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ABSTRACT 
The goal of this work is to predict the effect of part geometry 

and process parameters on the instantaneous spatial distribution 

of heat, called the heat flux or thermal history, in metal parts as 

they are being built layer-by-layer using additive manufacturing 

(AM) processes. In pursuit of this goal, the objective of this work 

is to develop and verify a graph theory-based approach for 

predicting the heat flux in metal AM parts. This objective is 

consequential to overcome the current poor process consistency 

and part quality in AM. One of the main reasons for poor part 

quality in metal AM processes is ascribed to the heat flux in the 

part. For instance, constrained heat flux because of ill-

considered part design leads to defects, such as warping and 

thermal stress-induced cracking. Existing non-proprietary 

approaches to predict the heat flux in AM at the part-level 

predominantly use mesh-based finite element analyses that are 

computationally tortuous – the simulation of a few layers 

typically requires several hours, if not days. Hence, to alleviate 

these challenges in metal AM processes, there is a need for 

efficient computational thermal models to predict the heat flux, 

and thereby guide part design and selection of process 

parameters instead of expensive empirical testing. Compared to 

finite element analysis techniques, the proposed mesh-free graph 

theory-based approach facilitates layer-by-layer simulation of 

the heat flux within a few minutes on a desktop computer. To 

explore these assertions we conducted the following two studies: 

(1) comparing the heat diffusion trends predicted using the graph 

theory approach, with finite element analysis and analytical heat 

transfer calculations based on Green’s functions for an 

elementary cuboid geometry which is subjected to an impulse 

heat input in a certain part of its volume, and (2) simulating the 

layer-by-layer deposition of three part geometries in a laser 

powder bed fusion metal AM process with: (a) Goldak’s moving 

heat source finite element method, (b) the proposed graph theory 
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approach, and (c) further comparing the heat flux predictions 

from the last two approaches with a commercial solution. From 

the first study we report that the heat flux trend approximated by 

the graph theory approach is found to be accurate within 5% of 

the Green’s functions-based analytical solution (in terms of the 

symmetric mean absolute percentage error). Results from the 

second study show that the heat flux trends predicted for the AM 

parts using graph theory approach agrees with finite element 

analysis with error less than 15%.  More pertinently, the 

computational time for predicting the heat flux was significantly 

reduced with graph theory, for instance, in one of the AM case 

studies the time taken to predict the heat flux in a part was less 

than 3 minutes using the graph theory approach compared to 

over 3 hours with finite element analysis. While this paper is 

restricted to theoretical development and verification of the 

graph theory approach for heat flux prediction, our forthcoming 

research will focus on experimental validation through in-

process sensor-based heat flux measurements. 

Keywords: Additive Manufacturing, Thermal Modeling, 

Heat Flux, Graph Theory. 

1 Introduction 

1.1 Objective   
The goal of this work is to understand the effect of process 

parameters and part design (part geometry) on the instantaneous 

spatial distribution of heat, also called the heat flux or thermal 

history, in metal parts as they are being built (printed) layer-by-

layer using additive manufacturing (AM) processes [1].  As a 

step towards this goal, the objective of this work is to develop 

and verify a graph theory-based approach for predicting the heat 

flux in metal AM parts. 

Shown in Figure 1(a) is the laser powder bed fusion (LPBF) AM 

process in which layers of metal powder are rolled or raked 

across a build plate and selectively melted using a laser to form 
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the part. Figure 1 (b) shows a schematic of a directed energy 

deposition (DED) metal AM process, wherein a stream of 

powder material is directed onto a substrate via nozzles. The 

powder is melted through the thermal action of a laser. By 

translating the nozzle relative to the substrate in the horizontal 

and vertical planes, a desired part geometry is built layer-upon-

layer [2].  

 
Figure 1: The schematic of the laser powder bed fusion (LPBF) and 

blown powder directed energy deposition (DED) metal AM processes.  

1.2 Motivation for Thermal Modeling in Metal AM 
Metal AM processes, such as LPBF and DED offer 

significant advantages over conventional subtractive and 

formative manufacturing processes including design flexibility 

and shorter lead times [3-5]. However, poor process consistency 

and inferior part quality currently afflict metal AM processes [6-

11]. Given the uncertainty in part quality, precision-oriented 

strategic sectors, such as aerospace and biomedical, are reluctant 

to deploy metal AM processes for making safety-critical parts. 

The three  main process-related reasons that impede the quality 

of metal AM parts are [12]:  

(1) Inconsistency in the as-built microstructure, termed as 

microstructural heterogeneity [13, 14].  

(2) Porosity formation, which includes the case of poor 

consolidation of the material called lack-of-fusion porosity 

due to insufficient input energy to melt the material, as well 

as, vaporization of the powder material due to excessive 

input energy called pinhole porosity [15, 16]. 

(3) Deviations in the as-built geometry from its intended design 

due to distortion. At the part-level, other defects, beside 

distortion, include cracking and delamination of layers.  

The aforementioned flaws are largely governed by thermal 

phenomena, specifically, the magnitude and direction of heat 

flow in the part as it is being built – called the heat flux or thermal 

history [12, 17]. To explain further, the salient thermal 

phenomena in LPBF and DED, stratified by the various energy-

part-process interaction zones, are represented in Figure 2 [18].  

The thermal phenomena depicted in Figure 2 encompass 

complex conductive, convective, and radiative heat transfer 

interactions between the part, energy source, material, and 

chamber (powder, as well as gas). These thermal aspects in AM, 

which govern the heat flux in the part, are in turn a function of 

the material, part design and the process parameters, such as the 

power and velocity settings of the laser used for melting the 

material [19]. 

 Statistical experimentation methods to obtain the desired 

geometry and microstructure in AM will involve building test 

parts by adjusting process parameters, followed by destructive 

materials characterization. Such a statistical designed 

experiments-based approach is prohibitively expensive, and may 

not be viable in metal AM given the small batch sizes, vast 

parameter space (there are over 50 variables in LPBF alone), and 

the slow nature of AM processes compared to conventional 

manufacturing [20, 21].  Furthermore, owing to the tight 

coupling of the part design, material properties, and parameters 

to the heat flux, a set of parameters optimized for a particular 

part geometry and material are not readily transferable to a new 

part design and material [8].  

Therefore, as emphasized by several researchers, to ensure part 

quality in metal AM, it is imperative to understand and explain 

the following intertwined links in the LPBF process chain 

through quantitative modeling [22-27]: Part Design, Process 

Parameters, and Material Characteristics → Heat Flux → 

Microstructure and Geometry Flaws [28-31]. 

 
Figure 2: The salient heat transfer modes in LPBF and DED 

encompassing complex interactions amongst the part, material, energy 

source, and environment (surrounding inert gas).  

The bourgeoning need for a formal framework based on 

fundamental understanding of the thermal physics of the process 

to guide the design of the AM parts and parameter selection is 

practically illustrated in Figure 3, which shows a biomedical 

knee implant built by the authors using the LPBF process [32]. 

This part has a feature called an overhang whose underside is not 

supported. To prevent the part from collapsing under its own 

weight, supports were automatically built under the overhang 

feature by the native software on the LPBF machine. 

Nonetheless, after the build, the overhang area was found to have 

coarse-grained microstructure, distortion and poor surface finish, 

which makes the implant potentially unsafe for clinical use.  

Such defects, also reported in the literature by other researchers, 

result from the heat being constrained in the overhang section 

[33-36]. The reason for the constrained heat in the overhang 

section is hypothesized due to the low thermal conductivity of 

the surrounding metal powder, and the thin cross-sectional area 

of the supports. Through accurate and computationally efficient 

thermal simulations that can predict the effect of process 

conditions and part design on heat flux, occurrence of defects, 

such as geometric deformation and microstructure heterogeneity 

can be minimized without extensive empirical optimization [37].  
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Figure 3. LPBF knee implant with an overhang feature shows poor 

surface finish and coarse microstructure. 

1.3 Novelty and Advantages of the Proposed Graph 
Theory Approach 

Accurate quantitative modeling approaches based on finite 

element (FE) analyses have been successfully developed and 

applied for understanding the thermal aspects of AM at the part-

level as summarized in Ref. [11, 12, 38-40]. However, these 

pioneering non-proprietary approaches reported in the published 

literature are computationally expensive, with simulation of a 

few deposited layers amounting to many hours, if not days [41, 

42]. For example, Chou et al., reported that the computation time 

for thermomechanical analysis for a 6 mm cuboid shape exceeds 

92 hours [41]. Hence, newer computationally efficient 

approaches are needed to approximate the heat flux given 

different part designs and process parameters. In the context of 

FE-based modeling we note that certain commercial, proprietary 

approaches, such as Autodesk Netfabb and Ansys 3DSim have 

leveraged adaptive meshing principles to drastically reduce the 

computational time. However, the underlying mathematics of 

these commercial software applications is proprietary [39, 43].  

Within the context of heat flux prediction, the advantages in 

using the graph theoretic approach to solve the heat diffusion 

equation, are two-fold: 

Reduced computational burden due to elimination of mesh-based 

analysis 

Instead of solving the heat diffusion equation for each 

element through element birth-and-death techniques as in finite 

element (FE) analysis, we track the heat flux in the part in terms 

of nodes of a planar graph projected onto its geometry. Our 

efforts in verifying results from the graph theoretic approach 

with the FE analysis, described in Sec. 4.2, leads us to infer that, 

a significant portion of the computation effort in FE analysis is 

consumed by the meshing of elements, and simulation of the 

birth-and-death process to mimic material deposition in AM. The 

graph theoretic approach circumvents the need for meshing, and 

as a result, the computation time for simulation of AM processes 

can be considerably reduced compared to existing, non-

proprietary FE analysis-based approaches.  

Elimination of matrix inversion steps required to solve the heat 

diffusion equation.  

While FE analysis rests on matrix inversion steps to solve the 

heat diffusion equation for each of the thousands of elements, the 

graph theoretic method instead relies on the more 

computationally tractable matrix multiplication operations to 

obtain the eigenvectors (𝛟) and eigenvalues (𝚲) of the graph 

Laplacian (L) (to be discussed subsequently in Sec. 3), which 

greatly reduces the computational burden.  

By reducing the computational time in predicting the heat 

flux to minutes, as opposed to hours, estimating the geometric 

distortion and microstructural evolution govern the heat flux 

becomes considerably more tractable. Furthermore, the near 

real-time predictions of heat flux made possible through the 

proposed approach, lays the foundation for feed-forward control 

of microstructure and geometry through theoretical 

understanding of the thermal history as opposed to data-driven 

machine learning and analytics.  

1.4 Organization of the Paper 
The rest of this paper is organized as follows. The literature 

concerning the FE-based thermal modeling of metal AM 

processes at the part-level is outlined in Sec. 2. Next, the graph 

theoretic approach for solving the heat equation is described in 

Sec. 3, wherein we show that the eigenvectors (𝛟) and 

eigenvalues (𝚲) of the Laplacian matrix (L) solve the heat 

diffusion equation, which governs heat flux in AM. We dedicate 

Sec. 4 of this paper to the verification of the graph theory 

approach through the following two studies: (1) verifying the 

heat flux trends obtained from graph theory with exact Green’s 

functions-based analytical method, and finite element analysis 

for an elementary cuboid geometry, and (2) comparing the heat 

flux trends derived using graph theory approach for three part 

geometries in a LPBF simulation scenario with the heat flux 

trends obtained by implementing Goldak’s moving heat source 

FE analysis solution, and Autodesk’s Netfabb software. This 

paper closes in Sec. 1 with conclusions and avenues for future 

work. 

2 Prior Research in Finite Element Modeling in 
Metal AM Processes 

It is beyond the scope of this paper to provide an in-depth 

exposition of the vast and mature area of finite element (FE) 

analysis in AM, which is the de facto means to solve the heat 

diffusion equation described later in Sec. 3 as applied to metal 

AM. The reader is referred to the recent book by Denlinger et al. 

[39] which comprehensively details the approach, challenges, 

and practical application concerning FE-based 

thermomechanical analysis in AM. Comprehensive review 

articles on part-level thermal modeling in AM with the finite 

element method in metal AM have been recently published by 

Luo and Zhao [37], Bandyopadhyay and Traxel [38], and 

DebRoy, et al. [11]. These articles provide an in-depth review 

the strategies that have been advanced by researchers to reduce 

the computational burden of FE analysis in AM; a summary of 

these is provided below. 
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(1) Adaptive meshing and element activation schema 

Researchers have simplified the meshing process, such as 

consolidating layers into blocks or super-layers using an adaptive 

mesh refinement and coarsening strategy [42]. The key idea is 

that certain areas of the part, where the cross-section and 

boundaries change sharply have finer mesh while the rest of the 

part may has a coarser mesh.  Further, researchers in metal AM 

have adapted two main approaches to simulate the deposition of 

the material in the FE framework [44]. In the first approach, 

called the inactive element method, elements are incrementally 

added when the melting process is initiated. Though the inactive 

approach closely mimics the AM processes, it is challenging to 

implement because the number of elements increases as the part 

grows. 

The second technique is called the quiet element method, 

wherein the part is meshed a priori, but only elements in the 

current layers and those below are thermally active. The 

properties of the elements in the succeeding layers are 

deliberately altered to have no thermal effect. To reduce the 

computational burden, commercial approaches, such as Netfabb 

(Autodesk) have taken two tacks: 

(i) adaptive mesh refinement of the part, such that certain 

areas have large or coarser nodes; and 

(ii) using a hybrid meshing approach combining quiet and 

inactive meshing schema. Such a hybrid element 

activation schema was pioneered by Michaleris and is 

reported to be implemented in Netfabb [44]. 

 

(2) Simplification of the process physics 

As first described in Figure 2, the main heat transfer 

mechanisms in the process are:  

(i) conductive heat losses at the part and substrate level, 

wherein the heat on the top surface travels through the 

solidified layers in the bottom, and further through the 

substrate;  

(ii) radiative heat loss at the top surface to the process 

chamber;  

(iii) loss due to convection at the boundary of the printed part 

and the surrounding powders; and  

(iv) latent heat involved at the melt-pool zone as the material 

state changes from solid to liquid, and back to solid again 

on cooling.  

Incorporating all these heat transfer mechanisms in a model will 

inordinately increase its computational burden. Consequently, 

researchers resort to simplifications, such as: ignoring latent heat 

effects from the melt-pool; maintaining static material 

properties, such as a constant heat conduction rate, density and 

specific heat; and, ignoring the radiative heat losses into the 

chamber and the convective heat losses into the surrounding 

powder by assuming the part to be completely insulated. Some 

of  these simplifications have been shown to have a significant 

effect on the prediction accuracy of cooling rates [37]. 

(3) Simplifying the part geometry, energy source, and powder 

bed-related conditions. 

Researchers seek to reduce the computational burden by 

simplifying the part geometry, such as simulating only one half 

of a symmetric part, or considering deposition in the form of 

super-layers [40]. Furthermore, the behavior of the energy source 

is also simplified by assuming heating of an entire layer at once, 

or in terms of rectilinear hatches, as opposed to complicated 

island type scanning. The thermal models can also incorporate 

strategies to simplify the effect of the energy source by 

approximating the shape of the beam, e.g., assuming Gaussian, 

ellipsoidal, and tophat shapes. Mesh-free approaches in AM are 

being explored, such as electric network type modeling schema 

introduced by Hoelzle et al. [45], and discrete finite difference 

modeling by Zohdi and Ganeriwala [46, 47].  

From a graph theoretic perspective, a review paper by 

Solomon [48] discusses discrete differential operators that arise 

from partial differential equations (PDEs) such as the heat 

equation; it shows that the Laplacian matrix constructed from a 

uniformly-spaced grid gives a solution to the heat equation. 

However, if the grid is not equally spaced, the relationship to the 

correct solution of the heat equation is not clear. In a study of 

geometric surface smoothing, Belkin et al. [49] assert that their 

discrete Laplacian matrix approaches the continuous Laplacian 

in the limit as the grid become sufficiently fine, even if the grid 

pattern is non-uniform.  Their algorithm includes multiplicative 

factor 1/ε2 where ε which is the size of the neighborhood of 

influence for nearby grid points. In a study of image smoothing, 

Zhang and Hancock use randomly-assigned node locations to 

construct a discrete Laplacian matrix and subsequently to solve 

the heat equation [50].  In closing this section, we note that the 

proposed graph theoretic approach is distinct from the mesh-free 

methods developed for peridynamics of systems undergoing 

dynamic cracking [51, 52], and it is also different from spectral 

collocation methods where splines provide an a priori functional 

form of the solution as part of a standard matrix-inversion 

process [53, 54]. 

3 The Graph Theoretic Approach for Approximating 
the Heat Flux in AM 

3.1 Assumptions of the Graph Theoretic Model 
To keep the development brief, the following simplifying 

assumptions are applied to the graph theoretic approach. 

• Heat transfer-related assumptions. The thermal properties 

of the material are static, in that, they do not change as the 

material changes state from particulate matter to a liquid 

(meltpool formation), and then back to a solid. In other 

words, the latent heat of melting and solidification is 

ignored. The heat loss due to vaporization, and material 

composition and density changes due to mass transfer are 

also not considered. Likewise, the radiative effects from 

the top surface of the part are not accounted. 

• Energy source-related assumptions. The laser is considered 

a moving point heat source, i.e., the beam diameter and 

shape, and subsequent diffusion of the laser on the powder 
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bed surface are not accounted. It is assumed that the laser 

rays are completely absorbed in the topmost layer and are 

not repeatedly reflected by the powder. Hence, effects such 

as key-hole melting, and variations in thermal absorptivity 

contingent on powder packing density on the powder bed 

are ignored.  

• Powder bed-related assumptions. There is only one single 

part in the build plate at a given time, hence there is no heat 

exchanged with other parts. Lastly, the powder bed is 

considered to be at the same temperature as the chamber, 

and that the packing density of the powder bed remains 

static. 

These assumptions can be relaxed to provide a more 

comprehensive model, which will be pursued in later works by 

the authors. 

2   The Heat Diffusion Equation and its Connection to Heat 

Flux in AM 

As stated previously, the objective of this work is to 

develop and apply a graph theoretic approach to predict the 

temperature history in metal AM parts. To realize this objective, 

we solve the heat diffusion equation,  

𝜌𝑐𝑝
∂T

∂𝑡
− 𝑘 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)T = E𝑉 (1) 

In Eqn. (1), T is the instantaneous temperature at a 

location {𝑥, 𝑦, 𝑧}  at time t. The AM process parameters are 

captured in the energy density, E𝑉 , which is the energy supplied 

by the laser to the top layer to melt a unit volume of material per 

second; E𝑉 =
𝑃

ℎ𝑡∙𝑑∙𝑙
 [W/mm3], where P is the laser power in [W], 

ℎ𝑡 is the width of the laser track or hatch [mm], d the layer height 

[mm], and l the length melted in one second [mm]. The material 

properties are encapsulated in the following terms: density 𝜌 

[kg/m3], specific heat 𝑐𝑝 [J/(kg·K)], and thermal conductivity k 

[W/(m·K)].   

From the AM perspective, the term  𝜕T/𝜕𝑡 is analogous to 

the rate of change of temperature at a particular point in the part 

referenced by its spatial coordinates {x, y, z} as it is heated by a 

moving energy source, e.g., a laser in LPBF, while being 

consolidated layer-upon-layer. Solving the heat equation results 

in the instantaneous temperature T(𝑥, 𝑦, 𝑧, 𝑡) at a time 𝑡 for a 

Cartesian spatial coordinate{x, y, z}. The temporal map of 

T(𝑥, 𝑦, 𝑧, 𝑡), i.e., the trace of the temperature T at the location {x, 

y, z} over time, gives the temperature history in the part for that 

location.    

The graph theory approach to the solution of the heat 

diffusion equation relies upon two approximations. First, the 

source term, E𝑉, in Eqn. (1) is replaced by an initial temperature 

distribution, for which the portion of the AM part that is scanned 

by the laser is assigned an elevated temperature to represent, for 

example, the metal fusion temperature. The heat equation is 

solved repeatedly, again and again, following each laser scan.  

Specifically, consider a spatial point {x, y, z} during the AM 

process, immediately after a laser scan is completed, the heat 

diffusion equation to be solved takes the form, 

 

∂T

∂𝑡
− 𝛼 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)T = 0 

T(𝑥, 𝑦, 𝑧, 𝑡 = 0) = T𝑜(𝑥, 𝑦, 𝑧) 

(2) 

In Eqn. (2), T0  is the initial condition and α = k/( 𝜌𝑐𝑝) is the 

thermal diffusivity. The solution of the above heat diffusion 

equation describes the evolving temperature in the AM part in 

the time period between one laser scan and the next. After a layer 

is completely processed, the build platen is lowered, and a new 

layer of powder is deposited over the top of the previous layer. 

When the new layer is deposited and scanned by the laser, an 

update to the computational domain is required along with a new 

initial condition. These updates necessitate a re-computation of 

the heat equation. This rationale is valid even when a more 

granular laser hatch-by-hatch evolution of the process is 

simulated. To explain further, the new computational domain 

includes the newly-fused layer of metal powder at an elevated 

temperature on top of the previously-fused metal whose initial 

temperature is the end point of the previous temperature 

computation. Just as the part is created layer-by-layer (or hatch-

by-hatch), the temperature solution is computed in many small 

discrete increments of time.    

A mathematical premise key to the graph theory approach is that 

the spatial derivatives in the above continuum heat diffusion 

equation, Eqn. (1) and (2), can be replaced by suitable discrete 

approximations, and the continuously varying temperature T can 

be replaced by a vector of discrete temperatures T at M sampled 

nodal points in the domain of the part. The discrete form of the 

heat diffusion equation, with vectors in bold typeface may be 

written as,  
∂𝐓

∂𝑡
+ 𝛼𝐋𝐓 = 0 (3) 

Note the sign change in Eqn. (3), as the Laplacian matrix L from 

graph theory is defined with sign opposite to that of the 

continuous spatial derivatives present in the continuous heat 

equation (Eqn. (2)).  If the above discrete form of the heat 

diffusion equation is applied to a uniformly-spaced grid of nodal 

points, a discrete Laplacian matrix can be constructed to 

reproduce the well-known finite-difference approximation [55].   

The foregoing is important in the context of the present work 

because the finite-difference approximation has been shown, in 

the limit as the inter-nodal spacing approaches zero, to be exact 

[55].  Although the present work uses non-uniform node spacing, 

the point to be made here is that the level of approximation in the 

graph theoretic approach is related to that of the well-known 

finite-difference method. The details of the specific Laplacian 

matrix used in the present work are discussed in the next section; 

the mathematical proof of the graph theory-based solution to the 

heat equation, Eqn. (2) is provided in the Appendix. 
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3.2 Steps in Predicting the Heat Flux in AM using 
Graph Theory 

The approach has the following four steps, as pictorially 

shown in Figure 4, and in Figure 5 as a flowchart diagram. The 

steps are as follows, with respect to the LPBF process:  

(1) Obtain the geometry of a part and convert it to a set of 

discrete nodes. Slice the part into layers and hatches. 

Record the position of each node, in terms of its Cartesian 

{x, y, z} coordinates, and the layer and hatch in which the 

node is located. 

(2) Construct a network graph from the discrete nodes 

sampled in Step (1). In this step, each of the nodes is 

connected to other nodes within an ε neighborhood.   

(3) (a) Simulate the heating of a layer, hatch-by-hatch, and 

diffuse the heat through the network graph constructed on 

the nodes sampled in the part, noting that only the nodes 

in the current layer and below are active, and (b) after the 

heat diffuses through the part, simulate the deposition of 

a new layer on top. Step 3 is repeated until the part is built.  

(4) At each iteration of Step 3, the heat at each node at each 

time step is recorded in terms of the temperature vector T. 

 

 
Figure 4. The four steps in the spectral graph theoretic approach used to estimate the heat flux in the part layer-by-layer. Here we show an 

embodiment of the laser powder bed fusion (LPBF) process. 

 
Figure 5. The flowchart of four steps in the graph theoretic approach in context of LPBF process
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Step 1: Obtain the geometry of a part and converting it to a set 

of discrete nodes 

Process parameters and the part geometry are declared in 

this step. The part is sliced into layers, representative of the layer 

thickness, and a fixed number (M) of spatial locations are 

randomly sampled in each layer. In the later steps, the heat flux 

through the part is observed and stored (recorded) at these M 

fixed spatial locations, termed nodes.  

The random sampling of the nodes is done to reduce the 

computational burden of the approach. The number of nodes 

sampled is contingent on the geometry of the part, in this work 

(Sec. 4.2) , a density of 5 nodes per mm3 provided a sufficiently 

good approximation (relative error < 15%) to the heat flux 

estimated with a moving heat source solution obtained through 

FE analysis [56, 57]. 

Step 2: Network graph construction 

In graph theory, a concept of discrete mathematics, a graph 

consists of nodes and the edges that connect them [58]. Here 

nodes are spatial points sampled in the part and the edges are the 

links among the nodes. We begin by constructing a graph over 

the set of M nodes sampled in Step 1. The aim is to connect a 

pair of nodes 𝜋𝑖 and 𝜋𝑗  within an ε neighborhood. Consider, 𝑐𝑖 =

{𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖} as the location of the node 𝜋𝑖, and 𝑐𝑗 = {𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗} as 

the location of the node 𝜋𝑗, then the weight of the edge 

connecting node 𝜋𝑖 and 𝜋𝑗 is expressed in mathematical terms 

below, with a Gaussian radial basis function, 

𝑎𝑖𝑗 = {
 𝑒
−
(𝑐𝑖−𝑐𝑗)

2

𝜎2 ,               (𝑐𝑖 − 𝑐𝑗)
2 ≤ 𝜖

        0.                        (𝑐𝑖 − 𝑐𝑗)
2 > 𝜖

 
(4) 

where (𝑐𝑖 − 𝑐𝑗)
2
 is the square of the distance between 

nodes 𝜋𝑖 and 𝜋𝑗. In this work, the term 𝜖 is akin to the radius of 

a sphere within which one node is connected to its neighbors, 

and 𝜎 is the standard deviation of the pairwise distances, 

(𝑐𝑖 − 𝑐𝑗)
2
.  

We note that Eqn. (4) embodies the Gaussian law in that, if 

two nodes are closer, their weight will be proportionally larger. 

We further note that 𝑎𝑖𝑗  takes a value between 0 and 1. Next, we 

place each element 𝑎𝑖𝑗  on the ith row and jth column of the 

adjacency matrix 𝐀. Essentially, the element ith row and jth 

column of 𝐀 relates to strength of the edges connecting the nodes 

𝜋𝑖 and 𝜋𝑗.         

𝐀 = [𝑎𝑖𝑗] (5) 

The matrix A is a symmetric M×M matrix because 𝑎𝑖𝑗 = 𝑎𝑗𝑖 . 

The next step involves computing the degree 𝑑𝑖 of a node 𝜋𝑖 , i.e., 

the aggregate of the strength of the edges that are connected to 

the node 𝜋𝑖 . The degree of node 𝜋𝑖 is computed by summing the 

ith row of the Adjacency matrix 𝐀. 

𝑑𝑖 = ∑ 𝑎𝑖𝑗
∀𝑗

 (6) 

From the degree of node 𝑑𝑖, the Laplacian 𝑙𝑖𝑗  at node i is defined 

as follows, 

𝑙𝑖𝑗 ≝ 𝑑𝑖 − 𝑎𝑖𝑗 
(7) 

We note that ∑ 𝑙𝑖𝑗∀𝑗 = 0.  If the diagonal degree matrix 𝐃 is 

formed from 𝑑𝑖’s as follows, 

𝐃 =  [
𝑑1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑M

] 

 

(8) 

then given the adjacency matrix 𝐀, the discrete Laplacian 𝐋 can 

be cast in matrix form as, 

𝐋 ≝ (𝐃 − 𝐀) (9) 

Finally, the Eigen spectra of the Laplacian 𝐋 is computed as 

follows, 

𝐋𝛟 =  𝛟𝚲 (10) 

Where 𝛟 are the eigenvectors and 𝚲 are the eigenvalues of L. 

We note that L is a real, diagonally dominant symmetric matrix, 

with positive diagonal entries, and negative off-diagonal entries. 

Due to these properties L falls under the category of a Stieltjes 

matrix, and has non-negative eigenvalues (𝚲) and orthogonal 

eigenvectors (𝛟) [58].  

Step 3: (a) Heating a layer, hatch-by-hatch, diffusion of the 

heat through the part, and (b) deposition of a new layer. 

In Step 3(a), the heat from the laser is applied to the top-

most layer in the form of hatches. The magnitude of heat applied 

is E𝑉  [W/m3]. Where the time taken to fuse a hatch is considered 

infinitesimal compared to the taken to that build the whole layer 

or the time it takes the bed to be lowered and to the recoater to 

deposit a new layer. The heat diffuses to the rest of the part within 

the powder bed, and through the substrate in the time (𝑡). As we 

will show in the forthcoming two sections, the eigenvectors 𝛟 of 

the Laplacian 𝐋 provide a discrete solution to the heat equation, 

specifically, if 𝛟′ is the transpose of 𝛟, then the temperature 

profile observed at a discrete time step 𝑡 for a node at position 

(𝑥, 𝑦, 𝑧) below the top layer is given by the following,  the 

mathematical proof of which is given in Appendix. 

T(𝑥, 𝑦, 𝑧, 𝑡) = 𝛟𝑒−𝛼g𝚲𝑡𝛟′T0(𝑥, 𝑦, 𝑧) (11) 

Where, T0 is the initial temperature distribution introduced to 

simulate laser heating. The material-related factors are contained 

in the term 𝛼 [m2/s] and g is a constant  gain factor [m-2]. Lastly, 

we need to account for the heat loss due to convection at the 

boundary of the powder and part. For this purpose, we demarcate 

the boundary nodes of the part, and adjust the temperature of the 

boundary nodes (T𝑏) using Newton’s law of cooling,  

T𝑏 = 𝑒
−ℎ̃(Δ𝑡) (T𝑏𝑖 − T𝑝) + T𝑝 (12) 

Where, T𝑝 is the temperature of the powder (considered to be 

equal to the ambient temperature in the environment, T∞), T𝑏𝑖 is 

the initial temperature of the boundary nodes, T𝑏  is the 
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temperature of the boundary nodes after convective heat loss and 

ℎ̃ is the normalized coefficient of convection from part to the 

surrounding powder (also called the Biot number), and Δ𝑡 is the 

dimensionless time between laser scans.  

In Step 3(b) which is only applicable to the LPBF process, and 

not DED, a layer of powder is raked on top of the fused layer. 

The process repeats through Step 3(a) and (b) until the part is 

built. At every iteration of Step 3, we estimate the heat flux 

across layers, and store the resulting temperature of each node 

T(𝑥, 𝑦, 𝑧, 𝑡), inside a temperature vector T, which eventually in 

Step 4 represents the temperature history and heat distribution of 

the whole part.  

4 Verification of the Approach 
This section is divided into two parts. The first part, 

described in Sec. 4.1, compares the graph theory approach with 

the exact Green’s function-based analytical solution and finite 

element solution for heat flux in a simple cuboid geometry [59]. 

The second part, detailed in Sec. 4.2, applies the graph theory 

approach for predicting the heat flux to three part designs in a 

LPBF scenario, the results obtained therefrom are compared with 

Goldak’s FE-based solution, and a commercial implementation 

(Netfabb) [56, 57]. 

4.1 Verification of the Graph Theory Approach for a 
Cuboid Geometry   

This section aims to quantify the accuracy of the graph 

theory heat flux solution by comparison with analytical and finite 

element solutions for a simple test case. This test case simulates 

heat diffusion in a cube. The cube is assumed to be insulated on 

the boundaries (Neumann boundary condition) which results in 

internal heat dispersion until a steady-state condition is achieved.   

There is a fixed volume inside the cube which is considered to 

be momentarily heated for a vanishingly small time. Each edge 

of this heated volume is half the of the entire cube, meaning the 

volume of the heated section is one-eighth of the cube. Figure 6 

shows the geometry, initial heated region, and the boundary 

conditions imposed upon the system. Additional details are 

available in the author's publications and website [59]. The 

dimension of the cube is taken to be 1 unit. 

 
Figure 6. The cube with the initial heating condition and insulated 

boundaries. 

The case of heat diffusion in a cube can be made 

dimensionless by the following parameterization: 

�̃� =
𝑥

𝐿
; �̃� =

𝑦

𝑊
; �̃� =

𝑧

𝐻
; �̃� =

𝑊

𝐿
; 𝐻 =

𝐻

𝐿
; (13) 

�̃�1 =
𝐿1
𝐿
; �̃�1 =

𝑊1

𝑊
; 𝐻1 =

𝐻1
𝐻
; �̃� =

𝛼𝑡

𝐿2
;  �̃� =

𝑇

𝑇0
; 

Where, 𝐿,𝑊 and 𝐻 are the geometrical dimensions of the 

cube, 𝐿1,𝑊1 and 𝐻1 are the geometrical dimensions of the heated 

cube, 𝑡 is time, 𝛼 is thermal diffusivity, 𝑇0 is the initial 

temperature and T is the final temperature. Subsequently, the 

dimensionless form of the heat equation and boundary value 

problem for the cube-shape are given by: 

𝜕2�̃�

𝜕�̃�2
+ 

1

�̃�2

𝜕2�̃�

𝜕�̃�2
+
1

𝐻2
𝜕2�̃�

𝜕�̃�2
=  
𝜕�̃�

𝜕�̃�
;  {
0 < �̃� < 1;
0 < �̃� < 1;
0 < �̃� < 1;

 (14) 

At boundary 𝑖, we impose the Neumann boundary condition, 

𝜕�̃�

𝜕�̃�𝑖
= 0, 𝑖 = 1, 2, 3, 4, 5, 6 (15) 

𝑇(�̃�, �̃�, �̃�, 0) =

{
 
 

 
 
𝑇0 {

0 < �̃� < �̃�1
0 < �̃� < �̃�1

0 < �̃� < 𝐻1
 

0;  otherwise

 (16) 

Where, �̃�𝑖 is the outward normal vector from each surface of the 

cube. The dimensionless form of the analytical diffusion is found 

by the Green’s function (Eqn. (17)); see [60] for a full 

development of the solution). 

𝑇 (�̃�, �̃�, �̃�, �̃�)

= [�̃�1 + 2 ∑ 𝑒𝑥𝑝 (−𝑚2𝜋2�̃�)
𝑐𝑜𝑠(𝑚𝜋�̃�) 𝑠𝑖𝑛(𝑚𝜋𝐿1̃)

𝑚𝜋

∞

𝑚=1

]

× [�̃�1 + 2∑𝑒𝑥𝑝 (
−𝑛2𝜋2�̃�

�̃�2
)
𝑐𝑜𝑠(𝑛𝜋�̃�) 𝑠𝑖𝑛(𝑛𝜋𝑊1̃)

𝑛𝜋

∞

𝑛=1

]

× [𝐻1 + 2∑𝑒𝑥𝑝 (
−𝑝2𝜋2�̃�

𝐻2
)
𝑐𝑜𝑠(𝑝𝜋�̃�) 𝑠𝑖𝑛(𝑝𝜋𝐻1̃)

𝑝𝜋

∞

𝑝=1

]     

(17) 

Here, 𝑚𝜋, 𝑛𝜋 and 𝑝𝜋 are eigenvalues along the x, y and z 

directions, respectively. The steady state is considered the 

moment that observation points reach to an equal temperature up 

to the fourth decimal point. The heat flux is observed at two 

observation points inside the cube as follows: Point 1 (0.25H, 

0.25L, 0.25W) and Point 2 (0.75H, 0.75L, 0.75W). The heat 

diffusion trends at Point 1 and 2 from the initial time step to 

steady state convergence are shown in Figure 7. 

 
Figure 7. Analytical diffusion at observation point 1: {0.25, 0.25, 

0.25} and observation point 2: {0.75, 0.75, 0.75} from the origin. 
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a. Comparison of the Analytical and Graph Theory Solutions 

To compare the accuracy of the graph theory approach with 

the analytical solution (Figure 7), we conduct the analysis in 

three steps as shown in Figure 8. In this section we also study the 

effect of number of nodes and their connection structure on the 

convergence accuracy of the approach.  

 

Step 1: Generation of Nodes. 

The whole part is transformed into a set of 91,000 discrete 

nodes. We randomly sampled different number of nodes from 

these 91,000 nodes as shown in Figure 8  to study the effect of 

the number of nodes on the accuracy of the graph theoretic 

solution.  Since the heated volume is one-eighth of the total 

volume of the cube, we ensure that the number of nodes in the 

heated subsection is exactly one-eighth of the total nodes.  

Each node takes the character of its location, i.e. the nodes 

which are in the heated subsection take the high-temperature 

value (equal to 1, which is the highest in normalized temperature 

range) and the nodes that are outside the heated subsection are 

set at the low-temperature value (equal to 0, which is the lowest 

in normalized temperature range) at the initial time step. 

 
Figure 8. The three steps towards the error calculation and verification 

with the analytical method. 

Step 2: Network Graph Construction 

In this step, the selected nodes are used to construct a network 

graph based on their spatial coordinates and neighborhood 

distance (ε) which is stored in the adjacency matrix as described 

in Sec. 3.2. Based on the total number of selected nodes and 

analytical diffusion time, a specific neighboring distance (ε) is 

required to set the neighboring area for each node. Each node is 

connected to approximately 20, 80, 300 and 600 neighboring 

nodes in Case 1, 2, 3 and 4, respectively, as reported in Table 1.  

Selecting a higher number of nodes implies a larger 

adjacency matrix size and requires longer computational time. 

The computational time corresponds to converting the part to set 

of discrete nodes and building adjacency matrix which in this 

work is implemented on a desktop computer with an Intel® 

Core™ i7-6700 CPU @3.40GHz, 32GB RAM. Table 1 shows the 

neighborhood distance (ε), adjacency matrix (A) size and graph 

construction computational time in each case. 

 Step 3: Heat Diffusion to Steady State 

The heat diffuses through the graph network until it reaches 

a steady state condition. We consider the same two observation 

points, Point 1 at {0.25, 0.25, 0.25} and Point 2 at {0.75, 0.75, 

0.75}. The steady state condition is achieved when both 

observations have the equal temperature up to the fourth decimal 

point; thermal diffusivity (α), which corresponds the material 

properties in the graph theory method was considered equal to 1 

unit (m2/s).  Figure 9(a) compares the trend of heat diffusion 

computed using graph theory for Case 2 with the analytical 

solution. The symmetric mean absolute percent error (SMAPE), 

defined below in Eqn. (18)  is used to quantify the error, where t 

is the time step and e is the absolute error. Figure 9(b) shows the 

trends of the SMAPE for the four different cases. Although 

increasing the number of nodes reduces the error, it leads to 

longer computational time.  

Table 1 delineates the SMAPE and total computational time of 

the process based on the different number of nodes, from which 

it is evident even with the sparsest node condition (80 nodes in a 

cube of 1 × 1 × 1 unit), the error is less than 10%.  

 

SMAPE =
100%

n
 ∑𝑒(𝑡)

∀𝑡

 

(18) 

𝑒(𝑡) =
| Analytical (t) − Graph Theoretic(t)|

(Analytical (t)  + Graph Theoretic(t))
  

Table 1. Details of Graph Theory Heat Diffusion Experiment in a Cube (1  × 1  × 1 unit) 

Case 
Total number of selected nodes 

(cold: heated) 

Neighbourhood 

distance (ε) 

[mm] 

Network graph 

construction time 

[seconds] 

Total graph theoretic 

solution computational 

time [seconds] 

 SMAPE 

(Error) 

1 80 (10: 70) 0.55 0.94 0.97 10% 

2 800 (100: 700) 0.37 1.41 1.55 7% 

3 4,000 (500: 3,500) 0.31 20.78 38.14 5% 

4 8,000 (1,000: 7,000) 0.28 163.33 236.64 3% 
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Figure 9. (a) Comparison of the heat diffusion trend between graph theory and analytical method (experiment 2 with 800 selected nodes). (b) absolute 

error comparison for different amount of nodes at observation point 1. 

 
Figure 10. The three steps of FEA towards the error calculation and verification with the analytical method. 

b. Comparison of the Graph Theory and Finite Element 

Analysis Solutions. 

Continuing with our study of heat diffusion for the cuboid 

geometry, we now compare the graph theoretic and finite 

element (FE) analysis solutions. The FE analysis study is 

implemented in Abaqus software. The FE analysis process is 

divided into three steps as shown in Figure 10.  

Step 1: Mesh generation in finite element analysis. 

We applied both tetrahedral and regular grid (hexahedron) 

meshes on the cube. It was observed that tetrahedral mesh 

performs better than regular grid mesh in terms of accuracy. 

 

Step 2: Boundary condition and initial heat condition in finite 

element analysis. 

Identical boundary conditions as in case of the analytical method 

are applied herewith, i.e., the heat disperses through the part, and  

the cube is perfectly insulated (Neumann boundary condition). 

As with the analytical method, the material properties such as 

thermal conductivity, specific heat, and density of material in this 

method are considered to be equal to 1 unit. 

Step 3: Heat diffusion to steady state in finite element analysis. 

 

The heat diffuses through the cube volume until a steady 

state condition is reached. Table 2 reports a comparison between 

the total calculation time and number of nodes for FE analysis 

and graph theory. The number of nodes in FE analysis was 

chosen to give approximately the same error as graph theory. The 

result shows that the proposed graph theoretic approach gives 

comparable accuracy at within a fraction of the computational 

time taken by FE analysis. 
 

Table 2. Comparison of FEA and Graph Theoretic Approach Based on 

the Total Computational Time and Accuracy. 

 

SMAPE 

(Error) 

Graph theoretic 

approach 

Tetrahedral 

FE analysis 

Regular Grid 

FE analysis 

Nodes 
Time 

(sec) 
Nodes 

Time 

(sec) 
Nodes 

Time 

(sec) 

10% 80 1 1,200 190 9,000 380 

7% 800 2 12,000 660 158,500 9,000 

~ 5% 8,000 237 76,000 3,540 1,000,000 43,000 
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4.2 Verification of the Graph Theory Approach with 
Goldak’s Finite Element Analysis Solution in 
LPBF. 

 

a. Finite Element Analysis of LPBF Parts based on 

Goldak’s Moving Heat Source Model. 

We now compare the solutions resulting from the graph 

theoretic approach with FE analysis for three test objects in 

LPBF scenario using Goldak’s model. Goldak et al. extended the 

pioneering work of Rosenthal [61] to predict the heat flux in 

welding process [56, 57]. Goldak et al. considered a 3D moving 

heat source model with an ellipsoidal, Gaussian density 

distribution as opposed to Rosenthal’s 1D moving point heat 

source.  

 

Goldak’s model has been adapted for thermal modeling in 

AM process, e.g., in LPBF with the laser considered a 3D 

Gaussian distributed moving heat source [62]. We use Goldak’s 

model in an FE analysis framework (Abaqus) with an element 

birth-and-death technique to simulate the LPBF process; the 

DFLUX subroutine in Abaqus is leveraged to model the 

characteristics of the laser. The Gaussian distributed laser heat 

source is written as,  

𝑄(𝑥, 𝑦, 𝑧) =
𝑃𝐴

2𝜋𝜎2
e
−
𝑑2

2𝜎2 (19) 

Where, 𝑄 is the volume heat power density [W/mm3], 𝑃 is 

the laser power [W], 𝐴 is the constant of absorptivity set to 0.7, 

𝜎 is the standard deviation (quarter of the beam diameter in m) 

and 𝑑 [m] is the radial distance of a point from the center of the 

beam [63]. The term Q is identical to the energy density term Ev 

in Eqn. (1). The simplest form of the transient heat conduction, 

identical to Eqn. (1),  is used in this study, with Ev set equal to Q.  

In this mode, conduction plays the main role in transferring the 

applied heat through the part and substrate. The radiative heat 

losses are not considered in this study to make an equitable 

comparison with the graph theoretic approach. 

Description of the Boundary Conditions and Test Part 

Geometries  

The LPBF of two C-shaped test parts (Figure 11(a), (b)) and a 

pyramid shaped test part (Figure 11(c)) are simulated (separately, 

one at a time) on top of a build plate with the dimension of 100 

× 20 × 10 mm having identical material as the test parts 

(Titanium alloy Ti6Al4V). The C-shaped part in Figure 11(a) has 

an overhang geometry akin to the knee implant in Figure 3. The 

second C-shaped part,  Figure 11(b), has the overhang area 

provided with thick supports. Figure 12 shows the scanning 

strategy used for these parts in the LPBF simulation. The hatches 

(the linear scan pattern of the laser) are defined along y-axis and 

layers along the z-axis.  

The laser is simulated to move along x-axis and traces a 

linear hatch pattern in each layer. Based on the width of each 

layer, the number of hatches per layer remain constant in the two 

C-shaped parts, but vary in the pyramid test part, i.e., 20 hatches 

in the first layer, 18 hatches in second layer, and so on, until 

finally only one hatch is needed in layer 20. The hatch spacing, 

and layer thickness are 0.5 mm and 0.2 mm for the two C-shaped 

parts, and pyramid, respectively.  

 

The layer thickness is purposely made exceedingly coarse to 

facilitate computation, and should ideally be termed as a super 

layer – each super layer consists of 20 individual layers of size 

0.025 mm (25 μm) for the C-shaped parts and 8 super layers for 

the pyramid part. These super layers are consolidated in an 

identical manner for the finite element and proposed graph 

theoretic approach. The titanium alloy powder material Ti6Al4V 

is considered for both the part and the build plate.  

The material properties and printing conditions are reported in 

Table 3, based on the literature [59, 62]. The parameters for the 

graph theoretic approach were set as follows based on offline 

heuristic tuning: 𝜖 = 1.8 mm; g = 2 × 106 m-2 and 50 nodes are 

sampled per hatch in the C-shaped parts. These parameters for 

the pyramid are: 𝜖 = 0.25 mm; g = 2 × 106  m-2 and 40 nodes are 

sampled per hatch. The temperature history at two locations on 

the bottom for the C-shaped part and one location on the bottom 

for the pyramid were recorded over the complete simulation run, 

analogous to the presence of thermocouple sensors affixed to the 

part at these locations.  

 

 
Figure 11. (a) C-shaped, (b) C-shaped with support and (c) pyramid dimensions in millimeter (mm). 
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Figure 12. (a) Side view of C-shaped part, (b) Side view of C-shaped part with supports (c) Scanning strategy of the two C-shaped parts from top 

view, (d) Side view of pyramid part, (e) Scanning strategy of pyramid part from its top view. 

Table 3. Materials and Process Parameters for the FE analysis (Abaqus) and Netfabb Simulation. 

Parameters 
Values 

C-Shaped Parts Pyramid 

Layer Thickness (mm)  0.025 

Super Layer Thickness (mm)  0.5 (20 layers) 0.2 (8 layers) 

Hatch thickness (mm) 0.5 0.2 

Beam Diameter (mm) 0.5 0.2 

Laser Power, P (W) 200 

Scanning Speed (mm/s) 200 

Thermal Conductivity, k (W/m. K) 20 

Thermal Absorptivity Coefficient, A 0.7 

Thermal Diffusivity, α (m2/s)  7 × 10-6 

Density, 𝜌 (kg/m3) 4,300 

Specific Heat, 𝐶𝑝 (J/kg·K) 650 

Ambient Temperature, T∞ (K) 298 

b. Heat Flux in C-shaped Part without Supports 

For both the C-shaped parts, the heat flux is observed at two 

locations which are at a distance of 1 mm from the left edge and 

1 mm from the right edge of the part, as demarcated in the inset 

of Figure 13(b) and (c); both are located 1 mm deep from the 

front edge of the part. We observe that the trends obtained from 

Figure 13(b) and (c) for both the FE analysis and graph-based 

methods are closely correlated. More pertinently as reported in 

Table 4 the simulation time of C-shaped part for the FE approach 

(on Abaqus) was close to 200 minutes (>3 hrs.) on a dual core of 

Intel® Core™ i7-6700 CPU @3.40GHz, 32GB RAM. While the 

computation time for the graph theoretic approach was less than 

200 seconds on the same machine with Matlab.  

The temperature trends observed in the C-shaped part is 

explained on partitioning the part geometry into three sections 

T1, T2 and T3 as demarcated in Figure 13(a). In Figure 13(b) the 

spikes in section T1 correspond to the locations where the laser 

is directly (in the vertical direction) above the position of the left 

measurement point. In section T2, the laser no longer passes over 

the location of the measurement point leading to the observed 

precipitous drop. In section T3, given the impeded conductivity 

of the powder surrounding the overhang, the temperature does 

not increase, though the laser does pass directly over the sensor 

location. 

 
Figure 13. (a) The C-shaped part and three different section of the 

part, the heat flux trends observed at two locations on the part, in the 

left (b) and right (c) corner, respectively corresponding to the three 

part sections marked in (a).  
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In Figure 13(c), the spikes in section T1 of the part correspond 

to the location where the laser passes over the measurement 

point on the right. In area T2, the increase in temperature can be 

attributed to two reasons: (i) in section T2 of the part, the laser 

passes frequently and directly above the sensor location, and 

(ii) section T2 is surrounded by a large volume of powder that 

hinders the flow of heat through it. Lastly, in section T3, the 

temperature begins to rise again due to the constrained heat flux 

in the overhang feature, which is isolated through the bulk 

section of the part. Furthermore, the trends obtained are in 

accordance with those expected for parts with overhang 

features as shown in Figure 3; the heat in overhang features is 

constrained in the C-shaped part because of the lack of 

sufficient conductivity of the powder surrounding the overhang 

sections. 

c. Heat Flux in C-shaped Part with Supports 

Based on the heat distribution results from the C-shaped part 

(Figure 13) which showed that heat was constrained in the 

overhang section, it was hypothesized that designing supports 

(under the overhang) would provide a pathway for the heat to 

dissipate into the build plate. Accordingly, the C-shaped part was 

modified as shown in Figure 11(b). We note that the cross section 

of the support is designed with the same thickness as the rest of 

the part. The build process was simulated using the identical 

settings for the FE analysis and graph theoretic approach (Figure 

12).  

 
Figure 14. (a) The C-shaped part from Figure 13 is modified with two 

supports to provide a path for the heat in the overhang section to 

dissipate. The heat flux trends observed at two locations on the part, in 

the left (b) and right (c) corner, respectively, corresponding to the 

three sections marked in (a). 

The heat is measured at the two locations, identical to the 

previous case. Juxtaposing Figure 14(b) and (c) against, Figure 

13(b) and (c), respectively, it is evident that placing the supports 

under the overhang section aids in the dissipation of heat. For 

instance, in Figure 14(b), the temperature reduction at the end of 

section T1 is not precipitous as in Figure 13(b). Therefore, the 

possibility of thermal stress-related deformation and cracking are 

potentially minimized. Further, this result can will lead to an 

understanding of the impact of supports on the heat flux, and thus 

open a path to the use supports as a design feature to not only to 

anchor the part, but also as a means to conduct the heat trapped 

in a narrow area, such as an overhang.  

 

d. Heat Flux in a Pyramid-shaped Part 

Figure 15 delineates the temperature history at an 

measurement point which is located in layer 3 for the pyramid 

shaped part. Each spike in Figure 15 corresponds the layer in 

which the laser passes over the measurement point. The height 

of spikes becomes ever smaller as the laser moves to the 

subsequent layers, due to proportionally smaller energy applied 

per layer, and also because the bottom layers have a larger area, 

which facilitates heat dissipation.  

 
Figure 15. The temperature profile one observation point which is 

located at the middle of layer one, and the spikes observed while the 

laser moves from layer 3 to layer 20. 

e. Comparison of Temperature History and Heat Distribution 

Results from Finite Element Analysis (Abaqus) and a 

Commercial Software (Netfabb) with Graph Theoretic 

Solution 

The computation time and error (SMAPE, Eqn. (18)) 

between the heat flux trends obtained from the graph theory and 

FE methods for the three parts are reported in Table 4. 

 These results indicate that the heat flux trends predicted by 

the graph theory and FE-based approaches are within 15%.  

More pertinently, the computation time with graph theory is a 

fraction of that taken by FE analysis. In our forthcoming 

research, we will attempt to further improve this result by 

including radiative effects.  

Lastly, the heat distribution results from the last layer of 

Goldaks’s FE model, solution from the commercial Netfabb’s 

package, and graph theoretic simulations are juxtaposed 

pictorially in Figure 16. The color bars represent normalized 

temperature between 0 and 1. From Figure 16, it is evident that 

the temperature distribution captured by the graph theoretic 

approach closely resembles those derived from the Goldaks’s FE 

model and Autodesk’s Netfabb.  
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Table 4. Comparison of Calculation Time and Symmetric Mean Absolute Percentage Error (SMAPE) for FE analysis (Abaqus) and Graph Theory 

Solutions for the three test parts shown in Figure 13 through Figure 15. 

Part 

Graph Theoretic 

Computational 

Time (min.) 

FE-analysis 

(Abaqus) 

Computational 

Time (min.) 

SMAPE 

(Error) 

C-shaped part 

Left side observation point, Figure 13(b) 3 

(6,000 nodes) 

200 

(9,500 nodes) 

11.24% 

C-shaped part 

Right side observation point, Figure 13(c) 
10.97% 

C-shaped part with supports 

Left side observation point, Figure 14(b) 3 

(6,000 nodes) 

208 

(11,200 nodes) 

13.64% 

C-shaped part with supports 

Right side observation point, Figure 14(c) 
13.33% 

Pyramid, Figure 15 
66 

(8,000 nodes) 

1380 

(73,000 nodes) 
6.72% 

 

 
Figure 16. Heat distribution of three parts which is compared by three different methods; graph theory, FE analysis (Abaqus) and commercial software 

(Netfabb). 

5 Conclusions and Avenues for Future Work 

In this work, we developed and applied a novel graph 

theory-based approach to predict the instantaneous spatial 

distribution of heat, i.e., the direction and magnitude of heat flow 

(heat flux) or temperature history, in metal parts as they are being 

printed layer-upon-layer using additive manufacturing (AM) 

processes, such as laser powder bed fusion (LPBF).  The 

approach relies on converting a part geometry into discrete nodes 

and connecting them to form a network graph, and subsequently 

studying the heat diffusion behavior over the network graph 

embedded in the part. The key result of this work is that the 

eigenvectors (𝛟) and eigenvalues (𝚲) derived from Laplacian 

(L) of the network graph solves the heat diffusion equation (Eqn. 

(1) and Eqn. (2)), which governs the temperature history in AM 

processes. Simulations of a LPBF process are compared with FE 

analysis moving heat source model based on the work of Goldak 

[56, 57].  Specific results are: 

(1) The discrete approximation of the heat flux trends obtained 

using the graph Laplacian eigenvectors and eigenvalues is 

observed to closely agree with results from the FE-based 

approach. The computation time to estimate the heat flux 

with the graph theoretic approach for the three test parts 

studied was significantly faster compared to FE-based 

approach (Abaqus). For instance, for a C-shaped part, the 

simulation time was 3 minutes using the graph theoretic 

approach compared to over the 3 hours with FE analysis 

(Abaqus).  

(2) The error in the FE and graph theoretic solutions for the 

same part was within 15%. The graph-based results were 



 15 Copyright © 20xx by ASME 

further compared qualitatively with Autodesk Netfabb 

solution, and showed similar trends. While this work 

presents the first foray into using graph theory for modeling 

the part-level thermal phenomena in metal AM, the 

experimental validation with temperature and deformation 

measurements term of deformation estimation aspect 

remains to be addressed. The experimental validation of the 

approach is also essential to calibrate the parameters, such 

as, neighborhood distance (𝜖), and gain factor (g) in Eqn. (4) 

and Eqn. (11), respectively.   

In our forthcoming works in this area we will also endeavor to 

answer the following questions:  

• What is the effect of the process conditions, such as laser 

power, velocity, and scan strategy on the heat flux, part 

deformation and microstructural evolution in metal AM 

parts? 

• What is the true temperature instead of the normalized 

temperature? What experimental strategy should be used to 

calibrate the adjustable parameters, 𝜖 and g? 
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APPENDIX.   
SOLUTION OF THE HEAT EQUATION USING GRAPH 

THEORY 
In this Appendix the graph-based solution of the discrete 

heat diffusion equation is developed. The discrete heat diffusion 

equation has the form, 
∂𝐓

∂𝑡
+ 𝛼𝐋𝐓 = 0 

subject to the initial condition, 

𝐓(𝑥, 𝑦, 𝑧, 𝑡 = 0) = 𝐓𝒐(𝑥, 𝑦, 𝑧) 
Here, T is a column vector for temperature at each of M nodes 

in the domain and L is the [M × M] Laplacian matrix.  For 

boundary conditions of type Dirichlet, Neumann, and Robin, 

(types 1, 2 and 3, boundary conditions respectively), it is shown 

by Saito that the eigenvalues (Λ) of the discrete Laplacian 

operator are discrete and non-negative, and the eigenvectors are 

orthogonal, i.e., 〈𝛟𝐢, 𝛟𝐣〉 = 0, assuming that the domain of the 

Laplacian is bounded, connected and compact [64].   The 

particular form of the Laplacian matrix discussed here, as 

described in (Eqn. (4)– Eqn. (10)), is diagonally dominant and 

symmetric, i.e., positive semidefinite. Accordingly, the 

orthogonality of eigenvectors (𝛟) and non-negativity of 

eigenvalues (Λ) of the Laplacian matrix (L) is preserved [58].  

The eigenvectors and eigenvalues of the Laplacian matrix are 

found with standard matrix methods, and satisfy the following 

eigenvalue equation, 

 𝐋𝛟 =  𝛟𝚲 

Here 𝛟 is the right eigenvector matrix in which each column 

contains one of M eigenvectors, and 𝚲 is a diagonal matrix 

containing non-negative eigenvalues ranked in order from the 

smallest in row 1 to the largest in row M. Because the transpose 

of an orthogonal matrix is the same as its inverse, that is, 

𝛟−1 = 𝛟′, and 𝛟 𝛟′ = 𝐈, then the above eigenvalue equation 

may be post multiplied by 𝛟′ to obtain, 

𝐋 =  𝛟𝚲𝛟′ 
Replacing this relationship into the discrete heat diffusion 

equation we obtain, 
𝜕𝐓

𝜕𝑡
+ 𝛼(𝛟𝚲𝛟′) 𝐓 = 0 

This first order ordinary differential equation 

has solution 

𝐓 = 𝑒−𝛼g(𝛟𝚲𝛟′)𝑡   𝐓𝒐 (20) 

Where g [m-2] is a gain factor that we have added to calibrate the 

solution and adjust the units. Hence, the heat equation solution 

contains the eigenvectors and eigenvalues of the graph Laplacian 

𝐋.  This formal matrix solution gives the temperature vector T, 

which contains a value for every spatial node, subject to the 

initial condition vector 𝐓𝐨.  This solution can be simplified for 

improved computational efficiency by considering the Taylor 

Series expansion of the term 𝑒−𝛼g(𝛟𝚲𝛟′)𝑡, and substituting 

𝛟 𝛟′ = 𝐈, as shown by Zhang et al. and Bai et al. as follows [50, 

65],  

𝑒−𝛼𝑔(𝛟𝚲𝛟′)𝑡 = 𝐼 +
(−𝛼𝑔(𝛟𝚲𝛟′)𝑡)

1!
+
(−𝛼𝑔(𝛟𝚲𝛟′)𝑡)2

2!

+
(−𝛼𝑔(𝛟𝚲𝛟′)𝑡)3

3!
+ ⋯  

𝑒−𝛼𝑔(𝛟𝚲𝛟
′)𝑡 = 𝐼 − 𝛼𝑔𝑡

𝛟𝚲𝛟′

1!
+ 𝛼2𝑔2𝑡2

(𝛟𝚲𝛟′)(𝛟𝚲𝛟′)

2!

− 𝛼3𝑔3𝑡3
(𝛟𝚲𝛟′)(𝛟𝚲𝛟′)(𝛟𝚲𝛟′)

3!
+⋯ 

𝑒−𝛼𝑔(𝛟𝚲𝛟′)𝑡 = 𝐼 −
𝛟𝚲𝛼𝑔𝑡𝛟′

1!
+
𝛟(𝚲𝛼𝑔𝑡)2𝛟′

2!
−
𝛟(𝚲𝛼𝑔𝑡)3𝛟′

3!
+ ⋯ 

Thus, replacing 𝑒−𝛼𝑔(𝛟𝚲𝛟′)𝑡 = 𝛟𝑒−𝛼𝑔𝚲𝑡𝛟′ in 

Eqn. (20) gives, (21) 

𝐓 = 𝛟𝑒−𝛼𝑔𝚲𝑡𝛟′ 𝐓𝒐 

This expression is the key to the computational efficiency of our 

approach, because the temperature at successive time steps is 

computed by matrix multiplication only. In contrast, finite-

element or finite-difference methods require a matrix inversion 

at every time step, at great computational cost.   
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