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Abstract 

The goal of this work is to predict the effect of part geometry and process parameters on the 

instantaneous spatiotemporal distribution of heat, also called the thermal history or temperature 

field, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) 

processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-

based approach for predicting the heat distribution in metal AM parts. This objective is 

consequential to overcome the current poor process consistency and part quality in AM. One of 

the main reasons for poor part quality in metal AM processes is ascribed to the nature of heat 

distribution in the part. For instance, steep thermal gradients created in the part during printing due 

to ill-considered part design leads to defects, such as warping and thermal stress-induced cracking. 

Existing non-proprietary approaches to predict the heat distribution in AM parts predominantly 

use mesh-based finite element analyses that are computationally tortuous – the simulation of a few 

layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal 

AM processes, there is a need for efficient computational models to predict the heat distribution, 

and thereby guide part design and selection of process parameters instead of expensive empirical 

testing. Compared to finite element analyses techniques, the proposed mesh-free graph theory-

based approach facilitates prediction of the heat distribution within a few minutes on a desktop 

computer. To explore these assertions we conducted the following two studies: (1) comparing the 

heat diffusion trends predicted using the graph theory approach with finite element analysis, and 

analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry 

which is subjected to an impulse heat input in a certain part of its volume, and (2) simulating the 

laser powder bed fusion metal AM of three part geometries with: (a) Goldak’s moving heat source 

finite element method, (b) the proposed graph theory approach, and (c) further comparing the 

predictions from the last two approaches with a commercial solution. From the first study we report 

that the thermal trends approximated by the graph theory approach is found to be accurate within 

5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute 

percentage error). Results from the second study show that the thermal trends predicted for the 

AM parts using graph theory approach agrees with finite element analyses, and the computational 

time for predicting the heat distribution was significantly reduced with graph theory. For instance, 

for one of the AM part geometries studied, the temperature trends were predicted in less than 18 

minutes within 10% error using the graph theory approach compared to over 180 minutes with 

finite element analyses. Although, this paper is restricted to theoretical development and 

verification of the graph theory approach, our forthcoming research will focus on experimental 

validation through in-process thermal measurements. 
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1 Introduction 

1.1 Objective   

The goal of this work is to understand the effect of process parameters and part design (part 

geometry) on the instantaneous spatiotemporal distribution of heat, also called thermal history or 

temperature field, in metal parts as they are being built (printed) layer-by-layer using additive 

manufacturing (AM) processes [1].  As a step towards this goal, the objective of this work is to 

develop and verify a graph theory-based approach for predicting the spatiotemporal distribution of 

heat in metal AM parts. 

Shown in Figure 1(a) is the laser powder bed fusion (LPBF) AM process in which layers of 

metal powder are rolled or raked across a build plate and selectively melted using a laser to form 

the part. Figure 1(b) shows a schematic of a directed energy deposition (DED) metal AM process, 

wherein a stream of metal powder material is directed onto a substrate via nozzles. The powder is 

melted through the thermal action of a laser. By translating the nozzle relative to the substrate in 

the horizontal and vertical planes, a desired part geometry is built layer-upon-layer [2].  

 
Figure 1: The schematic of the laser powder bed fusion (LPBF) and blown powder directed 

energy deposition (DED) metal AM processes. 
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1.2 Motivation for Thermal Modeling in Metal AM 

Metal AM processes, such as LPBF and DED offer significant advantages over conventional 

subtractive and formative manufacturing processes, including design flexibility and shorter lead 

times [3-5]. However, poor process consistency and inferior part quality currently afflict metal 

AM processes [6-11]. Given the uncertainty in part quality, precision-oriented strategic sectors, 

such as aerospace and biomedical, are reluctant to deploy metal AM processes for making safety-

critical parts. The three  main process-related reasons that impede the quality of metal AM parts 

are [12]:  

(1) Inconsistency in the as-built microstructure, termed as microstructural heterogeneity [13-15].  

(2) Porosity formation, which includes the case of poor consolidation of the material called lack-

of-fusion porosity due to insufficient input energy to melt the material, as well as, vaporization 

of the powder material due to excessive input energy called pinhole porosity [16, 17]. 

(3) Deviations in the as-built geometry from its intended design due to distortion. At the part-level, 

other defects, beside distortion, include cracking and delamination of layers.  

The aforementioned flaws are largely governed by thermal phenomena, specifically, the 

magnitude and direction of heat flow in the part as it is being built – called the temperature field 

or thermal history [12, 18, 19]. To explain further, the salient thermal phenomena in LPBF and 

DED, stratified by the various energy-part-process interaction zones, are represented in Figure 2 

[20, 21].  The thermal phenomena depicted in Figure 2 encompass complex conductive, 

convective, and radiative heat transfer interactions between the part, energy source, material, and 

chamber (powder, as well as gas) [22]. These thermal aspects in AM, which govern the heat 

distribution in the part, are in turn a function of the material, part design and the process 

parameters, such as the power and velocity settings of the laser used for melting the material [23]. 
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 Statistical experimentation methods to obtain the desired geometry and microstructure in AM 

will involve building test parts by adjusting process parameters, followed by destructive materials 

characterization. Such a statistical designed experiments-based approach is prohibitively 

expensive, and may not be viable in metal AM given the small batch sizes, vast parameter space 

(there are over 50 variables in LPBF alone), and the slow nature of AM processes compared to 

conventional manufacturing [24, 25].   

Furthermore, owing to the tight coupling of the part design, material properties, and 

parameters to the heat distribution, a set of parameters optimized for a particular part geometry 

and material are not readily transferable to a new part design and material [8].  Therefore, as 

emphasized by several researchers, to ensure part quality in metal AM, it is imperative to 

understand and explain the following intertwined links in the LPBF process chain through 

quantitative modeling [26-31]: Part Design, Process Parameters, and Material Characteristics → 

Heat Distribution (Temperature History) → Microstructure and Geometry Flaws [32-35]. 

 
Figure 2: The salient heat transfer modes in LPBF and DED encompassing complex interactions amongst 

the part, material, energy source, and environment (surrounding inert gas).  
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The bourgeoning need for a formal framework based on fundamental understanding of the 

thermal physics of the process to guide the design of the AM parts and parameter selection is 

practically illustrated in Figure 3, which shows a biomedical knee implant built by the authors 

using the LPBF process [36]. This part has a feature called an overhang whose underside is not 

supported. To prevent the part from collapsing under its own weight, supports were automatically 

built under the overhang feature by the native software on the LPBF machine. Nonetheless, after 

the build, the overhang area was found to have coarse-grained microstructure, distortion and poor 

surface finish, which makes the implant potentially unsafe for clinical use.  

Such defects, also reported in the literature by other researchers, result from the heat being 

constrained in the overhang section [37-41]. The reason for the constrained heat in the overhang 

section is hypothesized due to the low thermal conductivity of the surrounding metal powder, and 

the thin cross-sectional area of the supports. Through accurate and computationally efficient 

thermal simulations that can predict the effect of process conditions and part design on the 

spatiotemporal distribution of heat, occurrence of defects, such as geometric deformation and 

microstructure heterogeneity can be minimized without extensive empirical optimization [42].  

 

Figure 3. LPBF knee implant with an overhang feature shows poor surface finish and coarse 

microstructure. 
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Accurate quantitative modeling approaches based on FE analyses have been successfully 

developed and applied for understanding the thermal aspects of AM at the part-level as 

summarized in Ref. [11, 12, 43-45], and will be discussed in depth in the forthcoming Sec. 2. 

However, these pioneering non-proprietary approaches reported in the published literature are 

computationally expensive, with simulation of a few deposited layers amounting to many hours, 

if not days [46, 47]. For example, Chou et al., reported that the computation time for 

thermomechanical analysis for a 6 mm cuboid shape part exceeds 92 hours [46].  

Hence, newer efficient approaches are needed to predict the heat distribution given different 

part designs and process parameters. In the context of FE-based modeling we note that certain 

commercial, proprietary approaches, such as Autodesk Netfabb and Ansys 3DSim have leveraged 

adaptive meshing principles to drastically reduce the computational time. However, the underlying 

mathematics of these commercial software applications is proprietary [44, 48].   

1.3 Novelty and Advantages of the Proposed Graph Theory Approach 

Within the context of prediction of the temperature field, the advantages in using the graph 

theoretic approach are two-fold: 

1. Reduced computational burden due to elimination of mesh-based analysis 

Predicting the temperature field in metal AM involves solving the continuum heat equation 

(Eqn. (1) and Eqn.(2), in Sec. 3.2).  Instead of solving the heat diffusion equation for each 

element through element birth-and-death techniques as in FE analysis, we track the 

temperature in the part in terms of discrete nodes of a planar graph projected onto its 

geometry. In other words, we solve the discrete counterpart of the continuum heat diffusion 

equation (Eqn. (3)). Our efforts in verifying results from the graph theoretic approach with 

the FE analysis, described in Sec. 4.2, leads us to infer that, a significant portion of the 
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computation effort in FE analysis is consumed by the meshing of elements, and simulation of 

the birth-and-death process to mimic material deposition in AM. The graph theoretic approach 

circumvents the need for meshing, and as a result, the computation time for simulation of AM 

processes can be considerably reduced compared to existing, non-proprietary FE analysis-

based approaches.  

2. Elimination of matrix inversion steps required to solve the heat diffusion equation.  

While FE analysis rests on matrix inversion steps to solve the heat diffusion equation for each 

of the thousands of elements, the graph theoretic method instead relies on the more 

computationally tractable matrix multiplication operations to obtain the eigenvectors (𝛟) and 

eigenvalues (𝚲) of the graph Laplacian (L) (to be discussed subsequently in Sec. 3.3), which 

greatly reduces the computational burden.  

By reducing the computational time in predicting the heat distribution to minutes, as opposed 

to hours, estimating the geometric distortion and microstructural evolution that are governed by 

the thermal history becomes considerably more tractable. Furthermore, the near real-time 

predictions of the heat distribution made possible through the proposed approach, lays the 

foundation for feed-forward, model-based control of metal AM as opposed to data-driven machine 

learning and analytics.  

1.4 Organization of the Paper 

The rest of this paper is organized as follows. The literature concerning the FE-based thermal 

modeling of metal AM processes at the part-level is outlined in Sec. 2. Next, the graph theoretic 

approach is described in Sec. 3, wherein we show that the eigenvectors (𝛟) and eigenvalues (𝚲) 

of the Laplacian matrix (L) solve the heat diffusion equation, which governs heat distribution in 

AM parts. We dedicate Sec. 4 of this paper to the verification of the graph theory approach through 
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the following two studies: (1) verifying the thermal trends obtained from graph theory with exact 

Green’s functions-based analytical method, and finite element analysis for an elementary cuboid 

geometry, and (2) comparing the thermal trends derived using graph theory approach for three part 

geometries in a LPBF simulation scenario with the thermal trends obtained by implementing 

Goldak’s moving heat source FE analysis solution, and Autodesk’s Netfabb software. This paper 

closes in Sec. 5 with conclusions and avenues for future work. 

2 Prior Research in Finite Element Modeling in Metal AM Processes 

It is beyond the scope of this paper to provide an in-depth exposition of the vast and mature 

area of finite element (FE) analysis in AM, which is the de facto means to solve the heat diffusion 

equation described later in Sec. 3 as applied to metal AM. The reader is referred to the recent book 

by Denlinger et al. [44] which comprehensively details the methodological implications, 

challenges, and practical application concerning FE-based thermomechanical analysis in AM.  

Comprehensive review articles on part-level thermal modeling in AM with the finite element 

method in metal AM have been recently published by Luo and Zhao [42], Bandyopadhyay and 

Traxel [43], and DebRoy, et al. [11]. These articles provide an in-depth review the strategies that 

have been advanced by researchers to reduce the computational burden of FE analysis in AM; a 

summary of these is provided below. 

(1) Adaptive meshing and element activation schema 

Researchers have simplified the meshing process, such as consolidating layers into blocks or 

super-layers using an adaptive mesh refinement and coarsening strategy [47]. The key idea is that 

certain areas of the part, where the cross-section and boundaries change sharply have finer mesh 

while the rest of the part may has a coarser mesh.  Further, researchers in metal AM have adapted 

two main approaches to simulate the deposition of the material in the FE framework [49]. In the 
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first approach, called the inactive element method, elements are incrementally added when the 

melting process is initiated. Though the inactive approach closely mimics the AM processes, it is 

challenging to implement because the number of elements increases as the part grows. The second 

technique is called the quiet element method, wherein the part is meshed a priori, but only elements 

in the current layers and those below are thermally active. The properties of the elements in the 

succeeding layers are deliberately altered to have no thermal effect. To reduce the computational 

burden, commercial approaches, such as Netfabb (Autodesk) have taken two tacks: 

(i) adaptive mesh refinement of the part, such that certain areas have large or coarser nodes; and 

(ii) using a hybrid meshing approach combining quiet and inactive meshing schema. Such a 

hybrid element activation schema was pioneered by Michaleris and is reported to be 

implemented in Netfabb [49]. 

(2)  Simplification of the process physics  

As first described in Figure 2, the main heat transfer mechanisms in the process are:  

(i) conductive heat losses at the part and substrate level, wherein the heat on the top surface 

travels through the solidified layers in the bottom, and further through the substrate;  

(ii) radiative heat loss at the top surface to the process chamber;  

(iii) loss due to convection at the boundary of the printed part and the surrounding powders and 

inert gas, such as argon, that is filled in the chamber; and  

(iv) latent heat involved at the melt-pool zone as the material state changes from solid to liquid, 

and back to solid again on cooling.  

Incorporating all these heat transfer mechanisms in a model will inordinately increase its 

computational burden. Consequently, researchers resort to simplifications, such as: ignoring latent 

heat effects from the melt-pool; maintaining static material properties, such as a constant heat 
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conduction rate, density and specific heat; and, ignoring the radiative heat losses into the chamber 

and the convective heat losses into the surrounding powder by assuming the part to be completely 

insulated. Some of  these simplifications have been shown to have a significant effect on the 

prediction of the thermal trends [42]. 

(3) Simplifying the part geometry, energy source, and powder bed-related conditions. 

Researchers seek to reduce the computational burden by simplifying the part geometry, such 

as simulating only one half of a symmetric part, or considering deposition in the form of super-

layers [45]. Furthermore, the behavior of the energy source is also simplified by assuming heating 

of an entire layer at once, or in terms of rectilinear hatches, as opposed to complicated island type 

scanning. The thermal models can also incorporate strategies to simplify the effect of the energy 

source by approximating the shape of the beam, e.g., assuming Gaussian, ellipsoidal, and tophat 

shapes. Mesh-free approaches in AM are being explored, such as electric network type modeling 

schema introduced by Hoelzle et al. [50], and discrete finite difference modeling by Zohdi and 

Ganeriwala [51, 52].  

From a graph theoretic perspective, a review paper by Solomon [53] discusses discrete 

differential operators that arise from partial differential equations (PDEs) such as the heat equation; 

it shows that the Laplacian matrix constructed from a uniformly-spaced grid gives a solution to 

the heat diffusion equation. However, if the grid is not equally spaced, the relationship to the 

correct solution of the heat equation is not clear. In a study of geometric surface smoothing, Belkin 

et al. [54] assert that their discrete Laplacian matrix approaches the continuous Laplacian in the 

limit as the grid become sufficiently fine, even if the grid pattern is non-uniform.  Their algorithm 

includes multiplicative factor 1/ε2 where ε which is the size of the neighborhood of influence for 

nearby grid points. In a study of image smoothing, Zhang and Hancock use randomly-assigned 
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node locations to construct a discrete Laplacian matrix and subsequently to solve the heat diffusion 

equation [55].  

In closing this section, we note that the proposed graph theoretic approach is distinct from the 

mesh-free methods developed for peridynamics of systems undergoing dynamic cracking [56, 57], 

and it is also different from spectral collocation methods where splines provide an a priori 

functional form of the solution as part of a standard matrix-inversion process [58, 59]. 

3 The Graph Theoretic Approach for Approximating the Heat Distribution in 

AM Parts. 

3.1 Assumptions of the Graph Theoretic Model 

To keep the development brief, the following simplifying assumptions are applied to the graph 

theoretic approach. 

• Heat transfer-related assumptions. The thermal properties of the material are static, in that, 

they do not change as the material changes state from particulate matter to a liquid (meltpool 

formation), and then back to a solid. In other words, the latent heat of melting and 

solidification is ignored. The heat loss due to vaporization, and material composition and 

density changes due to mass transfer are also not considered. Likewise, the radiative effects 

from the top surface of the part are not accounted. 

• Energy source-related assumptions. The laser is considered a moving point heat source, i.e., 

the beam diameter and shape, and subsequent diffusion of the laser on the powder bed surface 

are not accounted. It is assumed that the laser rays are completely absorbed in the topmost 

layer and are not repeatedly reflected by the powder. Hence, effects such as keyhole melting, 

and variations in thermal absorptivity contingent on powder packing density on the powder 

bed are ignored [21].  
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• Powder bed-related assumptions. There is only one single part in the build plate at a given 

time, hence there is no heat exchanged with other parts. The powder bed is considered to be 

at the same temperature as the chamber, and that the packing density of the powder bed 

remains static. Lastly, in the context of LPBF, low temperature nodes (ambient temperature 

nodes) belonging to the next layer are deposited on the previous printed layer to simulate 

deposition, and the newly deposited nodes in each hatch (or layer, if a coarse simulation is 

desired)  are heated by the laser beam, to simulate the fusion process. No heat transfer occurs 

until a hatch (or layer) is completely fused. 

These assumptions can be relaxed to provide a more comprehensive model, which will be 

pursued in later works by the authors. 

3.2   The Heat Diffusion Equation and its Connection to Heat Distribution in AM Parts. 

As stated previously, the objective of this work is to develop and apply a graph theoretic 

approach to predict the temperature history in metal AM parts. To realize this objective, we solve 

the heat diffusion equation,  

𝜌𝑐𝑝
∂T

∂𝑡
− 𝑘 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)T = E𝑉 (1) 

In Eqn. (1), T is the instantaneous temperature at a location {𝑥, 𝑦, 𝑧}  at time t. The AM process 

parameters are captured in the energy density, E𝑉 , which is the energy supplied by the laser to the 

top layer to melt a unit volume of material per second; E𝑉 =
𝑃

ℎ𝑡∙𝑑∙𝑙
 [W/mm3], where P is the laser 

power in [W], ℎ𝑡 is the width of the laser track or hatch [mm], d the layer height [mm], and l the 

length melted in one second [mm]. The material properties are encapsulated in the following terms: 

density 𝜌 [kg/m3], specific heat 𝑐𝑝 [J/(kg·K)], and thermal conductivity k [W/(m·K)].   
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From the AM perspective, the term  
𝜕T

𝜕𝑡
 is analogous to the rate of change of temperature at a 

particular point in the part referenced by its spatial coordinates {x, y, z} as it is heated by a moving 

energy source, e.g., a laser in LPBF, while being consolidated layer-upon-layer. Solving the heat 

equation results in the instantaneous temperature T(𝑥, 𝑦, 𝑧, 𝑡) at a time 𝑡 for a Cartesian spatial 

coordinate{x, y, z}. The temporal map of T(𝑥, 𝑦, 𝑧, 𝑡), i.e., the trace of the temperature T at the 

location {x, y, z} over time, gives the thermal history in the part for that location.    

The graph theory approach to the solution of the heat diffusion equation relies upon two 

approximations. First, the source term, E𝑉, in Eqn. (1) is replaced by an initial temperature 

distribution, for which the portion of the AM part that is scanned by the laser is assigned an 

elevated temperature to represent, for example, the metal fusion temperature. The heat equation is 

solved repeatedly, again and again, following each laser scan.  Specifically, consider a spatial point 

{x, y, z} during the AM process, immediately after a laser scan is completed, the heat diffusion 

equation to be solved takes the form, 

∂T

∂𝑡
− 𝛼 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)T = 0 

T(𝑥, 𝑦, 𝑧, 𝑡 = 0) = T𝑜(𝑥, 𝑦, 𝑧) 

(2) 

In Eqn. (2), T0  is the initial condition and α = k/( 𝜌𝑐𝑝) is the thermal diffusivity. Further, the second 

order spatial derivative (
∂2

∂𝑥2
+

∂2

∂𝑦2
+

∂2

∂𝑧2
) is called the continuous Laplacian operator, and 

typically represented by the symbol ∆.  

The solution of the above heat diffusion equation describes the evolving temperature in the 

AM part in the time period between one laser scan and the next. After a layer is completely 

processed, the build platen is lowered, and a new layer of powder is deposited over the top of the 

previous layer. When the new layer is deposited and scanned by the laser, an update to the 
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computational domain is required along with a new initial condition. These updates necessitate a 

re-computation of the heat equation. This rationale is valid even when a more granular laser hatch-

by-hatch evolution of the process is simulated. To explain further, the new computational domain 

includes the newly-fused layer of metal powder at an elevated temperature on top of the 

previously-fused metal whose initial temperature is the end point of the previous temperature 

computation. Just as the part is created layer-by-layer (or hatch-by-hatch), the temperature solution 

is computed in many small discrete increments of time.    

A mathematical premise key to the graph theory approach is that the spatial derivatives 

represented by the continuous Laplacian operator (∆) in the above continuum heat diffusion 

equations, Eqn. (2), can be replaced by a discrete counterpart (𝐋) , and the continuously varying 

temperature T can be replaced by a vector of discrete temperatures T at M sampled nodal points 

in the domain of the part. The discrete form of the heat diffusion equation, with vectors in bold 

typeface may be written as,  

∂𝐓

∂𝑡
+ 𝛼𝐋𝐓 = 0 (3) 

subject to the initial condition, 

𝐓(𝑥, 𝑦, 𝑧, 𝑡 = 0) = 𝐓𝒐(𝑥, 𝑦, 𝑧) 

Note the sign change in Eqn. (3), as the Laplacian matrix L from graph theory is defined with 

sign opposite to that of the continuous spatial derivatives (∆) present in the continuum heat 

equation (Eqn. (2)). If the discrete form of the heat diffusion equation (Eqn. (3)) is applied to a 

uniformly-spaced grid of nodal points, a discrete Laplacian matrix (L) can be constructed to 

reproduce the well-known finite difference approximation [60].   
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The mathematical proof of the graph theory-based solution to the heat equation, Eqn. (2) are 

discussed in the next section.  

3.2 Solution to the Heat Equation Using Graph Theory 

In the discrete heat diffusion equation in Eqn. (3)  T is a column vector for temperature at 

each of M nodes in the domain and L is the [M × M] Laplacian matrix.  For boundary conditions 

of type Dirichlet, Neumann, and Robin, (types 1, 2 and 3, boundary conditions respectively), it is 

shown by Saito that the eigenvalues (Λ) of the discrete Laplacian operator are discrete and non-

negative, and the eigenvectors are orthogonal, i.e., 〈𝛟𝐢, 𝛟𝐣〉 = 0, assuming that the domain of the 

Laplacian is bounded, connected and compact [61].   The particular form of the Laplacian matrix 

discussed here and described in Eqn. (6) through Eqn. (12), is diagonally dominant and symmetric, 

i.e., positive semidefinite.  

Accordingly, the orthogonality of eigenvectors (𝛟) and non-negativity of eigenvalues (𝚲) of 

the Laplacian matrix (L) is preserved [62]. The eigenvectors and eigenvalues of the Laplacian 

matrix are found with standard matrix methods, and satisfy the following eigenvalue 

equation, 𝐋𝛟 =  𝛟𝚲. Here 𝛟 is the right eigenvector matrix in which each column contains one 

of M eigenvectors, and 𝚲 is a diagonal matrix containing non-negative eigenvalues ranked in order 

from the smallest in row 1 to the largest in row M. Because the transpose of an orthogonal matrix 

is the same as its inverse, that is, 𝛟−1 = 𝛟′, and 𝛟 𝛟′ = 𝐈, then the above eigenvalue equation 

may be post multiplied by 𝛟′ to obtain, 𝐋 =  𝛟𝚲𝛟′. 

Replacing this relationship into the discrete heat diffusion equation, Eqn. (3), we obtain, 

𝜕𝐓

𝜕𝑡
+ 𝛼(𝛟𝚲𝛟′) 𝐓 = 0 

This first order ordinary differential equation has solution 

𝐓 = 𝑒−𝛼g(𝛟𝚲𝛟
′)𝑡𝐓𝒐 (4) 
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where g [m-2] is a gain factor that we have added to calibrate the solution and adjust the units. 

Hence, the heat equation solution contains the eigenvectors and eigenvalues of the graph Laplacian 

𝐋.  This formal matrix solution gives the temperature vector T, which contains a value for every 

spatial node, subject to the initial condition vector 𝐓𝐨.  This solution can be simplified for improved 

computational efficiency by considering the Taylor Series expansion of the term 𝑒−𝛼g(𝛟𝚲𝛟
′)𝑡, and 

substituting 𝛟 𝛟′ = 𝐈, as shown by Zhang et al. and Bai et al. as follows [55, 63],  

𝑒−𝛼𝑔(𝛟𝚲𝛟
′)𝑡 = 𝐼 +

(−𝛼𝑔(𝛟𝚲𝛟′)𝑡)

1!
+
(−𝛼𝑔(𝛟𝚲𝛟′)𝑡)2

2!
+
(−𝛼𝑔(𝛟𝚲𝛟′)𝑡)3

3!
+ ⋯  

𝑒−𝛼𝑔(𝛟𝚲𝛟
′)𝑡 = 𝐼 − 𝛼𝑔𝑡

𝛟𝚲𝛟′

1!
+ 𝛼2𝑔2𝑡2

(𝛟𝚲𝛟′)(𝛟𝚲𝛟′)

2!
− 𝛼3𝑔3𝑡3

(𝛟𝚲𝛟′)(𝛟𝚲𝛟′)(𝛟𝚲𝛟′)

3!
+ ⋯ 

𝑒−𝛼𝑔(𝛟𝚲𝛟
′)𝑡 = 𝐼 −

𝛟𝚲𝛼𝑔𝑡𝛟′

1!
+
𝛟(𝚲𝛼𝑔𝑡)2𝛟′

2!
−
𝛟(𝚲𝛼𝑔𝑡)3𝛟′

3!
+ ⋯ 

Thus, replacing 𝑒−𝛼𝑔(𝛟𝚲𝛟
′)𝑡 = 𝛟𝑒−𝛼𝑔𝚲𝑡𝛟′ in Eqn. (4) gives, 

(5) 𝐓 = 𝛟𝑒−𝛼𝑔𝚲𝑡𝛟′𝐓𝒐 

This expression is the key to the computational efficiency of our approach, because the 

temperature at successive time steps is computed by matrix multiplication only. In contrast, finite-

element or finite difference methods require a matrix inversion at every time step, at great 

computational cost.   

As an aside, there is a connection between the Laplacian for graph theory in Eq. (3) and the 

discrete spatial derivatives involved in the finite difference method.  Specifically, under the right 

conditions (uniform grid spacing and certain edge weights), a Laplacian matrix can be constructed 

that reproduces the discrete spatial derivatives of the finite difference method [60]. This connection 

is valuable because the finite difference method has been shown, in the limit as the internodal 

spacing approaches zero, to be exact [60]. The point to be made here is that the level of 

approximation for the spatial derivatives in the graph theoretic approach is related to that of the 
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well-known finite difference method.  However, it is also important to note that the graph theoretic 

solution of Eq. (3), as outlined above, is distinct from that of the traditional finite difference 

method.  It is the combination of the graph theoretic Laplacian Matrix (L) and the efficient solution 

method of Eq. (3) that makes the graph-based approach unique.    

3.3 Steps in Predicting the Heat Distribution in AM Parts using Graph Theory 

The approach has the following four steps, as pictorially shown in Figure 4, and in Figure 5 

as a flowchart diagram. The steps are as follows, with respect to the LPBF process:  

(1) Obtain the geometry of a part and convert it to a set of discrete nodes. Slice the part into 

layers and hatches. Record the position of each node, in terms of its Cartesian {x, y, z} 

coordinates, and the layer and hatch in which the node is located. 

(2) Construct a network graph from the discrete nodes sampled in Step (1). In this step, each of 

the nodes is connected to other nodes within an ε neighborhood distance (or envelope).  In 

other words, nodes within a spherical radius of ε are connected to each other. 

(3) (a) Simulate the heating of a layer, hatch-by-hatch, and diffuse the heat through the network 

graph constructed on the nodes sampled in the part, noting that only the nodes in the current 

layer and below are active, and (b) after the heat diffuses through the part, simulate the 

deposition of a new layer on top of the old layer.  

(4) At each iteration of Step 3, the heat at each node at each time step is recorded in terms of the 

temperature vector T. Step 3 is repeated until the part is built. 

We note that in Figure 4 the powder surrounding the part is not shown. The particular C-

shaped geometry and the reason for heat accumulation in the overhang region of this part as 

depicted in Figure 4, Step 4 is studied and explained in depth in Sec. 4.2.  



MANU-18-1738 (Research Paper, Revised Manuscript) 

18 

 

 
Figure 4. The four steps in the spectral graph theoretic approach used to estimate the heat distribution in 

the part layer-by-layer. Here we show an embodiment of the laser powder bed fusion (LPBF) process. The 

powder particles surrounding the part are not shown in this figure. 

 
Figure 5. The flowchart of four steps in the graph theoretic approach in context of LPBF process 
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Step 1: Obtain the geometry of a part and converting it to a set of discrete nodes 

Process parameters and the part geometry are declared in this step. The part is sliced into 

layers, representative of the layer thickness, and a fixed number (M) of spatial locations are 

randomly sampled in each layer. In the later Step 4, the heat distribution in the part is observed 

and stored (recorded) at these M fixed spatial locations, termed nodes. The random sampling of 

the nodes is done to reduce the computational burden of the approach. The number of nodes 

sampled is contingent on the geometry of the part, in this work (Sec. 4.2) , a density of 5 nodes per 

mm3 provided a sufficiently good approximation (relative error ≈ 10%) of the thermal trends 

estimated with a moving heat source solution obtained through FE analysis [64, 65]. 

Step 2: Network graph construction 

In graph theory, a concept of discrete mathematics, a graph consists of nodes and the edges 

that connect them [62]. Here nodes are spatial points sampled in the part and the edges are the 

links among the nodes. We begin by constructing a graph over the set of M nodes sampled in Step 

1. The aim is to connect a pair of nodes 𝜋𝑖 and 𝜋𝑗  within an ε neighborhood distance. Consider, 

𝑐𝑖 = {𝑥𝑖 , 𝑦𝑖, 𝑧𝑖} as the location of the node 𝜋𝑖, and 𝑐𝑗 = {𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗} as the location of the node 𝜋𝑗, 

then the weight of the edge connecting node 𝜋𝑖 and 𝜋𝑗 is expressed in mathematical terms below, 

with a Gaussian radial basis function, 

   

𝑎𝑖𝑗 = {
 𝑒
−
(𝑐𝑖−𝑐𝑗)

2

𝜎2 ,               (𝑐𝑖 − 𝑐𝑗)
2
≤ 𝜖

        0.                        (𝑐𝑖 − 𝑐𝑗)
2
> 𝜖

 (6) 

where (𝑐𝑖 − 𝑐𝑗)
2
 is the square of the distance between nodes 𝜋𝑖 and 𝜋𝑗. In this work, the term 

𝜖 is akin to the radius of a sphere within which one node is connected to its neighbors, and 𝜎 is the 

standard deviation of the pairwise distances, (𝑐𝑖 − 𝑐𝑗)
2
.  
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We note that Eqn. (6) embodies the Gaussian law in that, if two nodes are closer, their weight 

will be proportionally larger. We further note that 𝑎𝑖𝑗 takes a value between 0 and 1. Next, we 

place each element 𝑎𝑖𝑗 on the ith row and jth column of the adjacency matrix 𝐀. Essentially, the 

element ith row and jth column of 𝐀 relates to strength of the edges connecting the nodes 𝜋𝑖 and 𝜋𝑗.         

   𝐀 = [𝑎𝑖𝑗] (7) 

 lim
𝜋𝑖−𝜋𝑗→0

𝑎𝑖𝑗 = 1  

The matrix A is a symmetric M×M matrix because 𝑎𝑖𝑗 = 𝑎𝑗𝑖. The next step involves 

computing the degree 𝑑𝑖 of a node 𝜋𝑖, i.e., the aggregate of the strength of the edges that are 

connected to the node 𝜋𝑖. The degree of node 𝜋𝑖 is computed by summing the ith row of the 

Adjacency matrix 𝐀. 

 𝑑𝑖 = ∑ 𝑎𝑖𝑗
∀𝑗

 

 

(8) 

From the degree of node 𝑑𝑖, the Laplacian 𝑙𝑖𝑗 at node i is defined as follows, 

   𝑙𝑖𝑗 ≝ 𝑑𝑖 − 𝑎𝑖𝑗 (9) 

We note that ∑ 𝑙𝑖𝑗∀𝑗 = 0.  If the diagonal degree matrix 𝐃 is formed from 𝑑𝑖’s as follows, 

   
𝐃 =  [

𝑑1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑M

] 

 

(10) 

then given the adjacency matrix 𝐀, the discrete Laplacian 𝐋 can be cast in matrix form as, 

   𝐋 ≝ (𝐃 − 𝐀) (11) 

Finally, the Eigen spectra of the Laplacian 𝐋 is computed as follows, 

   𝐋𝛟 =  𝛟𝚲 (12) 

Where 𝛟 are the eigenvectors and 𝚲 are the eigenvalues of L. We note that L is a real, diagonally 

dominant symmetric matrix, with positive diagonal entries, and negative off-diagonal entries. Due 
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to these properties L falls under the category of a Stieltjes matrix, and has non-negative 

eigenvalues (𝚲) and orthogonal eigenvectors (𝛟) [62]. In other words, 〈𝛟𝐢, 𝛟𝐣〉 = 0 ∀ 𝑖 ≠ 𝑗; 𝑖, 𝑗 =

{1,2…M} , and each of the M individual eigenvalues are non-negative 0 = 𝜆1 < 𝜆2⋯ < 𝜆M. 

Step 3: (a) Heating a layer, hatch-by-hatch, diffusion of the heat through the part, and (b) 

deposition of a new layer. 

In Step 3(a), the heat from the laser is applied to the top-most layer in the form of hatches. 

The magnitude of heat applied is E𝑉 [W/m3]. Where the time taken to fuse a hatch is considered 

infinitesimal compared to the taken to that build the whole layer or the time it takes the bed to be 

lowered and to the recoater to deposit a new layer. The heat diffuses to the rest of the part within 

the powder bed, and through the substrate in the time (𝑡).  As we will show in the forthcoming two 

sections, the eigenvectors 𝛟 of the Laplacian 𝐋 provide a discrete solution to the heat equation, 

specifically, if 𝛟′ is the transpose of 𝛟, then the temperature profile observed at a discrete time 

step 𝑡 for a node at position (𝑥, 𝑦, 𝑧) below the top layer is given by the following,  the mathematical 

justification for which was given in the preceding Sec. 3.2. 

T(𝑥, 𝑦, 𝑧, 𝑡) = 𝛟𝑒−𝛼g𝚲𝑡𝛟′T0(𝑥, 𝑦, 𝑧)  

 

 

(13) 

 Where, T0 is the initial temperature distribution introduced to simulate laser heating. The 

material-related factors are contained in the term 𝛼 [m2/s] and g is a constant  gain factor [m-2]. 

Lastly, we need to account for the heat loss due to convection at the boundary of the powder and 

part. For this purpose, we demarcate the boundary nodes of the part, and adjust the temperature of 

the boundary nodes (T𝑏) using Newton’s law of cooling,  

 T𝑏 = 𝑒
−ℎ̃(Δ𝑡) (T𝑏𝑖 − T𝑝) + T𝑝 (14) 

Where, T𝑝 is the temperature of the powder (considered to be equal to the ambient temperature 

in the environment, T∞), T𝑏𝑖 is the initial temperature of the boundary nodes, T𝑏 is the temperature 
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of the boundary nodes after convective heat loss and ℎ̃ is the normalized coefficient of convection 

from part to the surrounding powder (also called the Biot number), and Δ𝑡 is the dimensionless 

time-step between laser scans.  

In Step 3(b) which is only applicable to the LPBF process, and not DED, a layer of powder is 

raked on top of the fused layer. The process repeats through Step 3(a) and (b) until the part is built. 

At every iteration of Step 3, we estimate and store the resulting temperature of each node 

T(𝑥, 𝑦, 𝑧, 𝑡), inside a temperature vector T, which eventually in Step 4 represents the temperature 

history and heat distribution of the whole part.  

4 Verification of the Approach 

This section is divided into two parts. The first part, described in Sec. 4.1, compares the graph 

theory approach with the exact Green’s function-based analytical solution and finite element 

solution for heat diffusion in a simple cuboid geometry [66]. The second part, detailed in Sec. 4.2, 

applies the graph theory approach for predicting the heat distribution to three part designs in a 

LPBF scenario, the results obtained therefrom are compared with Goldak’s FE-based solution, and 

a commercial implementation (Netfabb) [64, 65]. 

4.1 Verification of the Graph Theory Approach for a Cuboid Geometry   

This section aims to quantify the accuracy of the graph theory-derived thermal history by 

comparison with analytical and finite element solutions for a simple test case. This test case 

simulates heat diffusion in a cube. The cube is assumed to be insulated on the boundaries 

(Neumann boundary condition) which results in internal heat dispersion until a steady-state 

condition is achieved.   

There is a fixed volume inside the cube which is considered to be momentarily heated for a 

vanishingly small time. Each edge of this heated volume is half that of the larger cube, meaning 
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the volume of the heated section is one-eighth of the entire cube. Figure 6 shows the geometry, 

initial heated region, and the boundary conditions imposed upon the system. Additional details are 

available in the author's publications and website [66, 67]. The dimension of the cube is taken to 

be 1 unit. 

 
Figure 6. The cube with the initial heating condition and insulated boundaries. 

The case of heat diffusion in a cube can be made dimensionless by the following 

parameterization: 

𝑥̃ =
𝑥

𝐿
; 𝑦̃ =

𝑦

𝑊
; 𝑧̃ =

𝑧

𝐻
; 𝑊̃ =

𝑊

𝐿
; 𝐻̃ =

𝐻

𝐿
; 

𝐿̃1 =
𝐿1
𝐿
; 𝑊̃1 =

𝑊1

𝑊
; 𝐻̃1 =

𝐻1
𝐻
; 𝑡̃ =

𝛼𝑡

𝐿2
;  𝑇̃ =

𝑇

𝑇0
; 

(15) 

Where, 𝐿,𝑊 and 𝐻 are the geometrical dimensions of the cube, 𝐿1,𝑊1 and 𝐻1 are the 

geometrical dimensions of the heated cube, 𝑡 is time, 𝛼 is thermal diffusivity, 𝑇0 is the initial 

temperature and T is the final temperature. Subsequently, the dimensionless form of the heat 

equation and boundary value problem for the cube-shape are given by: 

𝜕2𝑇̃

𝜕𝑥̃2
+ 

1

𝑊̃2

𝜕2𝑇̃

𝜕𝑦̃2
+
1

𝐻̃2
𝜕2𝑇̃

𝜕𝑧̃2
= 
𝜕𝑇̃

𝜕𝑡̃
;  {
0 < 𝑥̃ < 1;
0 < 𝑦̃ < 1;
0 < 𝑧̃ < 1;

     (16) 

At boundary 𝑖, we impose the Neumann boundary condition, 
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𝜕𝑇̃

𝜕𝑛̃𝑖
= 0, 𝑖 = 1, 2, 3, 4, 5, 6   (17) 

𝑇(𝑥̃, 𝑦̃, 𝑧̃, 0) =

{
 
 

 
 
𝑇0 {

0 < 𝑥̃ < 𝐿̃1
0 < 𝑦̃ < 𝑊̃1

0 < 𝑧̃ < 𝐻̃1
 

0;  otherwise

 (18) 

Where, 𝑛̃𝑖 is the outward normal vector from each surface of the cube. The dimensionless 

form of the analytical diffusion is found by the Green’s function (Eqn. (19)); see [67] for a full 

development of the solution). 

𝑇 (𝑥̃, 𝑦̃, 𝑧̃, 𝑡̃) = [𝐿̃1 + 2 ∑ exp(−𝑚2𝜋2𝑡̃)
𝑐𝑜𝑠(𝑚𝜋𝑥̃) 𝑠𝑖𝑛(𝑚𝜋𝐿1̃)

𝑚𝜋

∞

𝑚=1

]

× [𝑊̃1 + 2∑exp(
−𝑛2𝜋2𝑡̃

𝑊̃2
)
𝑐𝑜𝑠(𝑛𝜋𝑦̃) 𝑠𝑖𝑛(𝑛𝜋𝑊1̃)

𝑛𝜋

∞

𝑛=1

]

× [𝐻̃1 + 2∑exp(
−𝑝2𝜋2𝑡̃

𝐻̃2
)
𝑐𝑜𝑠(𝑝𝜋𝑧̃) 𝑠𝑖𝑛(𝑝𝜋𝐻1̃)

𝑝𝜋

∞

𝑝=1

]     

(19) 

Here, 𝑚𝜋, 𝑛𝜋 and 𝑝𝜋 are eigenvalues along the x, y and z directions, respectively. The steady 

state is considered the moment that observation points reach to an equal temperature up to the 

fourth decimal point. The temperature is observed at two observation points inside the cube as 

follows: Point 1 (0.25H, 0.25L, 0.25W) and Point 2 (0.75H, 0.75L, 0.75W). The thermal trends at 

Point 1 and 2 from the initial time step to steady state convergence are shown in Figure 7. 

 
Figure 7. Analytical diffusion at observation point 1: {0.25, 0.25, 0.25} and observation point 2: 
{0.75, 0.75, 0.75} from the origin. 
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(a) Comparison of the Analytical and Graph Theory Solutions 

To compare the accuracy of the graph theory approach with the analytical solution (Figure 7), 

we conduct the analysis in three steps as shown in Figure 8. In this section we also study the effect 

of number of nodes and their connection structure on the convergence accuracy of the approach.  

Step 1: Generation of Nodes. 

The whole part is transformed into a set of 91,000 discrete nodes. We randomly sampled 

different number of nodes from these 91,000 nodes as shown in Figure 8  to study the effect of the 

number of nodes on the accuracy of the graph theoretic solution.  Since the heated volume is one-

eighth of the total volume of the cube, we ensure that the number of nodes in the heated subsection 

is exactly one-eighth of the total number of nodes (91,000/8 = 11,375). Each node takes the 

character of its location, i.e. the nodes which are in the heated subsection take the high-temperature 

value (equal to 1, which is the highest in normalized temperature range) and the nodes that are 

outside the heated subsection are set at the low-temperature value (equal to 0, which is the lowest 

in normalized temperature range) at the initial time step. 

 
Figure 8. The three steps towards the error calculation and verification with the analytical method. 
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Step 2: Network Graph Construction 

In this step, the selected nodes are used to construct a network graph based on their spatial 

coordinates and neighborhood distance (ε) which is stored in the adjacency matrix as described in 

Sec. 3.2. Based on the total number of selected nodes and analytical diffusion time, a specific 

neighboring distance (ε) is required to set the neighboring area for each node. Each node is 

connected to approximately 20, 80, 300 and 600 neighboring nodes in Case 1, 2, 3 and 4, 

respectively, as reported in Table 1.  

Selecting a higher number of nodes implies a larger adjacency matrix size and requires longer 

computational time. The computational time corresponds to converting the part to set of discrete 

nodes and building adjacency matrix which in this work is implemented on a desktop computer 

with an Intel® Core™ i7-6700 CPU @3.40GHz, 32GB RAM. Table 1 shows the neighborhood 

distance (ε), adjacency matrix (A) size and graph construction computational time in each case. 

 Step 3: Heat Diffusion to Steady State 

The heat diffuses through the graph network until it reaches a steady state condition. We 

consider the same two observation points, Point 1 at {0.25, 0.25, 0.25} and Point 2 at {0.75, 0.75, 

0.75}. The steady state condition is achieved when both observations have the equal temperature 

up to the fourth decimal point; thermal diffusivity (α), which corresponds the material properties 

in the graph theory method was considered equal to 1 unit (m2/s).  Figure 9(a) compares the trend 

of heat diffusion computed using graph theory for Case 2 with the analytical solution. The 

symmetric mean absolute percent error (SMAPE), and root mean square error (RMSE), defined in 

Eqn. (20),  are used to quantify the error, where t is the time step and e is the absolute error. Figure 

9(b) shows the trends of the SMAPE for the four different cases. Although increasing the number 

of nodes reduces the error, it leads to longer computational time.  
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Table 1 delineates the SMAPE, RMSE, and total computational time of the process based on 

the different number of nodes, from which it is evident even with the sparsest node condition (80 

nodes in a cube of 1 × 1 × 1 unit), the error is less than 10%.  

SMAPE =
100%

n
 ∑𝑒(𝑡)

∀𝑡

  

𝑒(𝑡) =
| Analytical solution (𝑡) − Graph Theoretic solution(𝑡)|

(Analytical solution (𝑡) + Graph Theoretic solution (𝑡))
  (20) 

RMSE = √∑
(Analytical solution (𝑡) − Graph Theoretic solution(𝑡))

2

𝑛

𝑛

𝑡=1

  

Table 1. Details of Graph Theory Heat Diffusion Experiment in a Cube (1  × 1  × 1 unit)  

Case 

Total number of 

selected nodes 

(cold: heated) 

Neighbourh

ood distance 

(ε) units 

Network 

graph 

construction 

time [seconds] 

Total graph theoretic 

solution 

computational time 

[seconds] 

SMAPE 

(Error) 
RMSE 

1 80 (10: 70) 0.55 0.94 0.97 10% 0.1012 

2 800 (100: 700) 0.37 1.41 1.55 7% 0.1003 

3 4,000 (500: 3,500) 0.31 20.78 38.14 5% 0.0991 

4 8,000 (1,000: 7,000) 0.28 163.33 236.64 3% 0.0932 

 
Figure 9. (a) Comparison of the heat diffusion trend between graph theory and analytical method (result 

of Case 2 with 800 selected nodes). (b) absolute error comparison for different amount of nodes at 

observation point 1. 
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(b) Comparison of the Graph Theory and Finite Element Analysis Solutions. 

Continuing with our study of heat diffusion for the cuboid geometry, we now compare the 

graph theoretic and finite element (FE) analysis solutions. The FE analysis study is implemented 

in Abaqus software. The FE analysis process is divided into three steps as shown in Figure 10.  

Step 1: Mesh generation in finite element analysis. 

We applied both tetrahedral and regular grid (hexahedron) meshes on the cube. It was 

observed that tetrahedral mesh performs better than regular grid mesh in terms of accuracy. 

Step 2: Boundary condition and initial heat condition in finite element analysis. 

Identical boundary conditions as in case of the analytical method are applied herewith, i.e., 

the heat disperses through the part, and the cube is perfectly insulated (Neumann boundary 

condition). As with the analytical method, the material properties such as thermal conductivity, 

specific heat, and density of material in this method are considered to be equal to 1 unit. 

 
Figure 10. The three steps of FEA towards the error calculation and verification with the analytical method. 
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Step 3: Heat diffusion to steady state in finite element analysis. 

The heat diffuses through the cube volume until a steady state condition is reached. Table 2 

reports a comparison between the total calculation time and number of nodes for FE analysis and 

graph theory. The number of nodes in FE analysis was chosen to give approximately the same 

error as graph theory. The result shows that the proposed graph theoretic approach gives 

comparable accuracy at within a fraction of the computational time taken by FE analysis. 

Table 2. Comparison of FEA and Graph Theoretic Approach Based on the Total Computational Time and 

Accuracy. 

SMAPE 

(Error) 

Graph theoretic approach 
Tetrahedral 

FE analysis 

Regular Grid 

FE analysis 

Nodes 
Time 

(seconds) 
Nodes 

Time 

(seconds) 
Nodes 

Time 

(seconds) 

10% 80 1 1,200 190 9,000 380 

7% 800 2 12,000 660 158,500 9,000 

~ 5% 8,000 237 76,000 3,540 1,000,000 43,000 

4.2 Verification of the Graph Theory Approach with Goldak’s Finite Element Analysis 

Solution in LPBF. 

(a) Finite Element Analysis of LPBF Parts based on Goldak’s Moving Heat Source Model. 

We now compare the solutions resulting from the graph theoretic approach with FE analysis 

for three test objects in LPBF scenario using Goldak’s model. Goldak et al. extended the 

pioneering work of Rosenthal [68] to predict the heat distribution in welding process [64, 65]. 

Goldak et al. considered a 3D moving heat source model with an ellipsoidal, Gaussian density 

distribution as opposed to Rosenthal’s 1D moving point heat source.  

Goldak’s model has been adapted for thermal modeling in AM process, e.g., in LPBF with 

the laser considered a 3D Gaussian distributed moving heat source [69]. We use Goldak’s model 

in an FE analysis framework (Abaqus) with an element birth-and-death technique to simulate the 

LPBF process; the DFLUX subroutine in Abaqus is leveraged to model the characteristics of the 

laser. The Gaussian distributed laser heat source is written as,  
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𝑄(𝑥, 𝑦, 𝑧) =
𝑃𝐴

2𝜋𝜎2
e
−
𝑑2

2𝜎2 (21) 

Where, 𝑄 is the volume heat power density [W/mm3], 𝑃 is the laser power [W], 𝐴 is the 

constant of absorptivity set to 0.7, 𝜎 is the standard deviation (quarter of the beam diameter in m) 

and 𝑑 [m] is the radial distance of a point from the center of the beam [70]. The term Q is identical 

to the energy density term Ev in Eqn. (1). The simplest form of the transient heat conduction, 

identical to Eqn. (1),  is used in this study, with Ev set equal to Q.  In this mode, conduction plays 

the main role in transferring the applied heat through the part and substrate. The radiative heat 

losses are not considered in this study to make an equitable comparison with the graph theoretic 

approach. 

Description of the Boundary Conditions and Test Part Geometries  

The LPBF of two C-shaped test parts (Figure 11(a), (b)) and a pyramid shaped test part (Figure 

11(c)) are simulated (separately, one at a time) on top of a build plate with the dimension of 100 

× 20 × 10 mm having identical material as the test parts (Titanium alloy Ti6Al4V). The C-shaped 

part in Figure 11(a) has an overhang geometry akin to the knee implant in Figure 3. The second 

C-shaped part,  Figure 11(b), has the overhang area provided with thick supports. Figure 12 shows 

the scanning strategy used for these parts in the LPBF simulation. The hatches (the linear scan 

pattern of the laser) are defined along y-axis and layers along the z-axis.  

The laser is simulated to move along x-axis and traces a linear hatch pattern in each layer. 

Based on the width of each layer, the number of hatches per layer remain constant in the two C-

shaped parts, but vary in the pyramid test part, i.e., 20 hatches in the first layer, 18 hatches in 

second layer, and so on, until finally only one hatch is needed in layer 20. The hatch spacing, and 

layer thickness are 0.5 mm and 0.2 mm for the two C-shaped parts, and pyramid, respectively.  
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The layer thickness is purposely made exceedingly coarse to facilitate computation, and 

should ideally be termed as a super layer – each super layer consists of 20 individual layers of size 

0.025 mm (25 μm) for the C-shaped parts and 8 super layers for the pyramid part. These super 

layers are consolidated in an identical manner for the finite element and proposed graph theoretic 

approach. The titanium alloy powder material Ti6Al4V is considered for both the part and the 

build plate. The material properties and printing conditions are reported in Table 3, based on the 

literature [66, 69].  

The parameters for the graph theoretic approach were set as follows: neighborhood size 𝜖 = 2 

mm; gain factor g = 2.2 × 106 m-2 and various levels of nodes density are sampled per hatch in the 

C-shaped parts with supports, with the optimal level recommended as 80 nodes per hatch. These 

parameters for the pyramid are: 𝜖 = 0.25 mm; g = 2.2 × 106  m-2 and 40 nodes are sampled per 

hatch. The justification and guidelines for selection of these parameters is tendered within Sec. 

4.2(b). The temperature history at three locations on the bottom for the C-shaped part and one 

location on the bottom for the pyramid were recorded over the complete simulation run, analogous 

to the presence of thermocouple sensors affixed to the part at these locations.  

 
Figure 11. (a) C-shaped, (b) C-shaped with support and (c) pyramid dimensions in millimeter (mm). 
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Figure 12. (a) Side view of C-shaped part, (b) Side view of C-shaped part with supports (c) Scanning 

strategy of the two C-shaped parts from top view, (d) Side view of pyramid part, (e) Scanning strategy of 

pyramid part from its top view. 

Table 3. Materials and Process Parameters for the FE analysis (Abaqus) and Netfabb Simulation. 

Parameters 
Values 

C-Shaped Parts Pyramid 

Layer Thickness (mm)  0.025 

Super Layer Thickness (mm)  0.5 (20 layers) 0.2 (8 layers) 

Hatch thickness (mm) 0.5 0.2 

Beam Diameter (mm) 0.5 0.2 

Laser Power, P (W) 200 

Scanning Speed (mm·s-1) 200 

Thermal Conductivity, k (W·m-1·K-1) 20 

Thermal Absorptivity Coefficient, A 0.7 

Thermal Diffusivity, α (m2·s-1)  7 × 10-6 

Material Density, 𝜌 (kg·m-3) 4,300 

Specific Heat, 𝐶𝑝 (J·kg-1·K-1) 650 

Ambient Temperature, T∞ (K) 298 
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(b) Heat Distribution in a C-shaped Part without Supports 

For both the C-shaped parts, the temperature history is observed at three locations, akin to 

embedding a thermocouple sensor as demarcated in the inset of Figure 13. The observation points 

(sensor locations) are: (1) at a distance of 1 mm from the left edge; (2) 1 mm from the right edge 

of the part; and (3) in the center of the part 10 mm away from either edge. The observation locations 

are located 0.5 mm from the bottom of the part, and 1 mm deep from the front edge of the part.  

Furthermore, we also report the result of adjusting the number of nodes at three discrete levels 

of: (a) 20 nodes per hatch (1,440 total nodes); (b) 80 nodes per hatch (5,760 total); and (c) 120 

nodes per hatch (8,640 total).  We observe from Figure 13 that the temperature trends predicted by 

the graph-based approach mimics the corresponding trends obtained from FE analysis, and the 

correlation between the two trends improves as the number of nodes are increased. As reported in 

Table 4 the SMAPE for the graph-based approach (20 nodes per hatch) with FE analysis taken as 

the ground truth is less than 20%; the error reduces to less than 10% when 120 nodes are sampled 

per hatch.  

From a computational efficiency perspective,  as reported in Table 4, the simulation time of 

C-shaped part for the FE approach (on Abaqus) was close to 200 minutes (>3 hrs.) on a dual core 

of Intel® Core™ i7-6700 CPU @3.40GHz, 32GB RAM. While the computation time for the graph 

theoretic approach was less than 30 sec. (0.5 min.) on the same machine with Matlab considering 

20 nodes per hatch, and close to 2,460 seconds (41 minutes) with 120 nodes per hatch.  

The temperature trends, particularly the sharp temperature peaks (spikes), observed in the C-

shaped part is explained in the context of the observation point located in the center of the part 

with 80 nodes per hatch, i.e., Figure 13(b3).  The trends reported in Figure 13(b3) are analyzed in-

depth by partitioning the part geometry into three sections T1, T2 and T3 as demarcated in Figure 

14(a). Shown also in Figure 14(a) is the laser scan path (hatch pattern). The spikes in section T1 
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Figure 14(b) and (c) correspond to the locations where the laser is in close vicinity of the 

observation point, i.e., directly (in the vertical direction) above, or in-plane. In section T2, the laser 

no longer passes over the location of the observation point leading to the observed precipitous 

drop. In section T3, given the impeded conductivity of the powder surrounding the overhang, the 

sensor-location temperature does not increase, though the laser does pass directly over the sensor 

location. Figure 14(c) shows the four peaks corresponding to the four instances where the laser is 

in close proximity to the measurement point.  

We once again note the ability of the graph-based approach to mimic, not only the overall 

trends predicted with FE analysis, but also the match temporally the temperature spikes caused by 

hatch pattern of the laser. The effect of nodes on the approach is further explained from Figure 13. 

When the number of nodes in a hatch are greater, e.g., 80 or 120, the graph-based approach 

captures the temperature spikes in each layer corresponding to each hatch; with lower number of 

nodes, namely, 20 the individual spikes corresponding to a hatch are smoothened. 

In a similar vein, referring to Figure 13(b2), for the bottom right sensor, the spikes in section 

T1 of the part correspond to the location where the laser passes over the measurement point on the 

right. In area T2, the increase in temperature compared to the center sensor discussed above can 

be attributed to two reasons: (i) in section T2 of the part, the laser passes frequently and directly 

above the location of the observation point, and (ii) section T2 is surrounded by a large volume of 

powder around it that hinders the flow of heat through it to the substrate.  
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Figure 13. (a) The C-shaped part and the normalized temperature trends observed at three locations on 

the part, (1) in the bottom left, (2) bottom right, and (3) center, respectively corresponding to three node 

densities per hatch, (a) 20, (b) 80 nodes, and (c) 120 nodes. The neighborhood size is ε = 2 mm and the 

gain factor is set at g = 2.2 × 106
. 

 



MANU-18-1738 (Research Paper, Revised Manuscript) 

36 

 

 

Figure 14: Explanation for the temperature trends and spikes observed at the center location. (a) 

the hatch demarcation of the part into three sections, and hatch pattern simulated, (b) the 

temperature trends observed at the bottom center, and (c) zoomed in view of section T1, noting 

that the temperature spikes correspond to the spatiotemporal location of the laser in relation to 

the observation point (sensor location) demarcated in (a). The neighborhood size is ε = 2 mm and 

the number of nodes per hatch is held constant at 80, and the gain factor is set at g = 2.2 × 106
. 

Procedure for calibration of the gain factor (g) and neighborhood distance (ε) parameters. 

(i) Effect of gain factor.  

To measure the effect of gain factor on the graph theory-based approach, we simulated 40 different 

gain factor values in the context of the temperature trends observed in the central observation point 

for the first three layers of section T1 of the C-shaped part (Figure 14(b)). As in previous cases, 

both the root mean square error (RMSE) and symmetric mean absolute percent error (SMAPE), 

are used to evaluate the difference between the normalized temperature trends obtained from graph 

theory approach and the finite element method (Abaqus) as a baseline reference.  The results are 

reported in Figure 15, which shows that for this particular case, the gain factor value, g = 2.2 × 

106, results in the smallest RMSE and SMAPE, and corresponds to the best match of the graph 

theory model with the finite element analysis results. We reiterate that this gain factor value, g = 

2.2 × 106 has been used throughout in case of all the three tests part reported in this section, viz.,  

C-shape part without supports, C-shape part with supports, and pyramid (Figure 11).  
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Figure 15: Effect of gain factor on the RMSE and SMAPE in simulating three layers of section T1 

from the C-shaped part. The neighborhood size is ε = 2 mm and the number of nodes per hatch is 

held constant at 40. 

The physical significance of the gain factor is explained with reference to Figure 16, which 

shows the temperature trends observed at the center location of the first three layers of the C-

shaped part with 40 nodes per hatch (first three layers in Figure 14(c)). Figure 16 leads to the 

insight that the gain factor governs the rate of heat diffusion; a smaller gain factor will impede the 

rate of heat diffusion, while higher gain factor values amplify the same.  

As a result of increase in the gain factor, the temperature fluctuations closely track the periodic 

thermal patterns resulting from hatch-by-hatch fusion (as depicted formerly in Figure 14(c)).  

However, an inordinately high gain factor will lead to faster decay in temperature, and thereby 

result in temperature that fall below the FE solution. There are two practical approaches to choose 

the gain factor for the graph-based approach, the first is to use the analytical solution as a ground 

truth, and the second is to simulate a small section of a part with FE methods and use the FE results 

as a baseline to adjust the gain factor, as done in this study.   
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Figure 16: The effect of gain factor (g) on the thermal trends observed in the center of the first 

three layers of the C-shaped part with 40 nodes per hatch and neighborhood distance ε = 2 mm. 

At lower gain factor (a) g = 0.2 × 106 and (b) g = 0.7 × 106 the rate of heat diffusion (heat flux) 

is restrained, as the gain factor is increased to (c) g = 2.2 × 106 and (d) g = 4 × 106 the rate of 

diffusion is comparatively faster.   

(ii) Effect of neighborhood distance (ε).  

Choosing an appropriate neighborhood distance inherently involves: (a) a tradeoff between 

computational effort and accuracy, and (b) the physical geometry of the part.  

Based on evidence presented in Figure 17 we suggest the following general guidelines 

• Neighborhood distance (ε) should be smaller than characteristic length of the part. 

Characteristic length of a part is dictated by the geometry, and is the distance beyond which 

there should not be any physical connection between nodes. For example, in C-shaped part 

nodes from overhang section (T3) and first tier (T1) should not be considered as directly 

connected, because it would entail crossing the boundary separating the part edges and the 



MANU-18-1738 (Research Paper, Revised Manuscript) 

39 

 

surrounding powder. So the distance from T3 to T1, which is 3 mm, is the characteristic 

length of the C-shaped part.  

• For a given node density, a smaller neighborhood distance means that each node is 

connected to fewer neighbors. As the number of nodes connected becomes smaller, the 

heat transfer between the nodes are not captured with sufficient accuracy and the 

temperature variations are smaller. 

Figure 17 shows the effect of the neighborhood distance on the graph theory simulation for 

the C-shaped part. Beyond neighborhood distance ε = 2 mm the RMSE and SMAPE reaches a 

minimum, beyond ε = 3 mm executing the simulation is no longer physically viable as it exceeds 

the characteristic length, and for ε < 2 mm the error is high because the connectivity of the nodes 

is sparse; each node is connected to so few of other nodes that the heat transfer phenomena are not 

captured, consequently, the trends are smoothed. At higher values, of the neighborhood distance, 

the accuracy of the graph theoretic solution increases, vis-à-vis the FE solution, however the 

computational burden increases exponentially (n nodes require n(n – 1) edges to be computed) 

with vanishing decrease in the error. In this work, we chose ε = 2 to balance between accuracy and 

computational efficiency.    

The effect of the neighborhood distance on the thermal trends obtained from the graph theory 

approach are further examined in Figure 18 which tracks the normalized temperature at the center 

observation point for the first three layers of the C-shaped part with 80 nodes per hatch (first three 

layers in Figure 14(c)). At lower neighborhood distances of ε = 0.6 mm and 1. 2 mm, there are 

sparse number of nodes that are within a sphere of radius ε, consequently, there are few number 

of edges connecting the nodes, and hence, the heat transfer amongst them is ill-represented. The 

fidelity of the simulation increases considerably at ε = 2 mm.  
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Figure 17: The effect of neighborhood distance (ε) on the RMSE and SMAPE in simulating three 

layers of section T1 from the C-shaped part. A neighborhood distance between 2 mm and 3 mm is 

suggested given the characteristic length of the part. 

 
Figure 18: The effect of the neighborhood distance (ε) on the thermal trends observed in the first 

three layers of the C-shaped part when compared to the FE solution . The number of nodes per 

hatch is set at 80, and gain factor g = 2.2 × 106 . At lower values of neighborhood distance (a) ε 

= 0.6 mm and (b) g = 1.2 mm there are number of nodes is too sparse to capture the heat transfer 

phenomena. At a larger values of the neighborhood distance of (c) ε = 2 mm and (d) ε = 3 mm the 

individual spokes in a layer are matched temporally with the FE solution, however, the 

computation time increases exponentially, as the number of nodes connected are larger.   
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(c) Heat Distribution in a C-shaped Part with Supports 

Based on the heat distribution results from the C-shaped part (Figure 13) which showed that 

the heat tends to be constrained in the overhang section. It was also hypothesized that designing 

supports (under the overhang) would provide a pathway for the heat to dissipate into the build 

plate. Accordingly, the C-shaped part was modified as shown in Figure 11(b). We note that the 

cross section of the support is designed with the same thickness as the rest of the part. The build 

process was simulated using the identical settings for the FE analysis and graph theoretic approach 

(Figure 12).  

 

Figure 19. The C-shaped part from Figure 13 is modified with two supports to provide a path for 

the heat in the overhang section to dissipate. The temperature trends observed at three locations 

on the part, in (a) left, (b)right, and (c) center. A zoomed in plot corresponding to the section T1 

from (c) is shown in (d). The neighborhood size is ε = 2 mm and the number of nodes per hatch is 

held constant at 80, and the gain factor is set at g = 2.2 × 106
. 
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Identical to the previous case with the C-shaped part without supports described in Sec. 4.2(b), 

the temperature trends for the C-shaped part with supports are is observed at the three locations, 

namely, left, right, and center at 0.5 mm from the bottom of the part. The graph-theory based 

simulation is implemented with 80 nodes sampled per hatch (5,760 nodes total). The trends 

predicted using FE analysis and graph theory are overlaid in Figure 19 for each of the observations 

points, which shows that the trends obtained with the graph-based approach match temporally with 

those from FE analysis. Further, as evident from Table 4 the SMAPE ranges from ≈ 8% to 11%. 

The simulation is completed within 20 minutes with graph theory, as opposed to over 200 minutes 

with FE analysis.  

Further, juxtaposing Figure 19(a), (b) and (c) against, Figure 13(c1), (c2) and (c3), 

respectively, it is evident that placing the supports under the overhang section aids in the 

dissipation of heat. For instance, in Figure 19(a), the temperature reduction at the end of section 

T1 is not precipitous as in Figure 13(c1). Therefore, the possibility of thermal stress-related 

deformation and cracking are potentially minimized. Further, this result can lead to an 

understanding of the impact of supports on the magnitude and direction of the heat flow (heat flux), 

and thus opens a path to the use supports as a design feature to not only to anchor the part, but also 

as a means to conduct the heat trapped in a narrow area, such as an overhang.  

(d) Heat Distribution in a Pyramid-shaped Part 

Figure 20 delineates the temperature history at an measurement point which is located in layer 

3 for the pyramid shaped part. Each spike in Figure 20 corresponds the layer in which the laser 

passes over the measurement point. The height of spikes becomes ever smaller as the laser moves 

to the subsequent layers, due to proportionally smaller energy applied per layer, and also because 

the bottom layers have a larger area, which facilitates heat dissipation.  
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Figure 20. The temperature profile for an observation point located at the center of layer one, and 40 

nodes per hatch, and neighborhood distance ε = 0.25 mm, and gain factor g set at 2.2 × 106 . 

(e)  Comparison of Temperature History and Heat Distribution Results from Finite Element 

Analysis (Abaqus) and a Commercial Software (Netfabb) with Graph Theoretic Solution 

The computation time and error (SMAPE, Eqn. (20)) between the thermal trends obtained 

from the graph theory and FE methods for the three parts are reported in Table 4. These results 

indicate that the thermal trends predicted by the graph theory and FE-based approaches are within 

≈ 10% when a sufficiently large node density is chosen (80 or 120 nodes per hatch).  More 

pertinently, the computation time with graph theory is a fraction of that taken by FE analysis. In 

our forthcoming research, we will attempt to further improve this result by including thermal 

phenomena, such as radiative effects, ignored in this work.  

Lastly, the heat distribution results from the last layer of Goldaks’s FE model, solution from 

the commercial Netfabb’s package, and graph theoretic simulations are juxtaposed pictorially in 

Figure 21. The color bars represent normalized temperature between 0 and 1. From Figure 21, it 

is evident that the temperature distribution captured by the graph theoretic approach closely 

resembles those derived from the Goldaks’s FE model and Autodesk’s Netfabb. We note that in 

Figure 21, an entire vertical plane of the C-shaped part without supports is at an elevated 
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temperature because the heat accumulates in the overhang section due to the insulating nature of 

the surrounding powder.  

Table 4. Comparison of Calculation Time and Symmetric Mean Absolute Percentage Error 

(SMAPE) for FE analysis (Abaqus) and Graph Theory Solutions for the three test parts. 

Part Result 

Number 

of 

Nodes in 

a hatch 

(total) 

SMAPE 

(Percent

age 

Error) 

Root 

Mean 

Square 

Error 

(RMSE) 

Computation 

Time (min.) 

with graph-

based 

approach. 

Computation 

Time (min.) 

with FE-

analysis 

(Abaqus) 

C-shaped part 

without supports 

Left side 

observation point.  

Figure 

13(a1) 

20 

(1,440) 
18.9% 0.125 0.5 

≈ 200 

(2,880 

elements) 

Figure 

13(b1) 

80 

(5,760) 
11.2% 0.103 18 

Figure 

13(c1) 

120 

(8,640) 
9.9% 0.095 41 

C-shaped part 

without supports 

Right side 

observation point. 

Figure 

13(a2) 

20 

(1,440) 
15.6% 0.133 0.5 

Figure 

13(b2) 

80 

(5,760) 
9.2% 0.105 18 

Figure 

13(c2) 

120 

(8,640) 
8.8% 0.097 41 

C-shaped part 

without supports 

Center 

observation point. 

Figure 

13(a3) 

20 

(1,440) 
11.3% 0.111 0.5 

Figure 

13(b3) 

80 

(5,760) 
7.5% 0.094 18 

Figure 

13(c3) 

120 

(8,640) 
5.7% 0.076 41 

C-shaped part 

with supports 

Left side 

observation point.  

Figure 

19(a) 

80 

(5,760) 

10.1% 0.091 

18 

≈ 208 

(3,390 

elements) 

C-shaped part 

with supports 

Right side 

observation point.  

Figure 

19(b) 
10.7% 0.096 

C-shaped part 

with supports 

Center side 

observation point. 

Figure 

19(c) 
7.8% 0.084 

Pyramid. 
Figure 

20 

40 

(8,000) 
6.7% 0.068 66 

≈ 1,380 

(24,000 

elements) 

 



MANU-18-1738 (Research Paper, Revised Manuscript) 

45 

 

 
Figure 21. Heat distribution of three parts which is compared by three different methods; graph theory (50 

nodes per hatch), FE analysis (Abaqus) and commercial software (Netfabb). 

In closing this section, we re-emphasize that the main advantage of the graph theory-based 

approach is that it solves a discrete approximation Eqn. (3) of the continuum heat diffusion 

equation, Eqn. (2). This discretization of the part geometry, which takes the form of point nodes 

in the graph theory approach as opposed to uniform volumetric elements as done in conventional 

mesh-based FE analysis facilitates magnitude faster prediction of temperature history in a metal 

AM part. To explain further, the solution to the discrete heat equation, Eqn. (3), from the graph 

theory-based approach requires eigen decomposition of a matrix, whereas, in FE analysis the 

continuum heat equation (Eqn. (2)) is solved computationally for each element. The case studies 

detailed in Sec. 4.2(b) through 4.2(d) and summarized in Table 4 affirm the assertion that graph 

theory simulation can reduce the computational time to 1/10th of FE analysis implemented in the 

context of Goldak’s model applied to metal AM, while maintaining accuracy within 10%.  
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Nevertheless, the faster computation enabled by graph theory comes at the cost of 

discrepancies in the thermal trends at the individual hatch-level. The discrepancy between the FE 

and the graph-based solutions is most likely due to the energy-source related assumption delineated 

in Sec. 3.1 ‒ the graph-based approach does not consider the shape of the laser beam, and only 

samples a sparse volume of the part in the form of nodes. The fast approximation of temperature 

history enabled by the graph-based approach presented herein will be leveraged in our future works 

to reduce the computational burden in predicting part distortion resulting from residual stress. 

5 Conclusions and Avenues for Future Work 

In this work, we developed and applied a novel graph theory-based approach to predict the 

instantaneous spatiotemporal distribution of heat, i.e., the direction and magnitude of heat flow 

also called temperature field or thermal history, in metal parts as they are being printed layer-upon-

layer using additive manufacturing (AM) processes, such as laser powder bed fusion (LPBF).  The 

approach relies on converting a part geometry into discrete nodes and connecting them to form a 

network graph, and subsequently studying the heat diffusion behavior over the network graph 

embedded in the part. 

The key result of this work is that the eigenvectors (𝛟) and eigenvalues (𝚲) derived from 

Laplacian (L) of the network graph solves a discrete counterpart of the continuum heat diffusion 

equation, which governs the temperature history in AM processes. Simulations of a LPBF process 

are compared with FE analysis moving heat source model based on the work of Goldak [64, 65].  

More specifically, the discrete approximation of the thermal trends obtained using the graph 

Laplacian eigenvectors and eigenvalues is observed to closely agree with results from the FE-

based approach implementing Goldak’s model. The computation time to estimate the heat 

distribution with the graph theoretic approach for the three test parts studied was significantly 



MANU-18-1738 (Research Paper, Revised Manuscript) 

47 

 

faster compared to FE approach (Abaqus). For instance, for a C-shaped part, the simulation time 

was 18 minutes using the graph theoretic approach compared to over the 180 hours with FE 

analysis. The error in the FE and graph theoretic solutions for the same part was within 10%.  

Furthermore, the graph-based results were further compared qualitatively with Autodesk 

Netfabb solution, and showed similar spatial thermal distribution. While this work presents the 

first foray into using graph theory for modeling the part-level thermal phenomena in metal AM, 

the experimental validation with temperature and deformation measurements term of deformation 

estimation aspect remains to be addressed. The experimental validation of the approach is also 

essential to crosscheck the parameters, such as, neighborhood distance (𝜖), and gain factor (g) in 

Eqn. (6) and Eqn. (13), respectively.   

In our forthcoming works in this area we will also endeavor to answer the following questions:  

• What is the effect of the process conditions, such as laser power, velocity, and scan strategy 

on the heat distribution, part deformation and microstructural evolution in metal AM parts? 

• What is the true temperature instead of the normalized temperature? What experimental 

strategy should be used to calibrate the adjustable parameters, 𝜖 and g? 
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