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Abstract. The goal of this work is to quantify the link between

the design features (geometry), in-situ process sensor signatures,

and build quality of parts made using laser powder bed fusion

(LPBF) additive manufacturing (AM) process. This knowledge

is critical for establishing design rules for AM parts, and to

detecting impending build failures using in-process sensor data.

As a step towards this goal, the objectives of this work are two-

fold:

1) Quantify the effect of the geometry and orientation on the
build quality of thin-wall features. To explain further, the
geometry-related factor is the ratio of the length of a thin-
wall (I) to its thickness (t) defined as the aspect ratio
(length-to-thickness ratio, [/t), and the angular orientation
(0) of the part, which is defined as the angle of the part in
the X-Y plane relative to the re-coater blade of the LPBF
machine.

2) Assess the thin-wall build quality by analyzing images of
the part obtained at each layer from an in-situ optical camera
using a convolutional neural network.

To realize these objectives, we designed a test part with a set of
thin-wall features (fins) with varying aspect ratio from Titanium
alloy (Ti-6Al-4V) material — the aspect ratio [/t of the thin-walls
ranges from 36 to 183 (11 mm long (constant), and 0.06 mm to
0.3 mm in thickness). These thin-wall test parts were built under

three angular orientations of 0°, 60°, and 90°. Further, the parts
were examined offline using X-ray computed tomography
(XCT). Through the offline XCT data, the build quality of the
thin-wall features in terms of their geometric integrity is
quantified as a function of the aspect ratio and orientation angle,
which suggests a set of design guidelines for building thin-wall
structures with LPBF. To monitor the quality of the thin-wall, in-
process images of the top surface of the powder bed were
acquired at each layer during the build process. The optical
images are correlated with the post build quantitative
measurements of the thin-wall through a deep learning
convolutional neural network (CNN). The statistical correlation
(Pearson coefficient, p) between the offline XCT measured thin-
wall quality, and CNN predicted measurement ranges from 80%
to 98%. Consequently, the impending poor quality of a thin-wall
is captured from in-situ process data.

Keywords. Additive manufacturing (AM), laser powder bed
fusion (LPBF), in-process monitoring, quality assurance (QA),
design rules, thin-wall features.
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1 Introduction
1.1 Background and Motivation.

The goal of this work is to understand the link between part
design features (geometry), in-situ process sensor signatures,
and build quality of parts made using laser powder bed fusion
(LPBF) additive manufacturing (AM) process specifically
focused on thin-wall features. In LPBF, Figure 1, a thin layer of
powder is raked or rolled across a build plate, and subsequently,
this layer of powder is selectively melted using energy supplied
by a laser beam. The laser beam is typically focused on the
powder bed through an f-6 lens, which maintains a flat field of
projection irrespective of the angle incidence of the laser beam

[1].

For most materials processed in LPBF, the power of the laser
beam is set in the range of 200 W to 500 W, the velocity with
which it travels ranges from 500 mm/s and 1000 mm/s, and the
contour and hatching parameters are typically different. After a
layer is selectively melted, the build plate is lowered by a
distance typically in the range of 50 pum to 100 um, and another
layer is deposited [2, 3]. This process continues until the part is
built. In LPBF, there are complex intertwined relationships
between part design, process parameters, thermal phenomena,
resulting in heterogeneity in part microstructure mechanical
properties [2].
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Figure 1: Representation of the laser-based powder fusion
process [4].

This work concerns with the fabrication of thin-wall structures
using LPBF. Thin-wall structures are extensively used in
industrial applications, for a variety of reasons, such as to reduce
the weight of a component without compromising its structural
integrity. Figure 2 shows a titanium spinal implant consisting of
thin-wall structures. The manufacture of such intricate geometry,
which is difficult, or impossible, to make with conventional
subtractive and formative manufacturing process, is made
possible through LPBF [5-7]. However, the process anomalies in
LPBF, and the inherent geometry of thin-wall structures makes
the AM build highly susceptible to failure (e.g., collapse, super-
elevation, porosity, poor structural quality) [8-10]. In this work,
defects in these thin-walls are analyzed in order to propose
quantitative design rules, and to develop an in-situ monitoring

system to assess thin-wall quality. To investigate these factors,
representative build defects observed in a test artifact with thin-
wall features are shown in Figure 3.

Figure 2: X-Ray computed tomography (XCT) scan of a
titanium spinal implant consisting of thin-wall structures.

The geometric integrity of the thin-wall can be affected by the
restricted heat flux due to their smaller cross-section area. The
restricted heat flux leads to sharp thermal gradients, which in
turn may cause cracking and warping (distortion) defects [11,
12]. Another common reason for the frequent failure of thin-
walls is the interaction of thermal and mechanical factors; the
geometric distortion of the thin-wall due to the thermal gradients
causes the part to protrude out of the powder bed, a phenomenon
called super-elevation, which leads to contact of the part with the
re-coater [13, 14]. The contact of the part with the re-coater is
liable to damage the re-coater (re-coater jam or crash), and the
thin-wall features may fail as they are ill-disposed to resist the
transverse force exerted by the re-coater. Given these risks, there
is a compelling need to provide design rules for hard-to-build
features, such as thin-walls and overhang geometries, so that
extensive process optimization is precluded. Within the same
context, it is critical to detect imminent build failures, to
implement opportune corrective actions [15, 16].

1.2 Objectives.

In the context of the aforementioned scientific rationale
concerning design rules and process monitoring in AM, the
objectives of this work are as follows.

1) Formulate geometric design rules for the manufacture thin-
wall parts made using the LPBF process. These design rules
take the following form: given a build orientation and height
of a thin-wall feature, what should be its thickness.
Alternatively stated, given the length and thickness of a thin-
wall, what should be the maximum allowable build height,
and corresponding build orientation.

2) Detect the onset of build failures in thin-wall parts using
data from in-situ process sensors.

To achieve the first objective, we designed a test artifact having
thin-wall features with varying dimensions. A schematic of the
thin-wall test part is shown in Figure 5. The details of the test
artifact are discussed in Section 3.1. Three such test parts were
built, each differing in its angular orientation (0) to the direction
of the re-coater blade. Subsequently, we examine each of the
thin-wall builds using X-ray computed tomography (XCT) (e.g.
Figure 3(b)). The build quality of the thin-wall is quantified
using features extracted from layer-wise XCT slices with the



help of image processing algorithms. These features are tracked
across layers, and are thereafter used as derived features of thin-
walls. Geometric design rules for thin-wall features are proposed
based on these empirical quantitative measures. We make the
following clarification regarding the aspect ratio (I/t). The
aspect ratio of a feature is taken to imply the ratio of its largest
dimension to its smallest dimension. For instance, the aspect
ratio of a circular hole is the ratio of its depth over diameter.
Similarly, in the specific context of this work, the aspect ratio is
the length (I, largest dimension) to the thickness (t, smallest
dimension) of the thin-wall (Figure 3 (a)). The length of the thin-
walls is held constant at 11 mm, whilst the thickness ranges from
0.06 mm to 0.3 mm. Another reason for defining the aspect ratio
in the foregoing manner is that, in this work, the height of the
thin-walls varies such that the height-to-thickness ratio is held
constant at 10 (height and thickness of each thin-wall is reported
in). Accordingly, one of the design rule proposed in this work is
the maximum build height of a thin-wall given its aspect ratio
(I/t) and orientation to the direction of the re-coater blade. To
address the second objective, we developed an optical imaging
setup that takes a picture of the surface of the powder bed after
each layer is deposited. These images are further analyzed using
a convolutional neural network (CNN), which is trained to
predict the build quality features extracted from XCT images
from the first objective. As a consequence, the part quality in
terms of its geometric integrity can be tracked using the in-situ
process data to pre-empt failure.
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Figure 3: (a) Various defects that may occur in a thin-wall
structure built using LPBF process. (b) XCT scan of a thin-wall
part at 60° orientation angle. The thin-walls with aspect ratio of
55 (I/t, 11 mm/ 0.15 mm) and 36 (I/t, 11 mm/ 0.1 mm) are
shown (cl) and (c2) respectively. These images depict the
different defects in thin-wall structures.

1.3 Organization of the paper

The rest of this paper is organized as follows. A brief summary
of the relevant design for AM is provided in section 2. This is
followed by the description of experimental procedure in section
3, including a brief description of the thin-wall test artifact, and
a procedure for data acquisition. Section 4 describes the
methodology used for quantification of thin-wall build quality
from XCT scan data, and the detailed analysis of the powder bed
images using a deep learning convolutional neural network
(CNN). The results from this work are discussed in Section 5, in
which the design rules derived from the analysis of XCT scan
slices are put forth, and the fidelity of the CNN in predicting the
quality of the thin-wall is quantified. Finally, the conclusions
stemming from this work, and avenues for future research are
summarized in Section 6.

2 Literature Review

Powder bed fusion (PBF) additive manufacturing (AM)
processes, despite their revolutionary potential, have intrinsic
shortcomings, such as material constraints, surface finish, part
accuracy and repeatability, and these factors have impeded its
use in a production environment [ 17]. Furthermore, parts that are
additively manufactured have particular distinguishing
characteristics, such as intricate geometries, custom part design,
low productions volume, and complex material compositions
[18]. One of the main bottlenecks in AM are the absence of
design guidelines that can be used as rules-of-thumb by
practitioners to avoid poor quality parts [19]. It is therefore
essential to propose design guidelines for AM. According to
Rosen, design for additive manufacturing (DFAM) is defined as,
“maximizing product performance through the synthesis of
shapes,  sizes, hierarchical structures, and material
compositions, subject to the capabilities of AM technologies,”
[18].

The conventional design for manufacturing (DFM) rules do not
apply for AM parts as they are manufactured layer-by-layer, and
are bottom-up processes, unlike the conventional methods, such
as machining, which is top- down. Hence, the unique layer-by-
layer nature of AM mandates a different approach to part design
compared to traditional manufacturing processes. Ponche ef al.
have introduced a general methodology for DFAM in which they
primarily focus on the orientation of the part, its geometry which
is established using topological optimization, and the process
conditions, such as the laser parameters, that need to be
employed for the part [20]. According to Ponche et al., part
orientation refers to positioning the functional surfaces of a part
being designed in such a way that it leads to the best surface
finish and accuracy.

The part geometry can be potentially designed with the help of
topological optimization, i.e., in a particular design space, for a
given set of loads, boundary conditions and constraints, the
material layout is optimized to achieve high performance of the
system [20, 21]. Similarly, Kranz et al., have recommended



design guidelines for laser additive manufacturing (LAM) by
analyzing the effect of part orientation, size, and position on the
dimensional accuracy and surface finish of lightweight parts,
such as, thin-walls, bars [22]. The effect on surface quality of a
part was studied by manufacturing parts with upward and
downward facing surfaces which are built at various orientation
angles with respect to the build platform. Kranz et al. observed
that parts with the smallest angle have the lowest surface
roughness; a low surface roughness is desirable.

To study the effect of part position in the powder bed on part
accuracy, they designed test parts, which included a rectangular
structure, a cylindrical structure, and a thin-wall structure, and
placed this test part in five different locations on the powder bed,
namely, middle, upper right, lower right, upper left, and lower
left. It was concluded that the part position has no discernable
effect on the accuracy of the test geometry for this particular
experimental setup. To study the effect of orientation and size on
part accuracy, parts with three different cross-sections, i.e.,
elliptical, cylindrical, and rectangular were chosen, and the
aspect ratios (length-to-thickness ratio) of each part was varied.
For thin-wall structures (rectangular cross-section), it is
observed that to obtain good quality, the thickness should be
greater than 0.4 mm, the orientation angle with reference to the
build platform should be 90°, and the orientation angle in with
reference to the re-coater device should be 45°. Lastly, the study
on bore holes (cylindrical cross-section) shows that the highest
part accuracy is obtained when it is built orthogonal to the build
platform.

A detailed study on design rules was done by Daniel Thomas in
his doctoral dissertation [23]. Thomas studied fundamental
geometries, such as overhang features, which can then be used
to design complex geometries. Through simple cuboidal builds,
the author observed that orientation of the part (with respect to
the build surface) plays an important role in the surface quality
of the part. It is observed that surfaces built under an orientation
angle (vertical inclination) of 45° to the build platform need
support structures to avoid build failure. The optimum
orientation angle to build surfaces is seen to be 90° to the build
platform. The author suggests that the up-facing surfaces have
poor surface quality under 45° orientation angle, but an abrupt
improvement is seen when part is built at 0° angle to the build
platform. To build geometries such as overhangs without support
structures, the author suggests to use features which eschew the
need for support structures, namely, chamfers, convex and
concave radii. Thomas reports that chamfers can be built with
orientation angle (with respect to the build plate) of more than
45°. The convex and concave radii need to be built at the varying
bottom and top tangent angle of the radii to avoid the use of
support structures, and these angles can be found in a tabulated
format in Ref. [23]. To prevent surface merging while building
parts such as, channels, slots, keyways etc., it necessary to have
a minimum gap between features which is recommended to be
0.3 mm. Thomas’ research conforms with the results obtained by
Kranz et al., that the minimum thickness of thin-wall should be

0.4 mm [22, 23]. Subsequently, holes were also studied by Kranz
et al. It is recommended that the minimum hole size should be
0.7 mm diameter when they are built parallel (self-supporting) to
the build plate, and 1 mm when building perpendicular to the
build plate.

Dunbar et al. conducted a quality assessment of Inconel 625 thin-
walls made using LPBF [24]. To observe the effect of thin-wall
angle with respect to the build plane (X-Y direction) on the thin-
wall quality, thin-walls were built at angles of 45°, 67.5° and 90°.
Furthermore, to study the effect of re-coater blade motion on the
quality of thin-walls, the orientation of thin-walls with reference
to the re-coater blade direction was either 90° (perpendicular to
re-coater), or 45° (rotated 45° along Z-axis). The thin-walls are
built by varying the laser power, laser velocity, hatch pattern,
and four thin-walls are built by using the parameter settings
suggested by the manufacturer of the machine. It was observed
with the help of a XCT scan analysis of the thin-walls that the
thinnest thin-wall (median= 113 pm) with no porosity was built
at a build angle (with reference to re-coater blade direction) of
45° (rotated 45° along Z-axis), laser power of 100 W, laser speed
900 mm/s, and thin-wall angle (with reference to build plane, X-
Y direction) of 90°.

In a study by Adam et al., design rules for two types of structures,
namely, element transitions, and aggregated structures, were
formulated [25]. According to the authors, combination of basic
elements (e.g. cuboidal structure) are called element transitions
(e.g., joints), and the arrangement of these element transitions
along with multiple basic elements are called aggregated
structures (e.g., overhangs). To study the effect of varying
thickness and orientation on element transitions, a Y- shaped test
specimen (Figure 4) was designed. This test specimen was built
in three different orientations as seen in Figure 4, and the
thickness (Ty, T,, T3) of the three elements are varied between 2
mm and 5 mm, namely, T; =2 mm, T, = 5 mm, T; = 5 mm.

Adam et al, found no evidence that the aforementioned
orientations affect the part quality. However, the thicknesses
should be chosen so that the cross-sectional areas of element
transitions in the build plane should remain the same size, or
should reduce, to avoid surface defects, i.e., the cross-sectional
areas of elements T; and T, should remain the same or be less in
comparison to that of T5. Further, Adam et al. study the effect of
edge morphology on part quality. It is concluded that to avoid
defects, parts with sharp outer edges should be avoided, and
similarly, parts should not have sharp inner edges for ease of
removal of support structures and residual powder. Finally, for
structures which have non-bonded elements, should have the
following minimum gap (H) values for different AM process:
laser sintering (SLS) (H; = 0.6 mm), laser melting (LPBF)
(H; 2 0.2mm), fused filament fabrication (FFF) (H; >
0.4 mm) [25]. In the case of aggregated structures, namely,
overhang, to ensure a robust manufacturability the authors
suggest that the length of the overhang should be as follows:



laser melting (Loy < 2.0 mm), and fused filament fabrication
(Loy < 1.8 mm).

Figure 4: Test specimen drawing adopted from Adam et al. [25].
Test specimen is built in three different orientations, namely, (a)
depth of specimen along the X-Y axis, (b) height of the specimen
along the Z-axis, and (c) height of the inverted specimen along
the Z-axis of the build direction.

A summary of the design rules established from the above
discussed works is given in the Appendix. Most of these
pioneering works formulate design rules for AM based on
measurements made with rudimentary instruments, such as,
calipers, which do not capture the geometric and build integrity
in a more detailed manner. In this thesis, we introduce design
rules by analyzing data from X-ray computed tomography
(XCT) scan, and layer-wise in-process images of the test
specimen.

3 Experimental Studies and Data Acquisition
3.1 Test-artifact with thin-wall

For building the titanium alloy (Ti-6Al-4V) thin-wall test parts the
following process parameters were used: laser power, P = 340 W;
layer thickness, T= 60 um; hatch spacing, H= 0.12 mm; and laser

velocity, V = 1250 mm/s, resulting in the volumetric energy density
E, = HxixT = 37.8 J/mm3. The parts were made using spherical

ASTM B348 Grade 23 Ti-6Al-4V powder with a size distribution
of 14 um - 45 um from LPW Technology, Inc.

Parts with the geometry exemplified in Figure 5 were built in three
angular orientations to the re-coater blade with the dimension of 15
mm X 15 mm x 5.5 mm. Each part includes 25 thin-wall features
whose thickness ranges from 0.06 mm to 0.3 mm, while the
corresponding height increases from 0.6 mm to 3 mm. The length
of each thin-wall is 11 mm, and they are built vertically upwards
with 60 um layer thickness. The entire part was built in 90 layers
[26].
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Figure 5: Computer aided design (CAD) of thin-walls in the test
part. (a) Top view, (b) front view. (¢) 3-D view of the test part at
an orientation angle of 60° to the re-coater blade direction.In this
work, two hatch patterns are used to build thin-wall structures as
shown in Figure 9. The hatch pattern used to build thin-walls
with aspect ratio (I/t) ranging from 36 to 157, i.e., thickness of
0.07 mm to 0.3 mm (thin-wall number 2 to 25) is shown Figure
9(a). This hatch pattern has an outer contour, inner contour, and
hatches at the same angle inside the inner contour. The hatch
pattern used to build thin-wall number 1 with aspect ratio (1/t)
of 183, i.e., thickness of 0.06 mm is shown in Figure 9(b). Thin-
wall number 1 is built with an outer contour, hatches at the same
angle, but without an inner contour.



3.2 Setup for in-situ process powder bed imaging

The in-situ process sensor data is acquired with the setup shown
in Figure 6. The layer-wise images of the powder bed are
captured using a digital single-lens reflex camera (DSLR, Nikon
DS800E) with an effective resolution of 36.3 megapixels which is
mounted in a custom made enclosure inside the machine [27].
The flash lamps are located at three different locations in the
machine (EOS M280) as shown in Figure 6, and they are used to
capture five images of the powder bed at every layer in various
lighting conditions (Figure 7).

These images are obtained after the laser scan and after the re-
coating process. In order to capture images at these particular
instances during the build, a proximity sensor is employed in the
machine. This proximity sensor tracks the motion of the re-
coater blade, and accordingly, captures the images. For this
work, we have analyzed images post laser scan with the lighting
condition as shown in Figure 7(a). The sample data acquired
from the apparatus is shown in Figure 8.

window Bulld table

Figure 6: An illustration of the of the optical DSLR camera
and flash lamps used for acquiring in-situ data [28].

Light scheme #3

Light scheme #4

Light scheme #5

Figure 7: Powder bed images captured under different
lighting schemes [28]. The different lighting schemes are
obtained with the help of flash-lamps which are placed at
various locations in the machine, as shown in Figure 6.
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Figure 8: Optical images of a layer of thin-walls being
manufactured at different orientation angles in the X-Y plane
with respect to the re-coater blade direction, namely,(a)0°,(b)
60°, (c) 90°.

Figure 9: Schematic representation of the two different hatch
patterns used to build thin-walls. (a) Hatch pattern used to build
thin-walls with aspect ratio (I/t) ranging from 36 to 157, i.e.,
thickness of 0.07 mm to 0.3 mm (thin-wall number 2 to 25). (b)
Hatch pattern used to build thin-wall number 1 with aspect ratio
(I/t) of 183, i.e., thickness of 0.06 mm.

4 Research Methodology

This section is stratified into two sub-sections, wherein section
4.1 discusses the methodology applied to the offline XCT scan
image data, and section 4.2 describes the convolutional neural
network used to analyze the layer-wise in-situ powder bed
images. The research approach is schematically reported in
Figure 10.

Specifically, section. 4.1 has two phases, the first involves
analysis of the XCT scan images of the thin-wall geometry (as
seen in Figure 10), wherein certain quality-related features are
extracted from the XCT scan images. These features are then
combined in the form of Mahalanobis-squared distance which is
used as a surrogate measure for tracking the build quality of the



thin-wall. The next phase is to predict the thin-wall quality from
optical images. A convolutional neural network (CNN) is used
for this purpose, in which the network is trained to predict the
Mahalanobis-squared distance given in-situ process images of
thin-wall boundaries. This type of neural network is referred to
as a deep learning convolutional neural network because of the
use of convolutional filters on different scales, which learn
various aspects of the image from coarse to fine levels. The
modalities of neural network are discussed in detail in section
4.2.

4.1 Offline Analysis of build quality using layer-wise

XCT scan images

Firstly, the XCT scan of each test artifact is visually
(qualitatively) examined layer-by-layer. The following
inferences are rendered based on these visual observations.
Figure 11 shows an example of layer number 18 under three
different angular orientations.

e  Thin-walls with thickness less than 0.1 mm, cannot be built
irrespective of their orientation. The cause of this failure
appears to be the overly thin cross-section of the thin-wall,
which are too weak to resist the lateral force exerted by the
re-coater.

e From the visual inspection of the zoomed in portion of a
thin-wall with aspect ratio [/t= 44 (thickness= 0.25
mm)(Figure 11(b1), (b2) and (b3)), it is evident that the parts
printed at orientation angle of 90° exhibit poor quality as
compared to those printed in the other two orientation
angles. The probable reason is that in the thin-walls built at
0° and 60° orientation angle (0) the resistance offered by the
thin-wall structure to the flow of the powder is less than that
at 90°.

These observations are further examined and confirmed by
analyzing the sliced images of the thin-wall XCT scans.

Figure 10: Outline of the methodology adopted to analyze XCT scan data with the help of CAD data for the thin-walls, and in-process

powder bed images analysis.

Orlentationangle 60°

Orientation angle 90°

Thin-wall number 20 (thickness=0.25 mm)

Layer number 18
o - T, — )
60° -
Shrinkage Improper fusion Reduction in width
w ——— —

Figure 11: The thin-wall part for three different orientations. The top panel shows the part at layer number 18, and the bottom panel
shows the individual thin-wall number 20 (I/t= 44, thickness= 0.25 mm). The 90° orientation has the worst build quality.
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(c) Single thin-wall extracted from thin-wall
pad

!

{(d) Thin-wall binarized for feature
extraction (see section 4.1)

(a) Intensity based image registration on
‘affine’ transform used to register layer-
wise XCT scan images with a layer of CAD
image.

(b) Registered XCT scan
image.

extraction (see section 4.1)

Figure 12:The extraction of thin-walls from XCT scan images. The thin-wall highlighted in (b) is extracted to as shown in (c). The -wall

images shown in (d) and (e) are used for feature extraction.

At the outset, XCT scan for each thin-wall part is sliced with a
layer thickness of 10 um, resulting in 300 images of each part.
Subsequently, the CAD file for each test artifact is also sliced
with an identical resolution of 10 um to register the CAD and
XCT scan of layer-wise images.

Next, an intensity-based image registration approach is used to
perform the affine transformation and align the XCT scan image
to the corresponding CAD slice. Further, individual thin-walls
are extracted from the registered images, and each thin-wall is
further processed as depicted in Figure 12, to extract quantitative
features as described shortly. The advantage of using these
quantifiers is that they are based on two- dimensional image-
based measurements, and involve simple matrix algebra, thus
significantly reducing the computational burden involved for
feature extraction.

A brief explanation regarding these features is provided
herewith. Consider an XCT scan image I of a thin-wall of size
x1 pixel x y1 pixel ( Figure 13(a)); the binarized segment of this
image [ is Iy (Figure 13 (a2)), and I is a segment that depicts
the edge of the thin-wall, as shown in Figure 13 (al)). The y1
dimension for the thin-wall image I, and y2 dimension of the
thin-wall image J (Figure 13 (b)) are equal to 800 pixels and
remain constant over all thin-wall images, i.e., if an image is
considered to be a matrix with each pixel representing a matrix
element, the number columns remains constant. On the contrary,
the x1 and x2 dimensions for thin-wall image [ and J, vary
contingent to the thin-wall thickness, but it remains constant
throughout all layers for a given thin-wall, for example, x1 = x2
= 36 pixels for thin-wall number 25, and x1 = x2 = 32 for thin-
wall number 20.

image !

Image Ip

Thin-wall
derf\ty
- . ) {1 ]

{b) »

Figure 13: Thin-wall features extracted from XCT scan images.
(a) Image I is a thin-wall extracted using methodology shown in
Figure 12. Image I (al) and Image I (a2) show three features
extracted from the thin-walls, namely, thin-wall thickness, thin-
wall edge smoothness, and thin-wall density. (b) Image J depicts
the discontinuity in a thin-wall, which is used as the fourth
feature.

Thin-wall thickness (t): This feature quantifies the average
thickness of a thin-wall as follows. The edge of the thin-wall as
shown in Figure 13(al) and Figure 14, is obtained by applying a
filter on the binarized image of thin-wall segment /. Further, the
thickness of the thin-wall segment at a given location is
determined by subtracting the first non-zero entry in a column of
image pixel by the last entry in the same pixel column, as shown
in Figure 14. This procedure estimates the distance between two
edges of the thin-wall at a given location. The average of the
distance between two edges of the thin-wall over the length (y1)
is termed as the thickness of a thin-wall segment () (Eqn. (1)).

(a2)
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where, a;;= first non-zero row index, a,;= second non-zero row
index, m = number of columns.

Thin-wall thickness f
First non-zero

Second non-zero element index

Figure 14: A representation of the thin-wall thickness feature.
The pixels highlighted in red represent the pixels in the upper
and lower edge of the thin-wall.

Thin-wall density (p;): The thin-wall density quantifies un-
melted or areas devoid of sufficient material that result in pores
in an individual thin-wall (Figure 13 (a2)) . To estimate this
quantifier, the pixels within the boundary of the thin-wall image,
is averaged to estimate p; (Eqn. (2)).

moyr I3
p; = % for 1>0
0 forl <0

2)

where, I(i,j) is the pixel within the thin-wall, and M is the
number of pixels within the boundary of a thin-wall image. In
Figure 13 (a2), a pixel in a thin-wall image is shown.

Thin-wall edge smoothness (ag): This feature represents the
degree of smoothness of the thin-wall XCT scan image
boundary. The non-zero linear row indices of the upper edge
(a4;) and lower edge (a,;) of the thin-wall, as shown in Figure
14, are recorded. The degree of smoothness of a thin-wall edge
is evaluated by calculating the standard deviation of the column
indices of each edge. This standard deviation is interpreted as
follows: higher the standard deviation, lower will be the edge
smoothness, and vice-versa.

The dotted-line in Figure 13 (al) represents the edge of the thin-
wall obtained from the computer-aided design (CAD) of the thin-
wall. As observed visually, the CAD thin-wall edge has constant
a, and a, values, and thus they have no standard deviation.
Whereas, the thin-wall edges of the XCT scan images have
highly varying values of edge indices, which results in high
standard deviation, and in turn poor edge smoothness.

Thin-wall discontinuity (§): The discontinuity of a thin-wall is
highlighted in a yellow dotted-box in Figure 13 (b). If the thin-
wall edge is discontinuous, it is likely to be porous, and it is more
likely to fail in a structure application. It is defined as the number
of instances (&) that the non-zero row indices @,; and a,; (from

Eqn. (1))are not(dqtected in a thin-wall. A near-zero value of
thin-wall segment discontinuity is preferred.

The above four quantifiers for each thin-wall XCT scan image
are arranged in a matrix called the quantifier matrix (X?), for
each orientation 8 = {0°, 60°, 90°} as shown in Figure 15. The
quantifier matrix of each orientation angle is compared with
features extracted from the CAD images of the thin-walls. The
features extracted from the CAD thin-wall images are considered
to be ideal, and hence, the features extracted from the XCT scan
images are compared with them. The metric used for this
comparison is known as the Mahalanobis-squared distance
((DE)?) for orientation angle 6 and thin-wall number 7 = {1, 2,
3...,25} as shown in Eqn. (3). Mahalanobis-squared distance is
a metric used in multi-variate data analysis, i.e., data which has
multiple variables in it. This distance accounts for the variability
in the data due to multiple variables, and determines the degree
of variability of each variable with the help of the inverse of the
variance-covariance matrix which is also known as the precision
matrix. In this work, we calculate the Mahalanobis-squared
distance ((DZ)?) of a thin-wall with a particular aspect ratio
(I/t) and orientation angle (8) with respect to the corresponding
CAD image of the thin-wall.
(DF)¢ = (K¢ — ™ Y'sTU(RE —u™)

where, X? is the feature vector of a particular thin-wall image i
for orientation 8 = {0°, 60°, 90°}s which is to be compared with
the thin-wall features extracted from a CAD image of the thin -
wall. The features extracted from the CAD image are stored in
u™ and S~ is the precision matrix (inverse of the covariance
matrix) derived from the feature matrix of XCT scan images of
a thin-wall with a particular orientation.

D) =X —pg™)sT I — ™)
—0° —
X, =[t on pn 6]
#™ = [tcap Oscap) Pecap Scap]

Figure 15: A representation of the arrangement of the quantifier

matrix for a thin-wall at 0° orientation angle. X—10° represents the
features extracted from the first XCT scan thin-wall image with
a particular aspect ratio and an orientation angle of 0°. u™ is the
vector with features extracted from the CAD images of a thin-
wall with a particular aspect ratio.



4.2 Online Analysis of in-process powder bed
images

This section details the approach adopted to detect build
failure in thin-walls by two-phase analysis of the in-process
powder bed images: (1) the extraction of individual images of
the thin-wall from the noisy powder bed images, and (2)
predicting the quality of these images as inputs to a
convolutional neural network (CNN) which is trained to predict
the build quality of the thin-wall. We used an image filtering
technique to sharpen the image and negate the noisy background
as depicted in Figure 16. The resulting binary image has clearly
demarcated edges for each of the thin-walls. This step is done
with the help of linear filtering operation which is termed as
convolution filter (not be confused with a CNN). Convolution is
an operation in which the output pixel is the weighted sum of a
set of neighborhood input pixels. The matrix of weights is called
the convolution kernel, also known as the filter. Figure 16 shows
the convolution kernel used in this case where, x is a variable
which controls the intensity of sharpening of the image i.e.
higher the value of x, the higher the erosion of the image.

Convolutional Optical In-situ Powder Fillered Powder Bed
Kemel Bed Image Image
(Input} {Output)

Figure 16: A schematic representation of image de-noising done
by employing image sharpening. This technique uses a filter
matrix which convolves around an image.

Convolutional neural network architecture

This section will briefly contrast the concept of the convolutional
neural networks (CNN), vis-a-vis conventional feed-forward
artificial neural networks (ANN) before providing mathematical
details. ANNSs are neurophysiologically inspired algorithms with
neurons as their elementary units [29]. These neurons receive
multiple inputs from either the input data or other neurons, later
of the two being recurrent, and subsequently create an output by
employing a non-linear transformation. The learning process to
obtain the weights of the neurons is carried out using an
algorithmic approach [30].

In a feed-forward ANN, neurons in a layer are fully connected,
i.e., aneuron will be connected to all the neurons in the preceding

and succeeding layer, and are independent of each other. Due to
this reason, ANNs are computationally expensive to implement
back-propagation when analyzing high volume of data, and
further, ANNs do not encapsulate the spatiotemporal correlation
within the data, such as images.

For example, when analyzing an image of size 200x200x3, the
resulting number of weights for the neurons in an ANN would
be 200x200x3= 120,000. Furthermore, the large number of
neurons will be required which will then lead to a large number
of parameters, thus causing overfitting. In contrast in a CNN, a
neuron in one layer will only be connected to a certain number
of neurons in the previous layer, thus avoiding full-connectivity,
and consequently, overfitting. Accordingly, CNNs are multi-
layered neural networks that have been used in detecting patterns
from image pixels, such as, faces, hands, logos, text etc. [31, 32].

The CNN used in this work has four blocks along with a fully-
connected layer, regression layer, input and output layer as seen
in Figure 17. The input to the network is a binarized optical
image of a single thin-wall in the size of 28 x 28 pixels which is
extracted from de-noised layer-wise powder bed image, and the
output is the corresponding Mahalanobis-squared distance of the
thin-wall at the given layer. Each block has a 2D convolution
layer with a rectified linear unit (ReLU), a batch normalization
layer, and an average pooling layer.

Convolutional layer

The convolutional layer extracts features from an image by
learning various convolving filters [33]. In this CNN
architecture, we use an increasing number of filters in each
convolutional layers to extract complex features from the
images. A filter, is a f X f matrix, which convolves around an
image and creates a feature map by performing a dot product
operation on the input image, as shown in Figure 18. The manner
in which the filter convolves over the input image is determined
by a hyper-parameter called stride. Figure 18 (bl), is an
illustration of a filter sliding over an image with stride set to 1.
To preserve the dimensions of the images being convolved, the
images are padded with zeros, i.e. the images are surrounded by
zeros, before the convolution operation, and this hyper-
parameter is called padding.

The convolutional neural network used in this work has four
blocks, and each block has a convolutional layer in it, as shown
in Figure 17. As the network gets deeper, the number of filters
in each convolutional layer increases to extract high-level
features from the image. This is represented in Figure 20 that the
input image has a depth of 1 as it is a grayscale image, but the
first convolution layer has depth of 8 filters. The depth of a layer
is a function of the number of filters employed in a convolution
layer, and the last convolution layer in block 4 has a depth of 32
filters.
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Figure 17: Flow-chart of the architecture of the convolutional neural network employed in this work to predict Mahalanobis-squared
distance.
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Figure 18: Schematic representation of convolution operation.

Batch normalization layer

The input given to a neural network is normalized, i.e. it has zero
mean and unit variance, and this is done to quicken the learning
process of the network. When the input variables of a network
have extremely varying ranges, for example, one variable has a
range of 1-1000, whereas the second one has a range of 1-2, the
network parameters will have correspondingly wide range. This
leads to a wide cost function in the direction of the variable with
a wide range as it contributes more towards learning of the
network. Due to this imbalance in the variables and the resulting
elongated cost function, it becomes cumbersome to train a
network. On the contrary, a neural network with normalized
inputs has a circular cost function resulting in increased ease and
speed of training. Likewise, it is advisable in deep neural
network to normalize the input to every layer of the network,
with the help of a technique called batch normalization [34].

When updating weights in one layer in a deep neural network, it
is assumed that the layer’s inputs will remain constant. However,
the distribution of the input might change every time we update
the weights, as the previous layer parameters are updated as well.
In deep models, even small changes in earlier layers amplify
drastically in the later layer, which significantly changes the
input distribution to the later layers as well, making it hard for
them to adapt to the changes, and thus, hindering convergence.
This phenomenon is referred to as internal covariate shift, and
batch normalization layers are employed in a deep neural
network to prevent this phenomenon.

In batch normalization, the inputs are firstly normalized to zero
mean and unit variance as shown below in Eqn. (4)-(6). This
normalization is not performed on the whole input population at
once, but is done on the input in batches [34].

1 (4)
Up = Ez ag

k=1
2 1 N 2 ©)
Og~ = ZZ(ak — Hp)
k=1
Qg —Up
= = ©
Op

where, pp and o0z? are the mean and variance of the batch

respectively. @i is the normalized input value, and n is the batch
size. Subsequently, the normalized inputs (@) are scaled and
shifted to have an arbitrary mean and variance of the input
distribution (Eqn. (7)).

O = 0 a\k +

where, 0, is an output of the batch normalization layer, and
accordingly is the input to the activation (ReLU) layer. § is the
scaling factor, and «a is the shifting factor, and these factors
facilitate in randomizing the mean and variance of the batch
inputs. Intuitively, it can be argued that these factors nullify the
effect of normalization, as prior batch normalization, the data
had random mean and variance. Taking a step backward, we can
see that the mean and variance without batch normalization are
dependent on excessively high number of parameter, such as,
weights and biases of each neuron, activations etc., but in case
of batch normalization they are dependent only on the two
scaling and shifting factors which are trainable and learnable by
the network.

When testing the network, the up and g2 are not available, so
the estimated of the population expectation and population
variance are calculated as follows.

Exialx] = OEx[x] + (1 — @) pug (®
Vare,1[x] = 6Var,[x] + (1 — a) og? 9)

In our neural network architecture used in this work, a batch
normalization layer is employed in, as shown in Figure 17.

Rectified linear unit (ReLU) layer

The rectified linear unit (ReLU) is an activation function (non-
linearity) which sets all negative values to zero [35]. It is
formally given as follows.

_(x ifx=0 (10)

f@) = {o ifx<0

The ReLU layers are preferred over other activation functions,
such as the sigmoid function and the hyperbolic tangent (tanh)
function, because it is found that the ReLU layers significantly
accelerate the convergence of the stochastic gradient descent,
i.e., the ability of the network to reach its cost/loss function
minima [36]. Further, the ReLU layers are computationally
inexpensive as they only involve thresholding of an activation
matrix, whereas the sigmoid and tanh functions need heavy
computations. Also, the ReLU layers avoid vanishing of the
gradient which is quite evident in the hyperbolic tangent function
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and sigmoid. Neural networks that are trained with the help of
gradient-based learning method and back propagation method
often encounter the vanishing-gradient problem [35].

These methods, provide the neurons with updated weights that
are proportional to the partial derivative of the error function (the
difference between the value predicted by the network and the
actual value) with respect to the current weights of the neurons
in each training iteration. When activation functions such as the
tanh function and sigmoid function are used, the vanishing
gradient problem is observed, as they have gradients in the range
(0, 1), and backpropagation computes gradients by the chain
rule. This results in the multiplication of n of these small
numbers to compute gradients of the initial layers in an n -layer
network, meaning that the gradient (error signal) decreases
exponentially with n while the initial layers train very slowly. In
other words, vanishingly small gradients prevent the training of
the network as the weights remain constant after every iteration.
In our network, we have used the ReLU layer in each block after
the batch normalization layer as seen in Figure 17.

Average pooling layer

The average pooling layers are used to down-sample the spatial

arrangement of an image (Figure 20) to reduce the computation,
and also to avoid over-fitting, i.e., the network gets highly fitted
to the training data, and cannot adapt to the inputs of the testing
data, thus performing poorly. The spatial reduction is performed
as it is sufficient to know the relative position of features with
respect to other features, rather than knowing the exact feature
location. Similar to a convolution layer, in an average pooling
layer, filters of a given size move around an image in a non-
overlapping manner, resulting in a single value which is the
average of all values of the image in the given filter size (Figure
19) [31]. Along with filter size, another hyper-parameter that the
average pooling layer employs is stride, which dictates the
movement of the filter over the image. The layer individually
operates on each of the depth slice of the input image, thus
conserving that dimension (Figure 20), and also the feature data
accumulated from various filters.

In this work, we use average pooling layers in the first two blocks
as seen in Figure 17. This layer is not used in the succeeding
layers to avoid significant reduction in the spatial dimensions of
the image resulting in feature data loss. The pooling layers use a
filter size of 2x2, and a stride of 2 in both blocks (Figure 19).
This results in the reduction of input image size from 28x28, to
7x7 at the end of the second block.

Qutput image ‘B’

= (Avs + 412+ 4p1 + 422)
A f=xf

Input image ‘A’ By

Figure 19: Schematic representation of an average pooling
operation.

Fully connected layer

In a fully connected layer, all the neurons in the adjacent layers
are pairwise connected to each other, but neurons in the same
layers are independent of each other. Unlike a convolutional
layer, the fully connected layer is a one-dimensional vector
which has all activations of the previous layer, as seen in Figure
20. Due to this drastic change in dimension, fully—connected
layers are placed at the end of the network, and convolution
layers cannot be placed after them. Each convolution layer
identifies features (e.g., lines, edges, curves, shapes) with the
help of various filters, the fully-connected layer fuses these
features together and come up with a prediction close to the
desired output. The fully-connected layer in this network has
1568 inputs from the previous non-linearized (ReLU)
convolution layer, and has a single output which is passed to the
regression layer.

The mean-squared-error (MSE) is calculated between the
predicted output and the desired output. In this regression layer,
based on this MSE, weights of all neurons in the network are
updated to obtain the optimum minima of the MSE. For training
the network, values of hyper-parameters like maximum epochs
(maximum number of iterations), and the learning rate for
weights, were heuristically set to achieve the lowest value of
MSE. The value of maximum epochs was chosen in such a way
that it avoided under the network training, and also avoided over-
fitting. Similarly, learning rate of weights, which is a hyper-
parameter that controls the adjustment of the weights with
respect to the cost function gradient, is set to an optimum level
so as to preserve the network speed, and also not to miss out on
a local minima of the cost function. For training the
convolutional neural network, the input used is an individual
thin-wall extracted from de-noised layer-wise powder bed
images, and the output is the corresponding Mahalanobis-
squared distance of the fin obtained from the XCT scan image
analysis. The data is allocated in the following manner: 75% for
training the network, and 25% for testing the network. The data
is randomly selected for training the network, and then the
remaining data is used to test the network.
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Figure 20: A schematic representation of the convolutional neural network architecture

5 Experimental Results

This section reports the results from the XCT scan image
analysis described in section 4.1 in terms of the design rules for
thin-wall structures, and in-process monitoring of thin-walls
using the CNN described in section 4.2.

5.1 Design rules based on offline XCT scan images

In this section, we describe the results from analysis of the XCT
slices, using the methodology described in section 4.1. The
analysis leads to an understanding of the effect of orientation and
aspect ratio of thin walls on the build quality of thin-wall
structures.

For a fixed aspect ratio, the thin-walls oriented at 0° to the re-
coater direction, have a superior build quality. In other words,
when the long edge of the thin-wall is parallel to the direction in
which the re-coater moves, the thin-wall feature tends to build
with fewer flaws, compared to those thin-wall structures that are
built with the broadside of the thin-wall exposed to the re-coater.
At an orientation of 90°, where the broadside of the thin-wall is
perpendicular to the re-coater motion, the build quality is worst.
However, the thin-wall built at orientation angle of 0° at layer
number 22 is without any discernable flaws, see Figure 21 (a).
Those built at 60° and 90° depict non-smooth edges and
discontinuity. Furthermore, at layer number 25, irrespective of

the orientation angle have completely collapsed. In contrast, for
a smaller aspect ratio, such as the thin-wall shown in Figure 21
(b), a discernable difference in the thin-wall quality at the three
different orientations is seen only at layer 35. Here, the thin-wall
built at 0° as well as 60° have distinctly better geometric
integrity, compared to the thin-wall built at 90°. An observation
drawn from Figure 21 is that a threshold value of 15 can be
arbitrarily set for the Mahalanobis-squared distance, beyond
which the thin-wall quality is typically poor. We note that this
observation is specific to particular work.

a) Avoid building thin-walls below 0.15 mm thickness, i.e.,
aspect ratio (1/t) above 73, because they tend collapse.

b) Avoid building thin-walls at angles inclined to the re-coater
blade. In other words, avoid presenting the broadside of the
thin-wall to the re-coater.

¢) The maximum recommended height for a thin-wall of

thickness t is approximately 9x t.

Next, we have summarized these results in terms of Figure 22,
which maps the build height versus the aspect ratio averaged
across all orientation angles, and recommended build height to
achieve good geometrical integrity. The error bar in Figure
22(left) represents the standard deviation seen across all
orientation angles for a given aspect ratio. Figure 22(right)
depicts this information in greater detail with the recommended
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height to build thin-walls with good geometrical integrity, and
the height at which a thin-walls collapse with respect at a given

orientation and aspect ratio. The design rules formulated from
this work are summarized and pictorial represented in Figure 23.
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Figure 21: Mahalanobis-squared distance for different orientations (8) of different thin-walls.(a) Thin-wall number 10, with aspect ratio
(I/t) of 73, i.e., length = 11 mm and thickness t= 0.15 mm. (b) Thin-wall number 20, with aspect ratio (I/t) of 44, i.c., length [= 11

mm and thickness t= 0.25 mm.
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Figure 22: (left) Maximum recommended height to build thin-walls of good geometrical integrity with respect to aspect ratio (1/t).
(right) Maximum build height of thin-walls to get good geometrical integrity, and height at which thin-walls collapse, with respect to
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Description Unsuitable

The orientation angle (0)
of 90° should be avoided
while building thin-wall
structures.

(

The length-to-thickness
aspect ratio (I/t) of a
thin-wall  should not
exceed 73 (11 mm/ 0.15
mm).

The height of a thin-wall
should not be more than
nine times its thickness.

Suitable

Figure 23: Summary and pictorial description of the design rules formulated from this work for thin-wall features built using metal laser

powder bed fusion additive manufacturing process.

5.2 Results from in-process powder bed image

analysis

In this section, we use the online layer-by-layer image data to
detect the onset of defects in a thin-wall part. The key idea is to
apply the convolutional neural network (CNN) described in
section 4 to predict the Mahalanobis-squared distance as a
surrogate or derived measure of build quality. The network
training procedure and network architecture are explained in
great detail in section 4.2. Figure 24 shows the representative

orientations. These results indicate that the CNN derived
Mabhalanobis-squared distance results, closely track those
obtained using XCT scan image analysis of the thin-wall. As a
consequence, instead of expensive post-process XCT scan
measurements, the in-process image data can be used for
detecting process defects in LPBF. As a quantitative measure to
ascertain the closeness between the observed and CNN-
predicted Mahalanobis-squared distance trends, we used the
Pearson coefficient. For trends shown in Figure 24, the Pearson
correlation coefficient ranges from 80% to 98%.
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Figure 24: Mahalanobis-squared distance prediction via CNN regression for thin-wall number 23 (I/t= 39, length= 11 mm, thickness=
0.28 mm) with (a) 0° orientation, (b) 60° orientation and (c) 90° orientation.
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6 Conclusions and future work

This work investigated the quality of thin-wall parts made using
the LPBF process as a function of their build orientation and
aspect ratio (length-to-thickness ratio, [/t). Furthermore, in-
process optical image data of the powder bed was acquired to
detect build flaws. Specific contributions from this work are as
follows:

1) The effect of aspect ratio and wall thickness was quantified
by extracting statistical features from the offline X-ray
computed tomography (XCT) scan images of thin-wall
parts. The following results are reported herein from the
perspective of design of additive manufacturing (AM). The
number of layers (vertical height) of a thin-wall part that can
be built without damage is contingent on its aspect ratio (/¢
ratio), and orientation to the recoater (0). It is recommended
that a thin-wall be built with 0° orientation with the re-coater
blade. In other words, the broadside of the fin should not, as
far as possible, face the re-coater direction. The maximum
vertical height of the thin-wall should be less than 9 times
of its thickness.

2) Four quantifiers were defined and extracted to characterize
the geometric integrity of the thin-wall. These quantifiers
were aggregated in terms of the Mahalanobis-squared
distance, which were positively correlated with the visual
quality of the thin-wall.

3) From the in-process quality monitoring vista, we trained a
convolutional neural network (CNN) to predict the thin-wall
quality (in terms of the Mahalanobis-squared distance)
based on in-process optical images of the powder bed. For
the representative cases tested, the Pearson correlation
coefficient (p) between the Mahalanobis-squared distance
measured from the XCT scan signatures, and the CNN
derived Mahalanobis-squared distance was in the range of
80% to 98%.

This work thus makes a foray into deriving quantitative rules for
optimal design of LPBF parts, specifically thin-wall structures.
Furthermore, we have developed a feature-free deep learning
approach to detect build flaws in LPBF parts. Consequently, this
work makes an effort to complete the following link from the
LPBF perspective: Part design — In-process data — Build
quality. However, the following question remain to be
addressed, which we will endeavor to answer in our future forays
in the area:

1) What is the generalizability of the design rules proposed to
reduce variations in material and thin-wall structures for
different process conditions such as, laser power and
velocity?

2) How do the proposed design rules for thin-walls carry over
to internal thin-wall features, and thin-wall with overhang
geometries?

3) What is the ability of the CNN proposed in this work to
apply to other types of features through transfer learning?
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Appendix

This table summarizes the design rules that were discussed in section 2.

Ref. Description Unsuitable

Suitable

The thickness of element transitions’
(explained in section 2.1) should be
such that the cross-sectional area in
the building plane remains constant or
reduces.

To obtain good outer edge
morphology, smooth edges should be
used instead of sharp edges.

V/

) |

Sharp inner-
edge

To remove support structures with Support matesial
ease, inner edges should be rounded. |

Adam et al. [25]

1T

-4-
—l

Minimum  gap  between  two
consecutive features should be more
than 0.2 mm.
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Ref.

Description

Unsuitable

Suitable

Thomas [23]

Thin-wall  structures  should have
thickness greater than 0.4 mm

The gap between consecutive features
should be more than 0.3 mm.

To build overhang geometries chamfers
above the orientation angle of 45° with
respect to the build platform should be
used as support structures.

Thickeess
<0A4rm

L.

Surfaces should be built vertical, i.e.
orientation angle of 90° to the build
platform to get good surface finish.

Kranz et al. [22]

Thin-wall structures should be built at an
orientation angle of 90° with reference to
the build platform, and 45° with reference
to the re-coater blade direction to get
good quality build.

Similar to Daniel Thomas, Kranz et al
suggest that the thin-wall thickness
should be more than 0.4 mm.

Through bore holes should be preferred
over blind holes. The bore diameter
should exceed 2 mm for well-defined
holes.
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