𝜇) are shown in Table 3(b) and Table 

4(b), respectively. Notably, from the confusion matrix (Table 3(b)) for the two-level classification study, 

the Type II error (false negative) rate is only 1 in 287 layers across all disks. The type I errors (false positive) 

are higher – approximately 1 in 30 layers.   

A possible reason for such a high-level of Type I error may be explained as follows. While a pore may 

be created in a layer, and promptly detected from the multispectral line-to-continuum emissions; subsequent 

layers are liable to re-melt lack-of-fusion pores in previous layers and thereby eliminate porosity. Both 

numerical simulations (Khairallah, Anderson et al. 2016, King, Anderson et al. 2015, King, Barth et al. 

2014), and in-situ X-ray imaging (Leung, Marussi et al. 2018) demonstrate melting several layers below 
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the top surface. For the more challenging three-level classification, graph Fourier coefficient inputs also 

perform better than statistical features.   

Table 3: Performance comparison for a two-level classification scenario using statistical features as inputs 

within six machine learning algorithms to a KNN using graph Fourier transform features as inputs. The 

numbers in the parenthesis are the standard deviations over a five-fold replication study. 

(a) F-score results (as percentage) from classifying the porosity levels into two classes 

𝜌1 < 0.5% as acceptable-level, 𝜌1 > 0.5% as unacceptable-level porosity. 

𝜌2 < 30 as acceptable-level, 𝜌2 > 30 as unacceptable-level porosity. 

𝜌3 < 200 as acceptable-level, 𝜌3 > 200 as unacceptable-level porosity. 

µ ≤  0.5 as acceptable-level, µ > 0.5 as unacceptable-level porosity. 

 

Quantifier 

Proposed 

Graph 

Theory 

Method 

Machine learning Algorithm 

(Statistical features are used as inputs) 

SV

M 
DT KNN LD 

K-

Means 
NN 

Proportion of area in a layer affected 

by porosity (𝜌1) 

83  

(1.4) 

70 

(0.4) 

72 

(1.4) 

72 

(1.1) 

66 

(0.5) 

55  

(19) 

68 

(2.5) 

Frequency of occurrence, i.e., 

number of discrete pores in a layer 

(𝜌2) 

82  

(0.7) 

67 

(0.5) 

70 

(0.8) 

69 

(0.6) 

64 

(2.2) 

55  

(18) 

66 

(3.4) 

Average distance between a pair of 

pores (𝜌3) 

87  

(1.0) 

78 

(0.6) 

76 

(0.2) 

80 

(0.5) 

72 

(0.7) 
47 (7.7) 

73 

(2.3) 

Normalized porosity (𝜇) 
93  

(1.1) 

83 

(0.8) 

80 

(0.3) 

83 

(1.0) 

75 

(0.6) 

53 

(12.8) 

79 

(3.4) 

(b) Confusion matrix for classifying pore severity into two discrete levels using graph Fourier 

transform coefficients (Input Type 1) within a KNN model.  

True Class ↓ 

Predicted Class 

Acceptable Porosity 

µ < 0.5 

Unacceptable Porosity 

µ ≥ 0.5 

Acceptable Porosity 

µ < 0.5 

(153 layers) 

110 

(out of 153) 

43 

(Type I error, 

False Alarm) 

Unacceptable Porosity 

µ ≥ 0.5 

(287 layers) 

1 

(Type II error,  

Failing to detect) 

286 

(out of 287) 
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Table 4: Performance comparison for a three-level classification scenario using statistical features as 

inputs within six machine learning algorithms to a KNN using graph Fourier transform features as inputs. 

The numbers in the parenthesis are the standard deviations for a five-fold replication study.  

(a) F-score results (as percentage) from classifying the porosity levels into three classes 

𝜌1 ≤  0.5 as low-level, 0.5 < 𝜌1 ≤ 1.2 as medium-level, and 1.2 < 𝜌1 as high-level porosity. 

𝜌2 ≤  20 as low-level, 20 < 𝜌2 ≤ 60 as medium-level, and 60 < 𝜌2 as high-level porosity. 

𝜌3 ≤  200 as low-level, 200 < 𝜌3 ≤ 240 as medium-level, and 240 < 𝜌3 as high-level porosity. 

µ = 0 as low-level, 0 < µ < 0.6 as medium-level, and 0.6 ≤ µ as high-level porosity.  

Quantifier 

Proposed 

Graph Theory 

Method 

Machine learning Algorithm 

(Statistical features are used as inputs) 

SVM DT KNN LD 
K-

Means 
NN 

Proportion of area in a layer 

affected by porosity (𝜌1) 

68  

(0.5) 

53 

(0.2) 

59 

(0.6) 

60 

(0.8) 

54 

(0.9) 

32 

(10.0) 

65 

(3.1) 

Frequency of occurrence, i.e., 

number of discrete pores in a 

layer (𝜌2) 

69  

(1.3) 

62 

(0.8) 

60 

(1.0) 

63 

(0.7) 

40 

(0.5) 

31 

(9.0) 

67 

(2.1) 

Average distance between a pair 

of pores (𝜌3) 

74  

(1.1) 

67 

(0.6) 

63 

(0.7) 

66 

(0.6) 

50 

(1.2) 

28 

(10.0) 

69 

(2.3) 

Normalized porosity (𝜇) 
79  

(1.1) 

63 

(0.2) 

65 

(0.5) 

62 

(0.3) 

55 

(0.7) 

31 

(7.0) 

70 

(9.0) 

 

(b) Confusion matrix for classifying pore severity into three discrete levels using graph Fourier 

transform coefficients (Input Type 1), and KNN. 

True Class ↓ 

Predicted Class 

Low-Level 

Porosity 

µ = 0 

Medium-Level 

Porosity 

0 < µ ≤ 0.6 

High-Level Porosity 

0.6 < µ 

Low-Level Porosity µ = 0 

(110 layers) 

109 

(out of 110) 
0 1 

Medium-Level Porosity 

0 < µ < 0.6 

(196 layers) 

1 
165 

(out of 196) 
30 

High-Level Porosity 0.6 ≤ µ 

(134 layers) 
1 59 

74 

(out of 134) 
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Further evident from the confusion matrix for the three-level case shown in Table 4(b), with the graph 

Fourier coefficient inputs, 2 out of 330 cases ‒ 1 in 196 layers belonging to the medium-level porosity class 

are grouped in the low porosity class, while 1 in 134 layers for the high-level porosity class are wrongly 

classified as belonging to the low-porosity level. On the other hand, there is a considerable degree of 

misclassification between the medium and high porosity levels.   From the medium-level porosity, 30 layers 

(out of 196) are wrongly labeled as belonging to the high-level porosity class; conversely, 59 out of 134 

layers belonging to the high-level class are misclassified within the medium-porosity level.  The reason for 

the high-level of statistical errors in the three-level case compared to the two-level case is explained on the 

basis of the scatter plot shown in Figure 11, which shows the clustering efficacy of the first three principal 

components of the graph Fourier coeffecients with respect to the the normalized porosity metric (µ). The 

different levels of porosity are demarcated with different colors.  

The principal components for the two-level case group into (two) distinct clusters, as evident in Figure 

11(a),  albeit, both Type I and Type II errors exist. In contrast, for the the three-level case, shown in Figure 

11(b),  only the low- and medium-level normalized porosity are tightly grouped, whereas the points 

representing layers belonging to the high-level porosity class have a large spread.  The large spread in the 

input features, compounded with the effect of re-melting,  is likely the root-cause for the high degree of 

misclassification evidenced in the three-level classification study.  

 
Figure 11: The scatter plot mapping the three principal components of the graph Fourier transform 

for the different levels of the normalized porosity metric (µ). (a) for the two-level case, the clusters 

are distinctive, (b) for the three-level case the principal components corresponding to the high-

level of normalized porosity (0.6 ≤ µ) has a significant spread, which precludes clear demarcation. 
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In closing this section, a very pertinent concern expressed by one of the anonymous referees during 

the review process was what level of accuracy would be necessary to satisfy certain quality level 

requirements in LPBF? We recon the answer to this is question is contingent on three factors, namely, the 

application area where the AM part would be used,  the location and criticality of the feature where a defect 

might occur, and whether the part is subjected to post-processing procedures, such as hot isostatic pressing, 

to negate the effect of porosity. 

4.2 Estimating the Value of the Normalized Porosity Level (µ) 

One concern with the confusion matrix is in the last row of Table 4(b), where 59 out of a total 134 

layers that belong to the high-level porosity case are wrongly categorized as belonging to the medium-level 

porosity. An approach to overcome this limitation is to use a continuous threshold. This will also allow 

estimation of the exact porosity level. However, taking this approach entails sacrificing the tractability of 

rudimentary classification algorithms to a more sophisticated data modeling technique, such as a neural 

network. Using the graph Fourier coefficients as input features to a shallow feed-forward neural network 

with one hidden layer having 10 neurons (sigmoid activation function) the porosity-level is predicted in the 

output layer with a linear activation function.  

Figure 12 shows both the observed porosity level (µ) overlaid with the values estimated (𝜇̂) obtained. 

Porosity is predicted with an error less than 15%  for Disc A through Disc C. The prediction error for Disc 

D, which has a porosity level of zero (µ = 0) is not estimated.  The prediction accuracy is quantified in 

Table 5; Disc D is excluded due to the aforementioned reasons. Aggregating the predictions related to all 

discs, the normalized root-mean-square deviation (NRMSD) is less than 15%, and the symmetric mean 

absolute percentage (SMAPE) is roughly 11%. 
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Figure 12: The actual vs predicted normalized porosity levels (µ) along the whole dataset using the graph 

Fourier coefficients (method 2). 

Table 5: The goodness of fit in exact porosity prediction using a shallow neural network with graph Fourier 

coefficients as inputs. 

Porosity 

Features 
Prediction Error  

SMAPE NRMSD (%) 

Disc A 0.09  0.11  

Disc B 0.13  0.17  

Disc C 0.12  0.16  

Overall error 0.11  0.14 

5 Conclusions and Future Work 

In this work, we demonstrated a multispectral optical emission sensing technique and integrated it with 

a graph theoretic signal analysis technique for detection and identification of porosity in laser powder bed 

fusion (L-PBF) additive manufacturing of nickel alloy 718. The graph theoretic approach proposed in this 

work processes the line-to-continuum ratio from the multispectral sensor measurements on a layer-by-layer 

basis, and results in graph Fourier transform coefficients. We then test the hypothesis that the graph Fourier 

transform coefficients  capture patterns that are symptomatic of the occurrence and severity of pores with 

higher statistical fidelity (F-score) compared to statistical features. Graph Fourier coefficients and statistical 

features are used as input to classify the severity of the porosity into discrete levels. 
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For two-level classification, the highest statistical fidelity (F-score > 90%) is obtained using graph 

Fourier coefficients. This is a ~10% higher classification accuracy, irrespective of the machine learning 

algorithm used, than with statistical input features.  The computational time required for the approach is 

less than 0.5 second. For the three-level classification, the F-score degraded to 80% for Fourier coefficient 

inputs. This is a 15 to 20% improvement compared to statistical input features. The graph Fourier transform 

coefficients are also used for prediction of the porosity level, the prediction errors (normalized root-mean-

square deviation, NMRSD) is approximately 10%. 

In closure, this work demonstrates an approach to estimate porosity in real-time in an L-PBF process. 

Future work will investigate the effectiveness of the approach for different geometries, materials, and flaw 

types. This contribution is a step towards a qualify-as-you-build paradigm, wherein part quality is 

characterized from in-process sensor data, as opposed to post-process examination with X-Ray computed 

tomography.  
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Appendix I 

The following table represents the classification accuracy (F-score) of the 2 and 3-level classification 

using a KNN with different signal lengths.  

Signal window length 

(number of line-to-continuum data 

points per layer) 

2-level classification 

Percentage F-score 

3-level classification  

Percentage F-score 

20 78% 71% 

50 (chosen for analysis) 93% 79% 

100 80% 71% 

200 78% 71% 

400 76% 70% 

 

Appendix II 

Type Setting 

Support Vector Machine (SVM) 
• Kernel Function: Linear 

• Box constraint level: 1 

Decision Tree (DT) 
• Max. No. of splits: 20 

• Split Criterion: Gini’s diversity Index 

K-Nearest Neighbor (KNN) 
• No. of Neighbors: 10 

• Distance Metric: Euclidean 

Neural Network (NN) 

• No. of Layers: 2 

• No. of Hidden Neurons: 10 

• Training method: Scaled conjugate gradient 

backpropagation 

Linear Discriminant (LD) • Kernel Function: Linear 

K-Means Clustering • No. of Clusters: 2 and 3 
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