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Abstract

We prove that the density function of the gradient of a sufficiently smooth
function S:Q cRY - R, obtained via a random variable transformation of
a uniformly distributed random variable, is increasingly closely approximated
iS

j as the free parameter
T

by the normalized power spectrum of ¢ = exp(

7 — 0. The frequencies act as gradient histogram bins. The result is shown
using the stationary phase approximation and standard integration tech-
niques and requires proper ordering of limits. We highlight a relationship
with the well-known characteristic function approach to density estimation,
and detail why our result is distinct from this method. Our framework for
computing the joint density of gradients is extremely fast and straightforward
to implement requiring a single Fourier transform operation without expli-
citly computing the gradients.

Keywords

Stationary Phase Approximation, Density Estimation, Fourier Transform,
Wave Functions, Characteristic Functions

1. Introduction

Density estimation methods provide a faithful estimate of a non-observable
probability density function based on a given collection of observed data [1] [2]
[3] [4]. The observed data are treated as random samples obtained from a large

population which is assumed to be distributed according to the underlying den-
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sity function. The aim of our current work is to show that the joint density func-

tion of the gradient of a sufficiently smooth function S (density function of VS§)

A
can be obtained from the normalized power spectrum of ¢ = exp(l—j as the
T

free parameter 7 tends to zero. The proof of this relationship relies on the
higher order stationary phase approximation [5]-[10]. The joint density function
of the gradient vector field is usually obtained via a random variable transforma-
tion, of a uniformly distributed random variable X over the compact domain
QcRY, using VS as the transformation function. In other words, if we define
a random variable Y =VS(X) where the random variable X has a wuniform
distribution on the domain Q (X ~UNI(Q)), the density function of Y
represents the joint density function of the gradient of S.

In computer vision parlance—a popular application area for density estima-
tion—these gradient density functions are popularly known as the histogram of
oriented gradients (HOG) and are primarily employed for human and object
detection [11] [12]. The approaches developed in [13] [14] demonstrate an ap-
plication of HOG—in combination with support vector machines [15]—for de-
tecting pedestrians from infrared images. In a recent article [16], an adaption of
the HOG descriptor called the Gradient Field HOG (GF-HOG) is used for
sketch-based image retrieval. In these systems, the image intensity is treated as a
function S(X) over a 2D domain, and the distribution of intensity gradients
or edge directions is used as the feature descriptor to characterize the object ap-
pearance or shape within an image. In Section 5 we provide experimental evi-
dence to showcase the efficacy of our method in computing the density of these
oriented gradients (HOG). The present work has also been influenced by recent
work on quantum supremacy [17] [18] [19]. Here, the aim is to draw samples
from the density function of random variables corresponding to the measure-
ment bases of a high-dimensional quantum mechanical wave function. This
work may initially seem far removed from our efforts. However, as we will show,
the core of our density estimation approach is based on evaluating interval
measures of the squared magnitude of a wave function in the frequency domain.
For this reason, our approach is deemed a wave function approach to density es-
timation and henceforth we refer to it as such.

In our earlier effort [20], we primarily focused on exploiting the stationary
phase approximation to obtain gradient densities of Euclidean distance func-
tions (R) in two dimensions. As the gradient norm of R is identically equal to 1
almost everywhere, the density of the gradient is one-dimensional and defined
over the space of orientations. The key point to be noted here is that the dimen-
sionality of the gradient density (one) is one less than the dimensionality of the
space (two) and the constancy of the gradient magnitude of R causes its Hessian
to vanish almost everywhere. In Lemma 2.3 below, we see that the Hessian is
deeply connected to the density function of the gradient. The degeneracy of the
Hessian precluded us from directly employing the stationary phase method and
hence techniques like symmetry-breaking had to be used to circumvent the va-
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nishing Hessian problem. The reader may refer to [20] for a more detailed ex-
planation. In contrast to our previous work, we regard our current effort as a
generalization of the gradient density estimation result, now established for ar-

bitrary smooth functions in arbitraryfinite dimensions.

1.1. Main Contribution

We introduce a new approach for computing the density of Y, where we express

the given function Sas the phase of a wave function ¢, specifically

iS(x) , ,
$(x)=exp for small values of 7, and then consider the normalized
T

power spectrum—squared magnitude of the Fourier transform—of ¢ [21]. We
show that the computation of the joint density function of ¥ =VS may be ap-
proximated by the power spectrum of ¢, with the approximation becoming in-
creasingly tight point-wise as 7 — 0. Using the stationary phase approximation,
a well known technique in asymptotic analysis [9], we show that in the limiting
case as 7 —> 0, the power spectrum of ¢ converges to the density of ¥; and
hence can serve as its density estimator at small, non-zero values of 7. In other
words, if P(u) denotes the density of ¥, and if P.(u) corresponds to the
power spectrum of ¢ at a given value of 7, Theorem 3.2 constitutes the fol-

lowing relation,

ll_l}l(} P (u)du= IP(u)du

Ny (o) Ny (wo)

where N, (u,) is a small neighborhood around u,. We would like to em-
phasize that our work is fundamentally different from estimating the gradient of

a density function [22] and should not be semantically confused with it.

1.2. Significance of Our Result

As mentioned before, the main objective of our current work is to generalize our
effort in [20] and demonstrate the fact that the wave function method for ob-
taining densities can be extended to arbitrary functions in arbitrary finite di-
mensions. However, one might broach a legitimate question, namely “What is
the primary advantage of this approach over other simpler, effective and tradi-
tional techniques like histograms which can compute the HOG say by mildly
smoothing the image, computing the gradient via (for example) finite differences
and then binning the resulting gradients?”. The benefits are three fold:

* One of the foremost advantages of our wave function approach is that it re-
covers the joint gradient density function of § without explicitly computing
its gradient. Since the stationary points capture gradient information and
map them into the corresponding frequency bins, we can directly work with
Swithout the need to compute its derivatives.

* The significance of our work is highlighted when we deal with the more
practical finite sample-set setting wherein the gradient density is estimated

from a finite, discrete set of samples of Srather than assuming the availability
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of the complete description of Son Q. Given the N samples of Son Q, it
is customary to know the approximation error of a proposed density estima-
tion method as N —> . In [23] we prove that in one dimension, the
point-wise approximation error between our wave function method and the
true density is bounded above by O(1/N) when 7 oc1/N . For histograms
and kernel density estimators [1] [2], the approximation errors are estab-
lished for the integrated mean squared error (IMSE) defined as the expected
value (with respect to samples of size V) of the square of the ¢, error be-

tween the true and the computed probability densities and are shown to be
2 4
O[N 3} [24] [25] and O[N 5] [26] respectively. Having laid the foun-

dation in this work, we plan to invest our future efforts in pursuit of similar
upper bounds in arbitrary finite dimensions.

* Furthermore, obtaining the gradient density using our framework in the fi-
nite N sample setting is simple, efficient, and computable in O(N log N )

time as elucidated in the last paragraph of Section 4.

1.3. Motivation from Quantum Mechanics

Our wave function method is motivated by the classical-quantum relation,
wherein classical physics is expressed as a limiting case of quantum mechanics
[27] [28]. When S'is treated as the Hamilton-Jacobi scalar field, the gradients of
S correspond to the classical momentum of a particle [29]. In the parlance of
quantum mechanics, the squared magnitude of the wave function expressed ei-
ther in its position or momentum basis corresponds to its position or momen-
tum density respectively. Since these representations (either in the position or
momentum basis) are simply (suitably scaled) Fourier transforms of each other,
the squared magnitude of the Fourier transform of the wave function expressed
in its position basis is its quantum momentum density. However, the time inde-
pendent Schrédinger wave function ¢(x) (expressed in its position basis) can
iS (x

T

be approximated by exp[ J as 7—>0 [28]. Here 7 (treated as a free

parameter in our work) represents Planck’s constant. Hence the squared magni-
iS (x

tude of the Fourier transform of exp( J corresponds to the quantum

momentum density of S. The principal results proved in the article state that the
classical momentum density (denoted by P) can be expressed as a limiting case
(as 7 —0) of its corresponding quantum momentum density (denoted by P.),

in agreement with the correspondence principle.

2. Existence of Joint Densities of Smooth Function Gradients

We begin with a compact measurable subset Q of RY on which we consider
a smooth function §:Q — R . We assume that the boundary of Q is smooth
and the function Sis well-behaved on the boundary as elucidated in Appendix B.
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Let ‘H, denote the Hessian of Sat alocation xeQ andlet det(H

X

) denote
its determinant. The signature of the Hessian of Sat x, defined as the differ-
ence between the number of positive and negative eigenvalues of 7, , is
represented by o, . In order to exactly determine the set of locations where the

joint density of the gradient of Sexists, consider the following three sets:

A, ={x:VS(x)=uf, 1)
B={x:det(H,)=0}, (2.2)

and
C={VS(x):xeBUQ}. (2.3)

Let N(u)=|A,|. We employ a number of useful lemma, stated here and
proved in Appendix A.

Lemma 2.1. [ Finiteness Lemma) A, Iis finite for every u¢C.

As we see from Lemma 2.1 above, for a given u ¢ C, there is only a finite col-
lection of x € that maps to u under the function VS§. The inverse map
Vst (u) which identifies the set of xe () that maps to u under VS is
ill-defined as a function as it is a one to many mapping. The objective of the fol-
lowing lemma (Lemma 2.2) is to define appropriate neighborhoods such that the
inverse function VS, required in the proof of our main Theorem 3.2, when
restricted to those neighborhoods is well-defined.

Lemma 2.2. [Neighborhood Lemmal For every u, ¢ C, there exists a closed

neighborhood N, (u,) around w, such that N, (u,)N\C is empty. Fur-

thermore, if |Au0| >0, N, (u,) can be chosen such that we can find a closed

nejghborhood N, (x) around each xe A, satistying the following condi-

tions:

1) VS(N,] (x))z/\/ (u,)-

n

2) det(Hy) #0,Vye ./\/'77 (x) .
3) The inverse function VS (u): N, (uy) > N, (x) is well-defined.

4) For y,ze Mz (x),ay =0,.

Lemma 2.3 [Density Lemma) Given X ~ UNI(Q), the probability density of
Y=VS(X) on R?-C isgivenby
1 N(u) 1

P(u)= 1(9) Z‘ ‘det(ka)

(2.4)

where x, € A,,Vk e {1, 2,---,N(u)} and p Iis the Lebesgue measure.

From Lemma 2.3, it is clear that the existence of the density function P at a
location ueR? necessitates a non-vanishing Hessian matrix (det(H)iO)
Vx e A,. Since we are interested in the case where the density exists almost
everywhere on R“, we impose the constraint that the set B in (2.2), compris-
ing all points where the Hessian vanishes, has zero Lebesgue measure. It follows

that 4(C)=0. Furthermore, the requirement regarding the smoothness of §
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d

(SecC” (Q)) can be relaxed to functions Sin CT1 (Q) where dis the dimen-

sionality of € as we will see in Section 3.2.2.

3. Equivalence of the Densities of Gradients and the Power
Spectrum
Define the function F.:R? —»C as
1 i
Fr(u)zTJ.Qexp[—[S(x)—u-x]jdx (3.1)
(2rejru(@p N

or 7>0. F is very similar to the Fourier transform of the function

iS(x
exp[ ( )] The normalizing factor in F, comes from the following lemma
T

(Lemma 3.1) whose proof is given in Appendix A.

Lemma 3.1. [/ntegral Lemma] F, e I (Rd) and |F, |, =1.
The power spectrum defined as
P.(u)=F. (u)F. () 62)

equals the squared magnitude of the Fourier transform. Note that P, >0. From
Lemma (3.1), we see that IPT (u)du =1. Our fundamental contribution lies in
interpreting P, (u) as a density function and showing its equivalence to the
density function P(u) defined in (2.4). Formally stated:

Theorem 3.2. For u, ¢C,

. 1 .
‘EIL%WIT%JVQ(MO)P (u)du=P(u,)
where N, (u,) isaball around wu, ofradius o .

Before embarking on the proof, we would like to emphasize that the ordering
of the limits and the integral as given in the theorem statement is crucial and
cannot be arbitrarily interchanged. To press this point home, we show below
that after solving for P, the lim_,, P does not exist. Hence, the order of the
integral followed by the limit 7 — 0 cannot be interchanged. Furthermore,
when we swap the limits of & and 7, we get

oo 1 .
l{f(}yﬂm/\[a{mﬂ (w)du =1im P, (u, )
which also does not exist. Hence, the theorem statement is valid only for the

specified sequence of limits and the integral.
3.1. Brief Exposition of the Result

To understand the result in simpler terms, let us reconsider the definition of the

iS(x
scaled Fourier transform given in (3.1). The first exponential exp {LJ isa
T

. o : u-x |
varying complex “sinusoid”, whereas the second exponential exp(— ] isa
T
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fixed complex sinusoid at frequency ¥  When we multiply these two complex
T

exponentials, at low values of 7, the two sinusoids are usually not “in sync” and
tend to cancel each other out. However, around the locations where VS(x)=u,
the two sinusoids are in perfect sync (as the combined exponent is stationary)
with the approximate duration of this resonance depending on det(7, ). The
value of the integral in (3.1) can be increasingly closely approximated via the sta-
tionary phase approximation [9] as

F ()=

1 N(u)

u(Q) = det (71, )|

The approximation is increasingly tight as 7 — 0. The power spectrum ( P, )

exp(é[S(xk)—u-xk]+tik %j

gives us the required result ! Z:/:(f) ! except for the cross phase
#(Q) ‘det(ka)

factors S(x,)—S(x,)—u-(x,—x,) obtained as a byproduct of two or more
remote locations x, and x, indexing into the same frequency bin u, ie,

x, # x,,but VS(x,)=VS(x,)=u.The cross phase factors when evaluated are

1
equivalent to cos(—j , the limit of which does not exist as 7 — 0. However,
T
integrating the power spectrum over a small neighborhood N, (u) around u
removes these cross phase factors as 7 tends to zero and we obtain the desired

result.

3.2. Formal Proof of Theorem 3.2

We wish to compute the integral

P jexp{i(s(x)_u.x)}dx (33)

0 Crepape

at small values of 7 and exhibit the connection between the power spectrum
P.(u) and the density function P(u). To this end define
W (x;u)=S(x)—u-x. The proof follows by considering two cases: the first case
in which there are no stationary points and therefore the density should go to
zero, and the second case in which stationary points exist and the contribution
from the oscillatory integral is shown to increasingly closely approximate the
density function of the gradientas 7 —0.

case (i): We first consider the case where N(u)=0, ie, ugVS(Q). In
other words there are no stationary points [9] for this value of u. The proof
that this case yields the anticipated contribution of zero follows clearly from a
straightforward technique commonly used in stationary phase expansions. We
assume that the function § is sufficiently well-behaved on the boundary such
that the total contribution due to the stationary points of the second kind [9]
approaches zero as 7 — 0. (We concentrate here on the crux of our work and

reserve the discussion concerning the behavior of S on the boundary and the re-
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lationship to stationary points of the second kind to Appendix 8.) Under mild
conditions (outlined in Appendix B), the contributions from the stationary
points of the third kind can also be ignored as they approach zero as 7 tends to
zero [9]. Higher order terms follow suit.
Lemma 3.3. Fix u, ¢C.If A, = then Fr(uo)=0(\/;) as >0,
Proof. To improve readability, we prove Lemma 3.3 first in the one dimen-

sional setting and separately offer the proof for multiple dimensions.

3.2.1. Proof of Lemma 3.3 in One Dimension

Let s denote the derivative (1D gradient) of S. The bounded closed interval Q
is represented by Q=[b,,b,], with the length L= u(Q)=b,-b. As u,¢C,
thereisno xeQ for which s(x)=u, . Recalling the definition of ¥, namely
W (x;u)=S(x)—ux, we see that W'(x)#=0 and is of constant sign in [5;,b,].
It follows that W (x) is strictly monotonic. Defining v =¥ (x), we have from
(3.1)

Fol) = o exp 2 (1)
1
(v (v))

the monotonicity of ¥ . Integrating by parts we get

R B e S EC 1)

Here #(v)= . The inverse function is guaranteed to exist due to

1 T T

v (),
_?L‘(m exp(?jt (v)dv.

(3.4)

It follows that

< \/; ! + ! + ¥(%2) "(v)|dv
s | g o 01

3.2.2. Proof of Lemma 3.3 in Finite Dimensions
As V¥ (x;u,)#0,Vx, the vector field
V¥

v(x)=—rs

[V

is well-defined. Choose m>1 (with this choice explained below) and for
j€{l,2,---,m}, recursively define the function g,(x) and the vector field

v, (x) as follows:

and
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Using the equality
exp[%‘l‘(x;uo )jgj (x)
=it[Voy, (x)}exp(é‘l’(x; uo)j—irv-{v_,- (x)exp(i‘l’(x;uo )ﬂ

T

(3.5)

where V- is the divergence operator, and applying the divergence theorem m
times, the Fourier transform in (3.3) can be rewritten as
1 L \m i
F () =————(ie) Je. (x)exp(;\l’(x)jdx
(ne)iu(@y O
1
d

(3.6)

S (0e) [ [, () mJesp| £ () v

a4 1
(2nz)2 pu(Q)2 = 0

which is similar to (3.4).
We would like to add a note on the differentiability of § which we briefly

mentioned after Lemma 2.3. The divergence theorem is applied m >% times

to obtain sufficiently higher order powers of 7z in the numerator so as to
d

exceed the 72 term in the denominator of the first line of (3.6). This necessi-

d
tates that Sis at least 5+1 times differentiable. The smoothness constraint on

d
Scan thus be relaxed and replaced by S e C? 1 (Q).

The additional complication of the d-dimensional proof lies in resolving the
geometry of the terms in the second line of (3.6). Here n is the unit outward

normal to the positively oriented boundary 0 parameterized by y. As

m> % , the term on the right side of the first line in (3.6) is 0(\/;) and hence

can be overlooked. To evaluate the remaining integrals within the summation in
(3.6), we should take note that the stationary points of the second kind for
¥ (x) on Q correspond to the first kind of stationary points for ¥ (x(y))

on the boundary 0Q. We show in case (ii) that the contribution of a stationary
d-1

point of the first kind in a d—1 dimensional space is O[TZJ. As the

dimension of 0Q is d—1, we can conclude that the total contribution from
d-1

the stationary points of the second kind is 0{12} After multiplying and di-

d
viding this contribution by the corresponding 7/ and 72 factors respectively,

it is easy to see that the contribution of the /" integral (out of the n integrals in

i1
the summation) in (3.6) is O(Tj 2 ] , and hence the total contribution of the m

integrals is of O(\/; ) Here, we have safely ignored the stationary points of the

third kind as their contributions are minuscule compared to the other two kinds
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as shown in [9]. Combining all the terms in (3.6) we get the desired result,
namely F, (uo) = 0(\/; ) For a detailed exposition of the proof, we encourage
the reader to refer to Chapter 9 in [9].

We then get P (u,)=0(r). Since VS(Q) is a compact set in R’ and
u, £VS(Q), we can choose a neighborhood N, (u,) around u, such that
for ue N, (u,), no stationary points exist and hence

lim P (u)du=0.
lim Nq{%) ? (1)

Since the cardinality N(u) of the set A, defined in (2.1) is zero for
ue N, (u,), the true density P(u) of the random variable transformation
Y =VS(X) givenin (2.4) also vanishes for ue N, (u,).

case (ii): For u, ¢C,let N(u,)>0. In this case, the number of stationary
points in the interior of Q is non-zero and finite as a consequence of Lemma

2.1. We can then rewrite

F.(u))=G+ - 1 j exp[i‘l’(x;uo)]dx, (3.7)
(2n7)2 p(Q)2 *= Ny (x) ¢
where
_ i .
G=}[exp(r‘lf(x,u0)]dx (3.8)

N(u) ;
and the domain K =Q\ )./\/,7 (x,). The closed regions {/\/',] (x, )}N( " are

k=1 k=1

obtained from Lemma 2.2.

Firstly, note that the the set K contains no stationary points by construction.
Secondly, the boundaries of K can be classified into two categories: those that
overlap with the sets N ) (xk) and those that coincide with T'=0Q . Propi-
tiously, the orientation of the overlapping boundaries between the sets K and
each N, (xk) are in opposite directions as these sets are located at different
sides when viewed from the boundary. Hence, we can exc/ude the contributions
from the overlapping boundaries between K and N, (x,) while evaluating
F.(u,) in (3.7) as they cancel each other out.

To compute G we leverage case (i), which also includes the contribution from

the boundary I, and get
G = (u,7)=0(Vr). (3.9)

To evaluate the remaining integrals over N, (x, ), we take into account the

contribution from the stationary point at x, and obtain

I exp(i%’(x;uo)]dx
PACY Y
o (3.10)
2 .
:Mexp(i‘{’(xk;uo)-i-iﬁxkE)"’ez(uo’r)’
‘det(ka) 4 !
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where
d+l d+l
ez(uo,r):O[T 2 ]Sr 29 (uy) (3.11)
for a continuous bounded function y, (u) [9]. The variable ain (3.10) takes the

1
value 1 if x, lies in the interior of €, otherwise equals 5 if x, €0Q . Since

u ¢ C, stationary points do not occur on the boundary and hence a=1 for our

case. Recall that o, is the signature of the Hessian at x, . Note that the main
d

term has the factor 72 in the numerator, when we perform stationary phase in
d dimensions, as mentioned under the finite dimensional proof of Lemma 3.3.

Coupling (3.7), (3.8), and (3.10) yields

1 &) n 1
F,.(uy)= 1 Zexp[;‘l’(xk;uo)ﬂoxk Zj—+e3(u0,r) (3.12)

p(Q) ldet(,, )|

where
& (uy,7) =€ (uy,7)+ & (,7) =

(2n0): w(@2)

As el(uo,T)ZO(\/;) and 62(u0,1)20(72j from (3.9) and (3.11) re-
spectively, we have ¢, (uo,r) =O(\/; ) Based on the definition of the power
spectrum P, in (3.2), we get

1 M) 1
w() & Jaa(n, )

Pr(”o):

| N(uow(uo)exp{;[‘P(xk;"o)—‘P(XI;"o)}”(%—O'x,)z

#(0) 5 T \/‘det(ka)\/‘det(Hxl) G139

where ¢, (u,) includes both the squared magnitude of ¢, (u,,7) and the cross
terms involving the first term in (3.12) and ¢, (u,,7) . Notice that the main term

in (3.12) can be bounded independentlyof © as

=1,V #0

eXp(i\P(xk;uo)+i0'xk %j
T

and det(ka ) #0,Vk . Since ¢ (u,,7)= 0(\/;) , we get € (u,,7)= O(\/;) .
Furthermore, as ¢, (u,,7) can also be uniformly bounded by a function of u
for small values of 7, we have

lim J. e (uy,7)du=0. (3.14)

70
Nr]("O)

Observe that the term on the right side of the first line in (3.13) matches the
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anticipated expression for the density function P(u,) given in (2.4). The cross
phase factors in the second line of (3.13 arise due to multiple remote locations

x, and x, indexing into u. The cross phase factors when evaluated can be

1 . 1
shown to be proportional to cos(—). Since lim__, cos(—] is not defined,
T T

lim,_,, P, (u,) does not exist. We briefly alluded to this problem immediately

70 "1

following the statement of Theorem 3.2 in Section 3. However, the following

lemma which invokes the inverse function VS (u): N, (1) > N, (x)

—defined in Lemma 2.2 where x is written as a function of u—provides a
simple way to nullify the cross phase factors. Note that since each VSU" is a
bijection, N(u) doesn’t vary over N, (). Pursuant to Lemma 2.2, the Hes-

and o also remain constant over N, (u, ).

(u) x;(u)
Lemma 3.4. [ Cross Factor Nullifier Lemma] The integral of the cross term in

sian signatures o

the second line of (3.13) over the closed region N, (uy) approaches zero as
7—>0,ie, Vk#l

lirr(} - ] (3.15)
N () B B
/(o0 ‘det(ka w ) det (7, )
The proof is given in Appendix A. Combining (3.14) and (3.15) yields
1 N(u) 1
lim I P (u)du=——-— J. > ———du= I P(u)du. (3.16)
70 X 1(Q) AT ‘det(ka(,‘)) Ny (110

Equation (3.16) demonstrates the equivalence of the cumulative distributions

corresponding to the densities P.(#) and P(u) when integrated over any

sufficiently small neighborhood N, (u,) of radius 7. To recover the density
P(u),welet a<n and take the limit with respect to o .

Taking a mild digression from the main theme of this paper, in the next sec-
tion (Section 4), we build an informal bridge between the commonly used cha-
racteristic function formulation for computing densities and our wave function
method. The motivation behind this section is merely to provide an intuitive

reason behind our Theorem 3.2, where we directly manipulate the power
spectrum of ¢(x) = exp(@} into the characteristic function formulation
stated in (4.2), circumventing the need for the closed-form expression of the
density function P(u) given in (2.4). We request the reader to bear in mind
the following cautionary note. What we show below cannot be treated as a for-
mal proof of Theorem 3.2. Our attempt here merely provides a mathematically
intuitive justification for establishing the equivalence between the power spec-
trum and the characteristic function formulations and thereby to the density
function P(u). On the basis of the reasons described therein, we strongly be-
lieve that the mechanism of stationary phase is essential to formally prove our

main theorem (Theorem 3.2). It is best to treat the wave function and the cha-
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racteristic function methods as two different approaches for estimating the
probability density functions and not reformulations of each other. To press this
point home, we also comment on the computational complexity of the wave

function and the characteristic function methods at the end of the next section.

4. Relation between the Characteristic Function and Power
Spectrum Formulations of the Gradient Density

The characteristic function y, (w) for the random variable Y =VS(X) is

defined as the expected value of exp(iw-Y), namely

Wy (w)zE[exp(ti)]:ﬁjgexp(iw~VS(x))dx. (4.1)

Here

© denotes the density of the uniformly distributed random variable
U

Xon Q.
The inverse Fourier transform of a characteristic function also serves as the
density function of the random variable under consideration [30]. In other
words, the density function P(u) of the random variable ¥ can be obtained

via
P(u)= ;)dj'wy ()exp(—iw-u)dw

(2 (42)

1
= —” exp(z’w . [VS(x) - u] dxdw.
(2m)" ()™ )

Having set the stage, we can now proceed to highlight the close relationship
between the characteristic function formulation of the density and our formula-

tion arising from the power spectrum. For simplicity, we choose to consider a

d
region € that is the product of closed intervals, Q= H[a.,bi] . Based on the

i
i=l1

expression for the scaled Fourier transform F, (u) in (3.1), the power spec-
trum P, (u) is given by
1

P (u)= —Jﬂjﬂexp{é[S(x)—S(y)—(u '(x—y))]}dxdy.

(2ne)’ ()
Define the following change of variables,
_X-y Xty

Y
T 2

aT 0T . o .
Then x=v +7, y=v - and the integral limits for @ and v are given

by
dla —-b b —a
W — 1 1 s 1 1
i=1 T T
d w.|T |t
Vw:H ai+| l| 7bi_| l|
i1 2 2
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where @, is the /" component of @ . Note that the Jacobian of this transfor-
mation is 7¢. Now we may write the integral P, (u) in terms of these new va-

riables as
P () =——[£(o.u)do (4.3)

where

£(@,u)= é[exp{é{S(v+?j—S(V—?ﬂ}exp(—iu~a))dv. (4.4)

The mean value theorem applied to § (V + ?) -5 [V —?j yields

é(o,u)= _[ exp(z’w-[VS(z(v,w))—u])dv, (4.5)

Vo

where
(o) =e[v+ 2+ 1-0) v-2)

with ¢€[0,1]. When @ is fixed and 7 >0, z(v,®)—>v and so for small
values of 7 we get
é(o,u)~ I exp(iar[VS(v)—u])dv. (4.6)
nevy,

Again we would like to drive the following point home. We do nof claim that
we have formally proved the above approximation. On the contrary, we believe
that it might be an onerous task to do so as the mean value theorem point z in
(4.5) is unknown and the integration limits for v directly depend on 7. The
approximation is stated with the sole purpose of providing an intuitive reason
for our theorem (Theorem 3.2) and to provide a clear link between the characte-

ristic function and wave function methods for density estimation.
Furthermore, note that the integral range for @ depends on 7 and so

1
when o= O(—j , ot »0 as 7—> 0 and hence the above approximation for
T

&(@,u) in (4.6) might seem to break down. To evade this seemingly ominous
problem, we manipulate the domain of integration for @ as follows. Fix an
ee(0,1) andlet

w=wumwr :(W\ﬁ[_MfsMi]]Uﬁ[_MiaMi]
i=1 i=1

where

M. E(b. —a,.)z'“l. (4.7)

i i

By defining M, as above, note that in W*, @ is deliberately made to be
0(15'1) and hence @wr—>0 as 7—>0 . Hence the approximation for
&(w,u) in (4.6) might hold for this integral range of @ . For consideration of
@ € W™, recall that Theorem 3.2 requires the power spectrum P, (u) to be in-
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tegrated over a small neighborhood N, (u,) around u,. By using the true
expression for &(w,u) from (4.4) and performing the integral for u prior to

® and v, we get

_[ I é(w,u)dodu

N (o)
[ Jenlio [ss(etvo)]| [ en(oru)an evio

Since both M, in (4.7) and the lower and the upper limits for ®,, namely

+Q—Q

respectively approach o« as 7 — 0, the Riemann-Lebesgue lemma

[21] guarantees that V@ € W™, the integral

j exp(—io-u)du
N ()
approaches zero as 7 — 0. Hence for small values of 7, we can expect the
integral over W’ to dominate over the other. This leads to the following ap-
proximation,
1

Na{mpr () (2n)" () Na<uo>WIr§(w’ e .
as 7 approaches zero. Combining the above approximation with the approxi-
mation for &(e,u) given in (4.6) and noting that the integral domain for @
and v approaches R? and Q respectively as 7 — 0, the integral of the
power spectrum P, (u) over the neighborhood N, (u,) atsmall values of 7

in (4.3) can be approximated by

I P (u)du~ + J ” exp(ia)-[VS(v)—u])dvdwdu.
A (27)" 4(Q) At 2
This form exactly coincides with the expression given in (4.2) obtained through
the characteristic function formulation.

The approximations given in (4.6) and (4.8) cannot be proven easily as they
involve limits of integration which directly depend on 7 . Furthermore, the
mean value theorem point z(v,@) in (4.5) is arbitrary and cannot be deter-
mined beforehand for a given value of 7 . The difficulties faced here emphasize
the need for the method of stationary phase to formally prove Theorem 3.2.

As we remarked before, the characteristic function and our wave function
methods should not be treated as mere reformulations of each other. This dis-
tinction is further emphasized when we find our method to be computationally
more efficient than the characteristic function approach in the finite sample-set
scenario where we estimate the gradient density from N samples of the function
S. Given these N sample values S and their gradients VS, the characteristic
function defined in (4.1) needs to be computed for Nintegral values of @ . Each
value of @ requires summation over the N sampled values of exp(ia)VS (x)) .
Hence the total time required to determine the characteristic function is
O(N 2) . The joint density function of the gradient is obtained via the inverse
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Fourier transform of the characteristic function, which is an O(NlogN) op-
eration. The overall time complexity is therefore O(Nz). In our wave
iS(x)

T

function method the Fourier transform of exp( J at a given value of 7

can be computed in O(NlogN) and the subsequent squaring operation to
obtain the power spectrum can be performed in O(N). Hence the density
function can be determined in O(NlogN), which is more efficient when

compared to the O(N 2) complexity of the characteristic function approach.

5. Experimental Evidence in 2D

We would like to emphasize that our wave function method for computing the
gradient density is very fast and straightforward to implement as it requires
computation of a single Fourier transform. We ran multiple simulations on
many different types of functions to assess the efficacy of our wave function me-
thod. Below we show comparisons with the standard histogramming technique

where the functions were sampled on a regular grid between
1
[-0.125,0.125]x[-0.125,0.125] at a grid spacing of PR For the sake of

convenience, we normalized the functions such that the maximum gradient
magnitude value (||VS||) is 1. Using the sampled values S, we first computed

the fast Fourier transform of exp ) at 7=0.00004, then computed the
T

power spectrum followed by normalization to obtain the joint gradient density.
We also computed the discrete derivative of Sat the grid locations to obtain the
gradient VS =($’xl,§x2) and then determined the gradient density by histo-
gramming. For better visualization, we marginalized the density along the radial
and the orientation directions. The plots shown in Figure 1 provide visual, em-
pirical evidence corroborating our theorem. Notice the near-perfect match be-
tween the gradient densities computed via standard histogramming and our
wave function method. The accuracy of the density marginalized along the
orientations further strengthens our claim made in Section 1 about the wave
function method serving as a reliable estimator for the histogram of oriented
gradients (HOG). In Figure 2, we verify the convergence of our estimated den-
sity to the true density as 7 — 0 in accordance with Theorem 3.2.

6. Conclusions

Observe that the integrals

I (uy)= J.N,](uo)Pf (w)du, I(”O):IN

P(u)d

rz(“O) (u) "
give the interval measures of the density functions P. and P respectively.
Theorem 3.2 states that at small values of 7, both the interval measures are ap-
proximately equal, with the difference between them being O(«/? ) which con-

verges to zero as 7 — 0. Recall that by definition, P, is the normalized power

T
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Gradient magnitude density obtained

from histogramming Orientation density obtained from histogramming
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Figure 1. Comparison results. 1) Left: Gradient magnitude density, 2) Right: Gradient orientation density. In each sub-figure, we

plot the density function obtained from histogramming and the wave function method at the top and bottom respectively.

A
spectrum of the wave function ¢(x)=exp (ﬂJ Hence we conclude that
T

the power spectrum of ¢(x) can potentially serve as a joint density estimator
for the gradient of Sat small values of 7, where the frequencies act as gradient
histogram bins. We also built an informal bridge between our wave function
method and the characteristic function approach for estimating probability den-
sities, by directly trying to recast the former expression into the latter. The diffi-
culties faced in relating the two approaches reinforce the stationary phase me-
thod as a powerful tool to formally prove Theorem 3.2. Our earlier result proved
in [20], where we employ the stationary phase method to compute the gradient
density of Euclidean distance functions in two dimensions, is now generalized in
Theorem 3.2 which establishes a similar gradient density estimation result for
arbitrary smooth functions in arbitrary finite dimensions.

As mentioned earlier, in [23] we have established error bounds in one dimen-

sion for the practical finite sample-set setting, wherein the gradient density is
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Figure 2. Convergence of our wave function method as 7 — 0. The value of 7 is steadily decreased from right to left, top to
bottom.

estimated from a finite, discrete set of samples, instead of assuming that the
function is fully described over a compact set Q. In the future, we plan to ex-
tend this work and derive similar finite sample error bounds for gradient density

estimation in arbitrary higher dimensions.
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Appendix A. Proof of Lemmas

1) Proof of Finiteness Lemma

Proof. We prove the result by contradiction. Observe that 4, 1is a subset of
the compact set Q. If A4 is not finite, then by Theorem (2.37) in [31], A,
has a limit point x,eQ. If x,€0Q, then ue(C giving a contradiction.
Otherwise, consider a sequence {x, }:0:1 , with each x, € A,, convergingto x,.

Since VS(x,)=u for all n, from continuity it follows that VS(x,)=u and

hence x,e€ A, .Let p, =x,—-x, and h, z% . Then
p,
i VS(xn ) —VS(xO)—onpn _o,

n—® |

b,

where the linear operator H, is the Hessianof S at x, (obtained from the
set of derivatives of the vector field VS:R? — R’ at the location x,). As
VS(x,)=VS(x,)=u and M, islinear, we get

limH, h, =0.

n—0

Since h, is defined above to be a unit vector, it follows that H,_  is rank defi-
cient and det('on)ZO. Hence x,€B and ueC resulting in a contradic-
tion.

2) Proof of Neighborhood Lemma

Proof. Observe that the set B defined in (2.2) is closed because if x, isa
limit point of B, from the continuity of the determinant function we have
det(’HxO ) =0 and hence x, €B. Being a bounded subset of 2, B is also
compact. As 0Q is also compact and VS is continuous, C is compact and
hence R’-C is open. Then for u, ¢ C, there exists an open neighborhood
N, (u,) for some r>0 around u, such that N, (u,)NC =0 . By letting

n= %, we get the required closed neighborhood N, (u,)c N, (u,) contain-
ing u,.

Since det(H,)#0,Vx e A, , points 1, 2 and 3 of this lemma follow directly
from the inverse function theorem. As |.Au0| is finite by Lemma 2.1, the closed

neighborhood N, (#,) can be chosen independently of xe.4, so that
0
points 1 and 3 are satisfied Vx e A, . In order to prove point 4, note that the

eigenvalues of H, are all non-zero and vary continuously for xe N, (x). As
the eigenvalues never cross zero, they retain their sign and so the signature of the
Hessian stays fixed.

3) Proof of Density Lemma
Proof Since the random variable X is assumed to have a uniform distribution

on Q, its density at every location x () equals . Recall that the

H(Q
random variable Y is obtained via a random variable transformation from X,
using the function VS§. The Jacobian of VS§ at a location x € Q equals the

Hessian H, of the function Sat x. Barring the set C corresponding to the
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union of the image (under VS§) of the set of points B (where the Hessian va-
nishes) and the boundary 0Q, the density of ¥ exists on ueR‘~C and is
given by (2.4). Please see well known sources such as [30] for a detailed explana-
tion.

For the sake of completeness we explicitly prove the well-known result stated
in Integral Lemma 3.1.

4) Proof of Integral Lemma

Proof. Define a function H (x) by

1: if xeQ;

otherwise.

Let f(x):H(x)exp[iS(x)J.Then,

F,(u>=%Jf<x>eXp[‘i(”"‘)]dx.

(2nc): () i

Letting v = 2 and G(v)=F,(u),we get
T

()2 u(Q) G(»)

x)exp(—iv-x)dx.
(275)
As f is /! integrable, by Parseval’s Theorem (see [21]) we have

JIf () de=u(@)

By noting that

F,(ve) dv=p(Q)[|F, (u)] du

JIf (o) ax=|

j exp[isix)]

5) Proof of Cross Factor Nullifier Lemma

the result follows.

Proof. Let p,,(u) denote the phase of the exponential in the cross term (ex-

cluding the terms with constant signatures), Ze.,
P (1) =¥ (x, (u);0) =¥ (x, (u);u)
=S (20, () =S (3 (w)) = - (x, () = x, (1)).
Its gradient with respect to u equals

Vpk,() J, [VS(xk( )) u]—Jx[ [VS(x,(u))—uJ—xk(u)+x,(u)

X .
where J,is the Jacobian of x(u) at x, whose (i,j)th term equals 6_1
.

i

(A.1)

(with a similar expression for J_ ). Since VS(xk (u)) = VS(x, (u)) =u, we get
Vp,,(u)=x,(u)—x, (u)# 0. This means that the phase function of the expo-
nential in the statement of the lemma is non-stationary and hence does not con-

tain any stationary points of the first kind. Let
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qkl (A.2)
\/‘det det(Hxl ()
Si . pkl(”)
ince Vp,, #0, consider the vector field fk,z( ) > q,\, and
as before note that ” p k/ u)"
eXp(iPk,/ (”)j%,l (u)
(A.3)

=it[V-f,, (")]exp(épk,l (u)j —itV.- {fk,, (")GXPGPI«J (")ﬂ

where V- is the divergence operator. Inserting (A.3) in the second line of

(3.13), integrating over N, (), and applying the divergence theorem we get

[ exp(% Pes (u)j G (u)du

=ir | [V- fkyl(u)]exp(épk‘l(u)jdu (A4)

,’\/,] (”0 )

e (1 )p(_p (u(v))jdv.

84’\/’,] (”0)

Here n is the unit outward normal to the positively oriented boundary
ON, (uo) parameterized by v . In the right side of (A.4), notice that all terms
inside the integral are bounded. The factor 7 outside the integral ensures that
. i
lim f exp(;pky, (M)Jq,ﬂ (u)du=0.

70

N7]("0)

Appendix B. Well-Behaved Function on the Boundary

One of the foremost requirements for Theorem 3.2 to be valid is that the func-
tion W(x;u)=S(x)—u-x have a finite number of stationary points of the
second kind on the boundary for almost all . The stationary points of the
second kind are the critical points on the boundary I' =0CQ where alevel curve

‘P(x;u) =c¢ touches I' for some constant ¢ [9] [10]. Contributions from the
d+1

second kind are generally 0[2’2], but an infinite number of them could pro-

d
duce a combined effect of 0(2’2 J, tantamount to a stationary point of the first

kind [9]. If so, we need to account for the contribution from the boundary which
could in effect invalidate our theorem and therefore our entire approach. How-
ever, the condition for the infinite occurrence of stationary points of the second
kind is so restrictive that for all practical purposes they can be ignored. If the
given function S'is well-behaved on the boundary in the sense explained below,
these thorny issues can be sidestepped. Furthermore, as we will be integrating
over u to remove the cross-phase factors, it suffices that the aforementioned

finiteness condition be satisfied for a/lmostall u instead of for all u.
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Let the location x e€I" be parameterized by the variable y, ie, x(y). Let
O(x) denote the Jacobian matrix of x(y) whose (i,/)" entryis given by

0; (%) :a_yj

Stationary points of the second kind occur at locations x where
V¥ (x(y);u) =0, which translates to

O(x)(VS—u)=0. (B.1)

This leads us to define the notion of a well-behaved function on the boundary.

Definition: A function S'is said to be well-behaved on the boundary provided
(B.1) is satisfied only at a finite number of boundary locations for almost all
ueC.

The definition immediately raises the following questions: 1) Why is the as-
sumption of a well behaved S weak? and 2) Can the well-behaved condition im-
posed on S be easily satisfied in all practical scenarios? Recall that the finiteness
of premise (B.1) entirely depends on the behavior of the function § on the
boundary I'. Scenarios can be manually handcrafted where the finiteness as-
sumption is violated and (B.1) is forced to be satisfied at all locations. Hence it is
meaningful to ask: What stringent conditions are required to incur an infinite
number of stationary points on the boundary? We would like to convince the
reader that in all practical scenarios, S will contain only a finite number of sta-
tionary points on the boundary and hence it is befitting to assume that the func-
tion S'is well-behaved on the boundary. The reader should bear in mind that our
explanation here is not a formal proof but an intuitive reasoning of why the
well-behaved condition imposed on Sis reasonable.

To streamline our discussion, we consider the special case where the boundary
I' is composed of a sequence of hyper-planes as any smooth boundary can be
approximated to a given degree of accuracy by a finite number of hyper-planes.
On any given hyperplane, Q(x) remains fixed. Recall that from the outset, we
omit the set C (ie, u¢C) which includes the image under VS of the
boundary I'=0Q.Hence VS #u foranypoint xeI' for u¢C. Since the
rank of Qis d—1 and VS—u is required to be orthogonal to all the d -1
rows of Q for condition 33 to hold, VS —u is confined to a 1-D subspace. So if
we enforce VS to vary smoothly on the hyperplane and not be constant, we
can circumvent the occurrence of an infinite number of stationary points of the
second kind for all #. Additionally, we can safely disregard the characteristics
of the function § at the intersection of these hyperplanes as they form a set of
measure zero. To press this point home, we now formulate the worst possible
scenario where VS is a constant vector ¢. Let D denote a portion of I’
where VS =¢.Let u=u, and u=u, result in infinite number of stationary
points of the second kind on D . As VS—u is limited to a 1-D subspace, we
must have f—u, =A(t—u,) for some A#0, ie, u =(1-A)t+Au,. So in

any given region of I', there is at most a 1-D subspace (measure zero) of u

DOI: 10.4236/apm.2019.912051

1057 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2019.912051

K. S. Gurumoorthy et al.

which results in an infinite number of stationary points of the second kind in
that region. Our well-behaved condition is then equivalent to assuming that the
number of planar regions on the boundary where VS is constant is finite.

The boundary condition is best exemplified with a 2D example. Consider a

line segment on the boundary x, = mx, +b . Without loss of generality, assume

1
the parameterization y =x,. Then Q ={ } . Equation (B.1) can be interpreted
m

as S, +mS, =u, + mu, where, S, :g’_S' So if we plot the sum S, +mS, for
X

points along the line, the requirement reduces to the function S, +mS, not os-
cillating an infinite number of times around an infinite number of ordinate loca-
tions u, +mu, . It is easy to see that the imposed condition is indeed weak and is
satisfied by almost all smooth functions. Consequently, we can affirmatively
conclude that the enforced well-behaved constraint (B) does not impede the
usefulness and application of our wave function method for estimating the joint

gradient densities of smooth functions.
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