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Abstract. The goal of this work is to quantify the link between 

the design features (geometry), in-situ process sensor signatures, 

and build quality of parts made using laser powder bed fusion 

(LPBF) additive manufacturing (AM) process. This knowledge 

is critical for establishing design rules for AM parts, and to 

detecting impending build failures using in-process sensor data. 

As a step towards this goal, the objectives of this work are two-

fold:  

1) Quantify the effect of the geometry and orientation on the 

build quality of thin-wall features. To explain further, the 

geometry-related factor is the ratio of the length of a thin-

wall (𝑙) to its thickness (𝑡) defined as the aspect ratio 

(length-to-thickness ratio, 𝑙/𝑡), and the angular orientation 

(θ) of the part, which is defined as the angle of the part in 

the X-Y plane relative to the re-coater blade of the LPBF 

machine. 

2) Assess the thin-wall build quality by analyzing images of 

the part obtained at each layer from an in-situ optical camera 

using a convolutional neural network.  

To realize these objectives, we designed a test part with a set of 

thin-wall features (fins) with varying aspect ratio from Titanium 

alloy (Ti-6Al-4V) material – the aspect ratio 𝑙/𝑡 of the thin-walls 

ranges from 36 to 183 (11 mm long (constant), and 0.06 mm to 

0.3 mm in thickness). These thin-wall test parts were built under 
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three angular orientations of 0°, 60°, and 90°. Further, the parts 

were examined offline using X-ray computed tomography 

(XCT). Through the offline XCT data, the build quality of the 

thin-wall features in terms of their geometric integrity is 

quantified as a function of the aspect ratio and orientation angle, 

which suggests a set of design guidelines for building thin-wall 

structures with LPBF. To monitor the quality of the thin-wall, in-

process images of the top surface of the powder bed were 

acquired at each layer during the build process. The optical 

images are correlated with the post build quantitative 

measurements of the thin-wall through a deep learning 

convolutional neural network (CNN). The statistical correlation 

(Pearson coefficient, 𝜌) between the offline XCT measured thin-

wall quality, and CNN predicted measurement ranges from 80% 

to 98%. Consequently, the impending poor quality of a thin-wall 

is captured from in-situ process data. 

Keywords. Additive manufacturing (AM), laser powder bed 

fusion (LPBF), in-process monitoring, quality assurance (QA), 

design rules, thin-wall features. 
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1 Introduction 

1.1 Background and Motivation. 

The goal of this work is to understand the link between part 

design features (geometry), in-situ process sensor signatures, 

and build quality of parts made using laser powder bed fusion 

(LPBF) additive manufacturing (AM) process specifically 

focused on thin-wall features. In LPBF, Figure 1, a thin layer of 

powder is raked or rolled across a build plate, and subsequently, 

this layer of powder is selectively melted using energy supplied 

by a laser beam. The laser beam is typically focused on the 

powder bed through an f-θ lens, which maintains a flat field of 

projection irrespective of the angle incidence of the laser beam 

[1].  

For most materials processed in LPBF, the power of the laser 

beam is set in the range of 200 W to 500 W, the velocity with 

which it travels ranges from 500 mm/s and 1000 mm/s, and the 

contour and hatching parameters are typically different. After a 

layer is selectively melted, the build plate is lowered by a 

distance typically in the range of 50 µm to 100 µm, and another 

layer is deposited [2, 3]. This process continues until the part is 

built. In LPBF, there are complex intertwined relationships 

between part design, process parameters, thermal phenomena, 

resulting in heterogeneity in part microstructure mechanical 

properties [2].  

 

Figure 1: Representation of the laser-based powder fusion 

process [4]. 

This work concerns with the fabrication of thin-wall structures 

using LPBF. Thin-wall structures are extensively used in 

industrial applications, for a variety of reasons, such as to reduce 

the weight of a component without compromising its structural 

integrity. Figure 2 shows a titanium spinal implant consisting of 

thin-wall structures. The manufacture of such intricate geometry, 

which is difficult, or impossible, to make with conventional 

subtractive and formative manufacturing process, is made 

possible through LPBF [5-7]. However, the process anomalies in 

LPBF, and the inherent geometry of thin-wall structures makes 

the AM build highly susceptible to failure (e.g., collapse, super-

elevation, porosity, poor structural quality) [8-10]. In this work, 

defects in these thin-walls are analyzed in order to propose 

quantitative design rules, and to develop an in-situ monitoring 

system to assess thin-wall quality. To investigate these factors, 

representative build defects observed in a test artifact with thin-

wall features are shown in Figure 3.   

 
Figure 2:  X-Ray computed tomography (XCT) scan of a 

titanium spinal implant consisting of thin-wall structures. 

The geometric integrity of the thin-wall can be affected by the 

restricted heat flux due to their smaller cross-section area. The 

restricted heat flux leads to sharp thermal gradients, which in 

turn may cause cracking and warping (distortion) defects [11, 

12]. Another common reason for the frequent failure of thin-

walls is the interaction of thermal and mechanical factors; the 

geometric distortion of the thin-wall due to the thermal gradients 

causes the part to protrude out of the powder bed, a phenomenon 

called super-elevation, which leads to contact of the part with the 

re-coater [13, 14]. The contact of the part with the re-coater is 

liable to damage the re-coater (re-coater jam or crash), and the 

thin-wall features may fail as they are ill-disposed to resist the 

transverse force exerted by the re-coater. Given these risks, there 

is a compelling need to provide design rules for hard-to-build 

features, such as thin-walls and overhang geometries, so that 

extensive process optimization is precluded. Within the same 

context, it is critical to detect imminent build failures, to 

implement opportune corrective actions [15, 16].  

1.2 Objectives. 

In the context of the aforementioned scientific rationale 

concerning design rules and process monitoring in AM, the 

objectives of this work are as follows. 

1) Formulate geometric design rules for the manufacture thin-

wall parts made using the LPBF process. These design rules 

take the following form: given a build orientation and height 

of a thin-wall feature, what should be its thickness. 

Alternatively stated, given the length and thickness of a thin-

wall, what should be the maximum allowable build height, 

and corresponding build orientation. 

2) Detect the onset of build failures in thin-wall parts using 

data from in-situ process sensors. 

To achieve the first objective, we designed a test artifact having 

thin-wall features with varying dimensions. A schematic of the 

thin-wall test part is shown in Figure 5. The details of the test 

artifact are discussed in Section 3.1. Three such test parts were 

built, each differing in its angular orientation (𝜃) to the direction 

of the re-coater blade. Subsequently, we examine each of the 

thin-wall builds using X-ray computed tomography (XCT) (e.g. 

Figure 3(b)). The build quality of the thin-wall is quantified 

using features extracted from layer-wise XCT slices with the 
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help of image processing algorithms. These features are tracked 

across layers, and are thereafter used as derived features of thin-

walls. Geometric design rules for thin-wall features are proposed 

based on these empirical quantitative measures. We make the 

following clarification regarding the aspect ratio (𝑙/𝑡). The 

aspect ratio of a feature is taken to imply the ratio of its largest 

dimension to its smallest dimension. For instance, the aspect 

ratio of a circular hole is the ratio of its depth over diameter. 

Similarly, in the specific context of this work, the aspect ratio is 

the length (𝑙, largest dimension) to the thickness (𝑡, smallest 

dimension) of the thin-wall (Figure 3 (a)). The length of the thin-

walls is held constant at 11 mm, whilst the thickness ranges from 

0.06 mm to 0.3 mm. Another reason for defining the aspect ratio 

in the foregoing manner is that, in this work, the height of the 

thin-walls varies such that the height-to-thickness ratio is held 

constant at 10 (height and thickness of each thin-wall is reported 

in). Accordingly, one of the design rule proposed in this work is 

the maximum build height of a thin-wall given its aspect ratio 

(𝑙/𝑡) and orientation to the direction of the re-coater blade. To 

address the second objective, we developed an optical imaging 

setup that takes a picture of the surface of the powder bed after 

each layer is deposited. These images are further analyzed using 

a convolutional neural network (CNN), which is trained to 

predict the build quality features extracted from XCT images 

from the first objective. As a consequence, the part quality in 

terms of its geometric integrity can be tracked using the in-situ 

process data to pre-empt failure. 

 

Figure 3: (a) Various defects that may occur in a thin-wall 

structure built using LPBF process. (b) XCT scan of a thin-wall 

part at 60° orientation angle. The thin-walls with aspect ratio of 

55 (𝑙/𝑡, 11 mm/ 0.15 mm) and 36 (𝑙/𝑡, 11 mm/ 0.1 mm) are 

shown (c1) and (c2) respectively. These images depict the 

different defects in thin-wall structures. 

1.3 Organization of the paper 

The rest of this paper is organized as follows. A brief summary 

of the relevant design for AM is provided in section 2. This is 

followed by the description of experimental procedure in section 

3, including a brief description of the thin-wall test artifact, and 

a procedure for data acquisition.  Section 4 describes the 

methodology used for quantification of thin-wall build quality 

from XCT scan data, and the detailed analysis of the powder bed 

images using a deep learning convolutional neural network 

(CNN). The results from this work are discussed in Section 5, in 

which the design rules derived from the analysis of XCT scan 

slices are put forth, and the fidelity of the CNN in predicting the 

quality of the thin-wall is quantified. Finally, the conclusions 

stemming from this work, and avenues for future research are 

summarized in Section 6.   

2 Literature Review 

Powder bed fusion (PBF) additive manufacturing (AM) 

processes, despite their revolutionary potential, have intrinsic 

shortcomings, such as material constraints, surface finish, part 

accuracy and repeatability, and these factors have impeded its 

use in a production environment [17]. Furthermore, parts that are 

additively manufactured have particular distinguishing 

characteristics, such as intricate geometries, custom part design, 

low productions volume, and  complex material compositions 

[18]. One of the main bottlenecks in AM are the absence of 

design guidelines that can be used as rules-of-thumb by 

practitioners to avoid poor quality parts [19]. It is therefore 

essential to propose design guidelines for AM. According to 

Rosen, design for additive manufacturing (DFAM) is defined as, 

“maximizing  product performance through the synthesis of 

shapes, sizes, hierarchical structures, and material 

compositions, subject to the capabilities of AM technologies,” 

[18].  

The conventional design for manufacturing (DFM) rules do not 

apply for AM parts as they are manufactured layer-by-layer, and 

are bottom-up processes, unlike the conventional methods, such 

as machining, which is top- down. Hence, the unique layer-by-

layer nature of AM mandates a different approach to part design 

compared to traditional manufacturing processes. Ponche et al. 

have introduced a general methodology for DFAM in which they 

primarily focus on the orientation of the part, its geometry which 

is established using topological optimization, and the process 

conditions, such as the laser parameters, that need to be 

employed for the part [20]. According to Ponche et al., part 

orientation refers to positioning the functional surfaces of a part 

being designed in such a way that it leads to the best surface 

finish and accuracy.   

The part geometry can be potentially designed with the help of 

topological optimization, i.e., in a particular design space, for a 

given set of loads, boundary conditions and constraints, the 

material layout is optimized to achieve high performance of the 

system [20, 21]. Similarly, Kranz et al., have recommended 
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design guidelines for laser additive manufacturing (LAM) by 

analyzing the effect of part orientation, size,  and position on the 

dimensional accuracy and surface finish of lightweight parts, 

such as, thin-walls, bars [22]. The effect on surface quality of a 

part was studied by manufacturing parts with upward and 

downward facing surfaces which are built at various orientation 

angles with respect to the build platform. Kranz et al. observed 

that parts with the smallest angle have the lowest surface 

roughness; a low surface roughness is desirable.  

To study the effect of part position in the powder bed on part 

accuracy, they designed test parts, which included a rectangular 

structure, a cylindrical structure, and a thin-wall structure, and 

placed this test part in five different locations on the powder bed, 

namely, middle, upper right, lower right, upper left, and lower 

left. It was concluded that the part position has no discernable 

effect on the accuracy of the test geometry for this particular 

experimental setup. To study the effect of orientation and size on 

part accuracy, parts with three different cross-sections, i.e., 

elliptical, cylindrical, and rectangular were chosen, and the 

aspect ratios (length-to-thickness ratio) of each part was varied. 

For thin-wall structures (rectangular cross-section), it is 

observed that to obtain good quality, the thickness should be 

greater than 0.4 mm, the orientation angle with reference to the 

build platform should be 90°, and the orientation angle in with 

reference to the re-coater device should be 45°. Lastly, the study 

on bore holes (cylindrical cross-section) shows that the highest 

part accuracy is obtained when it is built orthogonal to the build 

platform.  

A detailed study on design rules was done by Daniel Thomas in 

his doctoral dissertation [23]. Thomas studied fundamental 

geometries, such as overhang features, which can then be used 

to design complex geometries. Through simple cuboidal builds, 

the author observed that orientation of the part (with respect to 

the build surface) plays an important role in the surface quality 

of the part. It is observed that surfaces built under an orientation 

angle (vertical inclination) of 45° to the build platform need 

support structures to avoid build failure. The optimum 

orientation angle to build surfaces is seen to be 90° to the build 

platform. The author suggests that the up-facing surfaces have 

poor surface quality under 45° orientation angle, but an abrupt 

improvement is seen when part is built at 0° angle to the build 

platform. To build geometries such as overhangs without support 

structures, the author suggests to use features which eschew the 

need for support structures, namely, chamfers, convex and 

concave radii. Thomas reports that chamfers can be built with 

orientation angle (with respect to the build plate) of more than 

45°. The convex and concave radii need to be built at the varying 

bottom and top tangent angle of the radii to avoid the use of 

support structures, and these angles can be found in a tabulated 

format in Ref. [23]. To prevent surface merging while building 

parts such as, channels, slots, keyways etc., it necessary to have 

a minimum gap between features which is recommended to be 

0.3 mm. Thomas’ research conforms with the results obtained by 

Kranz et al., that the minimum thickness of thin-wall should be 

0.4 mm [22, 23]. Subsequently, holes were also studied by Kranz 

et al. It is recommended that the minimum hole size should be 

0.7 mm diameter when they are built parallel (self-supporting) to 

the build plate, and 1 mm when building perpendicular to the 

build plate. 

Dunbar et al. conducted a quality assessment of Inconel 625 thin-

walls made using LPBF [24]. To observe the effect of thin-wall 

angle with respect to the build plane (X-Y direction) on the thin-

wall quality, thin-walls were built at angles of 45°, 67.5° and 90°. 

Furthermore, to study the effect of re-coater blade motion on the 

quality of thin-walls, the orientation of thin-walls with reference 

to the re-coater blade direction was either 90° (perpendicular to 

re-coater), or 45° (rotated 45° along Z-axis). The thin-walls are 

built by varying the laser power, laser velocity, hatch pattern, 

and four thin-walls are built by using the parameter settings 

suggested by the manufacturer of the machine. It was observed 

with the help of a XCT scan analysis of the thin-walls that the 

thinnest thin-wall (median= 113 µm) with no porosity was built 

at a build angle (with reference to re-coater blade direction) of 

45° (rotated 45° along Z-axis), laser power of 100 W, laser speed 

900 mm/s, and thin-wall angle (with reference to build plane, X-

Y direction) of 90°. 

In a study by Adam et al., design rules for two types of structures, 

namely, element transitions, and aggregated structures, were 

formulated [25]. According to the authors, combination of basic 

elements (e.g. cuboidal structure) are called element transitions 

(e.g., joints), and the arrangement of these element transitions 

along with multiple basic elements are called aggregated 

structures (e.g., overhangs). To study the effect of varying 

thickness and orientation on element transitions, a Y- shaped test 

specimen (Figure 4) was designed. This test specimen was built 

in three different orientations as seen in Figure 4, and the 

thickness (𝑇1, 𝑇2, 𝑇3) of the three elements are varied between 2 

mm and 5 mm, namely, 𝑇1 = 2 mm, 𝑇2 = 5 mm, 𝑇3 = 5 mm. 

Adam et al., found no evidence that the aforementioned 

orientations affect the part quality. However, the thicknesses 

should be chosen so that the cross-sectional areas of element 

transitions in the build plane should remain the same size, or 

should reduce, to avoid surface defects, i.e., the cross-sectional 

areas of elements 𝑇1 and 𝑇2 should remain the same or be less in 

comparison to that of 𝑇3. Further, Adam et al. study the effect of 

edge morphology on part quality. It is concluded that to avoid 

defects, parts with sharp outer edges should be avoided, and 

similarly, parts should not have sharp inner edges for ease of 

removal of support structures and residual powder. Finally, for 

structures which have non-bonded elements, should have the 

following minimum gap (𝐻𝐺) values for different AM process: 

laser sintering (SLS) (𝐻𝐺 ≥ 0.6 mm), laser melting (LPBF) 

(𝐻𝐺 ≥ 0.2 mm), fused filament fabrication (FFF) (𝐻𝐺 ≥
0.4 mm) [25].  In the case of aggregated structures, namely, 

overhang, to ensure a robust manufacturability the authors 

suggest that the length of the overhang should be as follows: 
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laser melting (𝐿𝑂𝐻 ≤ 2.0 mm), and fused filament fabrication 

(𝐿𝑂𝐻 ≤ 1.8 mm). 

 
Figure 4: Test specimen drawing adopted from Adam et al. [25]. 

Test specimen is built in three different orientations, namely, (a) 

depth of specimen along the X-Y axis, (b) height of the specimen 

along the Z-axis, and (c) height of the inverted specimen along 

the Z-axis of the build direction. 

A summary of the design rules established from the above 

discussed works is given in the Appendix. Most of these 

pioneering works formulate design rules for AM based on 

measurements made with rudimentary instruments, such as, 

calipers, which do not capture the geometric and build integrity 

in a more detailed manner. In this thesis, we introduce design 

rules by analyzing data from X-ray computed tomography 

(XCT) scan, and layer-wise in-process images of the test 

specimen.  

3 Experimental Studies and Data Acquisition 

3.1 Test-artifact with thin-wall 

For building the titanium alloy (Ti-6Al-4V) thin-wall test parts the 

following process parameters were used: laser power, P = 340 W; 

layer thickness, T= 60 µm; hatch spacing, H= 0.12 mm; and laser 

velocity, V = 1250 mm/s, resulting in the volumetric energy density 

𝐸𝑉 =  
𝑃

𝐻×𝑉×𝑇
= 37.8 𝐽 𝑚𝑚3⁄ . The parts were made using spherical 

ASTM B348 Grade 23 Ti-6Al-4V powder with a size distribution 

of 14 µm - 45 µm from LPW Technology, Inc.  

Parts with the geometry exemplified in Figure 5 were built in three 

angular orientations to the re-coater blade with the dimension of 15 

mm × 15 mm × 5.5 mm. Each part includes 25 thin-wall features 

whose thickness ranges from 0.06 mm to 0.3 mm, while the 

corresponding height increases from 0.6 mm to 3 mm. The length 

of each thin-wall is 11 mm, and they are built vertically upwards 

with 60 µm layer thickness. The entire part was built in 90 layers 

[26]. 

 

Figure 5: Computer aided design (CAD) of thin-walls in the test 

part. (a) Top view, (b) front view. (c) 3-D view of the test part at 

an orientation angle of 60° to the re-coater blade direction.In this 

work, two hatch patterns are used to build thin-wall structures as 

shown in Figure 9. The hatch pattern used to build thin-walls 

with aspect ratio (𝑙/𝑡) ranging from 36 to 157, i.e., thickness of 

0.07 mm to 0.3 mm (thin-wall number 2 to 25) is shown Figure 

9(a). This hatch pattern has an outer contour, inner contour, and 

hatches at the same angle inside the inner contour. The hatch 

pattern used to build thin-wall number 1 with aspect ratio (𝑙/𝑡) 

of 183, i.e., thickness of 0.06 mm is shown in Figure 9(b). Thin-

wall number 1 is built with an outer contour, hatches at the same 

angle, but without an inner contour. 
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3.2 Setup for in-situ process powder bed imaging 

The in-situ process sensor data is acquired with the setup shown 

in Figure 6. The layer-wise images of the powder bed are 

captured using a digital single-lens reflex camera (DSLR, Nikon 

D800E) with an effective resolution of 36.3 megapixels which is 

mounted in a custom made enclosure inside the machine [27]. 

The flash lamps are located at three different locations in the 

machine (EOS M280) as shown in Figure 6, and they are used to 

capture five images of the powder bed at every layer in various 

lighting conditions (Figure 7).  

These images are obtained after the laser scan and after the re-

coating process. In order to capture images at these particular 

instances during the build, a proximity sensor is employed in the 

machine. This proximity sensor tracks the motion of the re-

coater blade, and accordingly, captures the images. For this 

work, we have analyzed images post laser scan with the lighting 

condition as shown in Figure 7(a). The sample data acquired 

from the apparatus is shown in Figure 8. 

 
Figure 6: An illustration of the of the optical DSLR camera 

and flash lamps used for acquiring in-situ data [28]. 

 

 

Figure 7: Powder bed images captured under different 

lighting schemes [28]. The different lighting schemes are 

obtained with the help of flash-lamps which are placed at 

various locations in the machine, as shown in Figure 6. 

 

Figure 8: Optical images of a layer of thin-walls being 

manufactured at different orientation angles in the X-Y plane 

with respect to the re-coater blade direction, namely,(a)0°,(b) 

60°, (c) 90°. 

 

Figure 9: Schematic representation of the two different hatch 

patterns used to build thin-walls. (a) Hatch pattern used to build 

thin-walls with aspect ratio (𝑙/𝑡) ranging from 36 to 157, i.e., 

thickness of 0.07 mm to 0.3 mm (thin-wall number 2 to 25). (b) 

Hatch pattern used to build thin-wall number 1 with aspect ratio 

(𝑙/𝑡) of 183, i.e., thickness of 0.06 mm. 

4 Research Methodology 

This section is stratified into two sub-sections, wherein section 

4.1 discusses the methodology applied to the offline XCT scan 

image data, and section 4.2 describes the convolutional neural 

network used to analyze the layer-wise in-situ powder bed 

images. The research approach is schematically reported in 

Figure 10. 

Specifically, section. 4.1 has two phases, the first involves 

analysis of the XCT scan images of the thin-wall geometry (as 

seen in Figure 10), wherein certain quality-related features are 

extracted from the XCT scan images. These features are then 

combined in the form of Mahalanobis-squared distance which is 

used as a surrogate measure for tracking the build quality of the 
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thin-wall. The next phase is to predict the thin-wall quality from 

optical images. A convolutional neural network (CNN) is used 

for this purpose, in which the network is trained to predict the 

Mahalanobis-squared distance given in-situ process images of 

thin-wall boundaries. This type of neural network is referred to 

as a deep learning convolutional neural network because of the 

use of convolutional filters on different scales, which learn 

various aspects of the image from coarse to fine levels. The 

modalities of neural network are discussed in detail in section 

4.2. 

4.1 Offline Analysis of build quality using layer-wise 
XCT scan images 

Firstly, the XCT scan of each test artifact is visually 

(qualitatively) examined layer-by-layer. The following 

inferences are rendered based on these visual observations. 

Figure 11 shows an example of layer number 18 under three 

different angular orientations.  

• Thin-walls with thickness less than 0.1 mm, cannot be built 

irrespective of their orientation. The cause of this failure 

appears to be the overly thin cross-section of the thin-wall, 

which are too weak to resist the lateral force exerted by the 

re-coater. 

• From the visual inspection of the zoomed in portion of a 

thin-wall with aspect ratio 𝑙/𝑡= 44 (thickness= 0.25 

mm)(Figure 11(b1), (b2) and (b3)), it is evident that the parts 

printed at orientation angle of 90° exhibit poor quality as 

compared to those printed in the other two orientation 

angles. The probable reason is that in the thin-walls built at 

0° and 60° orientation angle (θ) the resistance offered by the 

thin-wall structure to the flow of the powder is less than that 

at 90°. 

These observations are further examined and confirmed by 

analyzing the sliced images of the thin-wall XCT scans. 

 

Figure 10: Outline of the methodology adopted to analyze XCT scan data with the help of CAD data for the thin-walls, and in-process 

powder bed images analysis. 

 

Figure 11: The thin-wall part for three different orientations. The top panel shows the part at layer number 18, and the bottom panel 

shows the individual thin-wall number 20 (𝑙/𝑡= 44, thickness= 0.25 mm). The 90° orientation has the worst build quality. 
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Figure 12:The extraction of thin-walls from XCT scan images. The thin-wall highlighted in (b) is extracted to as shown in (c). The -wall 

images shown in (d) and (e) are used for feature extraction.

At the outset, XCT scan for each thin-wall part is sliced with a 

layer thickness of 10 μm, resulting in 300 images of each part. 

Subsequently, the CAD file for each test artifact is also sliced 

with an identical resolution of 10 μm to register the CAD and 

XCT scan of layer-wise images.  

Next, an intensity-based image registration approach is used to 

perform the affine transformation and align the XCT scan image 

to the corresponding CAD slice. Further, individual thin-walls 

are extracted from the registered images, and each thin-wall is  

further processed as depicted in Figure 12, to extract quantitative 

features as described shortly. The advantage of using these 

quantifiers is that they are based on two- dimensional image-

based measurements, and involve simple matrix algebra, thus 

significantly reducing the computational burden involved for 

feature extraction. 

A brief explanation regarding these features is provided 

herewith. Consider an XCT scan image 𝐼 of a thin-wall of size 

𝑥1 pixel × 𝑦1 pixel ( Figure 13(a)); the binarized segment of this 

image 𝐼 is 𝐼𝐵 (Figure 13 (a2)), and 𝐼𝐸  is a segment that depicts 

the edge of the thin-wall, as shown in Figure 13 (a1)). The 𝑦1 

dimension for the thin-wall image 𝐼, and 𝑦2 dimension of the 

thin-wall image 𝐽 (Figure 13 (b)) are equal to 800 pixels and 

remain constant over all thin-wall images, i.e., if an image is 

considered to be a matrix with each pixel representing a matrix 

element, the number columns remains constant. On the contrary, 

the 𝑥1 and 𝑥2 dimensions for thin-wall image 𝐼 and 𝐽, vary 

contingent to the thin-wall thickness, but it remains constant 

throughout all layers for a given thin-wall, for example, 𝑥1 = 𝑥2 

= 36 pixels for thin-wall number 25, and 𝑥1 = 𝑥2 = 32 for thin-

wall number 20. 

 
Figure 13: Thin-wall features extracted from XCT scan images. 

(a) Image 𝐼 is a thin-wall extracted using methodology shown in 

Figure 12. Image 𝐼𝐸  (a1) and Image 𝐼𝐵 (a2) show three features 

extracted from the thin-walls, namely, thin-wall thickness, thin-

wall edge smoothness, and thin-wall density. (b) Image 𝐽 depicts 

the discontinuity in a thin-wall, which is used as the fourth 

feature. 

Thin-wall thickness (𝑡): This feature quantifies the average 

thickness of a thin-wall as follows. The edge of the thin-wall as 

shown in Figure 13(a1) and Figure 14, is obtained by applying a 

filter on the binarized image of thin-wall segment 𝐼𝐵. Further, the 

thickness of the thin-wall segment at a given location is 

determined by subtracting the first non-zero entry in a column of 

image pixel by the last entry in the same pixel column, as shown 

in Figure 14. This procedure estimates the distance between two 

edges of the thin-wall at a given location. The average of the 

distance between two edges of the thin-wall over the length (𝑦1) 

is termed as the thickness of a thin-wall segment (𝑡) (Eqn. (1)). 
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𝑡 =  
∑ 𝛼1𝑖 − 𝛼2𝑖

𝑚
𝑖=1

𝑚
 

(1) 

where, 𝛼1𝑖= first non-zero row index, 𝛼2𝑖= second non-zero row 

index, 𝑚 = number of columns. 

 
Figure 14: A representation of the thin-wall thickness feature. 

The pixels highlighted in red represent the pixels in the upper 

and lower edge of the thin-wall. 

Thin-wall density (𝜌𝑡): The thin-wall density quantifies un-

melted or areas devoid of sufficient material that result in pores 

in an individual thin-wall (Figure 13 (a2)) . To estimate this 

quantifier, the pixels within the boundary of the thin-wall image, 

is averaged to estimate 𝜌𝑡 (Eqn. (2)). 

 
𝜌𝑡 = {

∑ ∑ 𝐼(𝑖, j)𝑛
𝑗=1

𝑚
𝑖=1

𝑀
    𝑓𝑜𝑟  𝐼 > 0

0                                𝑓𝑜𝑟 𝐼 < 0 
      

(2) 

where, 𝐼(𝑖, 𝑗) is the pixel within the thin-wall, and 𝑀 is the 

number of pixels within the boundary of a thin-wall image. In 

Figure 13 (a2), a pixel in a thin-wall image is shown. 

Thin-wall edge smoothness (𝜎𝑠): This feature represents the 

degree of smoothness of the thin-wall XCT scan image 

boundary. The non-zero linear row indices of the upper edge 

(𝛼1i) and lower edge (𝛼2i) of the thin-wall, as shown in Figure 

14, are recorded. The degree of smoothness of a thin-wall edge 

is evaluated by calculating the standard deviation of the column 

indices of each edge. This standard deviation is interpreted as 

follows: higher the standard deviation, lower will be the edge 

smoothness, and vice-versa. 

The dotted-line in Figure 13 (a1) represents the edge of the thin-

wall obtained from the computer-aided design (CAD) of the thin-

wall. As observed visually, the CAD thin-wall edge has  constant  

𝛼1 and 𝛼2 values, and thus they have no standard deviation. 

Whereas, the thin-wall edges of the XCT scan images have 

highly varying values of edge indices, which results in high 

standard deviation, and in turn poor edge smoothness. 

Thin-wall  discontinuity (𝛿): The discontinuity of a thin-wall is 

highlighted in a yellow dotted-box in Figure 13 (b). If the thin-

wall edge is discontinuous, it is likely to be porous, and it is more 

likely to fail in a structure application. It is defined as the number 

of instances (𝛿) that the non-zero row indices 𝛼1𝑖 and 𝛼2𝑖 (from 

Eqn. (1))are not detected in a thin-wall. A near-zero value of 

thin-wall segment discontinuity is preferred. 

The above four quantifiers for each thin-wall  XCT scan image 

are arranged in a matrix called the quantifier matrix (𝑋𝜃), for 

each orientation 𝜃 = {0°, 60°, 90°} as shown in Figure 15. The 

quantifier matrix of each orientation angle is compared with 

features extracted from the CAD images of the thin-walls. The 

features extracted from the CAD thin-wall images are considered 

to be ideal, and hence, the features extracted from the XCT scan 

images are compared with them. The metric used for this 

comparison is known as the Mahalanobis-squared distance 

((𝐷𝑀
2 )𝑖

𝜃) for orientation angle 𝜃 and thin-wall number t = {1, 2, 

3…,25} as shown in Eqn. (3). Mahalanobis-squared distance is 

a metric used in multi-variate data analysis, i.e., data which has 

multiple variables in it. This distance accounts for the variability 

in the data due to multiple variables, and determines the degree 

of variability of each variable with the help of the inverse of the 

variance-covariance matrix which is also known as the precision 

matrix. In this work, we calculate the Mahalanobis-squared 

distance ((𝐷𝑀
2 )𝑖

𝜃) of a thin-wall with a particular aspect ratio 

(𝑙/𝑡) and orientation angle (𝜃) with respect to the corresponding 

CAD image of the thin-wall.   

 (𝐷𝑀
2 )𝑖

𝜃 = (𝑋̅𝑖
𝜃   − 𝜇𝑇𝑊)′𝑆−1(𝑋̅𝑖

𝜃   − 𝜇𝑇𝑊) 

where, 𝑋̅𝑖
𝜃  is the feature vector of a particular thin-wall image 𝑖 

for orientation 𝜃 = {0°, 60°, 90°}s which is to be compared with 

the thin-wall features extracted from a CAD image of the thin -

wall. The features extracted from the CAD image are stored in 

𝜇𝑇𝑊, and 𝑆−1 is the precision matrix (inverse of the covariance 

matrix) derived from the feature matrix of XCT scan images of 

a thin-wall with a particular orientation. 

 

Figure 15: A representation of the arrangement of the quantifier 

matrix for a thin-wall at 0° orientation angle. 𝑋1
̅̅ ̅0°

 represents the 

features extracted from the first XCT scan thin-wall image with 

a particular aspect ratio and an orientation angle of 0°. 𝜇𝑇𝑊 is the 

vector with features extracted from the CAD images of a thin-

wall with a particular aspect ratio. 
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4.2 Online Analysis of in-process powder bed 
images 

This section details the approach adopted to detect build 

failure in thin-walls by two-phase analysis of the in-process 

powder bed images: (1) the extraction of individual images of 

the thin-wall from the noisy powder bed images, and (2) 

predicting the quality of these images as inputs to a 

convolutional neural network (CNN) which is trained to predict 

the build quality of the thin-wall. We used an image filtering 

technique to sharpen the image and negate the noisy background 

as depicted in Figure 16.  The resulting binary image has clearly 

demarcated edges for each of the thin-walls. This step is done 

with the help of linear filtering operation which is termed as 

convolution filter (not be confused with a CNN). Convolution is 

an operation in which the output pixel is the weighted sum of a 

set of neighborhood input pixels. The matrix of weights is called 

the convolution kernel, also known as the filter. Figure 16 shows 

the convolution kernel used in this case where, 𝑥 is a variable 

which controls the intensity of sharpening of the image i.e. 

higher the value of 𝑥, the higher the erosion of the image.  

 

Figure 16: A schematic representation of image de-noising done 

by employing image sharpening. This technique uses a filter 

matrix which convolves around an image. 

Convolutional neural network architecture 

This section will briefly contrast the concept of the convolutional 

neural networks (CNN), vis-à-vis conventional feed-forward 

artificial neural networks (ANN) before providing mathematical 

details. ANNs are neurophysiologically inspired algorithms with 

neurons as their elementary units [29]. These neurons receive 

multiple inputs from either the input data or other neurons, later 

of the two being recurrent, and subsequently create an output by 

employing a non-linear transformation. The learning process to 

obtain the weights of the neurons is carried out using an 

algorithmic approach [30]. 

In a feed-forward ANN, neurons in a layer are fully connected, 

i.e., a neuron will be connected to all the neurons in the preceding 

and succeeding layer, and are independent of each other. Due to 

this reason, ANNs are computationally expensive to implement 

back-propagation when analyzing high volume of data, and 

further, ANNs do not encapsulate the spatiotemporal correlation 

within the data, such as images. 

For example, when analyzing an image of size 200×200×3, the 

resulting number of weights for the neurons in an ANN would 

be 200×200×3= 120,000. Furthermore, the large number of 

neurons will be required which will then lead to a large number 

of parameters, thus causing overfitting.  In contrast in a CNN, a 

neuron in one layer will only be connected to a certain number 

of neurons in the previous layer, thus avoiding full-connectivity, 

and consequently, overfitting. Accordingly, CNNs are multi-

layered neural networks that have been used in detecting patterns 

from image pixels, such as, faces, hands, logos, text etc. [31, 32]. 

The CNN used in this work has four blocks along with a fully-

connected layer, regression layer, input and output layer as seen 

in Figure 17. The input to the network is a binarized optical 

image of a single thin-wall in the size of 28 × 28 pixels which is 

extracted from de-noised layer-wise powder bed image, and the 

output is the corresponding Mahalanobis-squared distance of the 

thin-wall at the given layer.  Each block has a 2D convolution 

layer with a rectified linear unit (ReLU), a batch normalization 

layer, and an average pooling layer.  

Convolutional layer 

The convolutional layer extracts features from an image by 

learning various convolving filters [33]. In this CNN 

architecture, we use an increasing number of filters in each 

convolutional layers to extract complex features from the 

images. A filter, is a 𝑓 × 𝑓 matrix, which convolves around an 

image and creates a feature map by performing a dot product 

operation on the input image, as shown in Figure 18. The manner 

in which the filter convolves over the input image is determined 

by a hyper-parameter called stride. Figure 18 (b1), is an 

illustration of a filter sliding over an image with stride set to 1.  

To preserve the dimensions of the images being convolved, the 

images are padded with zeros, i.e. the images are surrounded by 

zeros, before the convolution operation, and this hyper-

parameter is called padding.  

The convolutional neural network used in this work has four 

blocks, and each block has a convolutional layer in it, as shown 

in Figure 17. As the network gets deeper, the number of filters 

in each convolutional layer increases to extract high-level 

features from the image. This is represented in Figure 20 that the 

input image has a depth of 1 as it is a grayscale image, but the 

first convolution layer has depth of 8 filters. The depth of a layer 

is a function of the number of filters employed in a convolution 

layer, and the last convolution layer in block 4 has a depth of 32 

filters. 
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Figure 17: Flow-chart of the architecture of the convolutional neural network employed in this work to predict Mahalanobis-squared 

distance. 
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Figure 18: Schematic representation of convolution operation. 

Batch normalization layer 

The input given to a neural network is normalized, i.e. it has zero 

mean and unit variance, and this is done to quicken the learning 

process of the network. When the input variables of a network 

have extremely varying ranges, for example, one variable has a 

range of 1-1000, whereas the second one has a range of 1-2, the 

network parameters will have correspondingly wide range. This 

leads to a wide cost function in the direction of the variable with 

a wide range as it contributes more towards learning of the 

network. Due to this imbalance in the variables and the resulting 

elongated cost function, it becomes cumbersome to train a 

network. On the contrary, a neural network with normalized 

inputs has a circular cost function resulting in increased ease and 

speed of training. Likewise, it is advisable in deep neural 

network to normalize the input to every layer of the network, 

with the help of a technique called batch normalization [34].  

When updating weights in one layer in a deep neural network, it 

is assumed that the layer’s inputs will remain constant. However, 

the distribution of the input might change every time we update 

the weights, as the previous layer parameters are updated as well. 

In deep models, even small changes in earlier layers amplify 

drastically in the later layer, which significantly changes the 

input distribution to the later layers as well, making it hard for 

them to adapt to the changes, and thus, hindering convergence. 

This phenomenon is referred to as internal covariate shift, and 

batch normalization layers are employed in a deep neural 

network to prevent this phenomenon. 

In batch normalization, the inputs are firstly normalized to zero 

mean and unit variance as shown below in Eqn. (4)-(6). This 

normalization is not performed on the whole input population at 

once, but is done on the input in batches [34]. 

 
𝜇𝐵 =  

1

𝑛
∑ 𝑎𝑘

𝑛

𝑘=1

 
(4) 

 
𝜎𝐵

2 =  
1

𝑛
∑(𝑎𝑘 − 𝜇𝐵)2

𝑛

𝑘=1

 
(5) 

 𝑎𝑘̂ =  
𝑎𝑘 − 𝜇𝐵

√𝜎𝐵
2

 
(6) 

where, 𝜇𝐵 and  𝜎𝐵
2 are the mean and variance of the batch 

respectively. 𝑎𝑘̂  is the normalized input value, and 𝑛 is the batch 

size. Subsequently, the normalized inputs (𝑎𝑘̂) are scaled and 

shifted to have an arbitrary mean and variance of the input 

distribution (Eqn. (7)). 

 𝑜𝑘 =  𝛿 𝑎𝑘̂ + 𝛼 

where, 𝑜𝑘 is an output of the batch normalization layer, and 

accordingly is the input to the activation (ReLU) layer. 𝛿 is the 

scaling factor, and 𝛼 is the shifting factor, and these factors 

facilitate in randomizing the mean and variance of the batch 

inputs. Intuitively, it can be argued that these factors nullify the 

effect of normalization, as prior batch normalization, the data 

had random mean and variance. Taking a step backward, we can 

see that the mean and variance without batch normalization are 

dependent on excessively high number of parameter, such as, 

weights and biases of each neuron, activations etc., but in case 

of batch normalization they are dependent only on the two 

scaling and shifting factors which are trainable and learnable by 

the network. 

When testing the network, the 𝜇𝐵 and 𝜎𝐵
2 are not available, so 

the estimated of the population expectation and population 

variance are calculated as follows.  

 𝐸𝑘+1[𝑥] =  𝛿𝐸𝑘[𝑥] + (1 − 𝛼) 𝜇𝐵 (8) 

 𝑉𝑎𝑟𝑘+1[𝑥] =  𝛿𝑉𝑎𝑟𝑘[𝑥] + (1 − 𝛼) 𝜎𝐵
2 (9) 

In our neural network architecture used in this work, a batch 

normalization layer is employed in, as shown in Figure 17.  

Rectified linear unit (ReLU) layer 

The rectified linear unit (ReLU) is an activation function (non-

linearity) which sets all negative values to zero [35]. It is 

formally given as follows. 

 
𝑓(𝑥) = {

𝑥           𝑖𝑓 𝑥 ≥ 0
0           𝑖𝑓 𝑥 < 0 

 
(10) 

The ReLU layers are preferred over other activation functions, 

such as the sigmoid function and the hyperbolic tangent (tanh) 

function, because it is found that the ReLU layers significantly 

accelerate the convergence of the stochastic gradient descent, 

i.e., the ability of the network to reach its cost/loss function 

minima [36]. Further, the ReLU layers are computationally 

inexpensive as they only involve thresholding of an activation 

matrix, whereas the sigmoid and tanh functions need heavy 

computations. Also, the ReLU layers avoid vanishing of the 

gradient which is quite evident in the hyperbolic tangent function 
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and sigmoid. Neural networks that are trained with the help of 

gradient-based learning method and back propagation method 

often encounter the vanishing-gradient problem [35].  

These methods, provide the neurons with updated weights that 

are proportional to the partial derivative of the error function (the 

difference between the value predicted by the network and the 

actual value) with respect to the current weights of the neurons 

in each training iteration. When activation functions such as the 

tanh function and sigmoid function are used, the vanishing 

gradient problem is observed, as they have gradients in the range 

(0, 1), and backpropagation computes gradients by the chain 

rule. This results in the multiplication of 𝑛 of these small 

numbers to compute gradients of the initial layers in an 𝑛 -layer 

network, meaning that the gradient (error signal) decreases 

exponentially with 𝑛 while the initial layers train very slowly. In 

other words, vanishingly small gradients prevent the training of 

the network as the weights remain constant after every iteration. 

In our network, we have used the ReLU layer in each block after 

the batch normalization layer as seen in Figure 17. 

Average pooling layer 

 The average pooling layers are used to down-sample the spatial 

arrangement of an image (Figure 20) to reduce the computation, 

and also to avoid over-fitting, i.e., the network gets highly fitted 

to the training data, and cannot adapt to the inputs of the testing 

data, thus performing poorly. The spatial reduction is performed 

as it is sufficient to know the relative position of features with 

respect to other features, rather than knowing the exact feature 

location. Similar to a convolution layer, in an average pooling 

layer, filters of a given size move around an image in a non-

overlapping manner, resulting in a single value which is the 

average of all values of the image in the given filter size (Figure 

19) [31]. Along with filter size, another hyper-parameter that the 

average pooling layer employs is stride, which dictates the 

movement of the filter over the image. The layer individually 

operates on each of the depth slice of the input image, thus 

conserving that dimension (Figure 20), and also the feature data 

accumulated from various filters.          

In this work, we use average pooling layers in the first two blocks 

as seen in Figure 17. This layer is not used in the succeeding 

layers to avoid significant reduction in the spatial dimensions of 

the image resulting in feature data loss. The pooling layers use a 

filter size of 2×2, and a stride of 2 in both blocks (Figure 19). 

This results in the reduction of input image size from 28×28, to 

7×7 at the end of the second block.  

 

Figure 19: Schematic representation of an average pooling 

operation. 

Fully connected layer 

In a fully connected layer, all the neurons in the adjacent layers 

are pairwise connected to each other, but neurons in the same 

layers are independent of each other. Unlike a convolutional 

layer, the fully connected layer is a one-dimensional vector 

which has all activations of the previous layer, as seen in Figure 

20. Due to this drastic change in dimension, fully–connected 

layers are placed at the end of the network, and convolution 

layers cannot be placed after them. Each convolution layer 

identifies features (e.g., lines, edges, curves, shapes) with the 

help of various filters, the fully-connected layer fuses these 

features together and come up with a prediction close to the 

desired output.  The fully-connected layer in this network has 

1568 inputs from the previous non-linearized (ReLU) 

convolution layer, and has a single output which is passed to the 

regression layer. 

The mean-squared-error (MSE) is calculated between the 

predicted output and the desired output. In this regression layer, 

based on this MSE, weights of all neurons in the network are 

updated to obtain the optimum minima of the MSE. For training 

the network, values of hyper-parameters like maximum epochs 

(maximum number of iterations), and the learning rate for 

weights, were heuristically set to achieve the lowest value of 

MSE. The value of maximum epochs was chosen in such a way 

that it avoided under the network training, and also avoided over-

fitting. Similarly, learning rate of weights, which is a hyper-

parameter that controls the adjustment of the weights with 

respect to the cost function gradient, is set to an optimum level 

so as to preserve the network speed, and also not to miss out on 

a local minima of the cost function. For training the 

convolutional neural network, the input used is an individual 

thin-wall extracted from de-noised layer-wise powder bed 

images, and the output is the corresponding Mahalanobis-

squared distance of the fin obtained from the XCT scan image 

analysis. The data is allocated in the following manner: 75% for 

training the network, and 25% for testing the network. The data 

is randomly selected for training the network, and then the 

remaining data is used to test the network. 
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Figure 20: A schematic representation of the  convolutional neural network architecture 

5 Experimental Results 

This section reports the results from the XCT scan image 

analysis described in section 4.1 in terms of the design rules for 

thin-wall structures, and in-process monitoring of thin-walls 

using the CNN described in section 4.2.  

5.1 Design rules based on offline XCT scan images 

In this section, we describe the results from analysis of the XCT 

slices, using the methodology described in section 4.1. The 

analysis leads to an understanding of the effect of orientation and 

aspect ratio of thin walls on the build quality of thin-wall 

structures. 

For a fixed aspect ratio, the thin-walls oriented at 0° to the re-

coater direction, have a superior build quality. In other words, 

when the long edge of the thin-wall is parallel to the direction in 

which the re-coater moves, the thin-wall feature tends to build 

with fewer flaws, compared to those thin-wall structures that are 

built with the broadside of the thin-wall exposed to the re-coater. 

At an orientation of 90°, where the broadside of the thin-wall is 

perpendicular to the re-coater motion, the build quality is worst. 

However, the thin-wall built at orientation angle of 0º at layer 

number 22 is without any discernable flaws, see Figure 21 (a). 

Those built at 60º and 90º depict non-smooth edges and 

discontinuity. Furthermore, at layer number 25, irrespective of 

the orientation angle have completely collapsed. In contrast, for 

a smaller aspect ratio, such as the thin-wall shown in Figure 21 

(b), a discernable difference in the thin-wall quality at the three 

different orientations is seen only at layer 35. Here, the thin-wall 

built at 0º, as well as 60º have distinctly better geometric 

integrity, compared to the thin-wall built at 90º. An observation 

drawn from Figure 21 is that a threshold value of 15 can be 

arbitrarily set for the Mahalanobis-squared distance, beyond 

which the thin-wall quality is typically poor. We note that this 

observation is specific to particular work. 

a) Avoid building thin-walls below 0.15 mm thickness, i.e., 

aspect ratio (𝑙/𝑡) above 73, because they tend collapse. 

b) Avoid building thin-walls at angles inclined to the re-coater 

blade. In other words, avoid presenting the broadside of the 

thin-wall to the re-coater. 

c) The maximum recommended height for a thin-wall of 

thickness 𝑡 is approximately 9× 𝑡. 

Next, we have summarized these results in terms of Figure 22, 

which maps the build height versus the aspect ratio averaged 

across all orientation angles, and recommended build height to 

achieve good geometrical integrity. The error bar in Figure 

22(left) represents the standard deviation seen across all 

orientation angles for a given aspect ratio. Figure 22(right) 

depicts this information in greater detail with the recommended 
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height to build thin-walls with good geometrical integrity, and 

the height at which a thin-walls collapse with respect at a given 

orientation and aspect ratio. The design rules formulated from 

this work are summarized and pictorial represented in Figure 23. 

 

 

Figure 21: Mahalanobis-squared distance for different orientations (𝜃) of different thin-walls.(a) Thin-wall number 10, with aspect ratio 

(𝑙/𝑡) of 73, i.e., length 𝑙= 11 mm and thickness 𝑡= 0.15 mm. (b) Thin-wall number 20, with aspect ratio (𝑙/𝑡) of 44, i.e., length 𝑙= 11 

mm and thickness 𝑡= 0.25 mm.  

 

Figure 22: (left) Maximum recommended height to build thin-walls of good geometrical integrity with respect to aspect ratio (𝑙/𝑡). 

(right) Maximum build height of thin-walls to get good geometrical integrity, and height at which thin-walls collapse, with respect to 

aspect ratio and orientation angle. 
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 Description Unsuitable Suitable 

The orientation angle (θ) 

of 90° should be avoided 

while building thin-wall 

structures. 

  

The length-to-thickness 

aspect ratio (𝑙/𝑡) of a 

thin-wall should not 

exceed 73 (11 mm/ 0.15 

mm). 

 
 

 

The height of a thin-wall 

should not be more than 

nine times its thickness. 

  

Figure 23: Summary and pictorial description of the design rules formulated from this work for thin-wall features built using metal laser 

powder bed fusion additive manufacturing process. 

5.2 Results from in-process powder bed image 
analysis 

In this section, we use the online layer-by-layer image data to 

detect the onset of defects in a thin-wall part. The key idea is to 

apply the convolutional neural network (CNN) described in 

section 4 to predict the Mahalanobis-squared distance as a 

surrogate or derived measure of build quality. The network 

training procedure and network architecture are explained in 

great detail in section 4.2. Figure 24 shows the representative 

results for thin-wall number 23 under three different 

orientations. These results indicate that the CNN derived 

Mahalanobis-squared distance results, closely track those 

obtained using XCT scan image analysis of the thin-wall. As a 

consequence, instead of expensive post-process XCT scan 

measurements, the in-process image data can be used for 

detecting process defects in LPBF. As a quantitative measure to 

ascertain the closeness between the observed and CNN-

predicted Mahalanobis-squared distance trends, we used the 

Pearson coefficient. For trends shown in Figure 24, the Pearson 

correlation coefficient ranges from 80% to 98%. 

 
Figure 24: Mahalanobis-squared distance prediction via CNN regression for thin-wall number 23 (𝑙/𝑡= 39, length= 11 mm, thickness= 

0.28 mm) with (a) 0° orientation, (b) 60° orientation and (c) 90° orientation. 
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6 Conclusions and future work 

This work investigated the quality of thin-wall parts made using 

the LPBF process as a function of their build orientation and 

aspect ratio (length-to-thickness ratio, 𝑙/𝑡). Furthermore, in-

process optical image data of the powder bed was acquired to 

detect build flaws. Specific contributions from this work are as 

follows: 

1) The effect of aspect ratio and wall thickness was quantified 

by extracting statistical features from the offline X-ray 

computed tomography (XCT) scan images of thin-wall 

parts. The following results are reported herein from the 

perspective of design of additive manufacturing (AM). The 

number of layers (vertical height) of a thin-wall part that can 

be built without damage is contingent on its aspect ratio (l/t 

ratio), and orientation to the recoater (θ). It is recommended 

that a thin-wall be built with 0° orientation with the re-coater 

blade. In other words, the broadside of the fin should not, as 

far as possible, face the re-coater direction. The maximum 

vertical height of the thin-wall should be less than 9 times 

of its thickness. 

2) Four quantifiers were defined and extracted to characterize 

the geometric integrity of the thin-wall. These quantifiers 

were aggregated in terms of the Mahalanobis-squared 

distance, which were positively correlated with the visual 

quality of the thin-wall. 

3) From the in-process quality monitoring vista, we trained a 

convolutional neural network (CNN) to predict the thin-wall 

quality (in terms of the Mahalanobis-squared distance) 

based on in-process optical images of the powder bed. For 

the representative cases tested, the Pearson correlation 

coefficient (𝜌) between the Mahalanobis-squared distance 

measured from the XCT scan signatures, and the CNN 

derived Mahalanobis-squared distance was in the range of  

80% to 98%. 

This work thus makes a foray into deriving quantitative rules for 

optimal design of LPBF parts, specifically thin-wall structures. 

Furthermore, we have developed a feature-free deep learning 

approach to detect build flaws in LPBF parts. Consequently, this 

work makes an effort to complete the following link from the 

LPBF perspective: Part design → In-process data → Build 

quality. However, the following question remain to be 

addressed, which we will endeavor to answer in our future forays 

in the area: 

1) What is the generalizability of the design rules proposed to 

reduce variations in material and thin-wall structures for 

different process conditions such as, laser power and 

velocity? 

2)  How do the proposed design rules for thin-walls carry over 

to internal thin-wall features, and thin-wall with overhang 

geometries? 

3) What is the ability of the CNN proposed in this work to 

apply to other types of features through transfer learning? 
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Appendix 

This table summarizes the design rules that were discussed in section 2. 

 

 

  

Ref. Description Unsuitable Suitable 

A
d

a
m

 e
t 

a
l.

 [
2

5
] 

The thickness of element transitions’ 

(explained in section 2.1) should be 

such that the cross-sectional area in 

the building plane remains constant or 

reduces. 

 

 

  

 

To obtain good outer edge 

morphology, smooth edges should be 

used instead of sharp edges. 

 
 

To remove support structures with 

ease, inner edges should be rounded. 

 

 

 

 

Minimum gap between two 

consecutive features should be more 

than 0.2 mm. 
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Ref. Description Unsuitable Suitable 
T

h
o

m
a

s 
[2

3
] 

Thin-wall structures should have 

thickness greater than 0.4 mm 

  

The gap between consecutive features 

should be more than 0.3 mm. 

 

 

To build overhang geometries chamfers 

above the orientation angle of 45° with 

respect to the build platform should be 

used as support structures. 

 

Surfaces should be built vertical, i.e. 

orientation angle of 90° to the build 

platform to get good surface finish.  

 

K
ra

n
z 

et
 a

l.
 [

2
2

] 

Thin-wall structures should be built at an 

orientation angle of 90° with reference to 

the build platform, and 45° with reference 

to the re-coater blade direction to get 

good quality build. 

 

Similar to Daniel Thomas, Kranz et al 

suggest that the thin-wall thickness 

should be more than 0.4 mm.  

 

 

 

 

Through bore holes should be preferred 

over blind holes. The bore diameter 

should exceed 2 mm for well-defined 

holes. 

 


