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a b s t r a c t

Second order β-decay processes with and without neutrinos in the final state are key
probes of nuclear physics and of the nature of neutrinos. Neutrinoful double-β decay
is the rarest Standard Model process that has been observed and provides a unique
test of the understanding of weak nuclear interactions. Observation of neutrinoless
double-β decay would reveal that neutrinos are Majorana fermions and that lepton
number conservation is violated in nature. While significant progress has been made
in phenomenological approaches to understanding these processes, establishing a con-
nection between these processes and the physics of the Standard Model and beyond
is a critical task as it will provide input into the design and interpretation of future
experiments. The strong-interaction contributions to double-β decay processes are non-
perturbative and can only be addressed systematically through a combination of lattice
Quantum Chromoodynamics (LQCD) and nuclear many-body calculations. In this review,
current efforts to establish the LQCD connection are discussed for both neutrinoful and
neutrinoless double-β decay. LQCD calculations of the hadronic contributions to the
neutrinoful process nn → ppe−e−ν̄eν̄e and to various neutrinoless pionic transitions are
reviewed, and the connections of these calculations to the phenomenology of double-β
decay through the use of effective field theory (EFTs) is highlighted. At present, LQCD
calculations are limited to small nuclear systems, and to pionic subsystems, and require
matching to appropriate EFTs to have direct phenomenological impact. However, these
calculations have already revealed qualitatively that there are terms in the EFTs that can
only be constrained from double-β decay processes themselves or using inputs from
LQCD. Future prospects for direct calculations in larger nuclei are also discussed.
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1. Introduction

The study of nuclear beta decays has been instrumental in the development of the modern theory of electroweak
interactions encoded in the Standard Model (SM) [1]. Single beta decay of the neutron and nuclei with sufficiently high
precision has been used to test the SM and probe new physics in charged-current electroweak interactions [2]. Double
beta decay [3] (DBD) is a rare nuclear process, observable only in certain nuclei with even numbers of protons and
neutrons (even–even nuclei) for which single beta decay is energetically forbidden. In such decays, two neutrons decay
into two protons with emission of two electrons and two anti-neutrinos. Neutrinoful double-β (2νββ) decay is the rarest
SM process whose rate has been measured [4] and it therefore offers a non-trivial test of our understanding of weak
interactions in nuclei.

It was realized as early as 1939 [5] that a neutrinoless variant of double beta decay could occur if neutrinos are
Majorana fermions [6]. In the neutrinoless double beta decay mode (0νββ), two neutrons convert into two protons with
emission of two electrons and no neutrinos (nn → ppe−e−), thus changing the number of leptons by two units. Since
lepton number (more precisely at the quantum level the difference of baryon and lepton number, B−L) is conserved in the
SM, observation of 0νββ would be direct evidence of new physics, with far reaching implications: it would demonstrate
that neutrinos are Majorana fermions [7], shed light on the mechanism of neutrino mass generation [8–10], and probe
a key ingredient, lepton number violation (LNV), needed to generate the matter–antimatter asymmetry in the universe
via ‘‘leptogenesis’’ [11]. Because of these outstanding scientific motivations, a vigorous worldwide experimental program
exists searching for 0νββ . Current experimental limits are very stringent [12–24]; for example, the 0νββ lifetime of 136Xe
is T 0ν

1/2 > 1.07× 1026 yr [16]. Next-generation, ton-scale, experiments aim to improve sensitivity by one or two orders of
magnitude.

By itself, the observation of 0νββ would not immediately resolve the underlying mechanism of LNV. In fact, ton-scale
0νββ searches will constrain LNV from a variety of mechanisms at unprecedented precision [25,26]. For example, the
standard see-saw mechanism for neutrino mass generation originates at very high scale [8,10], through the exchange of
heavy right-handed (RH) neutrinos which leave behind a single dimension-5 operator at low-energy [27] written in terms
of lepton and Higgs fields, suppressed by the scaleΛ associated with LNV, which in this case coincides with the mass of RH
neutrinos (Λ ∼ MR). Below the electroweak scale the dimension-5 operator provides a Majorana mass term for the light
neutrinos. In this case 0νββ is a direct probe of the neutrino mass matrix. The decay rate scales as Γ ∝ |M0ν |

2m2
ββ , where

M0ν is the nuclear matrix element and mββ =
⏐⏐∑

iU
2
eimi

⏐⏐ is the ‘‘ee’’ component of the neutrino Majorana mass matrix in
the flavor basis with U being the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [28,29]. From neutrino oscillation
experiments, some inputs for mββ are constrained [4]. However, the two Majorana phases, the ordering of the spectrum
(mlightest = m1 or mlightest = m3), and the value of mlightest remain unknown. This implies that in the mββ vs mlightest plane
one has two bands, whose width is due to the unknown Majorana phases. The current understanding is summarized in
Fig. 1, including the experimental constraint on mββ from Ref. [16]. Experimental sensitivities appear as horizontal bands
rather than lines, due to estimates of the uncertainties in the nuclear matrix elements M0ν , which vary by a factor of 3
depending on the nucleus and on which model is adopted in the calculation [30]. Next-generation experiments aim to
explore parameter space, covering the entire ‘‘inverted hierarchy’’ band in mββ (green region), assuming nuclear matrix
elements are given by the minimum of available calculations. A discovery will be possible if nature realizes an inverted
spectrum, or if mlightest > 50 meV, irrespective of the ordering. Note that the interplay of 0νββ with other neutrino mass
probes, namely constraints on mβ ≡ (

∑
i|Uei|

2m2
i )

1/2 from tritium beta decay [31,32] andΣ ≡
∑

imi from cosmology [33],
can test the high-scale see-saw model and possibly unravel new sources of LNV or physics beyond the standard ΛCDM
+ mν cosmological paradigm.

Alternatively, LNV could originate at an intermediate scale, close to the TeV-scale, as in for example the Left–Right
Symmetric Model [9]. TeV sources of LNV (such as a TeV-mass right-handed neutrino) may lead to sizeable contributions
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Fig. 1. |mββ | versus lightest neutrino mass for both normal (pink band) and inverted neutrino mass hierarchy (green band). Current experimental
sensitivities are reported as gray and blue horizontal bands, whose width is determined by order-of-magnitude theoretical uncertainties on the
nuclear transition matrix elements.
Source: Figure from Ref. [16].

to 0νββ not directly related to the exchange of light neutrinos, provided the scale Λ is not too high compared to the weak
scale. In such cases, the Large Hadron Collider (LHC) can compete with 0νββ to constrain the parameter space of certain
models, see for example Refs. [34,35]. Note that the new contributions from TeV scale LNV can interfere with mββ or add
incoherently, significantly affecting the interpretation of experimental results. In these scenarios the exchange of heavy
particles leaves behind operators of odd dimension (d = 7, 9, 11, . . .) [36] written in terms of lepton, Higgs, and quark
fields, and suppressed by Λd−4. Importantly, these TeV scale mechanisms can lead to different transition operators at the
hadronic and nuclear scale, which in most cases probe the structure of nuclei at very short distances. Finally, LNV could
be lurking at very low-scale, through mass terms of light sterile neutrinos. Implications of light sterile neutrino exchange
for 0νββ have been studied in the context of current short-baseline neutrino oscillation anomalies [37].

To summarize, ton-scale 0νββ searches, which will reach sensitivities T1/2 > 1027−28 yr, will probe uncharted territory
and thus have significant discovery potential. In combination with oscillation experiments, direct mass measurements,
and cosmology, 0νββ can effectively probe the high-scale see-saw paradigm. At the same time, 0νββ is quite sensitive
to LNV originating at scales lower than the GUT scale, and by itself, or in combination with the LHC experiments, can
discover LNV at the multi-TeV scale.

For any of the possible underlying mechanisms, the interpretation of 0νββ experiments and the constraints on
fundamental LNV parameters, such as the Majorana masses of left-handed neutrinos, rely on having a theoretical
framework that provides reliable predictions of transition rates with controlled uncertainties. As shown by the horizontal
bands in Fig. 1, current knowledge of the relevant hadronic and nuclear matrix elements is unsatisfactory as it is a
key source of uncertainty [30]. For reviews of the standard approach to nuclear matrix elements, we refer the reader
to Refs. [30,38–41]. Here we note that various approaches to the many-body problem lead to estimates of the matrix
elements that differ by a factor of two to three, and, more importantly, lack a systematic way in which to assess the
uncertainties. In fact, few of the current calculations of nuclear matrix elements are based on ab-initio many-body methods
and effective field theory (EFT) analysis of the transition operators, where lattice QCD can provide key input. To improve
upon this situation, recent efforts have advocated an ‘‘end-to-end’’ EFT analysis of 0νββ to link the scale Λ of LNV to
nuclear scales. This multi-prong approach includes various steps:

1. The use of the Standard Model EFT to link the scale Λ of LNV to the hadronic scale Λχ ∼ O(1) GeV, where non-
perturbative QCD effects arise. This step is by now mature: the operator basis (to which any underlying model can
be matched) is known up to dimension-nine and the renormalization group evolution of these operators under
strong interactions is known. Light new degrees of freedom (such as sterile neutrinos) can also be included in this
framework.

2. The matching of the quark–gluon level EFT to hadronic EFTs such as Chiral Perturbation Theory (χPT) in the meson
and single nucleon sector, and chiral EFT and pionless EFT in the multi-nucleon sector. This step can be performed
consistently in the strong and weak sectors of the theory, which in the case of interest here involves ∆L = 2
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transition operators. The form of the transition operators is known to leading order in the hadronic EFT expansion
for all underlying LNV mechanisms, and sub-leading corrections are also known for most mechanisms. The matching
procedure typically requires the introduction of hadronic interactions that are short-range compared to the typical
nuclear scale and have effective couplings encoding non-perturbative strong-interaction physics. In what follows,
we refer to these effective couplings as low-energy constants (LECs).

3. The use of lattice QCD (LQCD) to determine the LECs relevant to double beta decay, including the ones controlling
the ∆L = 2 transition operators needed to predict neutrinoless double beta decay. This step involves matching a
given hadronic or few-body amplitude computed in LQCD to the corresponding expression in the hadronic EFT.
This is a relatively new area of research. Recent activity has focused on the calculation of polarizability effects
for neutrinoful double beta decay, as well as mesonic LECs of relevance for both TeV LNV mechanisms and light
Majorana neutrino exchange for neutrinoless double beta decay. Addressing the challenges associated with two-
nucleon (such as nn → ppee) and multi-nucleon matrix elements in LQCD is an active area of research. In concert,
EFT calculations for LNV transitions will need to be extended to finite-volume to optimize the matching procedure.

4. The solution of the nuclear many-body problem for nuclei of experimental interest, through ab initio nuclear
structure methods, relying on QCD-rooted chiral potentials and weak transition operators (including those with
∆L = 2). These calculations are in their infancy for nuclei of experimental interest such as 76Ge, and can be
benchmarked in lighter nuclei where ab initio many-body methods are available [42,43].

With this framework in mind, this review focuses on recent progress and future prospects in the use of LQCD to
compute the LECs relevant for neutrinoful and neutrinoless double beta decay (step 3 above), which is intertwined
with the EFT description of the these processes (step 2 above) and serves as input for many-body calculations (step 4).
Whenever appropriate, we discuss the correspondence between the EFT and traditional approaches to nuclear matrix
elements [30,38–41]. For a broader overview of the role of LQCD and EFT in searches for violations of fundamental
symmetries, the reader is referred to Ref. [44].

The manuscript is organized as follows: the EFT framework for double-β decay and the basics of Lattice QCD are
reviewed in Sections 2.1 and 2.2, respectively. In Section 3 neutrinoful double-β decay is discussed. Section 4 is devoted
to neutrinoless double beta decay, focusing on short-range (TeV scale) mechanisms of LNV in Section 4.1 and on the light
Majorana neutrino exchange mechanism in Section 4.2. The prospects for two- and multi-nucleon matrix elements in
0νββ are discussed in Section 4.3 before this review is concluded with an outlook in Section 5.

2. Lattice QCD and effective field theory

2.1. Effective field theory for double-β decay

In most beyond the Standard Model (BSM) scenarios, the LNV source responsible for 0νββ is induced at an energy scale
Λwell above the electroweak scale. This scale separation justifies an effective field theory approach. Such an approach has
the advantage that 0νββ and its correlation with collider observables can be described in a model-independent fashion.
The Standard Model can be seen as the renormalizable part of an EFT that includes higher-dimensional operators which
are suppressed by powers of the scale of BSM dynamics [27,45]:

LSMEFT = LSM +

∑
n, d≥5

C (d)
n

Λd−4 O(d)
n . (1)

The dimension-d operators O(d)
n , where n indexes the allowed forms of operators of the given dimension, are built out SM

fields (or additional light degrees of freedom) and are invariant under the SM gauge group SU(3)c × SU(2)L × U(1)Y . If
the underlying BSM model is known, the dimensionless Wilson coefficients C (d)

n can be calculated in terms of the model
parameters. The effective Lagrangian in Eq. (1) describes the low-energy limit of any high-scale extension of the SM, and
defines the so-called SM Effective Field Theory (SMEFT).

Within this EFT, the ∆L = 2 operators have odd dimension [36]. The first ∆L = 2 term therefore appears at dimension
five [27] and provides a contribution to the neutrino Majorana mass [27]. In the standard type-I see-saw mechanism, this
dimension-five operator arises from integrating out heavy right-handed neutrinos typically at the GUT-scale, Λ ∼ 1015

GeV. LNV operators with a dimension d > 5 are then suppressed by multiple powers of v/Λ ≃ 10−13, where v ≃ 246
GeV is the Higgs vacuum expectation value, and can be safely neglected. In various models, however, the scale of LNV
new physics is much lower and the dimension-five operator may be suppressed by loop factors and/or small Yukawa
couplings. For instance, in the above-mentioned left–right symmetric models the dimension-five operator scales as y2/Λ,
where y is a Yukawa coupling scaling as y ∼ me/v ∼ 10−6. While dimension-seven [46] and -nine [47–49] LNV operators
are suppressed by additional powers of Λ, they can be suppressed by only one power of y, or even by O(y0). As such,
the dimension-seven and -nine operators can have contributions at the same order as the dimension-five operator, for
Λ in the 1–10 TeV range. Since for operators at dimension 11 and larger, the usual v/Λ suppression holds (no factors
of Yukawa couplings can compensate it), in order to describe 0νββ in a model-independent way, one should include all
SU(3)c × SU(2)L × U(1)Y -invariant ∆L = 2 operators up to dimension-nine in the SMEFT. Dimension-seven and -nine
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operators have been discussed in the literature in the context of models of radiative neutrino mass generation [50–55],
R-Parity Violating Supersymmetry [47,56–58], and Left–Right Symmetric model [34,59–63] (this is not an exhaustive list
of references).

Below the electroweak scale, these high-scale operators induce an SU(3)c × U(1)em-invariant ∆L = 2 Lagrangian that
includes operators of dimension three, six, seven, and nine [64–66]. The mismatch in dimensions is due to the fact that
the Higgs field acquires a vacuum expectation value (vev) and the Higgs and W boson are integrated out of the EFT. At
the scale Λχ ∼ 1 GeV, characteristic of nonperturbative QCD effects, the effective Lagrangian is given by [66]

Leff = LQCD + LW −
mββ

2
νTeLCνeL + L(6)

∆L=2 + L(7)
∆L=2 + L(9)

∆L=2 , (2)

LW = −HW = −2
√
2GFVud ūLγ

µdL ēLγµνeL (3)

where C is the charge conjugation matrix. Here, the first term denotes the strong interactions among quarks and gluons,
and the second term represents the charged-current weak interactions of up and down quarks with leptons, whose
strength is determined by the Fermi constant GF and the Vud element of the Cabibbo–Kobayashi–Maskawa (CKM) matrix.
Analogous terms involving strange quarks can be included but are irrelevant in the context of this review so are omitted.
The remaining terms denote the∆L = 2 contributions, with the dimension-three Majorana mass term displayed explicitly.
Details of L(6,7,9)

∆L=2 can be found in Ref. [66].
In order to calculate 0νββ transitions, below the scale Λχ ∼ 1 GeV, the Lagrangian in Eq. (2) needs to be matched onto

a theory of hadrons. Since the relevant hadronic and nuclear processes involve momentum transfer Q ≪ Λχ , the tool of
choice is chiral effective field theory (χEFT) [67–69] (for reviews see [70,71]), which organizes the effective Lagrangian
according to the scaling of operators in powers of the typical momentum in units of the breakdown scale,

ϵχ = Q/Λχ , Q ∼ mπ ∼ kF , Λχ ∼ 4πFπ ∼ 1 GeV , (4)

where mπ ≃ 140 MeV and Fπ ≃ 92.2 MeV are the pion mass and decay constant, respectively, and kF represents a typical
Fermi momentum inside a nucleus. The χEFT Lagrangian schematically reads

LχEFT = Lstrong(π,N,∆) −
4GF
√
2
Vud Jµ(π,N,∆) ēLγ µνeL − 4G2

FV
2
udTµν(π,N,∆) ēLγ µνeL ēLγ ννeL

−
1
2
mββ ν

T
eLCνeL −

4GF
√
2
Vud O(π,N,∆) ēΓ C ν̄TeL − G2

F O
′(π,N,∆) ēΓ ′CēT + H.c., (5)

where the first line contains the strong, first- and second-order charged current weak interactions, respectively, while the
operators in the second line violate L by two units. Here Lstrong, Jµ, Tµν , O, and O′ are combinations of pion, nucleon, and
Delta isobar fields, organized according to increasing powers of ϵχ . They encode the non-perturbative QCD effects arising
from distances shorter than Λ−1

χ . Jµ is the hadronic realization of the weak current [72–81], while Tµν encodes the weak
hadronic polarizability [82,83]. Finally O and O′ parametrize the hadronic component of ∆L = 2 interactions. Γ and Γ ′

represent the possible Dirac structures of the leptonic bilinear, and for simplicity, possible Lorentz indices in Γ , Γ ′, O,
and O′ are suppressed.

For situations in which the momentum transfer Q → ℵ ≪ mπ ∼ Λ/π , which can be realized in particular kinematic
regions or in LQCD calculations at unphysically large values of the quark masses, the appropriate EFT to use is the so-called
pionless EFT [84–88] (/πEFT), in which pion degrees of freedom are integrated out. The structure of Eq. (5) carries over
in LχEFT → L/πEFT, with Lstrong, Jµ, Tµν , O, and O′ now combinations of the nucleon fields only. In /πEFT, operators and
amplitudes are expanded in powers of ϵ/π = ℵ/Λ/π . Pionless EFT allows one to gain analytic insight into the structure
of strong and electroweak amplitudes and is particularly useful in matching to current LQCD calculations in the multi-
nucleon sector (see Section 3 for a concrete example). The lepton-number conserving terms in the first line of Eq. (5)
are discussed in greater depth in Section 2.1.1. In particular, the contributions to neutrinoful double beta decay using the
dibaryon formulation [89] of pionless EFT are presented, setting the stage for matching to LQCD in Section 3.

Concerning∆L = 2 effects, the Lagrangian in Eq. (5) can be used to calculate few-body amplitudes, from which one can
then obtain non-relativistic potentials and weak transitions operators to be used in nuclear many-body calculations (see
for example Ref. [71]). This step is equivalent to integrating out pions (and Majorana neutrinos) with ‘‘soft’’ ((k0, |k|) ∼

(ϵχ , ϵχ )Λχ ) and ‘‘potential’’ ((k0, |k|) ∼ (ϵ2χ , ϵχ )Λχ ) scaling of their four-momenta, while keeping in mind that the effects
of ‘‘hard’’ Majorana neutrinos (k0 ∼ |k| ≫ Λχ ) are already included in the local terms in Eq. (5). Through this procedure,
one arrives at nuclear-level weak currents that contribute to single beta decay and neutrinoful double beta decay, as well
as the 0νββ transition operators, often referred to as ‘‘neutrino potentials’’. The part of the effective nuclear Hamiltonian
controlling 0νββ can be written as

H (Nucl)
∆L=2 = 2G2

FV
2
ud ēLCē

T
L

∑
a̸=b

(
mββ V (a,b)

ν + V (a,b)
6 + V (a,b)

7 + V (a,b)
9

)
, (6)

where a, b label nucleons in the system and V (a,b)
ν and V (a,b)

d are the two-body transition operators induced by the
dimension-3 operator (neutrino mass) and dimension-d operators of Eq. (2), respectively. Within the current EFT
framework, the two-body transition operators admit an expansion in powers of v/Λ, Λχ/v, and ϵχ = Q/Λχ or ϵ/π =
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ℵ/Λ/π [66,90]. In the case of Majorana neutrino exchange, three-body transition operators (suppressed by ϵ2χ compared
to the leading two-body ones) have been considered in Refs. [91,92].

Full details of each of the matching steps outlined above can be found in Ref. [66]. The potentials V (a,b)
6,7 require the

hadronic and nuclear realization of isovector quark bilinears of the form ūΓ d (Γ ∈ {1, γ5, γµ, γµγ5, σµν}), which also
appear in the analysis of single beta decay of nuclei in the SM and beyond. The LQCD input needed here is the single-
nucleon charges [93–97] as well as LECs associated with two-body currents [98–100]. In Sections 2.1.2 and 2.1.3, only
V (a,b)
ν and V (a,b)

9 are discussed in detail, since at the leading order (LO), these potentials involve genuinely non-factorizable
contributions with new LECs that cannot be extracted from data and whose first-principles determination requires input
from LQCD.

2.1.1. Lepton number conserving interactions
It is useful to begin with consideration of the lepton number conserving first and second order weak interactions

in nuclei. As is appropriate for the analysis of the LQCD calculations of 2νββ , presented in Section 3, in the dibaryon
formulation [87,89,101] of pionless EFT [84–87] the lepton number conserving strong and weak interactions (the first
line in Eq. (5)) are expressed in terms of nucleon and dibaryon fields for each possible two-nucleon channel. The purely
strong interaction Lagrangian, and the form of the dibaryon propagators that re-sum effects on multiple nucleon–nucleon
scatterings, are given in Refs. [87,101] and reproduced in the current context in Ref. [83]. The corresponding Lagrangians
for the first-order [102–104] and second-order axial current interactions (implemented as an axial background field W a

i
where a (i) denotes the isovector (vector) indices of the field) are

L(1)
= −

gA,0
2

N†σ3
[
W−

3 τ
+

+ W 3
3 τ

3
+ W+

3 τ
−
]
N

−
l1,A

2M
√
rsrt

[
W−

3 t†3 s
+

+ W 3
3 t

†
3 s

3
+ W+

3 t†3 s
−

+ h.c.
]
, (7)

and

L(2)
⊃ −

h2,S

2Mrs
Wabsa†sb , (8)

respectively. Here, N = (p, n)T is the nucleon doublet field and ti and sa are the isosinglet (3S1) and isotriplet (1S0)
dinucleon fields. The nucleon mass is M , the chiral limit axial coupling of the nucleon is gA,0, and the spin singlet and
triplet effective ranges are rs,t , respectively. The two body counterterms at first and second order in the weak interaction
are l1,A and h2,S . Finally, σi and τi are Pauli matrices in spin and isospin space, respectively, with τ±

= (τ1 ± i τ2)/
√
2. For

simplicity, the background axial field is defined to be non-vanishing only for the i = 3 component. It is useful to define
a new coupling, l̃1,A, that encapsulates solely two-body contributions to the amplitudes,

l̃1,A = l1,A + 2M
√
rsrtgA. (9)

For the second order coupling, Wab
= W {a

3 W b}
3 is the symmetric traceless combination of two background field

insertions at the same location, and only terms relevant for the nn to pp isotensor transition are shown and involve
only the isovector dibaryon field. As with l̃1,A, a new coupling h̃2,S can be defined to exclude the one-body contributions
to the transition amplitudes from the interaction in Eq. (8),

h̃2,S = h2,S −
M2rs
2γ 2

s
g2
A . (10)

2.1.2. Lepton number violation from light Majorana neutrino exchange
In χEFT, the LO neutrino potential V (a,b)

ν induced by light Majorana neutrino exchange (see Eqs. (5) and (6)) arises from
double insertions of the weak current depicted in Fig. 2, entailing long- and pion-range effects, as well as a short-range
contact interaction [90,105]:

V (1,2)
ν =

τ (1)+τ (2)+

q2

[
1 −

2g2
A,0

3
σ(1)

· σ(2)
(
1 +

m4
π

2(q2 + m2
π )2

)
−

g2
A,0

3
S(12)

(
1 −

m4
π

(q2 + m2
π )2

)]
− 2gNN

ν τ (1)+τ (2)+ . (11)

Here q is the nucleon momentum-transfer and S(12) = σ(1)
· σ(2)

− 3σ(1)
· q σ(2)

· q/q2 is the spin tensor operator. Finally,
gNN
ν is an a priori unknown LO contact coupling, scaling as gNN

ν ∼ O(F−2
π ), which encodes the exchange of ‘‘hard’’ neutrinos

with virtualities much greater than the nuclear scale. A term like this is expected to arise from the interactions in Eq. (2),
through non-factorizable terms induced by quark and gluon exchange in the T-ordered product of two weak currents.

In the low-energy EFT, the presence of the contact interaction is required by renormalization of the nn → ppee
amplitude [90,105]. The argument is as follows: the first term in the 0νββ transition operator in Eq. (11) has Coulomb-like
behavior at large |q|, which induces ultraviolet (UV) divergences in LNV scattering amplitudes, such as nn → ppee, when
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Fig. 2. Long-range contributions to the neutrino potential V (a,b)
ν . Double and dashed lines denote, respectively, nucleons and pions. Single lines denote

electrons and neutrinos, and squares denote insertions of mββ .

both the two neutrons in the initial state and the two protons in the final state are in the 1S0 channel. The UV divergence
arises when including strong re-scattering effects in the 1S0 channel through the LO χEFT potential in the 1S0 channel

V
1S0
NN = C1S0 −

g2
A

4F 2
π

m2
π

q2 + m2
π

. (12)

Here, C1S0 ∼ O(F−2
π ,m2

πF
−4
π ) is a contact interaction that accounts for short-range physics from pion exchange and other

QCD effects. This term is needed for renormalization and to generate the observed, shallow 1S0 virtual state. It is expected
at LO [68,69] on the basis of naive dimensional analysis (NDA), and it is present at LO in all formulations of chiral EFT.
The diagrammatic contributions to the nn → ppee amplitude to LO in χEFT are given in Fig. 3. The first diagram in the
third row of Fig. 3 has a logarithmic divergence, which stems from an insertion of the most singular component of the
neutrino potential, i.e. 1/q2, and two insertions of C1S0 . This divergence requires the introduction of the contact term gNN

ν ,
and the associated renormalization group equation determines its scaling: gNN

ν ∼ O(F−2
π ) [90,105].

The contact term gNN
ν corresponds to a genuine new contribution due to the exchange of neutrinos with momenta

|q| > Λχ . The new coupling encodes a non-factorizable two-nucleon effect, beyond the factorizable one-nucleon
corrections captured by the radii of weak form factors, which also give a short-range neutrino potential. Moreover, gNN

ν is
not part of the so-called ‘‘short-range correlations’’ [106–109], as it is needed even when one works with fully correlated
wavefunctions, i.e. exact solutions of the Schrödinger equation with the appropriate strong potential. The situation is
somehow analogous to β decay, where two-nucleon weak currents and short-range correlations are both present, and
can both be viewed as an ‘‘in-medium quenching’’ of gA, as recently discussed in Refs. [110,111].

The neutrino potential V (1,2)
ν in /πEFT can be obtained by taking the mπ → ∞ limit in Eq. (11). While the tensor

component of Vν vanishes in this limit, the most singular part of Vν , proportional to 1/q2, survives. Therefore, re-scattering
effects (in particular, the first diagram in the third row of Fig. 3, without the pion ladder) induced by the LO strong potential
V

1S0
NN = C/π ∼ 4π/(MNℵ) produce a UV divergence and require a LO counterterm gNN

ν in /πEFT as well [112].
The leading order LEC gNN

ν is currently unknown. Chiral and isospin symmetry arguments relate gNN
ν to one of two

∆I = 2NN contact interactions of electromagnetic origin. A fit to NN scattering data confirms the LO scaling of such
couplings, but does not allow the two couplings to be disentangled and hence gNN

ν to be extracted [90,105]. Therefore,
the first-principles determination of gNN

ν through LQCD is of the greatest importance. This calculation is quite challenging
and will be most likely be first performed at unphysically large values of the quark masses. This can still be useful for
phenomenology, as it will allow one to extract gNN

ν in /πEFT, which can be related through an EFT matching calculation to
gNN
ν in χEFT, in the schemes suitable for implementation in many-body calculations. Subsequent LQCD calculations closer

to the physical pion mass will allow for direct matching to χEFT.
In Ref. [90], it has been shown that the short-range 0νββ operator is only needed in spin-singlet S-wave transitions,

while leading-order transitions involving higher partial waves depend solely on long-range currents. Moreover, Ref. [90]
extended the calculation to include next-to-leading order (NLO) corrections finding that no additional undetermined
parameters appear.

At next-to-next-to-leading order (N2LO), a number of corrections to Eq. (11) arise. These include corrections from the
momentum dependence of the nucleon vector and axial form factors, as well as from weak magnetism. These are usually
included in the neutrino potential, see for example Refs. [30,38]. However, at the same order (N2LO) in χEFT, there appear
many other non-factorizable contributions, for instance from pion loops that dress the neutrino exchange [112]. Due to
UV divergences, at N2LO there appear three new O(1) LECs, namely gππν , gπNν , and gNN(2)

ν [112]:

L(2)
∆L=2 =

2G2
FV

2
udmββ

(4πF0)2

[
5
6
F 2
0 g

ππ
ν ∂µπ

−∂µπ−
+

√
2gA,0F0gπNν p̄Sµn ∂µπ−

+ gNN(2)
ν p̄n p̄n

]
ēLCēTL + · · · , (13)

where Sµ is the nucleon spin vector and F0 is the pion decay constant in the chiral limit. In the nucleon rest frame one
has Sµ = (0, σ/2). As in the case of the LO contact term, the couplings gππν , gπNν , and gNN(2)

ν are related to LECs in the
electromagnetic sector. Using large-NC based resonance saturation estimates for the electromagnetic LECs [113], one finds
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Fig. 3. Diagrammatic representation of LO contributions to nn → ppee. Double, dashed, and plain lines denote nucleons, pions, and leptons,
respectively. Gray circles denote the nucleon axial and vector currents, and the black square represents an insertion of mββ . The blue ellipse
represents iteration of Vπ . In the counterterm amplitude (fourth line) the black square represents gNN

ν . The ellipses in the second, third, and fourth
lines denote diagrams with arbitrary numbers of bubble insertions.

gππν (µ = mρ) = −7.6, to which one should attach a conservative 50% uncertainty. The LECs can also be computed by
matching LQCD and χEFT expressions for appropriate scattering amplitudes. So far LQCD efforts have focused on the
determination of gππν , see Section 4.2.

Before concluding this section, we compare the neutrino potential derived in the EFT with the standard approach.
We begin by noting that in the EFT approach the neutrino potential V (a,b)

ν depends only on the momentum scale q ∼ kF
and not on infrared scales corresponding to the excitation energies of the intermediate odd–odd nucleus in 0νββ . In the
standard approach, the energy difference En − 1/2(Ei + Ef ) appearing in the denominator of second-order perturbation
theory is often approximated by the average Ē − 1/2(Ei + Ef ), which is called the closure approximation. Now, up to the
contact term gNN

ν , the standard neutrino potential [30,39] reduces to the LO potential in Eq. (11) when Ē − 1/2(Ei + Ef ) is
set to zero and the form factors are evaluated at zero momentum. In the EFT approach, the form-factor effects appear to
N2LO. Similarly, the sensitivity to nuclear intermediate states appears in the EFT approach to N2LO through the exchange
of ‘ultrasoft’ neutrinos (q0 ∼ |q| ≪ kF ), as discussed in detail in Ref. [112].

In summary, for the light Majorana neutrino exchange mechanism, LQCD input is needed for the LO coupling gNN
ν as

well as for the N2LO couplings gππν , gπNν , and gNN(2)
ν . Clearly a determination of gNN

ν is the most urgent task in order to
address the implications of next-generation experimental results on the LNV parameter mββ .

2.1.3. Lepton number violation from short range mechanisms
The set of SU(3)c × U(1)em invariant four-quark, two-lepton operators at dimension-9 can be written as [47,49]

L(9)
∆L=2 =

1
v5

∑
i

[(
C (9)
i R ēRCēTR + C (9)

i L ēLCēTL
)

Oi + C (9)
i ēγµγ5CēT O

µ

i

]
, (14)

where Oi and Oµi are four-quark operators that are Lorentz scalars and vectors, respectively. The renormalization group
evolution of the Wilson coefficients, C (9)

iL,R is known and summarized in Ref. [66]. The scalar operators have been discussed
in Refs. [47,49] and can be written as

O1 = q̄αL γµτ
+qαL q̄βL γ

µτ+qβL , O′

1 = q̄αRγµτ
+qαR q̄βRγ

µτ+qβR ,

O2 = q̄αRτ
+qαL q̄βR τ

+qβL , O′

2 = q̄αL τ
+qαR q̄βL τ

+qβR ,

O3 = q̄αRτ
+qβL q̄βR τ

+qαL , O′

3 = q̄αL τ
+qβR q̄βL τ

+qαR , (15)

O4 = q̄αL γµτ
+qαL q̄βRγ

µτ+qβR ,

O5 = q̄αL γµτ
+qβL q̄βRγ

µτ+qαR ,
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Fig. 4. The different contributions of dimension-9 LNV operators to the 0νββ potential V (a,b)
9 , see Refs. [47,56,114,115]. Double, dashed, and single

lines denote, respectively, nucleon, pion, and lepton fields. The black square denotes ∆L = 2ππ , πN , and NN operators realizing the dimension-9
quark-level operators at the hadronic level. The remaining vertices are SM interactions between nucleons and pions.

where α, β are color indices. The O′

i operators are related to Oi by parity. Finally, there are four vector operators Oµ6,7,8,9,
whose explicit form can be found in Ref. [49].

In χEFT, the scalar operators {O1, . . . ,O5} generate the ππee, πNNee, and NN NN ee LNV vertices shown as black squares
in Fig. 4. The operators O2,3,4,5 induce non-derivative pionic operators [116], while the first pionic operators induced by
O1 contain two derivatives [117]. Based on this, within the Weinberg power counting of χEFT, one finds that for O2,3,4,5,
the dominant contribution to the nn → pp transition operator arises from the double pion exchange diagrams in Fig. 4,
while for O1 all diagrams in Fig. 4 are equally important [47].

The mesonic chiral Lagrangian for O1,2,3,4,5 is given by

Lscalar
π =

F 4
0

4

[
5
3
gππ1 C (9)

1L L
µ

21L21µ +

(
gππ2 C (9)

2L + gππ3 C (9)
3L

)
Tr
(
Uτ+Uτ+

)
+

(
gππ4 C (9)

4L + gππ5 C (9)
5L

)
Tr
(
Uτ+U†τ+

)] ēLCēTL
v5

+ (L ↔ R)

=
F 2
0

2

[
5
3
gππ1 C (9)

1L ∂µπ
−∂µπ−

+

(
gππ4 C (9)

4L + gππ5 C (9)
5L − gππ2 C (9)

2L − gππ3 C (9)
3L

)
π−π−

]
ēLCēTL
v5

+ (L ↔ R) + . . . , (16)

where U = u2
= exp (iπ · τ/F0) is the matrix of pseudo-Goldstone boson fields, and Lµ = iUDµU†. Assuming NDA, the

LECs of the non-derivative pion operators are expected to be gππ2,3,4,5 = O(Λ2
χ ), while gππ1 = O(1). In Section 4.1, the LQCD

determination of these LECs is discussed. The physical amplitudes are scale and scheme independent provided one uses
Wilson coefficients C (9)

i evaluated at the same scale and in the same scheme as used for the gππi .
The πN terms are only relevant for the O1 operator and can be written as

Lscalar
πN = gAgπN1 C (9)

1L F
2
0

[
N̄Sµu†τ+uN Tr

(
uµu†τ+u

)] ēLCēTL
v5

+ (L ↔ R)

=
√
2gAgπN1 C (9)

1L F0
[
p̄ S · (∂π−)n

] ēLCēTL
v5

+ (L ↔ R) + . . . , (17)

where uµ = u†Lµu = i
[
u(∂µ − irµ)u†

− u†(∂µ − ilµ)u
]
. The LEC gπN1 is currently unknown, but expected to be O(1) by

NDA.
In a power counting based on NDA, LNV four-nucleon contact interactions are relevant at LO only for O1, together

with the ππ and πN interactions gππ1 and gπN1 . However, the LNV potential induced by the non-derivative ππ operators
in Eq. (16) has the same high-momentum behavior as the neutrino potential mediated by the Majorana neutrino mass,
V (q) ∼ 1/q2 at large |q|. In Refs. [66,105] it has been shown that for these potentials the nn → ppee scattering amplitude
has a logarithmic UV divergence, which must be removed by promoting the NN operators stemming from O2,3,4,5 to
leading order. The relevant NN operators are

Lscalar
NN = gNN

1 C (9)
1L (N̄u†τ+uN)(N̄u†τ+uN)

ēLCēTL
v5

+

(
gNN
2 C (9)

2L + gNN
3 C (9)

3L

)
(N̄u†τ+u†N)(N̄u†τ+u†N)

ēLCēTL
v5

+

(
gNN
4 C (9)

4L + gNN
5 C (9)

5L

)
(N̄u†τ+uN)(N̄uτ+u†N)

ēLCēTL
v5

+ (L ↔ R)
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=

(
gNN
1 C (9)

1L + gNN
2 C (9)

2L + gNN
3 C (9)

3L + gNN
4 C (9)

4L + gNN
5 C (9)

5L

)
(p̄n) (p̄n)

ēLCēTL
v5

+ (L ↔ R) + . . . . (18)

In the Weinberg power counting, the scaling gNN
i ∼ O(1) holds. However, in a properly renormalized χEFT, the scaling

is modified to gNN
i ∼ O((4π )2) for O2,3,4,5 [66]. The renormalization of the scattering amplitude does not require such

enhancement for gNN
1 .1

With the above chiral Lagrangians, the LO ∆L = 2 0νββ potential from the scalar dimension-9 operators is given by

V (1,2)
9 = −(τ (1)+τ (2)+)

2gA2

v

×

[
−
(
σ(1)

· σ(2)
− S(12)

)(C (9)
ππ L

6
q2

(q2 + m2
π )2

−
C (9)
πN L

3
q2

q2 + m2
π

)
+

2
g2
A
C (9)
NN L

]
, (19)

where the combinations C (9)
ππ, πN,NN are defined as

C (9)
ππ L = gππ2

(
C (9)
2L + C (9) ′

2L

)
+ gππ3

(
C (9)
3L + C (9) ′

3L

)
− gππ4 C (9)

4L − gππ5 C (9)
5L

−
5
3
gππ1 m2

π

(
C (9)
1L + C (9) ′

1L

)
,

C (9)
πN L =

(
gπN1 −

5
6
gππ1

)(
C (9)
1L + C (9) ′

1L

)
,

C (9)
NN L = gNN

1

(
C (9)
1L + C (9) ′

1L

)
+ gNN

2

(
C (9)
2L + C (9) ′

2L

)
+ gNN

3

(
C (9)
3L + C (9)′

3L

)
+ gNN

4 C (9)
4L + gNN

5 C (9)
5L , (20)

and similarly for C (9)
{ππ, πN,NN} R. In the above expressions one has qµ = (q0, q) = (p − p′)µ, where 2p and 2p′ are the

relative momenta of the ingoing and outgoing nucleon pairs. The potential in Eq. (19) can be implemented in many-body
nuclear calculations to obtain bounds on C (9)

ππ, πN,NN , which, using knowledge of the gππ,πN,NNi , can then be converted into
bounds on the Wilson coefficients C (9)

iL,iR, and hence on the underlying LNV model parameters. We conclude this discussion
by noting that the pion contributions to the potential V (1,2)

9 have appeared throughout the 0νββ literature in the context
of various models, see for example [56–58,114,115].

In summary, one finds that for all scalar operators in Eq. (14) the ππee and NN interactions contribute at the same
order (LO) to the two-nucleon transition operator. Moreover, for O1 and O′

1, there appears an additional LO contribution
from the πN interaction. Chiral symmetry implies that the contributions from O1 to V (1,2)

9 are suppressed by ϵ2χ compared
to the contributions induced by O2,3,4,5. The transition operator V (1,2)

9 induced by the vector operators Oµ6,7,8,9 has the same
chiral scaling as the one induced by O1, and it is dominated by the πN and NN contributions [66]. The above considerations
imply that from the phenomenological point of view the most needed LQCD matrix elements are ⟨π+

|O2,3,4,5|π
−
⟩ and

⟨pp|O2,3,4,5|nn⟩, followed by ⟨π+
|O1|π

−
⟩, ⟨pp|O1|nn⟩, ⟨π+p|O1|n⟩, ⟨pp|O

µ

6,7,8,9|nn⟩, and ⟨π+p|Oµ6,7,8,9|n⟩.

2.2. Lattice QCD

The hadronic and nuclear physics inputs needed to study double β-decay can be calculated from the underlying
Standard Model, where the most relevant part is quantum chromodynamics (QCD), using lattice field theory techniques,
referred to as lattice QCD (LQCD). In this approach, the relevant information is extracted from various correlation functions
that are evaluated from their QCD functional integral representation. As an intermediate stage of these calculations,
a Euclidean space–time lattice is used to regulate the divergences of the theory by making the functional integral
finite-dimensional. Because the normalized exponential of the Euclidean discretized QCD action has the same form as
a Boltzmann distribution, importance sampling Monte-Carlo methods can be used efficiently to stochastically evaluate
the requisite integrals. The physical information is then recovered in the limit in which the lattice regulator is removed
(the continuum limit) and the limit in which the space–time volume is taken to infinity (the infinite volume limit). Many
excellent introductions to lattice QCD exist, see for example Refs. [118,119], and the reader is referred to these works for
more complete details. In this brief overview, aspects of lattice QCD that impact the discussion of quantities relevant for
double β-decay from LQCD are discussed.

The formulation of LQCD, first proposed by Wilson [120], uses a discrete, space–time geometry which in almost
all cases is taken to be a regular four-dimensional hypercube, Λ4 = {nµ = (n1, n2, n3, n4)|ni ∈ a[0, 1, . . . , Li]},

1 The ππ , πN , and NN Lagrangians for the O′

1,2,3 operators can be related to the ones for O1,2,3 by parity considerations, leading to ππ , πN , and
NN vertices of the same form as above, with the replacement C (L,R)

1,2,3 → C ′ (L,R)
1,2,3 .
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where a is the (dimensionful) lattice spacing and Li is the extent of the lattice in the ith direction. Periodic spatial
boundary conditions are typically used on all fields, with periodic temporal boundary conditions on gluon fields and anti-
periodic temporal boundary conditions for quarks (thereby implementing finite temperature). In some cases, anisotropy
is introduced between the spatial and temporal directions, providing a finer discretization in the temporal direction, and
other geometries have been investigated in the past [121].

The underlying QCD action must be implemented approximately on this discretized geometry, replacing derivatives by
finite differences and implementing the gauge fields in terms of the links between the sites of the lattice. For the gauge
fields, it is common to use the Wilson action

SWilson =
2
g2

∑
x∈Λ4

∑
µ<ν

(1 − Re Tr[Pµν(x)]) , (21)

where Pµν(x) is the elementary plaquette and corresponds to products of gauge link variables Uµ(x) around a 1 × 1
elementary cell,

Pµν(x) = Tr[Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x)].

The link variables Uµ(x) = exp(igaAµ(x)) are associated with the site x and are parallel transporters to the site x + µ̂.
Expanding this action around the limit a → 0 reproduces the continuum QCD action up to O(a2) effects. Variants of this
action introduce additional terms that remove higher powers of a, providing a closer-to-continuum, improved action.

Naive implementations of lattice fermions have multiple zero modes (2d of them, where d is the space–time dimension)
corresponding to ‘‘doubling’’ of the light degrees of freedom. These are avoided with the Wilson quark action [120], the
Kogut–Susskind [122] quark action, and twisted-mass quark actions [123], but these actions explicitly break the chiral
symmetry of the massless QCD action. Chiral fermion formulations such as the domain-wall fermion action [124], which
bypasses this issue by introducing an additional space–time dimension, and the overlap fermion action [125] maintain
a lattice chiral symmetry. These chiral actions are more numerically expensive to implement, but offer advantages in
certain contexts; for example, the additional symmetry can prohibit unwanted operator mixings. As with the gauge
actions, the action for fermions can also be improved to reduce discretization artifacts; in this case, there is a unique
dimension-five operator to add to the action [126], ψσµνGµνψ , known as the clover term. The (L)QCD action is bilinear in
the fermion fields, Sfermion ∼

∫
dxψMψ (where the Dirac operator M depends on the choice of action and on the gauge

field) and consequently the fermions can be integrated over exactly. For the action encoded in M, this results in a fermion
determinant DetM in the gauge field functional integral or equivalently an effective action Seff = TrLn[M].

Given a particular form of the lattice action, LQCD calculations proceed by evaluating the QCD path integrals that define
the appropriate correlation functions using importance sampling Monte Carlo based on the distribution defined by that
action. For an operator O(x1, x2, . . .) built from quark and gluon fields, the expectation value is determined by the integral

⟨O(x1, x2, . . .)⟩ =
1
Z

∫
DUÕ(x1, x2, . . .)det[M[U]]e−Sgauge (22)

where the partition function is defined as Z =
∫
DUdet[M[U]]e−Sgauge . The (multi-local) field operator Õ(x1, x2, . . .)

corresponds to the original operator O after the quark fields have been integrated out; this integration results in the
‘‘contraction’’ of fermion–anti-fermion pairs in all possible ways, replacing them with quark propagators S[U] = M[U]

−1.
To evaluate the integral, Monte-Carlo methods are used; the factor P[U] = Z−1det[M[U]]e−Sgauge is common to all such
integrals and is a probability distribution (non-negative definite and bounded). Sampling the gluon field according to this
distribution, the integral above can be approximated as

⟨O(x1, x2, . . .)⟩ ≈
1
N

N∑
c=1

Õ(x1, x2, . . .)[Ui] + O
(
1/

√
N
)

(23)

where {U1, . . . ,UN} corresponds to an appropriately distributed set (ensemble) of gauge fields. These requisite configu-
rations are produced with the correct distribution as a Markov chain Monte Carlo process, with the standard algorithm
being Hybrid Monte Carlo [127] (HMC). In the previous millennium, many studies were performed in ‘‘quenched QCD’’
in which the quark determinant above was omitted for computational expediency. Modern calculations do not do this,
although the freedom of using different value of the quark masses in the quark determinant (referred to as sea quarks)
and the quark propagators (valence quarks) is sometimes used and is referred to as partial quenching.

To perform a lattice calculation, the quark masses and the gauge coupling need to be specified (the irrelevant operator
couplings are also needed if such terms are used to improve the action). To determine these parameters, Nf + 1 physical
quantities must be computed and compared to experiment. While a number of different approaches to the tuning are
taken, a standard method is to use the pion and kaon masses and a quantity that is relatively mass independent, such as
the Wilson flow scale t0 [128], for this purpose. Having undertaken sets of simulations at a range of different values of
the bare parameters, extrapolations to the continuum and infinite volume limits must be performed in order for physical
results to be determined. As well as the statistical uncertainties of the simulations, the uncertainties that arise in taking
these limits must be carefully investigated and accounted for. LQCD actions differ from the continuum QCD action by
terms of O(a) or in some cases O(a2); many volume effects are controlled by terms O(e−mπ L) where L is the smallest
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dimension of the lattice geometry and mπ is the pion mass, being the lightest hadron. In most cases, LQCD calculations
are performed with degenerate up and down quark masses, ignoring the up and down quark mass spitting, and do not
include the effects of electromagnetism as these contributions are typically small, although both effects can be (and are)
included when necessary. Precision calculations must account for these additional systematic effects.

2.2.1. Example: the proton mass
To further introduce the LQCD method, it is useful to overview calculations of the proton mass which proceed

via the evaluation of correlation functions on representative ensembles of gauge configurations. The proton mass can
be determined from two-point correlation functions (assuming an infinite temporal extent of the lattice geometry for
simplicity, and making use of translational invariance):

Cαβ (t, p) = a3
∑
x

e−ip·xCαβ (t, x) = a3
∑
x

e−ip·x
⟨0|χα(x, t)χβ (0, 0)|0⟩ , (24)

where p is a chosen three-momentum, xµ = (t, x) and

χα(x, t) = ϵ ijkui
α(x, t)u

j
γ (x, t)[C

−1γ5]γ δdkδ(x, t) (25)

is an interpolating operator that has the quantum numbers of the proton and C = γ0γ2 is the charge conjugation matrix
(Cγ T

0 C
−1

= −γ0). After the quark fields are integrated out in the path integral formulation, this correlator is expressed in
terms of the gluon field and products of the inverse of the Dirac operator (which depends on the gluon field):

Cαβ (t, x) = −a3
∑
x

e−ip·xϵ ijkϵ i
′j′k′

[C−1γ5]α′α′′ [γ5C]β ′β ′′ (26)

×

⟨[
M−1

d

]ki′
α′′β ′

{[
M−1

u

]jj′
α′β ′′

[
M−1

u

]ik′
αβ

−
[
M−1

u

]ij′
αβ ′′

[
M−1

u

]jk′
α′β

}⟩
where the quark propagator M−1

f = M−1
f (x, 0) is the inverse of the Dirac operator for flavor f . This correlator can be

evaluated stochastically as an average over representative gluon field configurations as discussed above.
By inserting a complete set of states between the source and sink interpolating operators in Eq. (24), it is clear that this

two-point correlator has time dependence governed by the energies of states with the quantum numbers of the proton
and with three-momentum p:

Cαβ (t, p) = a3
∑
n,σ

e−En(p)t

2En(p)
⟨0|χα|n; p, σ ⟩⟨n; p, σ |χβ |0⟩ (27)

= a3Z(p)
∑
σ

uα(n = 0, p, σ )uβ (n = 0, p, σ )
e−En(p)t

2En(p)
+ · · · (28)

where Z(p) is an overlap factor and higher excited states are indicated by the ellipsis but provide only exponentially small
contributions in the large time limit. Taking the trace of this correlator with a given Dirac structure, often chosen to be
Γ =

1
2 (1 + γ4), leads to

ΓβαCαβ (t, p) =

∑
n

An(p)e−En(p)t , (29)

where the An(p) are products of overlap factors. From analyzing the time dependence of correlators determined on a
representative set of gauge configurations, the energy of the proton state of the specified momentum can be extracted.
This can be achieved either using fits to the time dependence at late times or by employing more sophisticated variational
approaches based on correlators with sets of different source and sink interpolating operators [129–132].

2.2.2. Operator renormalization
An important application of LQCD that is centrally relevant to the topic of this review is in computing the matrix

elements of external currents in hadronic and nuclear states. In the continuum, the external currents one might consider
are operators such as the axial–vector quark current ψγµγ5ψ , or four-quark operators ψΓψψΓ̃ψ (where Γ and Γ̃ are
Dirac and flavor structures) arising from integrating out physics above the hadronic scale. In the lattice theory, these
operators are implemented using the lattice degrees of freedom and differ from the continuum operators by terms O(a)
(improved lattice operators can be constructed that eliminate the lattice artifacts at a particular order). Even for operators
such as the vector and axial–vector current, the lattice operators must be renormalized to connect to the continuum
operators.

At a sufficiently high scale (fine lattice spacing), lattice perturbation theory may in principle be used to connect
lattice and continuum operators. By performing calculations in lattice perturbation theory with the appropriate lattice
action [133], along with the corresponding continuum perturbation theory calculations, matrix elements of lattice
operators can be converted to the corresponding continuum operators in a given renormalization scheme (for the case
of scale dependent operators). Due to the complexities of lattice perturbation theory, these calculations are typically
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performed to one loop and introduce matching uncertainties of O(α2
s (a)) that are a limiting factor in the precision with

which final physical results can be determined. An alternative is to utilize a non-perturbative renormalization scheme.
Such approaches involve calculating the appropriate vertex function non-perturbatively within the lattice framework
itself as an intermediate step before being matched onto perturbative calculations performed in the modified minimal
subtraction scheme (MS). A popular choice is the so-called regularization independent momentum subtraction (RI/MOM)
scheme [134], in which correlation functions of renormalized operators do not depend on the choice of regulator, up to
cutoff effects. The renormalization constants, Z , are defined as,

Or (µ) = lim
a→0

Z(µ, a)Olatt(a) . (30)

In order to suppress nonperturbative effects from chiral symmetry breaking and other infrared effects, as well as
truncation error in the conversion ratio from the RI/MOM scheme to the MS scheme, the so-called RI/SMOM scheme
may be employed [135]. This scheme is an RI/MOM scheme with non-exceptional kinematics, using the renormalization
scale µ2

= (pin − pout)2 = p2in = p2out, which is symmetric in the incoming and outgoing momenta (pin,out, respectively) of
the vertex function.

2.2.3. 3-point matrix element calculations
A common way to extract matrix elements from LQCD calculations is to form a 3-point function, C3pt

i (τ , t; p, q), in
which the desired operator is inserted between source and sink operators coupling to the states of interest, which are
separated in Euclidean time:

C3pt
αβ (τ , t; p, q) =

∑
x,y

eip·xeiq·y
⟨0|χα(0, 0)O(τ , y)χβ (t, x)|0⟩ , (31)

where O is the operator of interest, and χα,(β)(t) is an interpolating operator with non-zero overlap onto the desired
final (initial) state. For the purposes of this review, zero-momentum states and vanishing momentum insertion at the
current are sufficient and are chosen henceforth; extraction of matrix elements in states of non-zero momentum and
with non-zero momentum transfer at the current are simple extensions. Inserting two complete sets of states, |α′

⟩, |β ′
⟩

to this expression gives,

C3pt
αβ (τ , t; 0, 0) =

∑
α′,β ′

e−Eα′ τ e−Eβ′ (τ−t)
⟨α′

|χα|0⟩⟨0|χβ |β ′
⟩Oα′β ′ , (32)

where Oα′β ′ = ⟨α′
|O|β ′

⟩ are the matrix elements between eigenstates |α′
⟩, |β ′

⟩ and are the quantities of interest. One
may extract the desired ground state matrix element, O00, by simultaneously taking the large {τ , τ − t} limits of this
expression

C3pt
αβ (τ , t; 0, 0) τ ,τ−t→∞

−→ e−Eα,0τ e−Eβ,0(τ−t)Zα,0Zβ,0O00 , (33)

where Eα,0 (Zα,0) are the ground-state energy (wavefunction overlap) corresponding to interpolating field χα . These
constants may be determined from a simultaneous fit to the corresponding 2-point correlation functions, or by forming
appropriate ratios with the 2- and 3-point functions to eliminate these contributions. Excited state contamination can be
shown to be exponentially suppressed in the limit of large {t, τ , |τ − t|}.

2.2.4. Background field techniques
An alternative method for extracting hadronic and nuclear matrix elements is by undertaking spectroscopy calculations

in the presence of a fixed external field [82,83,99,136–147]. This method was first used to study the proton axial charge
and magnetic moment in Refs. [148–150] and has subsequently been used to extract polarizabilities. Background fields
can be implemented in a number of ways. One approach is to modify the gluon link field to incorporate an external U(1)
field. This results in all-orders couplings of the external field to the quarks, but provided the field is small (such fields
must be of quantized strength to be consistent with the periodic lattice geometry), the linear and quadratic responses can
be determined. For the background field calculations discussed in Section 3, an alternative fixed-order approach is used.

In the fixed order approach of Ref. [83,99], the hadronic and nuclear correlation functions are modified at the level of
the valence quark propagators. Such compound propagators in the background field can be written as

S{Λ1,Λ2,...}(x, y) = S(x, y) +

∫
dz S(x, z)Λ1(z)S(z, y)

+

∫
dz
∫

dw S(x, z)Λ1(z)S(z, w)Λ2(w)S(w, y) + · · · , (34)

where Λi(x) are space–time-dependent matrices in spinor and flavor space, while S(x, y) is a matrix in color, spin (and in
principle flavor) space. Once the background fieldsΛi(z) are specified, the sequential-source technique is used to calculate
the second, third and all subsequent terms in Eq. (34), which are then combined with the first to form the compound
propagator (each insertion of a coupling to the field requiring an extra inversion). Since couplings to the sea quarks are not
included, this approach is only exact for isovector combinations of fields in the isospin-symmetric limit and, even then,
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only for maximally stretched isospin (I3 = ±I) quantities and thus do not involve operators that couple to the sea quarks.
At the single-insertion level, this corresponds to isovector quantities such as the isovector axial charges of the proton
and triton, and the axial matrix element relevant for the pp → de+νe fusion cross section. With two insertions of the
background field, either through the third term in Eq. (34) or from single insertions on two different propagators, isotensor
quantities can be computed correctly. To compute more general quantities, the effects of coupling the background fields
to the sea quarks need to be included. This can be done either in the generation of dynamical gauge configurations [137]
or through a reweighing method [151].

In order to extract matrix elements of currents that involve zero-momentum insertion, a uniform background field is
implemented. In the work of Refs. [82,83], a set of flavor-diagonal background axial–vector fields was used, with operator
structure

Λ(u)
= λu γ3γ5(1 + τ3)/2 and Λ(d)

= λd γ3γ5(1 − τ3)/2, (35)

where λq are parameters specifying the strength of the background field. Zero-momentum-projected correlation functions

C (h)
λu;λd

(t) =

∑
x

⟨0|χh(x, t)χ
†
h (0, 0)|0⟩λu;λd (36)

are formed from the compound propagators S{Λ(u)}(x, y) and S{Λ(d)}(x, y) that have at most a single insertion of the
background field (indicated by ⟨. . .⟩λu;λd ). Here, h denotes the quantum numbers of the hadronic interpolating operator,
χh. The correlation functions C (h)

λu;λd
(t) are, by construction, polynomials of maximum degree λNu

u λ
Nd
d in the field strengths,

where Nu(d) is the number of up (down) quarks in the interpolating operator.

2.2.5. Challenges for nuclear physics
In principle, either the 3-point or background field methods could be used in conjunction with many-nucleon

interpolating operators to directly calculate 2νββ and 0νββ matrix elements within experimentally relevant nuclei.
However, practically speaking, direct LQCD calculations must be limited to few-body systems, currently to A <∼ 4. There
are several technical reasons for this restriction, as will be discussed below. Central to all of these issues is the use
of quark fields as the relevant degrees of freedom. As systems become larger and the relevant energy scales diminish,
the use of these microscopic degrees of freedom becomes increasingly inappropriate, manifesting as rapidly increasing
computational complexity. Thus, the program outlined in this review, of matching LQCD calculations of small A systems
onto effective field theories, to be then utilized within computational many-body techniques, is paradigm.

One of the issues that arises for large systems is simply the number of lattice points that are required to resolve the
large range of relevant scales. These scales encompass both the high-energy physics of the quarks and gluons, as well as
low-energy excitations, such as those associated with collective motion of the nucleons. Correctly describing these scales
requires both very small lattice spacing and large volumes. Another issue is the number of quark propagators that must
be produced, as well as the number of Wick contractions of these propagators that must be computed. The latter naïvely
scales factorially with the number of nucleons, although algorithms have been proposed which can reduce this scaling to
power law in some cases [152–156].

A further challenge is the exponentially poor signal-to-noise ratio associated with nucleons and nuclei, decaying
roughly as [157–159].

R ∼
1

√
N

e−A(mN−3/2mπ )t , (37)

for large Euclidean time, t , and number of configurations, N . The difference in the exponent arises due to the use of quark
fields, which can couple both to the nucleon state in the signal as well as the much lighter pions in the corresponding
correlator that determines the variance. This difference is numerically smaller for heavier-than-physical pion masses,
which is currently why many calculations are not performed directly at the physical point. For large times where the
ground state dominates, an exponentially large number of configurations is thus necessary to extract the desired signal,
increasing as A increases.

3. Neutrinoful double-β decay

Neutrinoful double-β decay is the rarest SM process whose rate has been measured. As such, this decay provides
a crucial test of the SM, and in particular of our understanding of weak interactions in nuclei. Achieving controlled
predictions of 2νββ decay rates from the SM is, however, challenging; the nuclei which undergo this decay are too
large for the application of LQCD or ab initio methods, and there is considerable model-dependence inherent in the
more phenomenological many-body methods which can be applied, leading to significant model uncertainties in current
best theory calculations of these rates. A promising approach to improving the reliability of these predictions is to
couple LQCD and ab initio methods, as outlined in this review. First progress has been made towards this goal; the
second-order weak ββ-decay matrix element of the two-nucleon system was recently computed from LQCD for the
first time [82,83]. With sufficiently precise and systematically-controlled calculations of few-body 2νββ decay matrix
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elements, the free parameters of few- and many-body methods, including those based on EFTs, can be constrained from
LQCD, effectively anchoring phenomenological approaches in the SM. It can be expected that this approach will reduce
the model-dependence implicit in many-body calculations of double-beta decay rates, enabling reliable predictions for
these rates with systematically-improvable uncertainties.

The rate of the neutrinoful double-β decay resulting in the nuclear transition Ai → Af (and also the corresponding
neutrinoless double-β decay in a light Majorana-neutrino scenario), is dictated by second-order weak interactions.
Since the long-distance contribution from the Fermi (vector) piece is suppressed by isospin symmetry, the dominant
contribution arises from the Gamow–Teller (axial–vector) piece of the weak current. Precisely, neglecting lepton-mass
effects, the inverse half-life of the neutrinoful double-β decay [T 2ν

1/2]
−1, can be expressed as [30]

[T 2ν
1/2]

−1
= G2ν(Ei − Ef , Zi)|M2ν

GT |
2
, (38)

where the matrix element M2ν
GT is defined from the time-ordered product of two axial currents by

M2ν
GT = 6 ×

1
2

∫
d4x d4y ⟨Af |T

[
J+3 (x)J+3 (y)

]
|Ai⟩ = 6

∑
n

⟨Af |J̃+3 |n⟩⟨n|J̃+3 |Ai⟩

En − (Ei + Ef )/2
, (39)

where Zi is the proton number of the initial nuclear state Ai, Ei,f are the energies of the initial and final states, and
G2ν(∆E, Zi) is a known phase-space factor [160,161]. The spatial component of the ∆I3 = 1 zero-momentum axial current
in the 3-direction is expressed as

J̃a3 ≡ J̃a3 (0, t = 0) =

∫
d3xJa3 (x, t = 0), with Ja3 (x) = q(x)

γ3γ5

2
τ aq(x), (40)

where τ denotes a Pauli matrix in isospin space, and τ+
=

1
√
2

(
τ 1 + i τ 2

)
. A complete set of zero-momentum states is

indexed by n, and the factor of 6 in M2ν
GT is a consequence of rotational symmetry (as M2ν

GT is written using the third spatial
component of the axial currents) and the convention for the normalization of the currents.

The second-order Gamow–Teller transition matrix element M2ν
GT , as well as individual contributions to this matrix

element, can in principle be determined for various nuclear transitions from LQCD calculations, providing refined inputs
for nuclear many-body calculations of double-beta decay rates. In Refs. [82,83], the first LQCD calculation of M2ν

GT was
undertaken, for the nn → pp transition. While this is not an allowed transition in nature because the dineutron is not
bound, the corresponding matrix element itself is well-defined, calculable, and related to the two-body sub-process of
double-β decays of larger nuclei. This calculation was performed without the inclusion of electromagnetism, at a single
lattice spacing and volume, and at the SU(3) flavor-symmetric point with degenerate up, down and strange quark masses
corresponding to a larger-than-physical pion mass ofmπ ∼ 806 MeV. While all of these caveats are possibly important, the
key qualitative result of that work was to reveal the potential significance of an operator that contributes to the ββ-decay
of nuclei, but not to single-β decays, namely the isotensor axial polarizability, β (2)

A , of the 1S0 two-nucleon system. This
polarizability is defined from M2ν

GT by subtracting the term corresponding to an intermediate deuteron state, i.e., the ‘Born’
term as in forward Compton scattering:

1
6
M2ν

GT = β
(2)
A −

|⟨pp|J̃+3 |d⟩|
2

Epp − Ed
. (41)

Since terms of this form have not been included in phenomenological analyses of double-β decay, its significance
in the numerical calculation of Refs. [82,83] implies that theoretical predictions of double-β decay rates with fully
quantified uncertainties will require constraints on the isotensor axial polarizabilities of nuclei. In Refs. [82,83] it was
also explicitly demonstrated how LQCD results can provide input to many-body methods to constrain second-order
electroweak properties of nuclear systems, by constraining the leading ∆I = 2 low-energy constant of pionless EFT
(see Section 2.1.1) from the LQCD two-nucleon transition matrix element. The remainder of this section will review that
calculation, with a particular focus on the difficulties, especially related to the bi-local nature of weak processes, which
must be overcome in order to undertake such calculations with controlled uncertainties at the physical quark masses,
and for larger nuclear systems.

3.1. Lattice QCD calculations

An efficient way to determine the matrix elements relevant to double-β decay processes in LQCD calculations is via
the background field technique discussed in Section 2.2. From the isospin structure of the operator inducing the nn → pp
transition, it is clear that no self-contractions of the quark fields in the axial-current operators, no contractions of quark
fields between the two axial-current operators, and no double insertions of axial-current operators on a single quark line,
contribute to the matrix element. The matrix element of interest can thus be constructed from correlators formed from
propagators computed in a background-field corresponding to a single axial-current insertion. For an axial current Ja3 (x),
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Fig. 5. Example contraction for the nn → ppe−e− transition corresponding to Eq. (43). The solid blue and dashed green lines represent down and
up quark propagators respectively, while the solid orange circles represent the ∆I = 1 weak interaction vertices. The dotted and solid black arrows
represent the neutrino and electron final states, respectively.

and hadron h, these background-field correlators have the form

C (h)
λa

(t) =

∑
x

⟨0|χh(x, t)χ†
h (0)|0⟩ + λa

∑
x,y

t∑
t1=0

⟨0|χh(x, t)J
(a)
3 (y, t1)χ†

h (0)|0⟩

+
λ2a

2

∑
x,y,z

t∑
t1,2=0

⟨0|χh(x, t)J
(a)
3 (y, t1)J

(a)
3 (z, t2)χ†

h (0)|0⟩ + O(λ3a), (42)

where χ (†)
h defines an interpolating operator with the quantum numbers of h. The second-order term in the field strength,

i.e., the piece proportional to λ2a , can be extracted from fits to calculations of the background-field correlators at multiple
values of λa. While this construction of the background-field correlator involves sums over all possible insertion times
t1,2 of the two axial currents, which is sufficient for a determination of the matrix element of the nn → pp transition in
Refs. [82,83], background-field constructions with the current insertions restricted to smaller temporal regions provide
additional constraints which allow the Euclidean time-dependence of the correlators to be further decomposed. This will
likely be necessary in extensions of this approach to calculations of the double-β decay transitions of larger nuclei, at
values of the quark masses corresponding to lighter pion masses.

For a calculation with the background field inserted at all times, the key correlator which is extracted from a LQCD
calculation is

C(t) =

∑
x,y,z

t∑
t1,2=0

⟨0|χpp(x, t)T
[
J+3 (y, t1)J+3 (z, t2)

]
χ†
nn(0)|0⟩. (43)

This can be determined either using a τ+ background field insertion, or alternatively using only flavor-diagonal fields via
the isospin relation (detailed in Ref. [83]):

⟨pp|J+3 (x)J+3 (y)|nn⟩ = ⟨np|J (u)3 (x)J (u)3 (y)|np⟩ −
1
2
⟨nn|J (u)3 (x)J (u)3 (y) + J (d)3 (x)J (d)3 (y)|nn⟩. (44)

An example of the quark contractions which contribute to this correlation function is displayed in Fig. 5. Inserting complete
sets of states, the correlation function C(t) of Eq. (43) can be expanded as

C(t) =
2V
a2

∑
n,m,l′

⟨0|χpp|n⟩⟨m|χ†
nn|0⟩e

−Ent ⟨n|J̃
+

3 |l′⟩⟨l′|J̃+3 |m⟩

El′ − Em

(
e−(El′−En)t − 1

El′ − En
+

e(En−Em)t − 1
En − Em

)
, (45)
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where zero-momentum energy eigenstates with the quantum numbers of the pp, nn and deuteron systems are expressed
as |n⟩, |m⟩ and |l′⟩ respectively, and El′ = Enn + δl′ and En = Enn + δn are the energies of the l′th and nth excited states in
the 3S1 and 1S0 channels. From the Euclidean time-dependence of this correlation function, the short-distance isotensor
axial polarizability, defined in Eq. (41), can be extracted. The long-distance deuteron pole contribution, however, which is
dictated by the single-current matrix element ⟨pp|J̃+3 |d⟩, can be determined most precisely from the linear contributions
to the background field correlation functions defined in Eq. (42).

Forming a ratio of the background field correlation function, given in Eq. (45), to the zero-field two-point function of
the nn system (C (nn)

0 in the notation of Eq. (42)), and subtracting the term with a deuteron intermediate state, defines

a2R̂(t) =
a2C(t)

2C (nn)
0 (t)

−
|⟨pp|J̃+3 |d⟩|

2

∆

[
e∆t

− 1
∆

− t
]

= t
∑
l′ ̸=d

⟨pp|J̃+3 |l′⟩⟨l′|J̃+3 |nn⟩
El′ − Enn

+ c + d e∆t
+ O(e−δ̂t ), (46)

where ∆ = Enn − Ed, and δ̃ ∼ δm, δn′ denotes a generic gap between eigen-energies of two-nucleon systems. In the final
expression, the terms c and d collect t-independent factors involving overlap factors, energy gaps, and ground and excited-
state transition amplitudes. In this expansion, ∆ is assumed to be small relative to the inverse of the time separation
between the source and the sink, and the gaps between eigen-energies are assumed to be large, i.e., δ̃ ≫ ∆. While these
assumptions are valid for the analysis of Refs. [82,83], in the generic case the simplifications applied in Eq. (46) cannot
be used. In the limits of physical quark masses and large simulation volumes in particular, δ̃ → 0 and ∆ → 2.22 MeV, so
that contributions involving the transition matrix elements of excited states can no longer be neglected. In this scenario,
alternative strategies involving insertions of the background field over ranges of timeslices that are separated from the
source and sink, will need to be pursued [162].

The coefficient of the term linear in t in Eq. (46), which determines the isotensor axial polarizability β (2)
A defined in

Eq. (41), can be extracted from the large-time limit of

R(lin)(t) =
(ea∆ + 1)R̂(t + a) − R̂(t + 2a) − ea∆R̂(t)

ea∆ − 1
t→∞
−→

1
aZ2

A

β
(2)
A

6
. (47)

Here, the isotensor axial polarizability is renormalized by the square of the axial current renormalization constant, Z2
A ;

this is correct up to lattice-spacing suppressed artefacts arising from radiatively-generated four-quark operators. Such
corrections necessarily occur in the background field approach, which includes contributions where both insertions of
the axial current are localized around the same space–time point. In the analysis of Ref. [83], it is concluded that this
mixing results in sub-percent effects, which are neglected in that analysis. Finally, the complete bare Gamow–Teller matrix
element is defined by the combination of R(lin)(t), defined in Eq. (47), with the deuteron-pole contribution:

R(full)(t) = R(lin)(t) −
|⟨pp|J̃+3 |d⟩|

2

a∆
t→∞
−→

M2ν
GT

6 aZ2
A
. (48)

Numerical results for R̂(t), R(lin)(t), and R(full)(t), determined in the calculation of Refs. [82,83], are shown in Fig. 6.
Two different analyses were undertaken, with correlation functions constructed with different smearing prescriptions;
the results from both analyses are consistent, with the isotensor axial polarizability resolved from zero to two standard
deviations.

3.2. Phenomenological consequences

As discussed in previous sections, the Gamow–Teller matrix element for the nn → pp transition determined in lattice
QCD calculations can be used to constrain counterterms in effective field theory descriptions of the same system. Then,
by matching to few-body methods, the potentially key contribution from the axial polarizability can be included in
calculations of the decay rates of larger nuclei than are accessible to LQCD; this approach was explored for spectroscopy
in Refs. [163,164]. For LQCD calculations undertaken with the heavy pion mass of Refs. [82,83], it is natural to consider
pionless EFT descriptions, as discussed in Section 2.1.1. At lighter quark masses approaching the physical point, pionful
EFTs as discussed in Section 2.1 will likely be required. The general approach to matching LQCD results for double-β
decay transitions to EFT is to equate correlation functions constructed in the two formalisms, where couplings to the
background fields are included in the effective Lagrangian of the EFT. To study the nn → pp matrix element, then, the
correlation function matrix in the {nn, np(3S1), pp} EFT channel space can be constructed (since the axial background field
changes both spin and isospin, there is no coupling of the np(1S0) state):

CNN→NN ≡

⎛⎝ Cnn→nn Cnn→np(3S1) Cnn→pp
Cnp(3S1)→nn Cnp(3S1)→np(3S1) Cnp(3S1)→pp
Cpp→nn Cpp→np(3S1) Cpp→pp

⎞⎠ . (49)



Please cite this article as: V. Cirigliano, W. Detmold, A. Nicholson et al., Lattice QCD Inputs for nuclear double beta decay, Progress in Particle and Nuclear
Physics (2020) 103771, https://doi.org/10.1016/j.ppnp.2020.103771.

18 V. Cirigliano, W. Detmold, A. Nicholson et al. / Progress in Particle and Nuclear Physics xxx (xxxx) xxx

Fig. 6. R̂(t), R(lin)(t), and R(full)(t) (Eqs. (46)–(48)) determined in the calculation of Refs. [82,83]. In each panel, the blue circles and orange diamonds
indicate results obtained from correlation functions constructed with different sink smearing prescriptions. Note that R̂ is expected to differ between
the two sets of results, as it includes the terms in Eq. (46) with coefficients c and d which contain ground-state and excited-state overlap factors
and are thus smearing-dependent.
Source: From Ref. [83].

This matrix is constructed as an expansion in terms of LECs, including couplings to the background axial field. In
Refs. [82,83], a dibaryon formulation of pionless EFT [87,101] was used; matching to the LQCD calculation then enabled
the coefficient of a short-distance, two-nucleon, second-order axial-current operator in that formalism to be determined.
In that approach, the nn → pp transition, expanded to second order in the background axial field, can be expressed
as shown in Fig. 7. The correlation function can then be expressed in a cubic spatial volume with periodic boundary
conditions, Fourier-transformed in time, and Wick-rotated to Euclidean space by x0 → it . Taking the ratio of the nn → pp
transition correlator to two times the zero-field two-point function, as done for the LQCD correlation function in Eq. (46),
and taking the second derivative with respect to the background-field strength to extract the terms linear in time which
determine the second-order finite-volume matrix element, yields an expression that can be matched precisely to the LQCD
result. The key matrix element can be expressed as

Mnn→pp = −
|gA(1 + S) + L1,A|

2

∆
+

Mg2
A

4γ 2
s

− H2,S . (50)

The first term corresponds to the deuteron pole, while the remaining terms are short-distance contributions; the quantities
L1,A and H2,S denote the correlated two-nucleon axial contribution to the phenomenological quenching of gA and the
correlated two-nucleon two-axial coupling contribution, respectively. In terms of the parameters in Section 2.1.1,

L1,A =
ZsZt

√
γtγs

2M
l̃1,A, H2,S =

γsZ2
s

2M
(h̃2,S −

M2rs
2γ 2

s
g2
A ), (51)

where γs,t =
√
M(2M − Es,t ) and Zs,t = 1/(1 − γs,t rs,t ). These can be constrained using the LQCD matrix elements for the

nn → pp transition, in addition to the values of the proton axial charge, and the binding momenta and effective ranges.
In Eq. (50), S is an SU(4) Wigner symmetry-breaking factor, γs =

√
MBs (where Bs = 2M −E(0)

s is the binding energy), and
the tower of shape parameters has been ignored. From the results of Refs. [82,83], the correlated two-nucleon two-axial
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Fig. 7. Diagrammatic representation of the nn → pp correlation function in the pionless dibaryon EFT formulation. The light (dark) gray circles
denote the isotriplet (isosinglet) strong dibaryon coupling to two nucleons, when inserted on the nucleon line the crossed circle represents the
singly-weak single-nucleon coupling to the background field, and when inserted on the dibaryon line it denotes the singly weak dibaryon coupling.
The crossed square represents the doubly weak dibaryon coupling to the background field. The thick dashed light (dark) gray lines denote the
fully-dressed isotriplet (isosinglet) dibaryon propagator, and the thin black lines represent nucleon propagators.
Source: From Ref. [83].

coupling contribution can be constrained to be H2,S = 4.7(1.3)(1.8) fm. While the deuteron-pole term dominates (the
full matrix element and the Born term differ by approximately 5%), the contribution from H2,S is of the same order of
magnitude as the term proportional to g2

A , and is thus non-negligible. While this result suggests that the two-nucleon
two-axial coupling should not be neglected in analyses of double-β decay, the numerical result is valid only at the
heavier-than-physical quark masses used in the LQCD calculation. Connecting directly to phenomenology will require
LQCD calculations at, or close to (with chiral extrapolation), the physical masses.

For future calculations via this approach to reduce the model-dependence implicit in many-body calculations of double-
beta decay rates, significant progress is still required. In particular, repeating the LQCD calculation of Refs. [82,83] at quark
masses corresponding to the physical point presents several challenges. Firstly, the hierarchy of mass splittings changes
from that which was exploited in that work to isolate the matrix element of interest. As discussed above, this could be
addressed by separating the source and sink from the background field region, and considering calculations with several
different regions. Moreover, the initial and final states will no longer be bound, complicating the relationship between the
finite-volume bi-local matrix elements and the infinite-volume transition amplitudes; a generalization of the formalism
presented in Ref. [165] will be required. One might also consider exploring extensions to investigate the many-body
effects directly by calculations of the nnp → ppp or nnn → npp transitions. This requires I =

3
2 states such as ppp to

be constructed in the LQCD calculation, which will need non-local source structures, not studied in previous work, to be
constructed. Nevertheless, the path to achieving such calculations is reasonably clear, despite the above challenges, and
LQCD calculations with physical quark masses have the potential to provide critical input to many-body calculations of
double-β rates that cannot be obtained through any other known method.

4. Neutrinoless double-β decay

As discussed in the introduction and in Section 2.1, there are a number of potential BSM scenarios that result in a double
beta decay process in which there are no neutrinos in the final state. The two important classes of new physics are a)
light Majorana neutrinos and b) new short distance lepton number violating processes at scales beyond the electroweak
scale. To understand the effects of either scenario in physical states requires knowledge of nuclear matrix elements.
Experimental searches for this process make use of large nuclei which are at present too difficult to study in LQCD.
However, as discussed in Section 2.1, effective field theory allows one to obtain critical non-perturbative input for the
many-body transition operators by performing LQCD calculations of simpler systems. To this end, recent work has focused
on calculations in pionic systems where the numerical complexities of nuclei in LQCD are absent and the techniques
necessary to study 0νββ can be developed.

4.1. Short distance contributions in pion matrix elements

As discussed in Section 2.1.3, if there is BSM physics contributing to 0νββ at scales above the electroweak scale, then
the effects manifest at lower scales as local composite operators whose contributions arise from integrating out the new
physics. Generically, a given high-scale physics scenario will produce multiple different operators at low energies, listed in
Eq. (14), of which the most phenomenologically relevant are the five four-quark scalar operators, O1,2,3,4,5. In Section 2.1.3,
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Fig. 8. Contractions for the π−
→ π+e−e− transition induced by short distance four-quark operators. The solid blue and dashed green lines represent

down and up quark propagators respectively, and the dark circle represents the ∆I = 2 operator. The solid black lines represent the electron final
states.

the chiral EFT realization of these operators is reviewed in detail, in various power counting schemes. The EFT analysis
implies that in order to construct the leading-order transition operators one needs to determine ⟨π+

|O1,2,3,4,5|π
−
⟩ and

⟨pp|O1,2,3,4,5|nn⟩. So far the LQCD community has focused on the pionic matrix elements, as the two-nucleon matrix
elements suffer from technical complications. In addition to the generic issues related to LQCD calculations involving
nucleons (Section 2.2), difficulties arise from the fact that (i) the quark line contractions for two-nucleon 0νββ calculations
are more involved, resulting in the need for either highly improved position-space operators for the nucleons or stochastic
methods for projecting onto definite momenta; (ii) the connection with infinite volume physics for two-body systems
requires the calculation of scattering phase shifts coupled with a sophisticated finite-volume formalism [166,167].

While the π−
→ π+e−e− in vacuum is itself unphysical due to kinematic considerations, this transition can occur

within an off-shell pion exchanged inside a nucleus. Computing the pure QCD portion of this transition at unphysical
kinematics gives access to the relevant EFT LEC’s, namely the gππi introduced in Eq. (16).

The most straightforward method for performing these calculations is to use a traditional 3-point function, C3pt
i (t, T−t)

(see Section 2.2), in which a four-quark operator is inserted between source and sink operators for the pion which are
sufficiently separated in Euclidean time:

C3pt
i (ti, tf ) =

∑
α

∑
x,y

e−EαT ⟨α|Π+(tf , x)Oi(0, 0)Π+(ti, y)|α⟩ (52)

where Π+(tf , x) = d̄γ 5u and Π+(ti, y) = Π−†(ti, y) are annihilation and creation operators with the quantum numbers
of a π+ and a π− respectively. The corresponding quark contraction is shown in Fig. 8. Note that here the operator is
chosen to be held at a fixed space–time point while the times at which the source and sink pion interpolating operators
are inserted are free to vary.

The contractions for these 3-point functions can be easily performed by creating a single pion ‘‘block’’ [168]

Πa,α,b,β =

∑
c,γ

∑
x

[Sd (x, t; 0, 0) γ5]b,β,c,γ
[
S†
u (x, t; 0, 0) γ5

]
a,α,c,γ , (53)

from d and ū propagators, Sd(x; y) and S†
u (x; y), respectively. The pion block has indices contracted at time t = 0, and

open spin and color indices at the other time. These open indices are then contracted by the operator at t = 0 and
a single space–time point. This same pion block is time reversed, utilizing the periodic boundary conditions, such that
the sink pion propagates backward toward the operator insertion (see Fig. 8). The spatial indices at source and sink are
summed over in order to project onto zero momentum. This setup, requiring all quark propagators to be contracted by
the operator, is similar in spirit to calculations of K 0- [169–177], D0- [175,178] and B0

(s)-meson mixing [179–182] or NN̄
oscillations [183,184].

From C3pt
i (t, T − t), Eq. (52), ratios Ri(t) with the pion correlation function, Cπ (t), can be formed and related to the

pion matrix element of operator Oi as:

Ri(t) ≡ C3pt
i (t, T − t)/(Cπ (t)Cπ (T − t)) −→

t,T−t→∞

a4⟨π |Oi|π⟩

(a2Zπ0 )2
+ Re.s.(t) , (54)

where Zπ0 gives the overlap of the pion operator onto the pion ground state and may be extracted from the pion two-point
correlation function Cπ (t), analogous to Eq. (24). Residual effects from excited state contamination in Re.s.(t) can be shown
to fall of exponentially with the time separations {t, |T − t|}. Forming this ratio, which removes the need to extract the
pion masses in a separate calculation, has the added benefit of canceling the contributions from the first thermal state in
the pion correlation functions. In Fig. 9, an example of this ratio calculated in Ref. [185] is reproduced, showing the clear
ground-state plateaus obtained with this method.

Once matrix elements have been extracted on various ensembles of gauge fields, extrapolations to the continuum,
physical pion mass, and infinite volume limits must be performed. To determine the pion mass dependence, it is
straightforward to include the operators in χPT and to derive the virtual pion corrections which arise at next-to-leading
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Fig. 9. An example of the ti and tf dependence of the ratio correlation functions, Ri(ti, tf ) for the five relevant 0νββ operators on a near physical
pion mass ensemble with a ≈ 0.12 fm. The filled black symbols correspond to the diagonal components |ti| = tf . The neighboring points with open
symbols correspond to, from left to right, |ti| = tf + [−2,−1, 1, 2]. The horizontal bands are the ground state contributions to Ri extracted from
single-state fits.
Source: Data and fits from Ref. [185], converted to the basis of Eq. (15).

order in the chiral expansions,

O1

ε2π
=

b1Λ4
χ

(4π )2

[
1 − ε2π

(
3 ln(ε2π ) + 1 − c1

)]
,

O4,5 =
b4,5Λ4

χ

(4π )2

[
1 + ε2π

(
ln(ε2π ) − 1 + c4,5

)]
,

O2,3 =
b2,3Λ4

χ

(4π )2

[
1 + ε2π

(
ln(ε2π ) − 1 + c2,3

)]
, (55)

where Λχ = 4πFπ , and επ =
mπ
Λχ

is the small expansion parameter. The dimensionless LEC’s, bi and ci may be constrained
from fits to the data, with the bi determining the gππi in Eq. (16). These expressions can be generalized to incorporate
finite lattice spacing corrections arising from a particular lattice action [186] and finite volume corrections arising from
virtual pions becoming sensitive to the finite periodic volume [187].

Finally, the bare quark operators must be renormalized and evolved to the appropriate scale for matching onto a given
BSM model. While the combined currents that enter the chiral Lagrangian are necessarily ‘‘color blind’’, gluon interactions
will intermingle the colors amongst the quarks in a given four-quark operator. In particular, as the scale is run between
the electroweak and QCD scales, some of the operators defined in Eq. (15) will mix under renormalization. In particular,
O2 will mix with O3, while O4 mixes with O5. Therefore, one must compute the renormalization of the full matrix of
operators including the off-diagonal mixing which will become non-zero as the scale is varied.

One group [185] has calculated the dominant π−
→ π+ matrix elements arising from short-range operators

relevant for experimental searches for 0νββ , performing a full extrapolation to the physical point. The calculation was
performed on Highly-Improved Staggered Quark (HISQ) ensembles produced by the MILC collaboration [188], and includes
ensembles with pion masses ranging from 130<∼ mπ

<
∼ 310 MeV, lattice spacings 0.09<∼ a<∼ 0.15 fm, and several volumes

corresponding to mπL ∼ 3.2 − 5.4, allowing for all systematics to be controlled. A mixed action approach is taken by
solving for Möbius Domain Wall Fermion (MDWF) propagators on these gauge field configurations, after applying gradient
flow smearing to the ensembles to reduce noise stemming from UV fluctuations [128]. While more costly to produce, the
MDWF valence quark action has improved chiral symmetry properties, resulting in smaller discretization errors beginning
at O(a2). The effects of the mixed action are incorporated into the extrapolation formulae using a partially quenched
version of χPT [189].

The relevant matrix of renormalization constants is computed non-perturbatively following the Rome–Southampton
method [134] with a non-exceptional kinematics-symmetric point [135], using the RI/SMOM (γµ, γµ)-scheme [190].
Momentum sources are implemented to achieve a high statistical precision [191], and non-perturbative step-scaling
techniques [192,193] are used to run the Z-factors to a common scale (reported at µ = 3 GeV in the original publication).
The mixed-action setup provides an additional benefit because the renormalization pattern is the same as in the
continuum (to a very good approximation) and does not require the spurious subtraction of operators of different chirality.
Examples of the chrial and continuum extrapolations are shown in Fig. 10.

At the scale µ = 2 GeV in the MS scheme, Ref. [185] finds: gππ1 = 0.36 ± 0.02, gππ2 = 2.0 ± 0.2 GeV2, gππ3 =

−(0.62 ± 0.06) GeV2, gππ4 = −(1.9 ± 0.2) GeV2, gππ5 = −(8.0 ± 0.6) GeV2. Note that the scaling of these LECs agrees
with the NDA estimate. Prior to the direct LQCD calculation, these LECs were also extracted in Refs. [116,117] using SU(3)
relations between π+-π− and the kaon processes K -K and K → ππ matrix elements, for which LQCD results are also
available [171,172,175–177,194,195]. Ref. [116] found gππ1 = 0.38±0.08, gππ2 = 2.9±0.6 GeV2, gππ3 = −(1.0±0.3) GeV2,
gππ4 = −(2.5 ± 1.3) GeV2, gππ5 = −(11 ± 4) GeV2. This indirect LQCD extraction is in good agreement with the more
precise results of Ref. [185].
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Fig. 10. Interpolations/extrapolations of the pion matrix elements. Light and dark blue correspond to O2,3 , respectively, light and dark green to O4,5 ,
and red to O1 . The fit bands are constructed with Λχ held fixed while changing ϵπ , so the corresponding LQCD results are adjusted by (Fπ/F latt

π )4
(where F latt

π is the value of the pion decay constant determined on a given ensemble) for each lattice ensemble in order to be consistent with this
interpolation. The bands represent the 68% confidence interval of the continuum, infinite volume extrapolated values of the matrix elements. The
vertical gray band highlights the physical pion mass point.
Source: Data and fits from Ref. [185], converted to the basis of Eq. (15).

4.2. Long distance contributions in pion matrix elements

A light Majorana neutrino propagates over ‘‘long distances’’ that are resolvable at the QCD scale, and therefore the
non-locality of the second order weak-process must be incorporated into the evaluation of the QCD matrix elements. This
leads to more complicated calculations than those discussed in Section 4.1. In contrast to the 2νββ process discussed
in Section 3, the momentum carried by the neutrino propagator must be integrated over, also leading to additional
complications.

The 0νββ process between an initial state i and final state fe−e− is induced at second order in perturbation theory,
with two insertions of the ∆I = 1 weak Hamiltonian in Eq. (3) leading to the bi-local matrix element∫

d4x d4y⟨fee|T {HW (x)HW (y)} |i⟩ = 4mββG2
FV

2
ud

∫
d4x d4y Hαβ (x, y)Lαβ (x, y), (56)

where the leptonic tensor is given by

Lαβ ≡ eL(p1)γαSν(x, y)γβeCL (p2)e
−ip1·xe−ip2·y (57)

and the hadronic tensor is given by

Hαβ ≡ ⟨f |T
{
JαL:(x)JβL(y)

}
|i⟩ , (58)

and JµL(x) = uL(x)γµdL(x). The neutrino propagator is given by

Sν(x, y) = Sν(x − y) =

∫
d4q

(2π )4
eiq·(x−y)

q2
. (59)

The convolution with the leptonic tensor and resulting integration mean that evaluations of the hadronic tensor are
required for all sets of space–time points. The leptonic tensor results in an integration kernel that has significant support
for momenta of up to O(100) MeV. An additional complication is that LQCD calculations are performed in finite volume
Euclidean space–time, while the physical matrix elements are required in Minkowski space. The analytically continued
information can be extracted but requires careful treatment, particularly when the initial and/or final state involve
multiple hadronic states.

4.2.1. The transition π−
→ π+e−e−

Two groups [196,197] have pursued calculations of the 0νββ matrix element that induces a transition between an
initial π− state and a final π+e−e− state. While this transition is not physical due to the electron masses and degeneracy
of the π±, it can be studied at unphysical kinematics. This matrix element is equivalent to the charge exchange zero-
momentum scattering process π−e+

→ π+e−. From the point of view of LQCD, it is the simplest 0νββ process that can
be investigated as it does not suffer from an exponential signal-to-noise problem at increasing Euclidean time, and the
initial and final states contain only single hadrons.

This process is a low energy process and χPT provides a prediction for it. At next-to-leading order, this is determined
by a single low energy constant LEC [112]

A(π−
→ π+ee)
ALO = 1 +

m2
π

(4πFπ )2

(
3 log

µ2

m2
π

+ 6 +
5
6
gππν (µ)

)
, (60)
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Fig. 11. Contractions for the π−
→ π+e−e− transition in Eqs. (62) and (63). The solid blue and dashed green lines represent down and up quark

propagators respectively and the circles represent the ∆I = 1 weak vertices. The dotted and solid black lines represent the Majorana neutrino
propagator and electron final state respectively.

where ALO
= −8G2

F |Vud|
2mββ ūL(pe1)CuT

L (pe2)× F 2
π is the leading order prediction (corresponding to the vacuum saturation

approximation [197]). Here, the LEC gππν (µ) from Eq. (13) depends on the renormalization scale in such a way that the
amplitude is renormalization-scale independent.

In Ref. [196], a preliminary study of this process is presented using domain wall fermions at a pion mass of mπ ∼

420 MeV with further developments underway [198]. The calculation builds on the pioneering studies of rare kaon decays
by the RBC collaboration [199,200] and the NPLQCD collaboration study [82,83] of the 2νββ process discussed in the
previous Section. Specifying to the particular initial and final states in Eq. (56), the hadronic matrix elements of interest
can be determined from the correlation function

Cπ→π
µν (t+, x, y, t−) = ⟨0|T

{
χπ+ (t+)JνL(x)JµL(y)χ

†
π− (t−)

}
|0⟩ (61)

with χπ+ and χ†
π− being interpolating operators for zero-momentum pion states. The correlation function above is

constructed from two different types of Wick contractions which are shown in Fig. 11. The forms of the quark line
components of these contractions are

Cπ→π
(a) = Tr

[
S†
u (t+ → x)Sd(t+ → y)γµ (1 − γ5) S†

u (t− → y)Sd(t− → x)γν (1 − γ5)
]

(62)

and

Cπ→π
(b) = Tr

[
S†
u (t− → x)γµ (1 − γ5) Sd(t− → x)

]
· Tr

[
S†
u (t+ → y)γν (1 − γ5) Sd(t+ → y)

]
, (63)

respectively. Here, a simple local pion interpolator, χπ+ = uγ5d, has been used and terms with µ ↔ ν and x ↔ y are
also required. Inserting a complete set of states between the two currents in Eq. (61) as in Refs. [200,201], it is clear that
the correlation function has the asymptotic time dependence

Cπ→π (t; T ) ≡

∑
x,y

T∑
tx=0

T∑
ty=0

Lµν(x, y)Cπ→π
µν (t+, x, y, t−)

Cπ (t)

∝

∑
n

⟨πee|HW |n⟩⟨n|HW |π⟩

En(En − mπ )

[
T +

e−(En−mπ )T − 1
En − mπ

]
(64)

for pions at rest, where T is the size of the temporal integration window for the weak current insertions and t = |t+ − t−|

is the π−
− π+ source–sink separation. In deriving this formula, it is assumed that the current insertions are held

sufficiently far from the pion source and sink (t− ≪ 0 ≪ T ≪ t+) so that the couplings to excited states before and
after the integration window may be safely neglected. The states contributing to the sum are: |eνe⟩, |πeνe⟩, |n = 2⟩, . . .,
with energies E ∼ me < mπ , E ∼ mπ and E > mπ . For the lowest-energy state, the terms in the square brackets in Eq. (64)
are growing exponentially with T and the matrix element is the square of the pion decay constant; for the second state,
|πeνe⟩, the terms in the square brackets behave approximately quadratically; for the remaining n ≥ 2 terms, the large T
behaviour of Eq. (64) is linear. Combining these pieces, the matrix element governing 0νββ

M0ν
=

∑
n

⟨πee|HW |n⟩⟨n|HW |π⟩

En(En − mπ )
(65)

can be determined. The procedure by which this can be achieved is illustrated in Fig. 12 ad discussed in detail in Ref. [202].
The calculation of the double sum over the spatial volume in Eq. (64) is naively numerically prohibitive for all but the

smallest volumes. Fortunately, the translational invariance of the neutrino propagator can be exploited to reduce this to
O(V log V ) using the convolution theorem∫

d3x d3y fα(x)Lαβ (x − y)gβ (y) =

∫
d3x fα(x)

[
F−1 {F(Lαβ ) · F(gβ )

}]
(x) (66)
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Fig. 12. The integrated transition amplitude for various different neutrino masses (left) and decomposed into the various terms contributing in
Eq. (64).
Source: From Ref. [202].

Fig. 13. The runtime of the various implementations of the double summation over the neutrino creation and annihilation points. The results
correspond to the naive double summation, a CPU implementation (FFTW) of the FFT, a GPU implementation of the FFT and, simply setting one
of the ends of the neutrino propagator to be fixed (single sum), albeit this last method has significantly larger variance. Further details on the
comparison are given in Ref. [202].
Source: From Ref. [202].

and the Fourier transform, F(. . .). As discussed in Ref. [202], this convolution can be implemented using the fast Fourier
transform (FFT). The second type of contraction, Cπ→π

(b) , in Fig. 11, requires the FFT to be performed for the various
spin-color components separately. The speed-up achieved using FFT is significant and is shown in Fig. 13.

In Ref. [197], Tuo et al. have presented a further, more complete study of this π−
→ π+e−e− process also using

domain wall fermion ensembles. This calculation differs in technical details from that of Ref. [202] and also contains
results at the physical values of the quark masses for the first time. This calculation uses sophisticated statistical methods
and also implement the infinite volume reconstruction technique [203] to ameliorate the finite volume effects of the
almost massless neutrino propagator. In addition, the calculation proceeds by dividing the full correlator by the completely
disconnected version of contraction Cπ→π

(b) in Fig. 11 (performing separate averages over gluon field configurations of the
two traces) which corresponds to subtracting the leading order χPT result. Noting the similarity of the π−

→ π+e−e−

hadronic matrix element to the electromagnetic self energy of the pion (computed in Feynman gauge), Tuo et al. used the
infinite volume reconstruction method [203] which in this case removes all power-law suppressed finite-volume effects
caused by the (almost) massless neutrino propagator. The infinite volume reconstruction method works due to the fact
that at large enough time separation, the matrix elements are dominated by single pion intermediate states contribution
(significant effort is put into assessing the systematic effects of this and the remaining exponentially suppressed finite-
volume effects). Four different DWF ensembles at quark masses very close to their physical values were used with
volumes ranging from mπL = 3.3–4.5. Different lattice spacings and actions were also used, enabling an estimate of
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Fig. 14. Continuum limit of the infinite volume reconstructed amplitude for π−
→ π+e−e− [197]. The notation 24D, 32D, 32D-fine, and 48I refers

to the different ensembles used in Ref. [197]. In each case the extrapolated result is obtained as a linear fit vs a2 ignoring the 48I point which
corresponds to a different discretization. The lower panel shows the extraction of the χPT LEC gππν (µ = mρ ).
Source: From Ref. [197].

Fig. 15. Contractions for the π−π−
→ e−e− transition. The solid blue and dashed green lines represent down and up quark propagators respectively,

and the circles represent the ∆I = 1 weak vertices. The dotted and solid black lines represent the Majorana neutrino propagator and electron final
state respectively.

the continuum limit. Fig. 14 shows the continuum limit extrapolation. To achieve clean signals, all mode averaging and
low-mode deflation were used and wall sources for the quark fields were placed on every timeslice. The final result in Tuo
et al. is the amplitude A = 0.1045(34)(50)L(55)a where the uncertainties are from statistics, finite volume and continuum
extrapolation respectively. This allows a determination of the χPT low energy constant

gππν (µ)
⏐⏐
µ=mρ

= −10.89(28)(33)L(66)a , (67)

more precise and in reasonable agreement with the large-NC estimate gππν (µ)|µ=mρ= −7.6 [112,113].

4.2.2. The transition π−π−
→ e−e−

Second order weak interactions also generate the crossed channel transition π−π−
→ e−e−. This transition, while

kinematically allowed, is not accessible experimentally but provides a similarly useful theoretical arena as the π−
→

π+e−e− transition. In Ref. [204], Feng et al. have investigated the corresponding transition amplitude in the light
neutrino exchange scenario. The calculations were performed using domain-wall fermion ensembles with quark masses
corresponding to pion masses mπ = 420 and 140 MeV. While exploratory, this calculation demonstrated the feasibility
of the methods used.

As with the π−
→ π+e−e− calculations above, there are two types of contractions involved in constructing the

LQCD correlators from which the transition amplitudes can be extracted; these are shown in Fig. 15. A key difficulty
in this calculation is that the initial state in the correlation functions is a multi-particle state |π−π−

⟩ and is a finite
volume state that must be converted to the desired infinite volume state using the Lellouch–Lüscher factor [205,206],
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Fig. 16. The integrated π−π−
→ e−e− matrix element M modulo the leptonic contribution as a function of the period of time over which the two

weak currents are integrated, Tbox . The red and black circles show the integrated matrix element with and without the exponential term for the
ground intermediate state subtracted.
Source: From Ref. [204].

requiring knowledge of the ππ-scattering phase shifts. Fig. 16 shows the integrated matrix element extracted in this
calculation for the two different quark masses. The transition amplitudes that were obtained are 24% and 9% smaller
than the predication from leading order chiral perturbation theory at the two different quark masses. The results provide
lattice QCD constraints on the NLO χPT counterterms. As discussed in Ref. [197], these are compatible with those obtained
from the π−

→ π+e−e− transition amplitude. Follow-on calculations in which all the systematic uncertainties are fully
controlled will be possible with larger-scale computational resources.

4.3. Two-nucleon nn → ppe−e− and other matrix elements

The pion transition calculations discussed above have served to investigate technical aspects of the methodology
of both short and long-distance contributions to 0νββ , and also constrain pionic contributions within nuclear decays.
However, the next stage of development is to move to the more directly phenomenologically relevant two-nucleon process
nn → ppe−e−, as has been done for 2νββ decay. There are some differences in the computational details for the two-
nucleon processes from those of the pion. There is no disconnected type contribution, but the complexity of the connected
contractions is significantly higher. Considerable effort has been put into efficient contraction methods for spectroscopy
of nuclear systems [152–156] and this can be extended to the contractions relevant for the 0νββ and 2νββ decays of
nuclear systems. For each contraction necessary for spectroscopy of a nuclear system, there are Cnd

2 contractions for the
case of the long distance ββ decay transition where nd is the number of down quarks in the initial state interpolating
field. This is shown in Fig. 17 for the long-distance case (the short distance contributions scale similarly).

Beyond the two-nucleon transition, the next relevant systems to consider are 4H →
4Li e−e−, 6H →

6Li e−e− and
6He →

6Be e−e−. Calculations of these transitions are considerably more complicated than the two-nucleon calculations,
requiring significantly higher statistics, new types of interpolating operators, and sophisticated approaches to the much
larger computational complexity of the quark contractions. These calculations would serve as additional benchmarks
for nuclear many-body methods, in particular allowing determinations of LECs in EFT-based many-body approaches and
providing an assessment of the convergence of the EFT for larger nuclear systems. It is also possible to consider 0νββ
matrix elements in any other hadronic or nuclear states with I ≥ 1. As an example, the Σ−

→ Σ+e−e− transition is a
simpler transition to study numerically which involves the same type of contractions as are necessary for the two nucleon
transitions.

5. Outlook and prospects

While first principles studies of 0νββ and 2νββ decays are in their early stages, the last few years have seen the
application of lattice QCD techniques to calculations relevant for hadronic and nuclear inputs needed for a concrete
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Fig. 17. Example contraction for (a) nn two-point correlation functions and (b) the corresponding set of contractions for the long-distance 0νββ
nn → ppe−e− transition. The solid blue and dashed green lines represent down and up quark propagators respectively, and the circles represent the
∆I = 1 weak vertices. The dotted and solid black lines represent the Majorana neutrino propagator and electron final state respectively.

predictions for these processes. This review highlights recent calculations of the 2νββ transition nn → ppe−e−ν̄eν̄e, and
on various pionic 0νββ transitions induced through either short-distance higher-dimensional operators originating from
high scales, or long-distance contributions from light Majorana neutrinos. A central aspect of this topic is the connection
between these LQCD calculations and the effective field theories needed to make connection to phenomenology.

Important progress in both the LQCD calculations and the EFT matching can be anticipated in the coming years. The
scope of LQCD calculations will increase; already there are efforts underway to pursue the 0νββ transition nn → ppe−e−,
and one might anticipate the extension of these calculations to larger atomic systems with A = 4, 6. The control
of systematic uncertainties for two- and higher-nucleon systems will also improve dramatically with multiple lattice
spacings and volumes being used; for the more challenging nuclear calculations an understanding of the quark mass
dependence of these amplitudes will also emerge. In the context of effective field theory, a major improvement will come
from performing finite volume EFT calculations of these processes, first for pionic amplitudes and subsequently for the
nuclear systems. Such an advance will enable more precise matching to the (necessarily finite volume) LQCD calculations.

As this area matures, LQCD and EFT will have an important impact on ββ phenomenology:

• Two-nucleon amplitudes for both short- and long-range mechanisms are essential to determine the LO transition
operators to be used in nuclear many-body calculations. Currently, ignorance of the LO LECs induces an order-
of-magnitude uncertainty in the predicted decay rates even before considering nuclear structure uncertainties.
Therefore, the calculation of two-nucleon amplitudes in LQCD and their extrapolation to the continuum and physical
quark masses are of highest priority;

• LQCD calculations in systems with A = 4 and A = 6 will help in quantifying uncertainties in the nuclear many-body
methods. In particular, even if one knew the LECs by matching to two-body amplitudes, one expects additional
uncertainty in nuclear calculations from residual scheme dependence and regulator dependence of the results.
Benchmarking against LQCD may help constrain the size of these uncertainties. Transitions that can be used for
benchmarking purposes include: 6He →

6Be e−e− (∆I = 0) (nuclear structure results exist from several groups),
6H →

6Li e−e− (∆I = 2) (more difficult for nuclear structure methods because 6H is unstable) and possibly
4H →

4Li e−e− (∆I = 0) and 4n →
4He e−e−.

In summary, LQCD coupled to EFT has the potential to greatly impact double beta decay phenomenology, by
dramatically reducing current uncertainties arising from matching of quark to hadronic degrees of freedom, and further
benchmarking nuclear structure methods in A ≤ 6 systems. While this program requires very challenging calculations,
significant progress is expected in the next five to ten years, commensurate with the time-scale of next generation
‘ton-scale’ experimental searches for 0νββ .
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