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Auxin is an important signaling molecule synthesized in

organisms from multiple kingdoms of life, including land plants,

green algae, and bacteria. In this review, we highlight the

similarities and differences in auxin biosynthesis among these

organisms. Tryptophan-dependent routes to IAA are found in

land plants, green algae and bacteria. Recent sequencing

efforts show that the indole-3-pyruvic acid pathway, one of the

primary biosynthetic pathways in land plants, is also found in

the green algae. These similarities raise questions about the

origin of auxin biosynthesis. Future studies comparing auxin

biosynthesis across kingdoms will shed light on its origin and

role outside of the plant lineage.
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Introduction
A transmissible factor was first proposed to regulate root

gravitropism in 1872 by Theophil Ciesielski [1]. A decade

later Charles and Francis Darwin expanded on this idea

and hypothesized that a mobile signal regulates plant

photomorphogenesis [2]. The primary active auxin,

indole-3-acetic acid (IAA), was later identified as this

mobile signal and was characterized in the early 1940s

(reviewed in Ref. [3]). Since that time, auxin has been

implicated in plant cell division and expansion to drive

embryogenesis, growth, and tissue differentiation. In

addition to its endogenous role in plant development,

natural and synthetic auxins or their precursors have been

used for agricultural applications.
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Synthesis and response to auxin are not limited to plants;

indeed, organisms from across the kingdoms of life have

been found to synthesize or respond to auxin. In each of

these systems, a different primary route of IAA biosyn-

thesis is utilized; however, for those organisms that IAA

biosynthesis pathways have been elucidated, common

themes of biosynthetic intermediates have arisen.

Some fungi can synthesize and/or respond to auxin.

Indeed, the IAA molecule was originally identified in

fermentation media growing yeast in 1934 [4]. Fungi alter

their growth patterns in response to auxin. In Saccharo-
myces cerevisiae and other yeasts, auxin promotes cell

expansion and negatively regulates cell division. In other

fungal species, auxin induces spore germination

(reviewed in Ref. [5]). Clearly, IAA biosynthesis and

response are present in this kingdom.

Auxin is also synthesized by some bacteria. For example,

select plant pathogens rely on auxin to induce their cell

growth and to increase pathogenicity (reviewed in Ref.

[6]). In addition, bacteria in the rhizosphere may also rely

on auxin synthesis to promote symbiotic relationships

with plants [7,8]. Thus, in addition to plants and fungi,

bacterial species may synthesize and respond to auxin.

Given the breadth of organisms making or responding to

this small molecule, it raises the question of how and in

which organisms is IAA synthesized. In plants, several

enzymatic pathways result in IAA production through

diverse intermediates that in turn can be conjugated to

generate various storage forms (Reviewed in Ref. [9])

(Figure 1). Likewise, some bacteria use distinct pathways

togenerateIAA (reviewed in Refs. [6] and[7]) (Figure 1). In

this review, we will focus on IAA production and metabolic

mechanisms in both eukaryotes and prokaryotes.

Routes of IAA production in the land plant
lineage
In land plants IAA is synthesized from a tryptophan

precursor and flows through the indole-3-pyruvic acid

(IPyA) biosynthetic pathway (Figure 1) [10��,11–14].
The tryptophan aminotransferase (TAA) [11,12,14] fam-

ily converts the amino acid tryptophan in IPyA, which is

then metabolized by the YUCCA (YUC) [11,12,14] family

of flavin monoxygenases in IAA. In both angiosperms and

bryophytes, mutants defective in the IPyA pathway

show severe developmental phenotypes, suggesting a

conserved role of this pathway in IAA biosynthesis

[11–13,15��,16].
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Tryptophan-dependent IAA biosynthetic pathways in land plants and bacteria. Lines represent steps in the biosynthesis of IAA and its precursors

in land plants (blue) and bacteria (pink). Enzymatic reactions that have been confirmed by genetic and biochemical analysis are provided in the

appropriate steps. Unlabeled lines represent hypothesized steps in the pathway or steps for which genetic evidence is lacking. Many steps in the

proposed pathways are currently unknown in both land plants and bacteria (reviewed in Refs. [6,7,9]).

Table 1

Number of known TAA and YUC family proteins identified in

plant model species. Data compiled from Refs. [15��,17,63]

Species Number of

TAA enzymes

Number of

YUC enzymes

Marchantia polymorpha 1 2

Physcomitrella patens 6 6

Oryza sativa 4 14

Zea mays 6 9

Arabidopsis thaliana 5 11
The angiosperms show subfunctionalization of each of

the core components in this pathway consistent with the

transition to increased cell types and growth patterns [17].

In the liverwort Marchantia polymorpha, the core IPyA

pathway consists of a single TAA and two YUC in contrast

to the five TAA and eleven YUC enzymes in Arabidopsis
thaliana (Table 1) [15��,18��]. Functional conservation of

the IPyA pathway in examined angiosperms and bryo-

phytes suggests that this pathway is likely present across

the plant lineage (please see Refs. [18��] and [17] for

phylogenetic analyses). The expansion of IPyA enzymes

in flowering plants is consistent with published phyloge-

nies of other auxin pathway components including auxin

signaling. The suite of nuclear auxin signaling compo-

nents in Marchantia evolved from a core set of five genes

to over fifty in Arabidopsis [19,20,21��]. Thus, Marchantia

is an appealing system to study the evolution of auxin

biosynthesis and catabolism in the context of nuclear

auxin signaling.

TAA and YUC genes fall into distinct clades that have non-

overlapping expression patterns and may regulate
Current Opinion in Plant Biology 2020, 55:21–27 
different aspects of plant development [17]. The expres-

sion patterns of the TAA and YUC families suggest tissue

specific roles for individual members. In Arabidopsis and

Marchantia, expression of IPyA enzymes in specific tissue

types is crucial for appropriate growth [10��,15��]. Tracing

the lineage of these distinct YUC and TAA enzymes back

to Physcomitrella and Marchantia may help researchers

understand the tissue specific functions of different clas-

ses of YUC and TAAs found in flowering plants.
www.sciencedirect.com
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IPyA is not the only IAA precursor found in land plants

(Figure 1) [9]. Indole-3-acetaldehyde (IAAld), indoleace-

tamide (IAM), indole-3-acetaldoximine (IAOx), and

indole-3-acetonitrile (IAN) are endogenous molecules

that when applied stimulate auxin responses [14,22–

24]. However, it not clear whether these intermediates

contribute to auxin homeostasis, and in some cases,

enzymes required in these potential pathways remain

unidentified (Figure 1). For example, enzymes that con-

vert tryptophan to IAAld and from IAAld to IAA remain

unknown in flowering plants [14]. Aldehyde oxidases that

convert IAAld to IAA have been proposed [25–27], but

Arabidopsis lacking a co-factor required for aldehyde

oxidase function fail to hyperaccumulate IAAld and show

no auxin-related phenotypes, suggesting that these

enzymes do not participate in IAAld to IAA conversion

[14]. At this point, contributions of these specific biosyn-

thetic pathways to the pool of IAA remain poorly under-

stood. However, the presence of these precursors in

charophytes suggests that they could represent ancestral

routes to IAA [28,29].

IAA production in green algae
Red, brown, and green algae produce auxin [28,30–33]. In

addition, tested algal species respond to and alter their

growth patterns in response to auxins and their antago-

nists, suggesting a role for auxin signaling in these organ-

isms [34��]. These findings suggest that auxin production

may have evolved in the last common ancestor of the all

algal species.
Figure 2
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Auxin production predates TIR1/AFB auxin signaling. A simplified phylogeny

auxin signaling and production. Empty circles signify the presence of genes

altered IPyA pathway found in bacteria. The absence of the canonical TIR1/

function of auxin in the green algae. For an in-depth review of land plant ev

evolution of prokaryotes and algae, please see Ref. [65].
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The land plants diverged from their closest algal relatives,

the charophytes or green algae, 514 to 470 million years ago

[35]. Like the land plants, single and multicellular char-

ophytes produce auxin via tryptophan-dependent path-

ways. However, charophytes lack components of the

TIR1/AFB nuclear auxin signaling system, suggesting a

distinct, ancestral role for auxin in these species (Figure 2)

[21��]. The route of auxin biosynthesis in algae is less clear

than in land plants. Whereas YUC genes have been identi-

fied in some algal species, the presence of TAA genes in

these same species is debatable [18��,34��,36–39,40��].
These differences may be resolved with better genome

sequences. Interestingly, the IPyA pathway is absent alto-

gether from the charophyte seaweed Ulva mutabilis. This

organism only encodes enzymes that function in the IAOx

and IAAld pathways, suggesting that some species in the

green algae lineage rely on alternative auxin biosynthetic

pathways (Figure 1) [41].

These data suggest that IAA synthesis was present in the

last common ancestor of all chlorophytic organisms, but

the evolution of any specific pathway is less well under-

stood. The putative absence of TAA from some charo-

phytes raises the possibility that the direct conversion of

tryptophan to IPyA was a crucial step for the transition to

land along with the evolution of the TIR1/AFB auxin

signaling pathway. However, the absence of TAA is based

primarily on transcriptome sequencing which raises the

possibility that TAAs may exist in the genomes of these

species and were not expressed at the time of sampling
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 showing the presence (blue) or absence (pink) of components of

 in the pathway but no other evidence. The square represents an

AFB pathway in the charophytes raises questions about the ancestral

olution, please see Ref. [64] and for information on the relationship and

Current Opinion in Plant Biology 2020, 55:21–27



24 Physiology and metabolism
[36]. In studied algal species, IAA and IAM have been

identified, but not IPyA, consistent with the absence of

TAA [30]. This raises the possibility that the ancestral

IPyA pathway is not one of the primary routes for IAA

production in the charophytes as it is in the land plants.

Genetic and metabolomic analysis will help determine

the ancestral roles of TAA and YUC enzymes as well as

which biosynthetic pathways are the primary source of

IAA in the green algae.

Bacterial IAA biosynthesis
Tryptophan-dependent IAA biosynthesis has also been

discovered outside of the plant lineage. In bacteria and

fungi, which diverged from the plant lineage over a billion

years ago [42], auxin plays important roles in plant path-

ogenesis and symbiosis [6]. Given auxin’s role in regulat-

ing cell division and expansion, its use as a virulence

factor is not surprising. Pathogen-derived IAA inhibits the

host immune response and generates a more hospitable

environment for the invading pathogen, sometimes by

promoting uncontrolled cell growth [6]. Further, auxin is

synthesized by nitrogen fixing bacteria that form symbi-

otic relationships with plants in the rhizosphere to pro-

mote cell division in roots [7,8].

Unlike in the charophytes, aminotransferases that convert

tryptophan to IPyA have been characterized in some bac-

teria and fungi (Figure 1) [43,44]. IPyA is then converted to

the IAAld intermediate by decarboxylases before further

conversion to IAA by a dehydrogenase (Figure 1) [7,43,45].

To date, no enzymes with YUC-like activity have been

identified in IAA-producing bacteria, suggesting that direct

conversion from IPyA to IAA is either absent or occurs by a

distinct enzymatic mechanism.

The IAM pathway is a common route for IAA production

in bacteria. In this pathway, a monooxyenase and hydro-

lase, IaaM and IaaH respectively, convert tryptophan to

IAM and then IAM to IAA (Figure 1) [46]. Interestingly,

IAM is also found in flowering plants such as Arabidopsis,

but the enzymes that convert tryptophan to IAM are

currently unknown [9,47], although Arabidopsis genes

that share sequence similarity with IaaH encode enzymes

capable of converting IAM to IAA [48]. These distinct

auxin biosynthesis routes suggest convergent evolution of

auxin biosynthesis in bacteria and plants. The origin of

bacterial auxin biosynthetic enzymes, and their relation-

ship to the evolution of auxin biosynthesis in the plant

lineage are not currently known (Figure 2).

Open questions and future directions
Auxin is vital to plants and influences the growth of many

non-plant species. Auxin biosynthesis and metabolism

have been of interest to the plant community since its

discovery. Whereas advances have been made in under-

standing how auxin is synthesized, the origins of IAA

biosynthesis in plants, the green algae, and plant
Current Opinion in Plant Biology 2020, 55:21–27 
pathogens remain a mystery. It is not clear which IAA

biosynthesis pathways in plants and bacteria are the result

of a common origin, convergent evolution, or horizontal

gene transfer (Figure 2).

In addition to IAA, auxin conjugates have been identified

in the land plants, algae, and bacteria. These auxin

conjugates are predicted to be storage forms and inter-

mediates in auxin catabolism [30,49–53]. The evolution

of auxin storage forms and their developmental roles have

been investigated in the land plants, but their ancestral

role in the algae and their roles in bacteria are less well

understood. The roles of other IAA precursors are also not

well understood. For example, indole-3-butryic acid

(IBA) is a naturally occurring auxin precursor, but its

synthesis is currently unknown (reviewed in Ref. [54]).

Phenylacetic acid (PAA), a non-indole, naturally occur-

ring, active auxin, is synthesized by TAA and YUC, but its

function remains a mystery as no specific PAA-deficient

mutants have been characterized [9,55]. IBA and PAA are

found in plants as well as bacteria [7,9,56], suggesting

potential roles across kingdoms. Studies of these auxins

and auxin precursors in other organisms may shed light on

their biosynthesis and their function.

Genomic and transcriptomic data from diverse species

that span the plant lineage have been used to great effect

to interrogate the evolution of the core nuclear auxin

signaling system [21��,31,57–59]. This work has been

used to identify the proto-ARF in Chlorokybus atmophyticus
[57], a green alga, and has opened up new routes of study

to understand the relationship between the transition

from water to land in the plant lineage. Similar

approaches can and should be taken with the known

components of the various auxin biosynthetic pathways.

Previous studies, like Smet et al. [60], can be updated and

completed with newly released resources such as the 1KP

project which may help resolve the origin of the IPyA

pathway [61]. In addition, further study of gene families

like the aldehyde oxidases proposed to convert IAAld to

IAA may lead to the identity of the enzymes responsible

for this conversion in vivo [14,25–27].

Whereas genes encoding TAA and YUC enzymes have

been identified in the green algae, their functions as IAA

biosynthetic genes have not been tested [18��,62].
Genetic studies in algal species will help determine

the ancestral state of the TAA family and its role in plant

evolution as more TAA orthologs are identified in the

green algae. Studies to identify potential routes of auxin

biosynthesis in algae rely primarily on information gath-

ered from the flowering plants [17] and may miss poten-

tial pathways not represented in the angiosperms. Algal

species and non-flowering land plants like Marchantia

may shed light on alternative auxin biosynthesis and

catabolism pathways and aid in resolving their evolution.

Further, blocking IAA biosynthetic pathways in the algae,
www.sciencedirect.com
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which seemingly lack the TIR1/AFB signaling pathway,

will provide useful information on the function of auxin in

those species – for example, is auxin used as a signaling

molecule in these species? If so, for what purpose? Or,

similar to microbes, do algae use IAA to alter growth of

nearby plants? Resolving these questions may lend

insight not only into IAA roles in algae, but may also

uncover IAA signaling mechanisms present across

organisms.

How pathogenic bacteria and symbionts evolved their

auxin biosynthetic machinery remains unknown. Of note,

not all bacteria rely on endogenous auxin biosynthesis to

support their pathogenesis [6]. Comparative studies of

closely related bacteria that do and do not display auxin

production may increase our understanding of how auxin

contributes to microbial functions and plant pathogenesis.

Understanding evolutionary trajectories of auxin biosyn-

thesis in plant and non-plant lineages could also identify

novel biological roles for auxin. Further, determining the

origin of the biosynthetic pathways found in both the

plant and non-plant linages and identifying species that

respond to auxin will be crucial for understanding non-

canonical auxin signaling across species.

Conclusions
Many organisms follow similar routes from tryptophan to

the primary auxin IAA. The origin of these biosynthetic

pathways remains a mystery. Further sequencing of non-

model species, particularly those in the algal lineage,

present an opportunity to study all aspects of auxin

biosynthesis. The advent of gene editing technology like

CRISPR will also increase the ability to test the function

of putative IAA biosynthetic enzymes. However, the

identification and classification of auxin precursors in vivo
remains a rate limiting step. Improvements in identifica-

tion and quantification of IAA precursors will aid

researchers in testing hypotheses generated by genomic

and genetic data and increase our understanding of the

evolution of auxin biosynthesis and function.
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